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Formalia

LVA-URL (VO+PS): https://www.cosy.sbg.ac.at/~held/teaching/diskrete_

mathematik/dm.html.
Allg. Information: Basis-URL/for students.html.

PLUSonline: Bitte melden Sie sich unbedingt im PLUSonline zu VO/PS an!

Abhaltezeit der VO: Donnerstag 745–1100, mit etwa 20–25 Minuten Pause.
Abhalteort der VO: T01, FB Informatik, Jakob-Haringer Str. 2.

Abhaltezeit des PS: Freitag 1140–1340.
Abhalteort des PS: T01+T02+T03, Jakob-Haringer Str. 2.

Tutorium: Andreas Auer und Jatin Kumar:
Montag 1600–1800 (T06),
Mittwoch 1230–1430 (T02);
FB Informatik, Jakob-Haringer Str. 2.

Achtung — das Proseminar ist prüfungsimmanent!
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UNIVERSITÄT SALZBURG

Electronic Slides and Online Material

In addition to these slides, you are encouraged to consult the WWW home page of
this lecture:

https://www.cosy.sbg.ac.at/~held/teaching/diskrete_mathematik/dm.html.

In particular, this WWW page contains up-to-date information on the course, plus links
to online notes, slides and (possibly) sample code.
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A Few Words of Warning

I hope that these slides will serve as a practice-minded introduction to various aspects
of discrete mathematics which are of importance for computer science. I would like to
warn you explicitly not to regard these slides as the sole source of information on the
topics of my course. It may and will happen that I’ll use the lecture for talking about
subtle details that need not be covered in these slides! In particular, the slides won’t
contain all sample calculations, proofs of theorems, demonstrations of algorithms, or
solutions to problems posed during my lecture. That is, by making these slides
available to you I do not intend to encourage you to attend the lecture on an irregular
basis.
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Legal Fine Print and Disclaimer

To the best of our knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder(s) grant you the
right to download and print it for your personal use. Any other use, including non-profit
instructional use and re-distribution in electronic or printed form of significant portions
of it, beyond the limits of “fair use”, requires the explicit permission of the copyright
holder(s). All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder(s) and/or their
respective employers be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.
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Oxford University Press, 2nd edition, Feb 2003, reprinted (with corrections) 2008;
ISBN 978-0-19-850717-8
M. Smid.
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What is Discrete Mathematics?

No universally accepted definition of the scope of DM exists . . .
Typically, objects studied in DM can only assume discrete, separate values rather
than values out of a continuum; sets of such objects are countable.

Depending on what is covered in other courses a variety of topics tends to be
studied within a course on DM:

Logic and Boolean algebra,
Mathematical language,
Set theory,
Functions and relations;
Computability theory,
Formal languages,
Automata theory;
Algebraic structures,
Number theory,
Proofs and mathematical reasoning,
Counting and elementary combinatorics,
Graph theory,
Complexity theory,
Encoding and cryptography;
Elementary probability theory.
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UNIVERSITÄT SALZBURG

Applications of Discrete Mathematics

DM forms the mathematical language of computer science. It is at the very heart
of several other parts of computer science.

Applications of DM include — but are not limited to —
Algorithms and data structures,
Automated programming,
Automated theorem proving,
Combinatorial geometry,
Computational geometry,
Cryptography and cryptanalysis,
Discrete simulation,
Game theory,
Operations research and combinatorial optimization,
Theory of computing,
Queuing theory.

We start with a set of sample problems; solutions for all problems will be worked
out or, at least, sketched during this course.
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Sample Problem: Summation Formula

Suppose that an algorithm needs 1` 2` 3` ¨ ¨ ¨ ` pn´ 1q ` n many
computational steps (of unit cost) to handle an input of size n.
Question: Can we express this sum by means of a closed formula?

Basic math:

1 “ 1
1` 2 “ 3
1` 2` 3 “ 6
1` 2` 3` 4 “ 10
1` 2` 3` 4` 5 “ 15
1` 2` 3` 4` 5` 6 “ 21
1` 2` 3` 4` 5` 6` 7 “ 28

An inspection of the numbers on the right-hand side might let us suspect that

1` 2` 3` ¨ ¨ ¨ ` pn´ 1q ` n “ npn` 1q
2 .

But is this indeed correct? And, by the way, what do the dots in this equation
really mean??
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Sample Problem: Summation Formula

An answer can be established by means of number theory (natural numbers,
induction). And we get indeed

1` 2` 3` ¨ ¨ ¨ ` pn´ 1q ` n “ npn` 1q
2

for all “natural numbers” n.

Caution: Even after calculating this sum for all values of n between 1 and 500
one can not legitimately claim to know the sum for, say, n :“ 1000.
Note: It would constitute a horrendous waste of CPU time to let a computer
compute 1` 2` 3` ¨ ¨ ¨ ` pn´ 1q ` n by successively adding numbers if we
could simply obtain the result by evaluating npn`1q

2 .
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Sample Problem: Chessboard Tilings

Consider an 8ˆ 8 chessboard

with the upper-left and lower-right cells removed,
and assume that we are given red/yellow and green/blue domino blocks whose
sizes match the size of two adjacent squares of the chessboard.
Question: Can this chessboard be covered completely by 31 domino blocks of
arbitrary color combinations?

We consult counting principles and obtain the answer: No!
Caution: Simply trying out all possible placements of domino blocks hardly is an
option for an 8ˆ 8 chessboard — and definitely no option for an nˆ n board!
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Sample Problem: Route Calculation

Question: What is the shortest route for driving from Salzburg to Graz?

Answer provided by computing a shortest path in a weighted graph: Salzburg Ñ
Bad Ischl Ñ Bad Goisern Ñ Stainach/Irdning Ñ Liezen Ñ Leoben Ñ Graz.

Innsbruck

Wörgl

Brixen Lienz

Matrei

Mittersill

Kitzbühel

Spittal/Drau

St. Michael/Lg.

Eben

Golling Goisern

Stainach/Ird.

Liezen

Villach Klagenfurt

Graz
D.-feistritz

Hartberg

Bruck/Mur
Leoben

Wr. Neustadt

WienLinz

Steyr

Ischl

Sattledt

Salzburg

München St. Pölten

Rosenheim

60

47

81
28

56

99

36

76 83

1249
6336

53
11

83

107
28

37

29
32

61

72
37

38

139

75

77

54

66124
47

47

43

143

80

49
24

34
15

94

Note: Simply trying all possible routes gets tedious! (How would you even
guarantee that all possible routes have indeed been checked?)
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Bad Ischl Ñ Bad Goisern Ñ Stainach/Irdning Ñ Liezen Ñ Leoben Ñ Graz.

Innsbruck

Wörgl

Brixen Lienz

Matrei

Mittersill

Kitzbühel

Spittal/Drau

St. Michael/Lg.

Eben

Golling Goisern

Stainach/Ird.

Liezen

Villach Klagenfurt

Graz
D.-feistritz

Hartberg

Bruck/Mur
Leoben

Wr. Neustadt

WienLinz

Steyr

Ischl

Sattledt

Salzburg

München St. Pölten

Rosenheim

60

47

81
28

56

99

36

76 83

1249
6336

53
11

83

107
28

37

29
32

61

72
37

38

139

75

77

54

66124
47

47

43

143

80

49
24

34
15

94

Note: Simply trying all possible routes gets tedious! (How would you even
guarantee that all possible routes have indeed been checked?)
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Sample Problem: Channel Assignment

Suppose that frequencies out of a set of m frequencies are to be assigned to n
broadcast stations within Austria. We are told that the area serviced by a station
lies within a disk with radius 50 kilometers. Obviously, no two different stations
whose broadcast areas overlap may use the same frequency.

Question: Do we have enough frequencies? What is the minimum number of
frequencies needed?

50 km

The solution can be obtained by using techniques of computational geometry
combined with graph coloring.
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Sample Problem: Memory Required for Storing a Polyhedron

Suppose that a polyhedral model has n vertices. How many edges and faces can
it have at most? What is the storage complexity relative to n?

Answer provided by graph theory: A polyhedron with n vertices has at most
3n´ 6 edges and 2n´ 4 faces.
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UNIVERSITÄT SALZBURG

Sample Problem: Memory Required for Storing a Polyhedron

Suppose that a polyhedral model has n vertices. How many edges and faces can
it have at most? What is the storage complexity relative to n?

Answer provided by graph theory: A polyhedron with n vertices has at most
3n´ 6 edges and 2n´ 4 faces.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 23/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Problem: Complexity of an Algorithm

Suppose that an algorithm is given n numbers as input and that it solves a
problem by proceeding as follows: During one round of computation, it performs
n computational steps. We know that during each round it discards at least 25%
of the numbers. The algorithm executes one round after the other until only one
number is left.

Question: How many rounds does the algorithm run in the worst case (depending
on the input size n)? How many computational steps are carried out in the worst
case?

Answer provided by the theory of recurrence relations: The number of
computational steps is linear in n, and the number of rounds is logarithmic in n.
In asymptotic notation: Opnq and Oplog nq.
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UNIVERSITÄT SALZBURG

Sample Problem: Complexity of an Algorithm

Suppose that an algorithm is given n numbers as input and that it solves a
problem by proceeding as follows: During one round of computation, it performs
n computational steps. We know that during each round it discards at least 25%
of the numbers. The algorithm executes one round after the other until only one
number is left.

100
75
56
42after round 3:

after round 2:
after round 1:
input:

Question: How many rounds does the algorithm run in the worst case (depending
on the input size n)? How many computational steps are carried out in the worst
case?

Answer provided by the theory of recurrence relations: The number of
computational steps is linear in n, and the number of rounds is logarithmic in n.
In asymptotic notation: Opnq and Oplog nq.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 24/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Problem: Optimality of an Algorithm

Tower-of-Hanoi Problem (ToH): Given three pegs (labeled I,II,III) and a stack of n
disks arranged on Peg I from largest at the bottom to smallest at the top,

we are
to move all disks to Peg II such that only one disk is moved at a time and such
that no larger disk ever is placed on a smaller disk.
Attributed to Édouard Lucas (1883). Supposedly based on an Indian legend
about Brahmin priests moving 64 disks in the Great Temple of Benares; once
they are finished, life on Earth will end.
Goal: Find an algorithm that uses the minimum number of moves.

I II III

One can prove: A (straightforward) recursive algorithm needs 2n
´ 1 moves.

One can also prove: Every(!) algorithm that solves ToH needs at least 2n
´ 1

moves.
Thus, the solution achieved by the recursive algorithm is optimal as far as the
number of moves is concerned.
[Buneman&Levy (1980)]: There exists a simple iterative solution that avoids an
exponential-sized stack!
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Attributed to Édouard Lucas (1883). Supposedly based on an Indian legend
about Brahmin priests moving 64 disks in the Great Temple of Benares; once
they are finished, life on Earth will end.
Goal: Find an algorithm that uses the minimum number of moves.

I II IIII II III

One can prove: A (straightforward) recursive algorithm needs 2n
´ 1 moves.

One can also prove: Every(!) algorithm that solves ToH needs at least 2n
´ 1

moves.
Thus, the solution achieved by the recursive algorithm is optimal as far as the
number of moves is concerned.
[Buneman&Levy (1980)]: There exists a simple iterative solution that avoids an
exponential-sized stack!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 25/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Sample Problem: Optimality of an Algorithm

Tower-of-Hanoi Problem (ToH): Given three pegs (labeled I,II,III) and a stack of n
disks arranged on Peg I from largest at the bottom to smallest at the top, we are
to move all disks to Peg II such that only one disk is moved at a time and such
that no larger disk ever is placed on a smaller disk.
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Sample Problem: The Power of Exponential Growth

According to legend, the power of exponential growth was already known by the
Brahmin Sissa ibn Dahir (ca. 300-400 AD): As a reward for the invention of the
game of chess (or its Indian predecessor Chaturanga) he asked his king to place
one grain of rice in the first square of a chessboard, two in the second, four in the
third, and so on, doubling the amount of rice up to the 64-th square.

So, how many grains of rice did Sissa ask for?
Let Rp64q denote the number of rice grains for 64 squares. We get

Rp64q “ 1` 2` 4` . . .` 263

and, in general, using the capital-sigma notation and geometric series,

Rpnq “ 1` 2` 4` . . .` 2n´1
“

n
ÿ

i“1
2i´1

“

n´1
ÿ

i“0
2i
“

2n
´ 1

2´ 1 “ 2n
´ 1.

Hence, Sissa asked for
264
´ 1 “ 18 446 744 073 709 551 615

grains of rice. This is about 1000 times the current global yearly production!
[Sagan 1997]: “Exponentials can’t go on forever, because they will gobble up
everything”.
The “second half of the chessboard” is a phrase, coined by Kurzweil in 1999, to
refer to the point where exponential growth begins to have a significant impact.
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third, and so on, doubling the amount of rice up to the 64-th square.
So, how many grains of rice did Sissa ask for?
Let Rp64q denote the number of rice grains for 64 squares. We get

Rp64q “ 1` 2` 4` . . .` 263

and, in general, using the capital-sigma notation and geometric series,

Rpnq “ 1` 2` 4` . . .` 2n´1
“

n
ÿ

i“1
2i´1

“

n´1
ÿ

i“0
2i
“

2n
´ 1

2´ 1 “ 2n
´ 1.

Hence, Sissa asked for
264
´ 1 “ 18 446 744 073 709 551 615

grains of rice. This is about 1000 times the current global yearly production!
[Sagan 1997]: “Exponentials can’t go on forever, because they will gobble up
everything”.
The “second half of the chessboard” is a phrase, coined by Kurzweil in 1999, to
refer to the point where exponential growth begins to have a significant impact.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 26/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Sample Problem: Key Distribution and Message Encryption

Suppose that two persons named Alice and Bob want to exchange a secret
information, e.g., a key that can be used for decrypting their encrypted messages.

Likely, they will not consider it to be safe to exchange the key as plain text via,
say, email.
What is a secure mechanism for them to exchange a key??

Meet in person at a secret place and share the key?!
Share in parts?!

Answer provided by cryptography: The Diffie-Hellman Algorithm provides a
simple way to exchange a key via public communication channels.
By the way, how could Alice and Bob encrypt or decrypt messages once they
have exchanged their key?
Answer: This is yet another application of number theory!
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UNIVERSITÄT SALZBURG

Sample Problem: Key Distribution and Message Encryption

Suppose that two persons named Alice and Bob want to exchange a secret
information, e.g., a key that can be used for decrypting their encrypted messages.
Likely, they will not consider it to be safe to exchange the key as plain text via,
say, email.
What is a secure mechanism for them to exchange a key??

Meet in person at a secret place and share the key?!
Share in parts?!

Answer provided by cryptography: The Diffie-Hellman Algorithm provides a
simple way to exchange a key via public communication channels.

By the way, how could Alice and Bob encrypt or decrypt messages once they
have exchanged their key?
Answer: This is yet another application of number theory!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 27/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Propositional Logic

Goal: specification of a language for formally expressing theorems and proofs.
Aka: propositional calculus, logic of statements, statement logic;
Dt.: Aussagenlogik.

Definition 1 (Proposition, Dt.: Aussage)
A proposition is a statement that is either true or false.

Propositions can be atomic,
like “The sun is shining”,

or compound,
like “The sun is shining and the temperature is high”.

In the latter case, the proposition is a composition of atomic or compound
propositions by means of logical junctors. (Junctors are also known as
connectives or operators.)
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Language of Propositional Logic

Definition 2 (Propositional formula, Dt.: aussagenlogische Formel)

A propositional formula is constructed inductively from a set of
propositional variables (typically p, q, r or p1, p2, . . .);
junctors: ␣,^,_,ñ,ô;
parentheses: p, q;
constants (truth values): K,J (or F ,T );

based on the following rules:
A propositional variable is a propositional formula.
The constants K and J are propositional formulas.
If ϕ1 and ϕ2 are propositional formulas then so are the following:

p␣ϕ1q, pϕ1 ^ ϕ2q, pϕ1 _ ϕ2q, pϕ1 ñ ϕ2q, pϕ1 ô ϕ2q.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 31/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Precedence Rules

Precedence rules (Dt.: Vorrangregeln) are used frequently to avoid the burden of
too many parentheses. From highest to lowest precedence, the following order is
common.

␣, ^, _,
ñ

ô

Unfortunately, different precedence rules tend to be used by different authors.
Thus, make it clear which order you use, or in case of doubt, insert parentheses!
It is common to represent the truth values of a proposition under all possible
assignments to its variables by means of a truth table.
In addition to the standard junctors we also define two other operators, Nand,
denoted by Ò (or sometimes by |), and Nor, denoted by Ó.
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Truth Tables

p q ␣p p^ q p_ q p ñ q p ô q p Ò q p Ó q
T T F T T T T F F
T F F F T F F T F
F T T F T T F T F
F F T F F T T T T

Common names for the junctors in natural language:
␣p: Not, negation;
p^ q: And, conjunction;
p_ q: Or, disjunction;
p ñ q: Implies, conditional, if p then q, q if p, p sufficient for q, q necessary
for p;
p ô q: Iff, equivalence, biconditional, p if and only if q, p necessary and
sufficient for q.

Note: The truth table (Dt.: Wahrheitstabelle) of a formula with n variables has 2n

rows.
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Tautologies, Contradictions

Definition 3 (Tautology, Dt.: Tautologie)
A propositional formula is a tautology if it is true under all truth assignments to its
variables.

Definition 4 (Contradiction, Dt.: Widerspruch)
A propositional formula is a contradiction if it is false under all truth assignments to its
variables.

Standard examples: pp_␣pq and pp^␣pq.
Easy to prove: The negation of a tautology yields a contradiction, and vice versa.
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Logical Equivalence

Definition 5 (Logical equivalence, Dt.: logische Äquivalenz)
Two propositional formulas are logically equivalent if they have the same truth table.
Logical equivalence of formulas ϕ1, ϕ2 is commonly denoted by ϕ1 ” ϕ2.

Theorem 6
Two propositional formulas ϕ1, ϕ2 are logically equivalent iff ϕ1 ô ϕ2 is a tautology.

Definition 7 (Complete set of junctors, Dt.: vollständige Junktorenmenge)
A set S of junctors is said to be complete (or truth-functionally adequate/complete) if,
for any given propositional formula, a logically equivalent one can be written using
only junctors of S.

Note: The sets tÒu and tÓu both are complete sets of junctors.
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Laws for Logical Equivalence

Theorem 8
Let ϕ1, ϕ2 be propositional formulas. Then the following equivalences hold:

Identity: ϕ1 ^ T ” ϕ1 ϕ1 _ F ” ϕ1
Domination: ϕ1 _ T ” T ϕ1 ^ F ” F

Idempotence: ϕ1 _ ϕ1 ” ϕ1 ϕ1 ^ ϕ1 ” ϕ1
Double negation: ␣␣ϕ1 ” ϕ1

Commutativity: ϕ1 ^ ϕ2 ” ϕ2 ^ ϕ1 ϕ1 _ ϕ2 ” ϕ2 _ ϕ1
ϕ1 ô ϕ2 ” ϕ2 ô ϕ1

Distributivity: pϕ1 _ ϕ2q ^ ϕ3 ” pϕ1 ^ ϕ3q _ pϕ2 ^ ϕ3q

pϕ1 ^ ϕ2q _ ϕ3 ” pϕ1 _ ϕ3q ^ pϕ2 _ ϕ3q

Associativity: pϕ1 _ ϕ2q _ ϕ3 ” ϕ1 _ pϕ2 _ ϕ3q

pϕ1 ^ ϕ2q ^ ϕ3 ” ϕ1 ^ pϕ2 ^ ϕ3q

De Morgan’s laws: ␣pϕ1 ^ ϕ2q ” ␣ϕ1 _␣ϕ2
␣pϕ1 _ ϕ2q ” ␣ϕ1 ^␣ϕ2

Trivial tautology: ϕ1 _␣ϕ1 ” T
Trivial contradiction: ϕ1 ^␣ϕ1 ” F

Contraposition: ␣ϕ1 ô ␣ϕ2 ” ϕ1 ô ϕ2 ␣ϕ2 ñ ␣ϕ1 ” ϕ1 ñ ϕ2
Implication as Disj.: ϕ1 ñ ϕ2 ” ␣ϕ1 _ ϕ2
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Logical Implication and Proofs

Definition 9 (Logical implication, Dt.: logische Implikation)
A formula ϕ1 logically implies ϕ2, denoted by ϕ1 |ù ϕ2, if ϕ1 ñ ϕ2 is a tautology.

Definition 10 (Proof, Dt.: Beweis)
A proof of ψ based on premises ϕ1, . . . , ϕn is a finite sequence of propositions that
ends in ψ such that each proposition is either a premise or a logical implication of the
previous proposition.

Note: Logical implication rather than logical equivalence!
Thus,

note that it need not be possible to revert a proof!
pay close attention to which steps are actual equivalences if you intend to
argue both ways!
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Rules of Inference

Aka: proof rules (Dt.: Schlußregeln).
In addition to the following inference rules for propositional formulas ϕ1, ϕ2, all the
equivalence rules apply: Each equivalence can be written as two inference rules
since they are valid in both directions.

ϕ1 ^ ϕ2
ϕ1

ϕ1
ϕ1 _ ϕ2

ϕ1 ñ ϕ2
␣ϕ2 ñ ␣ϕ1

(Contraposition)

ϕ1 ϕ1 ñ ϕ2
ϕ2

(Modus Ponens)
␣ϕ1 ϕ1 _ ϕ2

ϕ2
(Modus Tollendo Ponens)

ϕ1 ñ ϕ2 ␣ϕ1 ñ ϕ2
ϕ2

(Rule of Cases)
ϕ1 ñ ϕ2 ϕ2 ñ ϕ3

ϕ1 ñ ϕ3
(Chain Rule)
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Satisfiability

Definition 11 (Satisfiability, Dt.: Erfüllbarkeit)
A formula ϕ is satisfiable if there exists at least one truth assignment to the variables
of ϕ that makes ϕ true.

Definition 12 (Satisfiability equivalent)
Two formulas are satisfiability equivalent if both formulas are either satisfiable or not
satisfiable.
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Conjunctive Normal Form

In mathematics, normal forms are canonical representations of objects such that
all equivalent objects have the same representation.

Definition 13 (Literal, Dt.: Literal)
A literal is a propositional variable or the negation of a propositional variable. A clause
is a disjunction of literals.

E.g., if p, q are variables then p and ␣q are literals, and pp_␣qq is a clause.

Definition 14 (Conjunctive normal form, Dt.: konjunktive Normalform)
A propositional formula is in (general) conjunctive normal form (CNF) if it is a
conjunction of clauses.

E.g., ␣p1 ^ pp2 _ p5 _␣p6q ^ p␣p3 _ p4 _␣p6q is a CNF formula.

Definition 15 (k-CNF)
A CNF formula is a k-CNF formula if every clause contains at most k literals.
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Conjunctive Normal Form

Note: Some textbooks demand exactly k literals rather than at most k literals.
Note: It is common to demand that no variable may appear more than once in a
clause.
Note: For k ě 3, a general CNF formula can easily be converted in polynomial
time (in the number of literals) into a k-CNF formula with exactly k literals per
clause such that no variable appears more than once in a clause and such that
the two formulas are satisfiability equivalent.
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Predicate Logic

Definition 16 (n-ary Relation, Dt.: n-stellige Relation)
Let A1,A2, . . . ,An be sets, for some n P N. An n-ary relation R on A1,A2, . . . ,An is a
subset of their Cartesian product, i.e., R Ď A1 ˆ A2 ˆ ¨ ¨ ¨ ˆ An.

Definition 17 (n-ary Function, Dt.: n-stellige Funktion)
Let A1,A2, . . . ,An,B be sets, for some n P N. An n-ary function F from
A1 ˆ A2 ˆ ¨ ¨ ¨ ˆ An to B is an pn` 1q-ary relation on A1,A2, . . . ,An,B such that for any
pa1, a2, . . . , anq P A1 ˆ A2 ˆ ¨ ¨ ¨ ˆ An there exists a unique b P B such that
pa1, a2, . . . , an, bq P F .

It is common to write y “ Fpa1, . . . , anq for “pick y such that pa1, . . . , an, yq P F”.
The set A1 ˆ A2 ˆ ¨ ¨ ¨ ˆ An is called the domain and the set B is called the
codomain of F .
An n-ary relation/function over a set A is a relation/function where
A1 “ A2 “ . . . “ An “ A, i.e., A1 ˆ A2 ˆ ¨ ¨ ¨ ˆ An “ An. It is also called an n-place
relation/function.
A 1-ary relation/function is called unary, and a 2-ary relation/function is called
binary.
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Predicate Logic: Predicates

Definition 18 (Predicate, Dt.: Prädikat)
For an n-ary relation R over A, an n-ary predicate over A is the n-ary function
fR : An

Ñ tT ,Fu, where

fRpa1, . . . , anq :“

"

T if pa1, . . . , anq P R,
F otherwise.

Thus, a predicate is a Boolean function.
Note: This is a slight abuse of notation since the symbols “:” and “Ñ” in
“f : M Ñ N” actually form already a 3-ary predicate!
An 1-ary predicate is called unary, and a 2-ary predicate is called binary.
A sample unary predicate on R is

“x is non-negative” :“
"

T if x ě 0,
F otherwise.

Dt.: Prädikatenlogik.
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Language of Predicate Logic

Definition 19 (Predicate vocabulary, Dt.: Symbolmenge)
A predicate vocabulary consists of

a set C of constant symbols,
a set F of function symbols,
a set V of variables, typically tx1, x2, . . .u or ta, b, . . .u,
a set P of predicate symbols, including the 0-ary predicate symbols (truth values)
K,J or F ,T ,

together with
logical junctors ␣,^,_,ñ,ô,
quantifiers D,@,
parentheses.
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Language of Predicate Logic

Definition 20 (Term)
A term over pC,V,Fq is defined inductively as follows:

Every constant c P C is a term.
Every variable x P V is a term.
If t1, . . . , tn are terms and f is an n-ary function symbol then fpt1, . . . , tnq is a term.

Note: Constants can be thought of as 0-ary function symbols. Thus, a set C of
constants need not be considered when defining the language of predicate logic.
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Language of Predicate Logic

Definition 21 (Formulas)
The set of formulas over pC,V,F ,Pq is defined inductively as follows:

K and J are formulas.
If t1, . . . , tn are terms and P P P is an n-ary predicate, then Ppt1, . . . , tnq is a
(so-called atomic) formula.
If ϕ and ψ are formulas then p␣ϕq, pϕ^ ψq, pϕ_ ψq, pϕñ ψq and pϕô ψq are
formulas.
If ϕ is a formula then p@x ϕq and pDx ϕq are formulas. In both cases, the scope
of the quantifier is given by the formula ϕ to which the quantifier is applied.

Definition 22 (Quantifier-free formula, Dt.: quantorenfreie Formel)
A quantifier-free formula is a formula which does not contain a quantifier.
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Quantifiers

Definition 23 (Universe of discourse, Dt.: Wertebereich, Universum)
The universe of discourse specifies the set of values that the variable x may assume
in p@x ϕq and pDx ϕq.

Definition 24 (Universal quantifier, Dt.: Allquantor)
p@x Ppxqq is the statement

“Ppxq is true for all x (in the universe of discourse)”.

Definition 25 (Existential quantifier, Dt.: Existenzquantor)
pDx Ppxqq is the statement

“there exists x (in the universe of discourse) such that Ppxq is true”.

The notation pD!x Ppxqq is a convenience short-hand for
“there exists exactly one x such that Ppxq is true”,

i.e., for denoting existence and uniqueness of a suitable x.
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Precedence Rules for Quantified Formulas

No universally accepted precedence rule exists.
Thus, you have to make your specific order very clear.
Even better, use parentheses or (significant!) spaces between coherent parts of
the expression.

First-order logic versus higher-order logic: In first-order predicate logic, predicate
quantifiers or function quantifiers are not permitted, and variables are the only
objects that may be quantified. Also, predicates are not allowed to have
predicates as arguments.
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Free Variables

Definition 26 (Free variables, Dt.: freie Variable)
The free variables of a formula ϕ or a term t, denoted by FVpϕq and FVptq, are defined
inductively as follows:

For a constant c P C: FVpcq :“ tu;
For a variable x P V: FVpxq :“ txu;
For a term fpt1, . . . , tnq: FVpfpt1, . . . , tnqq :“ FVpt1q Y . . .Y FVptnq;
For a formula Ppt1, . . . , tnq: FVpPpt1, . . . , tnqq :“ FVpt1q Y . . .Y FVptnq;
Also, FVpKq :“ tu,

FVpJq :“ tu;
For formulas ϕ and ψ: FVpp␣ϕqq :“ FVpϕq,

FVppϕ^ ψqq :“ FVpϕq Y FVpψq,
FVppϕ_ ψqq :“ FVpϕq Y FVpψq,

FVppϕñ ψqq :“ FVpϕq Y FVpψq,
FVppϕô ψqq :“ FVpϕq Y FVpψq;

For a formula ϕ: FVpp@x ϕqq :“ FVpϕqztxu,
FVppDx ϕqq :“ FVpϕqztxu.
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Bound Variables

Definition 27 (Bound variables, Dt.: gebundene Variable)
The bound variables of a formula ϕ or a term t, denoted by BVpϕq and BVptq, are
defined inductively as follows:

For a constant c P C: BVpcq :“ tu;
For a variable x P V: BVpxq :“ tu;
For a term fpt1, . . . , tnq: BVpfpt1, . . . , tnqq :“ tu;
For a formula Ppt1, . . . , tnq: BVpPpt1, . . . , tnqq :“ tu;
Also, BVpKq :“ tu,

BVpJq :“ tu;
For formulas ϕ and ψ: BVpp␣ϕqq :“ BVpϕq,

BVppϕ^ ψqq :“ BVpϕq Y BVpψq,
BVppϕ_ ψqq :“ BVpϕq Y BVpψq,

BVppϕñ ψqq :“ BVpϕq Y BVpψq,
BVppϕô ψqq :“ BVpϕq Y BVpψq;

For a formula ϕ: BVpp@x ϕqq :“ BVpϕq Y txu,
BVppDx ϕqq :“ BVpϕq Y txu.
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Free and Bound Variables

Note: Technically speaking, one variable symbol may denote both a free and a
bound variable of a formula!
However, common sense dictates to use a different symbol if a different variable
is meant, even if not required by the syntax of predicate logic:

Do not use the same symbol for bound and free variables! E.g.,

pPpxq ñ p@x Qpxqqq

is syntactically correct but extremely difficult to parse for a human.
Also, do not re-use symbols of bound variables inside nested quantifiers!
E.g.,

p@x pPpxq ñ p@x Qpxqqqq

is syntactically correct but horrible to parse.

Definition 28 (Sentence, Dt.: geschlossener Ausdruck)
A formula ϕ is a sentence if FVpϕq “ tu.
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Substitutions

Definition 29 (Substitution, Dt.: Ersetzung)
For a formula ϕ, variable x and term t, we obtain the substitution of x by t, denoted as
ϕrt{xs, by replacing each free occurrence of x in ϕ by t.

Definition 30 (Valid substitution, Dt.: gültige Ersetzung)
A substitution of t for x in a formula ϕ is valid if and only if no free variable of t ends up
being bound in ϕrt{xs.

Not a valid substitution of x: ϕ ” pDy P N y ą 10 ^ x ă yq and t :“ 2y ` 5.
Again, it is very poor practice to substitute x by t if t contains any variable that
also is a bound variable of ϕ!
ϕ ” p@z P N z2

ą 0q _ pDy P N y ą 10 ^ x ă yq and t :“ 2z ` 5.
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Equivalence Rules

Theorem 31
Let x be a variable, and ϕ and ψ be formulas which normally contain x as a free
variable. Then the following equivalences hold:

De Morgan’s laws: p␣p@x ϕqq ” pDx p␣ϕqq
p␣pDx ϕqq ” p@x p␣ϕqq

Trivial conjunction: p@x pϕ^ ψqq ” pp@x ϕq ^ p@x ψqq

Only if x R FVpψq: p@x pϕ^ ψqq ” pp@x ϕq ^ ψq
p@x pϕ_ ψqq ” pp@x ϕq _ ψq
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Rules of Inference

Let x, y be variables and ϕ, ψ be propositional formulas. The following inference
rules allow to deduce new formulas.
pp@x ϕq _ p@x ψqq

p@x pϕ_ ψqq

pDx pϕ^ ψqq

pDx ϕq ^ pDx ψq

pDx p@y ϕqq

p@y pDx ϕqq

Note that the other direction does not hold for any of these inference rules!
In addition to these three inference rules all the equivalence rules apply: Each
equivalence can be written as two inference rules since they are valid in both
directions.
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2 Propositional and Predicate Logic
Propositional Logic
Predicate Logic
Special Quantifiers
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Special Quantifiers

What is the syntactical meaning of
n
ÿ

i“m
fpiq ?

Apparently, this is the common short-hand notation for

n
ÿ

i“m
fpiq “

ÿ

mďiďn
fpiq “

ÿ

Ppi,m,nq

fpiq “ fpmq ` fpm` 1q ` ¨ ¨ ¨ ` fpn´ 1q ` fpnq,

where fpiq is a term with the free variable i and pm ď i ď nq is a formula with free
variables i,m, n, and Ppi,m, nq :ô rpi ě mq ^ pi ď nqs.
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Special Quantifiers

Thus, the
ř

-quantifier takes a predicate, Ppi,m, nq, and and a term, fpiq, and
converts it to the new term

pfpmq ` fpm` 1q ` fpm` 2q ` ¨ ¨ ¨ ` fpn´ 1q ` fpnqq,

By convention, the variable i is bound inside of
řn

i“m fpiq, while m and n remain
free.
Similarly,

n
ź

i“m
fpiq :“ fpmq ¨ fpm` 1q ¨ fpm` 2q ¨ . . . ¨ fpn´ 1q ¨ fpnq.

Again, by convention, if n ă m then
n
ÿ

i“m
fpiq :“ 0 and

n
ź

i“m
fpiq :“ 1.

Union (Y) and intersection (X) of several sets are further examples of special
quantifiers: Yn

i“1Ai .
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Special Quantifiers: Sets

Standard notation for a set with a finite number of elements: t , , . . . , u;
e.g., t1, 2, 3, 4u.
Obvious disadvantage: explicit enumeration of all elements of a set allows to
specify only finite sets!
Infinite sets require us to give a statement A to specify a characteristic property of
the set:

S :“ tx : Au or S :“ tfpxq : Au,

where S shall contain those elements x, or those terms fpxq, for some universe of
discourse, for which the statement A holds.
Typically, x will be a free variable of A.
Thus, the three symbols “t” and “:” and “u” together act as a quantifier that binds
x.
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Convenient Short-Hand Notations

The following short-hand notations are convenient for using the predicate x P X in
conjunction with sets or quantifiers:

tx P X : Apxqu is a short-hand notation for tx : x P X ^ Apxqu

p@x P X Apxqq is a short-hand notation for p@x px P X ñ Apxqqq

pDx P X Apxqq is a short-hand notation for pDx px P X ^ Apxqqq
If x is a typed variable — e.g., a real number — and P is a “simple” unary
predicate — e.g., Ppxq :ô px ą 3q — then the following notations are also used
commonly:

p@Ppxq Apxqq is a short-hand notation for p@x pPpxq ñ Apxqqq

pDPpxq Apxqq is a short-hand notation for pDx pPpxq ^ Apxqqq
Another wide-spread notation is to drop the parentheses:

@x Ppxq instead of p@x Ppxqq
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3 Definitions and Theorem Proving
Need for Rigorous Analysis
Definitions
Syntactical Proof Techniques
Types of Proofs
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Need for Rigorous Analysis

Suppose that we are to pick a bunch of integers between 1 and n such that no
two of them differ by exactly 3 or exactly 5. Let’s call these numbers “compatible”.

How many compatible numbers can you pick for n :“ 20?
Intuition: Start at 1 and scan the integers from 1 to 20, successively picking those
integers which are compatible with all integers picked previously:

1 2 3 ��4 ��5 ��6 ��7 ��8 9 10 11 ��12 ��13 ��14 ��15 ��16 17 18 19 ��20
We get 9 compatible integers. Our selection scheme makes it plausible that this
is indeed the maximum number of compatible integers within t1, 2, 3, . . . , 19, 20u.
Right?
Well, what about the following 10 integers?

1 3 5 7 9 11 13 15 17 19
Oops! Why should we believe that we can’t find 11 or more compatible integers
within t1, 2, 3, . . . , 19, 20u?
The answer is provided by the pigeonhole principle (Thm. 147): Every subset of
compatible integers of t1, 2, 3, . . . , 19, 20u can contain at most one of each of the
following 10 pairs:

1 2 3 4 5 11 12 13 14 15
6 7 8 9 10 16 17 18 19 20
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Need for Rigorous Analysis

Lesson Learned
1 An intuitively appealing argument or approach is no substitute for a formal proof:

Intuition might be wrong!

2 Consent of the majority is no substitute for a formal proof either.
3 The so-called greedy approach need not always lead to the best solution for an

optimization problem.

Proofs Needed!
Even though proofs and a rigorous formal analysis might seem boring (difficult,
mind-boggling, mind-numbing, unnecessary, . . .) there is just no way around them if
we want to be sure that our findings are correct!

So, be prepared for at least some boring (difficult, mind-boggling, mind-numbing,
unnecessary, . . .) proofs! §
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UNIVERSITÄT SALZBURG

Need for Rigorous Analysis

Lesson Learned
1 An intuitively appealing argument or approach is no substitute for a formal proof:

Intuition might be wrong!
2 Consent of the majority is no substitute for a formal proof either.

3 The so-called greedy approach need not always lead to the best solution for an
optimization problem.

Proofs Needed!
Even though proofs and a rigorous formal analysis might seem boring (difficult,
mind-boggling, mind-numbing, unnecessary, . . .) there is just no way around them if
we want to be sure that our findings are correct!

So, be prepared for at least some boring (difficult, mind-boggling, mind-numbing,
unnecessary, . . .) proofs! §

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 64/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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3 Definitions and Theorem Proving
Need for Rigorous Analysis
Definitions

Basics of Definitions
Recursive Definitions
Fibonacci, Factorial, Sum, Product
Words
Caveats

Syntactical Proof Techniques
Types of Proofs
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How to Deal with Formal Statements . . .

Experience tells me that students find it difficult
to parse and understand formal statements,
to formulate meaningful definitions,
to write clean and mathematically correct proofs.

Hence, prior to diving into other areas of Discrete Mathematics, we start with
taking a practical look at the formal nuts and bolts of mathematical reasoning.
In the following slides on definitions and theorem proving we pre-suppose an
“intuitive” understanding of natural numbers, integers, reals, etc.; e.g., as taught
in school.
We will later on put these number systems on slightly more formal grounds.
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UNIVERSITÄT SALZBURG

How to Deal with Formal Statements . . .

Experience tells me that students find it difficult
to parse and understand formal statements,
to formulate meaningful definitions,
to write clean and mathematically correct proofs.

Hence, prior to diving into other areas of Discrete Mathematics, we start with
taking a practical look at the formal nuts and bolts of mathematical reasoning.

In the following slides on definitions and theorem proving we pre-suppose an
“intuitive” understanding of natural numbers, integers, reals, etc.; e.g., as taught
in school.
We will later on put these number systems on slightly more formal grounds.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 66/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Definitions

We distinguish between explicit and recursive definitions.
An explicit definition relates an entity that is to be specified (“definiendum”) to an
already known entity (“definiens”).

Explicit definition of a function f with n arguments:

fpx1, x2, . . . , xnq :“ t,

where the term t (normally) contains x1, x2, . . . , xn as free variables.
E.g., fpx, yq :“

a

x2 ` y2.
Explicit definition of a predicate P with n arguments:

Ppx1, x2, . . . , xnq :ô A,

where the statement A (normally) contains x1, x2, . . . , xn as free variables.
E.g., Ppx, yq :ô px ă yq.

Warning
The definiendum does not occur in the definiens of an explicit definition of a function f
or predicate P! That is, the symbols f and P do not appear on the right-hand side.
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Definitions: The Symbols “:“” and “:ô”

It is common to use the special symbols :“ and :ô for definitions, where the
symbol “:” appears on the side of the definiendum.
Thus, one can also write “: or ô: to indicate that the definiendum is on the
right-hand side.

Using “: and ô: is very good practice since
it makes it immediately obvious to the reader that what follows constitutes a
definition rather than some lemma or claim,
it shows beyond doubt what is the definiens and what is the definiendum, and
it forces the author to decide whether or not something is a consequence of
prior knowledge or some newly introduced entity.

However, if “:“” or “:ô” are used once in a text then they have to be used for
absolutely all definitions in that text!!
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Definitions: The Symbols “:“” and “:ô”

Poster seen in a tutoring
institute at Salzburg:

Can x1{2 be derived?
Can D be derived?

Better formalism:

If x1, x2 are the roots of the
second-degree polynomial equation
x2
` px ` q “ 0, with p, q P R and

unknown x P R, then

x1{2 “ ´
p
2 ˘

c

p2

4 ´ q.

With D :“ p2
´ 4q we get

D

$

&

%

ą

“

ă

,

.

-

0 :

$

&

%

2 distinct real roots,
1 real root,
0 real roots.
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Recursive Definitions

Aka: Inductive definition.
How can we state

x is ancestor of y if x is parent of y, or if x is parent of parent of y, or if x is
parent of parent of parent of y, or if . . .

in a form that does not need to resort to an ellipsis “. . .” ?

Recursive definitions (typically) consist of two parts:
a basis in which the definiendum does not occur in the definiens, and
an inductive step in which the definiendum does occur.

E.g.,
x is an ancestor of y if x is parent of y or x is ancestor of parent of y.

Warning
To avoid infinite circles, the definiendum must not occur in the basis!
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Recursive Definitions: Sum and Product

Definition 32 (Sum and product)
Consider k real numbers a1, a2, . . . , ak P R, together with some m, n P N such that
1 ď m, n ď k.

Then

n
ÿ

i“m
ai :“

$

&

%

0 if n ă m,
am if n “ m,

p
řn´1

i“m aiq ` an if n ą m,

and

n
ź

i“m
ai :“

$

&

%

1 if n ă m,
am if n “ m,

p
śn´1

i“m aiq ¨ an if n ą m.

The definitions for n ă m are convenience settings that have turned out to be
useful in practice.
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Recursive Definitions: Factorial and Fibonacci

Definition 33 (Factorial, Dt.: Fakultät, Faktorielle)
For n P N0,

n! :“

"

1 if n ď 1,
n ¨ pn´ 1q! if n ą 1.

n 0 1 2 3 4 5 6 7 8 9 10
n! 1 1 2 6 24 120 720 5 040 40 320 362 880 3 628 800

Definition 34 (Fibonacci numbers)
For n P N0,

Fn :“

$

&

%

0 if n “ 0,
1 if n “ 1,
Fn´1 ` Fn´2 if n ě 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
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Fibonacci Numbers

The Fibonacci numbers are named after Leonardo da Pisa (1180?–1241?), aka
“figlio di Bonaccio”.
The Fibonacci numbers have been studied extensively; they exhibit lots of
interesting mathematical properties. For instance,

lim
nÑ8

Fn`1
Fn

“ ϕ, where ϕ :“
1`

?
5

2 is known as golden ratio.

The Fibonacci numbers are also found in nature: E.g., the numbers of CW/CCW
spirals of sunflower heads are given by subsequent Fibonacci numbers.

[Image credit: Wikipedia.]
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Words

Consider an arbitrary (but fixed) finite set Σ. We call it the alphabet; the individual
elements of Σ are called symbols or characters.

E.g., Σ :“ ta, b, c, . . . , x, y, zu or Σ :“ t0, 1u.

Definition 35 (Word)
Let Σ be a finite set. The set Σ˚ of words over Σ is defined follows:

1 Base clause: The empty word, denoted by the Greek letter ϵ, belongs to Σ˚.
2 Recursion clause: For all a P Σ and all σ P Σ˚, the ordered pair pa, σq belongs to

Σ˚.
3 Extremal clause: A word is in Σ˚ if it is ϵ or if it can be constructed from ϵ via a

finite number of applications of the recursion clause.

Aka string (Dt. Zeichenkette). The set Σ˚ of all words over Σ is known as Kleene
closure of Σ.
Of course, in order to avoid confusion, ϵ is not allowed to be a character of Σ.
It is important to note that every element of Σ˚ is a finite sequence of zero or
more characters (if we disregard the parentheses and commas) but that Σ˚ itself
is an infinite set containing words of every possible finite length.
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UNIVERSITÄT SALZBURG

Words

Consider an arbitrary (but fixed) finite set Σ. We call it the alphabet; the individual
elements of Σ are called symbols or characters.
E.g., Σ :“ ta, b, c, . . . , x, y, zu or Σ :“ t0, 1u.

Definition 35 (Word)
Let Σ be a finite set. The set Σ˚ of words over Σ is defined follows:

1 Base clause: The empty word, denoted by the Greek letter ϵ, belongs to Σ˚.
2 Recursion clause: For all a P Σ and all σ P Σ˚, the ordered pair pa, σq belongs to

Σ˚.

3 Extremal clause: A word is in Σ˚ if it is ϵ or if it can be constructed from ϵ via a
finite number of applications of the recursion clause.

Aka string (Dt. Zeichenkette). The set Σ˚ of all words over Σ is known as Kleene
closure of Σ.
Of course, in order to avoid confusion, ϵ is not allowed to be a character of Σ.
It is important to note that every element of Σ˚ is a finite sequence of zero or
more characters (if we disregard the parentheses and commas) but that Σ˚ itself
is an infinite set containing words of every possible finite length.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 74/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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finite number of applications of the recursion clause.

Aka string (Dt. Zeichenkette). The set Σ˚ of all words over Σ is known as Kleene
closure of Σ.

Of course, in order to avoid confusion, ϵ is not allowed to be a character of Σ.
It is important to note that every element of Σ˚ is a finite sequence of zero or
more characters (if we disregard the parentheses and commas) but that Σ˚ itself
is an infinite set containing words of every possible finite length.
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Words: Length and Concatenation

Definition 36 (Length of a word)
Let Σ be a finite set. The length of a word σ over Σ is defined as follows:

|σ| :“

#

0 if σ “ ϵ,

1` |σ1
| if σ “ pa, σ1

q for some a P Σ and σ1
P Σ˚.

Definition 37 (Concatenation)
Let Σ be a finite set. Concatenation of two words σ1, σ2 over Σ, denoted by σ1 ‚ σ2, is
defined as follows:

σ1 ‚ σ2 :“

#

σ2 if σ1 “ ϵ,

pa, σ1
1 ‚ σ2q if σ1 “ pa, σ1

1q for some a P Σ and σ1
1 P Σ˚.

In practice it is a convention to drop the ordered-pair notation and to write aσ
rather than pa, σq. E.g., word rather than pw, po, pr, pd, ϵqqqq.
Similarly, one writes word rather than wo ‚ rd. (This simplification is justified by
the fact that the binary operator ‚ is associative.)
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Caveats When Formulating Definitions

Definitions like

Ppx, y, zq :ô px ă 2yq or Ppxq :ô px ă 2yq

can be seen as syntactically correct but they are semantically problematic!

Rule of thumb
All arguments of the definiendum have to appear as free variables in the definiens,
and vice versa!

Warning
An entity introduced in a definition has to be free of internal inconsistencies, and free
of contradictions with prior facts.

E.g., assume that for m
n ,

p
q P Q, with m, p, n, q P N, we define

m
n 7

p
q :“

m` p
n` q .

Then 1
1 7

2
3 “

3
4 , but 2

2 7
2
3 “

4
5 .

Since 1
1 “

2
2 , we conclude 4

5 “
3
4 , and, thus, 0 “ 1. Yikes!
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3 Definitions and Theorem Proving
Need for Rigorous Analysis
Definitions
Syntactical Proof Techniques

Syntax and Proofs
Equivalence Transformations

Types of Proofs
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Terminology

Definition 38 (Proof, Dt.: Beweis)
To prove a statement means to derive it from axioms (or postulates) and other
previously established theorems by means of rules of logic.

Note the difference between the English words “the proof” and “to prove”.
Common symbols to mark the end of a proof: l, qued or qed (as an abbreviation
for the Latin words “quod erat demonstrandum”, i.e., for ”what was to be shown”).

Definition 39 (Theorem, Dt.: Satz, Theorem)
A statement is a theorem if it has been proved. If the statement is of the form H ñ C
then we call H the hypothesis and C the conclusion.

Of course, a theorem may involve quantifiers. E.g., @x
`

Hpxq ñ Cpxq
˘

.
Depending on the importance of the result, terms like lemma (Dt.: Lemma,
Hilfssatz) or corollary (Dt.: Korollar) are also used instead of “theorem”.
A conjecture is a statement which has not yet been proved or disproved.
The status of a conjecture may remain unknown for decades or even centuries:
Fermat’s Last Theorem was stated by Pierre de Fermat in 1637 and proved by
Andrew Wiles (with the help of Richard Taylor) in 1993–1995.
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Syntactical Proof Techniques

Syntactical proof techniques are proof techniques that are based on the analysis
of the syntactical structure of a statement.
Syntactical proof techniques allow us to reason about statements and to simplify
statements with no or very little “understanding” of their mathematical meaning.
In particular, syntactical proof techniques allow us to split complicated proofs into
simpler proofs, without any need for an ingenious idea for how to carry out a
specific proof.

On the next slides we will study the standard proof situation H ñ C, and
formulate rules which depend on the syntax of H and/or C.
Recall the truth table for “ñ”:

H C H ñ C ␣H _ C
0 0 1 1
0 1 1 1
1 0 0 0
1 1 1 1

H ñ C . . .

. . . is true if either H is false (and C arbitrary)
or if C is true for H being true.
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UNIVERSITÄT SALZBURG

Syntactical Proof Techniques for H ñ C

If conclusion C is of the form pA^ Bq:
Prove A under the assumption H; and
Prove B under the assumption H.

If conclusion C is of the form pA_ B):
Add ␣A to the assumption H and prove B. That is, assume both H and ␣A
to be true and use this to prove B.
Alternatively, add ␣B to the assumption H and prove A.

If conclusion C is of the form pA ñ Bq:
Add A to the assumption H and prove B.

If conclusion C is of the form pA ô Bq:
Prove A ñ B under the assumption H; and
Prove B ñ A under the assumption H.

Warning
In all the rules on this slide, A and B must not be part of a quantified formula.
(Otherwise, get rid of the quantifier first!)
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Prove A ñ B under the assumption H; and
Prove B ñ A under the assumption H.

Warning
In all the rules on this slide, A and B must not be part of a quantified formula.
(Otherwise, get rid of the quantifier first!)
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Syntactical Proof Techniques for H ñ C

If conclusion C is of the form p@x Aq:
Proof technique: Let x0 be arbitrary but fixed (Dt.: “beliebig aber fix”). From
now on, x0 can be treated as a constant!
It remains to prove Arx0{xs under the assumption H.

Often one does not trouble to explicitly label the particular arbitrary-but-fixed
choice of x as, say, x0 but only states that x is now regarded to be fixed.

Warning
The crucial point is that x0 has to be arbitrary, and the proof may not depend on the
particular choice of x0!

The symbol x0 may not occur anywhere in A, in the hypothesis H, or in some
other part of the conclusion.
We are not allowed to make any assumptions on x0 except for those that hold for
all x in the universe of discourse.
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Syntactical Proof Techniques for H ñ C

If conclusion C is of the form pDx Aq:
Constructive Proof (Dt.: konstruktiver Beweis):

It “suffices” to find a suitable x0 such that Arx0{xs if H.
Such an x0 is called the “solving term”.

Existential Proof (Dt.: Existenzbeweis):
Prove that some suitable x0 exists.
No need to “construct” x0 explicitly.

E.g., suppose that we want to prove the following claim: The polynomial
ppxq :“ x3

´ x2
` x ´ 1 has a real root over R.

Proof (constructive) : Factoring ppxq yields ppxq “ px ´ 1qpx2
` 1q. Thus, we

learn that 1 is a real root.
Proof (existential) : We have pp2q “ 5 ą 0 and pp0q “ ´1 ă 0. Since p is
continuous on the closed interval r0, 2s, the Intermediate Value Theorem (Dt.:
Zwischenwertsatz) tells us that there exists a real number x strictly between 0
and 2 such that ppxq “ 0.
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Syntactical Proof Techniques for H ñ C

If conclusion C is of the form pD!x Aq:
Prove that such an x exists.
Prove its uniqueness.

If hypothesis H is of the form pDx Aq:
Let x0 such that Arx0{xs.
Add Arx0{xs to knowledge.
Again: x0 must not occur anywhere else in H or C!
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Natural-Language Synonyms of Formal Terms

On many occasions a conjecture will not be stated in formal terms but by using a
natural language.
Then one has to decode the natural-language formulation and translate it into
formal terms!

Natural-language synonyms for A ñ B:
A implies B, A impliziert B,
If A then B,
B if A,
A only if B,
A is sufficient for B, A ist hinreichend für B,
B is necessary for A, B ist notwendig für A.

Natural-language synonyms for A ô B:
A equivalent to B, A äquivalent zu B,
A if and only if B, A genau dann wenn B,
A is necessary and sufficient for B, A ist notwendig und hinreichend für B.
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Equivalence Transformations

First attempt to prove p@n P N 2n`1
n`1 ě

3
2 q:

2n` 1
n` 1 ě

3
2

2p2n` 1q ě 3pn` 1q
4n` 2 ě 3n` 3

n ě 1

Second refined attempt to prove p@n P N 2n`1
n`1 ě

3
2 q:

2n` 1
n` 1 ě

3
2 | ¨ 2pn` 1q

ùñ 2p2n` 1q ě 3pn` 1q
ùñ 4n` 2 ě 3n` 3 | ´ p3n` 2q
ùñ n ě 1

Correct proof of p@n P N 2n`1
n`1 ě

3
2 q: Let n P N be arbitrary but fixed. Then:

2n` 1
n` 1 ě

3
2 | ¨ 2pn` 1q

ðñ 2p2n` 1q ě 3pn` 1q
ðñ 4n` 2 ě 3n` 3 | ´ p3n` 2q
ðñ n ě 1 l
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Equivalence Transformations: Caveats

Let a, b P N be equal natural numbers. We “prove” that 1 “ 2:
a “ b

| ¨ a
ðñ a2

“ ab | ´ b2

ðñ a2
´ b2

“ ab´ b2

ðñ pa´ bq ¨ pa` bq “ b ¨ pa´ bq | ˜ pa´ bq
ðñ pa` bq “ b | a :“ b
ðñ pb` bq “ b
ðñ 2b “ b | ˜ b
ðñ 2 “ 1

And here comes a “proof” of 4 “ 5: Let x :“ 4 and y :“ 5. Then
x ` y “ 9 | ¨ px ´ yq

ðñ x2
´ y2

“ 9x ´ 9y | ` 81
4 ´ 9x ` y2

ðñ x2
´ 9x ` 81

4 “ y2
´ 9y ` 81

4
ðñ px ´ 9

2 q
2
“ py ´ 9

2 q
2

|
?

ðñ x ´ 9
2 “ y ´ 9

2 | ` 9
2

ðñ x “ y
ðñ 4 “ 5
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Equivalence Transformations: Summary

Warnings
Squaring is not an equivalence transformation!

If squaring is applied for solving an equation then all candidate solutions found
need to be tested with the original equation.
Taking a square root is only permissible if both signs are considered. That is,

?
x2

yields ˘x.
A division by x is only permissible if x ‰ 0 can be assured.
Multiplication by a negative number is not an equivalence transformation for
inequalities.

Advice
In general, a relation a ˝ b may only be replaced by a new relation a1

˝ b1 if one
can argue that pa ˝ bq ô pa1

˝ b1
q.

It is advisable to prove a ˝ b, where ˝ P t“,ă,ą,ď,ěu , by constructing a chain
a0 ˝ a1 ˝ a2 ˝ . . . ˝ an, with a0 “ a and an “ b, for some n P N.
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UNIVERSITÄT SALZBURG

Equivalence Transformations: Summary

Warnings
Squaring is not an equivalence transformation!
If squaring is applied for solving an equation then all candidate solutions found
need to be tested with the original equation.
Taking a square root is only permissible if both signs are considered. That is,

?
x2

yields ˘x.
A division by x is only permissible if x ‰ 0 can be assured.
Multiplication by a negative number is not an equivalence transformation for
inequalities.

Advice
In general, a relation a ˝ b may only be replaced by a new relation a1

˝ b1 if one
can argue that pa ˝ bq ô pa1

˝ b1
q.

It is advisable to prove a ˝ b, where ˝ P t“,ă,ą,ď,ěu , by constructing a chain
a0 ˝ a1 ˝ a2 ˝ . . . ˝ an, with a0 “ a and an “ b, for some n P N.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 87/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

3 Definitions and Theorem Proving
Need for Rigorous Analysis
Definitions
Syntactical Proof Techniques
Types of Proofs

Without Loss of Generality
Direct Enumeration
Case Analysis
Direct Proof
Proof by Contrapositive
Proof by Contradiction
Indirect Proof
Disproving Conjectures
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W.l.o.g.

“W.l.o.g., A” means “Without loss of generality, we assume A”.
Dt.: O.B.d.A. (“Ohne Beschränkung der Allgemeinheit”).

This means that we could also carry on without the particular assumption A, and
would either

have to consider cases that are handled very similarly, or
could easily convert the general case to this special case.

That is, a “w.l.o.g.” assumption allows us to save space/paper by avoiding to
replicate portions of a proof that differ only in trivial aspects.

Warning
Do not use “w.l.o.g.” unless you could indeed explain explicitly and in full detail how to
carry on without that assumption!
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Types of Proofs: Direct Enumeration

Direct Enumeration
E.g.: The conjecture

2p` 1 is prime for all p P t2, 3, 5u
can be proved by considering all finitely many possible values for p.

Note: Direct enumeration only works if the set given is finite!
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Types of Proofs: Case Analysis

Aka Proof by Exhaustion. Dt.: Fallunterscheidung.
In order to prove H ñ C, it suffices to prove

A1 _ A2 _ . . ._ Ak

for some statements A1,A2, . . . ,Ak ,

and to prove
pH ^ A1q ñ C,
pH ^ A2q ñ C,

...
pH ^ Akq ñ C.

Warning
It is essential to guarantee that A1 _ A2 _ . . ._ Ak holds, i.e., that no case is missing!
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Types of Proofs: Sample Case Analysis

Suppose that we want to prove the following claim: For all n P N0 the number 7
divides n7

´ n without remainder.

E.g., for n :“ 3, we get 37
´ 3 “ 2184 “ 7 ¨ 312.

Proof : Factoring n7
´ n yields

n7
´ n “ npn6

´ 1q “ npn3
´ 1qpn3

` 1q “ npn´ 1qpn2
` n` 1qpn` 1qpn2

´ n` 1q.

Let n :“ 7q ` r with q, r P N0 and 0 ď r ď 6. We consider seven cases, depending on
whether r “ 0, 1, 2, 3, 4, 5 or 6.
Case n “ 7q: Then the factor n of n7

´ n is divisible by 7.
Case n “ 7q ` 1: Then the factor n´ 1 “ 7q of n7

´ n is divisible by 7.
Case n “ 7q ` 2: Then n2

` n` 1 “ p7q ` 2q2 ` p7q ` 2q ` 1 “ 49q2
` 35q ` 7 is

divisible by 7.
Case n “ 7q ` 3: Then n2

´ n` 1 “ p7q ` 3q2 ´ p7q ` 3q ` 1 “ 49q2
` 35q ` 7 is

divisible by 7.
Case n “ 7q ` 4: Then n2

` n` 1 “ p7q ` 4q2 ` p7q ` 4q ` 1 “ 49q2
` 63q ` 21 is

divisible by 7.
Case n “ 7q ` 5: Then n2

´ n` 1 “ p7q ` 5q2 ´ p7q ` 5q ` 1 “ 49q2
` 63q ` 21 is

divisible by 7.
Case n “ 7q ` 6: Then n` 1 “ 7q ` 7 is divisible by 7.
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UNIVERSITÄT SALZBURG

Types of Proofs: Sample Case Analysis

Suppose that we want to prove the following claim: For all n P N0 the number 7
divides n7

´ n without remainder. E.g., for n :“ 3, we get 37
´ 3 “ 2184 “ 7 ¨ 312.

Proof : Factoring n7
´ n yields

n7
´ n “ npn6

´ 1q “ npn3
´ 1qpn3

` 1q “ npn´ 1qpn2
` n` 1qpn` 1qpn2

´ n` 1q.

Let n :“ 7q ` r with q, r P N0 and 0 ď r ď 6. We consider seven cases, depending on
whether r “ 0, 1, 2, 3, 4, 5 or 6.
Case n “ 7q: Then the factor n of n7

´ n is divisible by 7.
Case n “ 7q ` 1: Then the factor n´ 1 “ 7q of n7

´ n is divisible by 7.
Case n “ 7q ` 2: Then n2

` n` 1 “ p7q ` 2q2 ` p7q ` 2q ` 1 “ 49q2
` 35q ` 7 is

divisible by 7.

Case n “ 7q ` 3: Then n2
´ n` 1 “ p7q ` 3q2 ´ p7q ` 3q ` 1 “ 49q2

` 35q ` 7 is
divisible by 7.

Case n “ 7q ` 4: Then n2
` n` 1 “ p7q ` 4q2 ` p7q ` 4q ` 1 “ 49q2

` 63q ` 21 is
divisible by 7.

Case n “ 7q ` 5: Then n2
´ n` 1 “ p7q ` 5q2 ´ p7q ` 5q ` 1 “ 49q2

` 63q ` 21 is
divisible by 7.

Case n “ 7q ` 6: Then n` 1 “ 7q ` 7 is divisible by 7.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 92/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Types of Proofs: Direct Proof

Dt.: direkter Beweis.
We want to prove H ñ C:

We build a chain of reasoning that starts at H and ends in C.
This approach is the classical example of deductive reasoning, where a
logically valid sequence of steps establishes the truth of C under the
assumption of H.

Suppose we want to prove p@x, y P R`
px ă yq ñ px2

ă y2
qq.

Proof : (Direct Proof)
Let x0, y0 P R` be arbitrary but fixed, with x0 ă y0.
We have x0 ă y0, and therefore x2

0 “ x0 ¨ x0 ă y0 ¨ x0. Since x0 ă y0 we know
y0 ¨ x0 ă y2

0 , and obtain x2
0 ă y0 ¨ x0 ă y2

0 , which finally establishes x2
0 ă y2

0 :

x2
0 “ x0 ¨ x0 ă y0 ¨ x0 ă y0 ¨ y0 “ y2

0
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UNIVERSITÄT SALZBURG

Types of Proofs: Proof by Contrapositive

Dt.: Umkehrschluss, Kontraposition.
We want to prove H ñ C:

In order to prove H ñ C we build a (direct) proof for p␣C ñ ␣Hq.

Again, suppose we want to prove p@x, y P R`
px ă yq ñ px2

ă y2
qq.

Proof : Let x0, y0 P R` be arbitrary but fixed. We prove px2
0 ě y2

0 q ñ px0 ě y0q

similar to the direct proof before. Since px2
0 ě y2

0 q ô px2
0 ´ y2

0 ě 0q, we get

0 ď x2
0 ´ y2

0 “ px0 ´ y0qpx0 ` y0q,

which implies y0 ď x0 since we may divide by the positive number x0 ` y0.
Suppose we want to prove H ñ pDx Aq.
Proof : Prove p@x p␣Aqq ñ ␣H.

Warning
Make sure that the statements are negated correctly!
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Types of Proofs: Proof by Contradiction

Dt.: Widerspruchsbeweis.
We want to prove H ñ C:

We assume pH ^␣Cq as new hypothesis and prove ␣H.

This approach is correct since pH ñ Cq ” ppH ^␣Cq ñ ␣Hq.
Warning: As when proving the contrapositive it is essential to check twice that the
statements are indeed negated correctly!
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Types of Proofs: Indirect Proof

Aka Reductio ad absurdum.
Dt.: indirekter Beweis.
We want to prove H ñ C.

Consider a statement R that is known to be true, like 0 ‰ 1.

Now assume pH ^␣Cq and deduce ␣R, i.e., 0 “ 1.
This is absurd, and we conclude that ␣C is false.
Formally, pH ^␣C ^ Rq ñ ␣R.
This is of the form pA ñ Bq, and we have pA ñ Bq ” T , where B ” F . Thus,
A ” F .

Note
Since an indirect proof is similar to a proof by contradiction, many textbooks treat it as
one proof technique, or use the terms “reductio ad absurdum”, “indirect proof”, and
“proof by contradiction” as synonyms.
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Types of Proofs: Sample Indirect Proof

Suppose that we want to prove that the polynomial equation x3
` x ` 1 “ 0 has

no rational solution.

Proof : Assume to the contrary that there exists a rational number p
q which is a root of

that polynomial. W.l.o.g., we may assume p
q to be irreducible. (A rational number p

q is
irreducible if there exists no integer other than ˘1 that divides both p and q.) We get

0 “ p3

q3 `
p
q ` 1 and, thus, 0 “ p3

` pq2
` q3.

As statement R we take “0 is even”.
We do a case analysis, depending on whether p, q are even or odd:
Case p, q odd: Then p3

` pq2
` q3 is odd, but 0 is even, yielding a contradiction to R.

Case p odd, q even: Then again p3
` pq2

` q3 is odd; contradiction.
Case p even, q odd: Then again p3

` pq2
` q3 is odd; contradiction.

Case p, q even: This is not possible since we assumed (rightfully) that p
q is

irreducible.
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Disproving Conjectures

Sometimes conjectures are false . . .
If the conjecture is of the form p@x Aq:

Then we can disprove this conjecture by showing pDx ␣Aq.
The latter is proved if we can come up with a counterexample (Dt.:
Gegenbeispiel) to the original claim.

E.g., the claim @p P P p2p` 1q P P is shown to be false by testing p :“ 7.
(Note, though, that it is true for p :“ 2, 3, 5, 11, . . .)
Similarly, numbers of the form 2p2nq

` 1, for n P N, were once assumed to be
primes. Indeed, this is correct for n :“ 1, 2, 3, 4 but n :“ 5 yields a
counterexample:

2p25q
` 1 “ 4 294 967 297 “ 641 ¨ 6 700 417.

If, however, the conjecture is of the form pDx Aq:
Then a counterexample does not suffice!
Rather, to disprove this conjecture, we’d have to prove formally p@x ␣Aq.
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Caveat: Ex Falso Quodlibet!

Consider the following lemma: Let x P R. If x
x2`1 ą 2 then x ă 1

2 .

Formally: @x P R
´

x
x2`1 ą 2

¯

ùñ
`

x ă 1
2
˘

.

Proof : Let x P R arbitrary but fixed and suppose that x
x2`1 ą 2. This implies x ą 0

and we get

1
x “

x
x2 ą

x
x2 ` 1 ą 2, thus 1

x ą 2 and, therefore, x ă 1
2 .

Note, though, that this lemma is of little use for mathematics: The hypothesis is
never true! We have

x
x2 ` 1 ą 2 ðñ 0 ą 2x2

´ x ` 2 ðñ 2x2
´ x ` 2 ă 0.

However, by a simple case analysis,

if x ď 1 then 2x2
´ x ` 2 “ 2x2

` 1` p1´ xq ě 2x2
` 1 ą 0,

if x ą 1 then 2x2
´ x ` 2 “ x2

` 2` xpx ´ 1q ě x2
` 2 ą 0.
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1
x “

x
x2 ą

x
x2 ` 1 ą 2,

thus 1
x ą 2 and, therefore, x ă 1

2 .

Note, though, that this lemma is of little use for mathematics: The hypothesis is
never true! We have

x
x2 ` 1 ą 2 ðñ 0 ą 2x2

´ x ` 2 ðñ 2x2
´ x ` 2 ă 0.

However, by a simple case analysis,

if x ď 1 then 2x2
´ x ` 2 “ 2x2

` 1` p1´ xq ě 2x2
` 1 ą 0,

if x ą 1 then 2x2
´ x ` 2 “ x2

` 2` xpx ´ 1q ě x2
` 2 ą 0.
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4 Numbers and Basics of Number Theory
Algebraic Structures
Natural Numbers
Integers
Rational Numbers
Real Numbers
More Proof Techniques
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Operations
Properties of Operations
Group
Ring
Field
Homomorphism and Isomorphism

Natural Numbers
Integers
Rational Numbers
Real Numbers
More Proof Techniques
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Algebraic Structures

An algebraic structure consists of a non-empty set together with one or more
operations on it which satisfy certain identities (“axioms”).
The axioms tell us the properties of the operations.
Informally, an algebraic structure is a non-empty set upon which “arithmetic-like”
operations have been defined.

Well-known example: R with the standard addition “+”.
E.g., we have p

?
π ` 1q ´

?
π “ 1 because

p
?
π ` 1q ´

?
π “ p

?
π ` 1q ` p´

?
πq “

?
π ` 1` p´

?
πq

“
?
π ` p´

?
πq ` 1 “ p

?
π ` p´

?
πqq ` 1 “ 0` 1 “ 1.

In order to obtain this result we used commutativity, associativity and knowledge
about inverse and neutral elements . . .
Algebraic structures get their names based on the type of operations and axioms
supported.
Well-known structures include group, ring, field, and vector space. (Many more
algebraic structures are studied in abstract algebra, though!)
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Operation

Definition 40 (n-ary Operation, Dt.: n-stellig Verknüpfung)
Let n be a fixed non-negative integer and X1,X2, . . . ,Xn be non-empty sets. An n-ary
operation from X1,X2, . . . ,Xn to another set Y is a function ω : X1ˆX2ˆ ¨ ¨ ¨ ˆXn Ñ Y .

The set X1 ˆ X2 ˆ ¨ ¨ ¨ ˆ Xn is called the domain (Dt.: Definitionsmenge) of the
operation, the set Y is called the codomain (Dt.: Zielmenge) of the operation, and the
number n of operands is called the arity (Dt.: Stelligkeit) of the operation.
An n-ary operation on a set X is a function ω : Xn

Ñ X , i.e., an n-ary operation where
X1 “ X2 “ . . . “ Xn “ Y “: X .

An operation on a set X is also called an internal operation (Dt.: innere
Verknüpfung).
The set ωpX1 ˆ X2 ˆ ¨ ¨ ¨ ˆ Xnq Ď Y is called the image or range of ω; Dt.:
Wertebereich.
Unary operation: Arity one. E.g., inverting the sign of a number.
Binary operation: Arity two. E.g., addition of numbers.
An operation of arity zero is simply an element of the codomain Y , i.e., a constant.
Note: The standard division ˜ is a binary operation neither on the natural
numbers nor on the rational numbers.
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Operation: Prefix, Infix and Postfix Notation

So, a binary operation on a set X is a function

ω : X ˆ X Ñ X with px1, x2q ÞÑ ωpx1, x2q for x1, x2 P X .

For binary operations it is customary to use symbols like ‹, ˝,`, ¨,˜ rather than
letters like ω.
Furthermore, for binary operations it is common to use the infix notation

x1 ‹ x2 or x1 ` x2

rather than the prefix notation

‹px1, x2q or ` px1, x2q.

However, prefix notation (aka Polish notation or Łukasiewicz notation) is used by
some programming languages, e.g., Lisp.
Postfix notation, aka reverse Polish notation (RPN), e.g.,

px1, x2q ‹ or px1, x2q`,

has been used by some desktop and hand-held calculators (e.g., several
Hewlett-Packard products), and is used by stack-oriented programming
languages such as Forth, PostScript and RPL.
The symbol ´ tends to be used both for an unary and a binary operation.
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Composition of Operations

Definition 41 (Composition, Dt.: Hintereinanderausführung)
Consider two operations f : A Ñ B and g : B Ñ C. The composition (Dt.: Komposition,
Hintereinanderausführung) g ˝ f of f and g is defined as

pg ˝ fqpxq :“ gpfpxqq for all x P A.

That is, the standard interpretation of g ˝ f is “carry out f followed by g”.
If A “ B “ C :“ X then ˝ is a binary operation on operations from X to X .
We will use the symbol ˝ exclusively for denoting compositions of operations.

Warning
Not all authors stick to the convention pg ˝ fqpxq :“ gpfpxqq . . .
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Consider two operations f : A Ñ B and g : B Ñ C. The composition (Dt.: Komposition,
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Properties of Operations: Associativity and Commutativity

Definition 42 (Associativity, Dt.: Assoziativität)
A binary operation ‹ on a (non-empty) set G is associative if

@a, b, c P G pa ‹ bq ‹ c “ a ‹ pb ‹ cq.

Associativity means that the order in which consecutive operations are applied
does not change the result.
That is, the result does not change depending on whether the parentheses are
associated with the first pair or the second pair of operands when the operation is
applied to three operands.

Definition 43 (Commutativity, Dt.: Kommutativität)
A binary operation ‹ on a (non-empty) set G is commutative if

@a, b P G a ‹ b “ b ‹ a.

Commutativity means that the order of the operands does not change its result.
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Properties of Operations: Distributivity

Definition 44 (Distributivity, Dt.: Distributivität)
A binary operation ¨ on a (non-empty) set G is distributive over a binary operation `
on G if

@a, b, c P G a ¨ pb` cq “ pa ¨ bq ` pa ¨ cq,
@a, b, c P G pa` bq ¨ c “ pa ¨ cq ` pb ¨ cq.

With the standard meaning of ¨ and ` over R, multiplication distributes over
addition, that is, when multiplying a sum by a factor we can distribute the factor
over the summands.
Note that addition does not distribute over multiplication (over R).
Some textbooks prefer to split up the conditions of Def. 44 and say that ¨ is
left-distributive if

@a, b, c P G a ¨ pb` cq “ pa ¨ bq ` pa ¨ cq,

and right-distributive if

@a, b, c P G pa` bq ¨ c “ pa ¨ cq ` pb ¨ cq.
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Properties of Operations: Neutral Element and Inverse Element

Definition 45 (Neutral element, Dt.: neutrales Element)
The element n P G is a neutral element (aka zero element, identity element) of a
binary operation ‹ on a (non-empty) set G if

@a P G a ‹ n “ a “ n ‹ a.

Hence, a neutral element of ‹ on G is an element in G that does not change the
value of other elements when combined with them under the operation ‹.
While addition over R has zero as neutral element, subtraction does not have a
neutral element: We get a´ 0 “ a but, in general, 0´ a ‰ a.

Definition 46 (Inverse element, Dt.: inverses Element)
The element b P G is an inverse element of the element a P G for the binary operation
‹ on a (non-empty) set G if

a ‹ b “ n “ b ‹ a,

where n denotes the neutral element of ‹ on G.
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Properties of Operations: Uniqueness of Neutral Element

Lemma 47
A binary operation ‹ on a (non-empty) set G has at most one neutral element.

Proof : Assume that n1, n2 P G are neutral elements of ‹ on G. By Def. 45,

@a P G a ‹ n1 “ a “ n1 ‹ a and @a P G a ‹ n2 “ a “ n2 ‹ a.

These identities hold for all a P G. Hence, in particular, they have to hold if a :“ n1
and a :“ n2:

n2 ‹ n1 “ n2 “ n1 ‹ n2 and n1 ‹ n2 “ n1 “ n2 ‹ n1.

We get

n2 “ n1 ‹ n2 “ n1.

Corollary 48
If a binary operation ‹ on a (non-empty) set G has a neutral element then it is unique.

The neutral element is often denoted by 0 if ` is used to denote the operation,
and by 1 if ¨ denotes the operation.
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Properties of Operations: Uniqueness of Inverse Element

Lemma 49
An element a P G has at most one inverse element b P G for an associative binary
operation ‹ on G.

Proof : Assume that b1, b2 P G are inverse elements for a P G relative to an
associative binary operation ‹ on G. Let n P G be the neutral element. By Def. 46,

a ‹ b1 “ n “ b1 ‹ a and a ‹ b2 “ n “ b2 ‹ a.

Hence,

b1 “ b1 ‹ n “ b1 ‹ pa ‹ b2q “ pb1 ‹ aq ‹ b2 “ n ‹ b2 “ b2.

Corollary 50
If an element a P G has an inverse element relative to an associative binary
operation ‹ on G then it is unique.

Again, one may consider a left-inverse element and a right-inverse element.
The inverse element of a is often denoted by a´1 if ¨ or ˝ is used to denote the
operation, and by ´a if ` denotes the operation.
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Group

Definition 51 (Group, Dt.: Gruppe)
A set G together with a binary operation ‹ on G defines a group if the following
properties hold:

1 Associativity: @a, b, c P G pa ‹ bq ‹ c “ a ‹ pb ‹ cq.
2 Neutral element: There exists an element n P G such that
@a P G n ‹ a “ a “ a ‹ n.

3 Inverse element: For all a P G there exists an inverse b P G, satisfying
a ‹ b “ n “ b ‹ a.

Since ‹ is a binary operation on G, we know that G is closed under the
application of ‹. That is, if a, b P G then a ‹ b P G.
Note that a ‹ b “ b ‹ a is not required for all a, b P G. That is, commutativity need
not hold!
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Abelian Group

Definition 52 (Abelian Group, Dt.: Abelsche Gruppe)
A set G together with a binary operation ‹ on G defines an Abelian group (aka
commutative group) if the following properties hold:

1 pG, ‹q is a group.
2 Commutativity: @a, b P G a ‹ b “ b ‹ a.

Sample (Abelian) groups: the integers Z under addition, non-zero rational
numbers Qzt0u under multiplication.
Not a group: The integers under multiplication.
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Finite Group

A group pG, ‹q is finite if G has a finite number of elements.
The number of elements of a finite group is called the order of the group.

A finite group is completely described by its multiplication table (aka Cayley
table). Dt.: Verknüpfungstabelle.
By convention, in a multiplication table the result for a ‹ b is found by intersecting
row a with column b.
Multiplication tables for groups of orders two and three:

‹ n a
n n a
a a n

‹ n a b
n n a b
a a b n
b b n a

Up to renaming the elements of the groups, these are the only possible
multiplication tables for groups of orders two and three.
Again up to renaming, there are only two possible multiplication tables for groups
with four elements, i.e., only two different groups.
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Finite Group: Dihedral Group D4

The dihedral group (Dt.: Diedergruppe) D4 is formed by the clockwise rotations
and reflections of a square which map the square onto itself:

id,

r1 (CW rotation by 90o),

r2 (CW rotation by 180o),

r3 (CW rotation by 270o);

fv (vertical flip),

fh (horizontal flip),

fd (diagonal flip),

fc (counter-diagonal flip).

4

Does D4 have eight elements? Or did we miss any element?
No, we didn’t!
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Finite Group: Dihedral Group D4

We denote the composition of functions by ˝.
Multiplication table of D4:

˝ id r1 r2 r3 fv fh fd fc
id id r1 r2 r3 fv fh fd fc
r1 r1 r2 r3 id fc fd fv fh
r2 r2 r3 id r1 fh fv fc fd
r3 r3 id r1 r2 fd fc fh fv
fv fv fd fh fc id r2 r1 r3
fh fh fc fv fd r2 id r3 r1
fd fd fh fc fv r3 r1 id r2
fc fc fv fd fh r1 r3 r2 id

E.g., fd ˝ fv , which means flip vertically and then flip diagonally, corresponds to a
(clockwise) rotation by 270o, i.e., to r3.

Note: fd ˝ fv ‰ fv ˝ fd . That is, D4 is not commutative.
Note that each one of the transformations appears exactly once in each row and
each column of the table: Latin square.
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Real-World Application: Geometric Crystal Classes

D4 is one of the so-called crystallographic point groups, which describe sets of
symmetry operations relative to a fixed point. Aka geometric crystal class.
Each operation leaves the structure of the crystal unchanged. That is, the same
types of atoms appear in similar positions as before the transformation induced
by the operation.

Crystallographic point groups and their cousins, three-dimensional space groups,
are studied and used by scientists such as crystallographers, mineralogists, and
physicists.
See, e.g., the International Tables for Crystallography by Hahn,
doi:10.1107/97809553602060000100.

The Bauhinia flower has C5 symmetry, and
each star has D5 symmetry.

This (color-inverted) snowflake has D6
symmetry.
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Ring

Definition 53 (Ring, Dt.: Ring mit Eins)
A set R which possesses an “addition” ` : R ˆ R Ñ R and a “multiplication”
¨ : R ˆ R Ñ R defines a (unit) ring if the following conditions hold:

1 pR,`q is an Abelian group with neutral element 0 P R (“zero” element).
2 Associativity: @a, b, c P R pa ¨ bq ¨ c “ a ¨ pb ¨ cq.
3 Distributivity:
@a, b, c P R a ¨ pb` cq “ pa ¨ bq ` pa ¨ cq;
@a, b, c P R pa` bq ¨ c “ pa ¨ cq ` pb ¨ cq.

4 Neutral element: There exists an element 1 P R ( “one” element) such that
@a P R 1 ¨ a “ a “ a ¨ 1.

Note: The elements of a ring need not be numbers even though it is customary to
use the terminology of arithmetic applied to numbers.
Note that a ¨ b “ b ¨ a for all a, b P R is not required. If commutativity holds then
pR,`, ¨q forms a commutative ring.
Sample ring: The set of all continuous real-valued functions defined over an
interval rα, βs Ă R, with addition and multiplication of functions as operations,
forms a ring.
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Field

Definition 54 (Field, Dt.: Körper)
A set F which possesses an “addition” ` : F ˆ F Ñ F and a “multiplication”
¨ : F ˆ F Ñ F defines a field if the following conditions hold:

1 Associativity: @a, b, c P F pa` bq ` c “ a` pb` cq.
2 Associativity: @a, b, c P F pa ¨ bq ¨ c “ a ¨ pb ¨ cq.
3 Commutativity: @a, b P F a` b “ b` a.
4 Commutativity: @a, b P F a ¨ b “ b ¨ a.
5 Distributivity: @a, b, c P F a ¨ pb` cq “ a ¨ b` a ¨ c.
6 Neutral element: There exists an element 0 P F such that @a P F 0` a “ a.
7 Neutral element: There exists an element 1 P F such that @a P F 1 ¨ a “ a.
8 For all a P F there exists an additive inverse b P F , satisfying a` b “ 0.
9 For all a P Fzt0u there exists a multiplicative inverse b P F , satisfying a ¨ b “ 1.
10 0 ‰ 1.

Again, the elements of F need not be numbers.
Note: The multiplication sign is often dropped if the meaning is clear within a
specific context: It is common to write ab rather than a ¨ b.
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Field: Subtraction and Division

In the sequel, we denote the additive neutral element of a field pF ,`, ¨q by 0 and
its multiplicative neutral element by 1. Furthermore, we denote the inverse
elements of b P F by ´b and b´1.

Definition 55
Let pF ,`, ¨q be a field. We define the binary operation “subtraction” ´ : F ˆ F Ñ F :

@a, b P F a´ b :“ a` p´bq

Definition 56
Let pF ,`, ¨q be a field. We define the binary operation “division” ˜ : F ˆ pFzt0uq Ñ F :

@a P F , b P Fzt0u a˜ b :“ a ¨ b´1

Lemma 57
Let pF ,`, ¨q be a field.

@a P F a´ a “ 0 and @a P Fzt0u a˜ a “ 1.
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its multiplicative neutral element by 1. Furthermore, we denote the inverse
elements of b P F by ´b and b´1.
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Definition 56
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@a P F , b P Fzt0u a˜ b :“ a ¨ b´1
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Field: Properties of the Operations

Theorem 58
Let pF ,`, ¨q be a field. Then

´0 “ 0 and 1´1
“ 1 and @a P F 0 ¨ a “ 0.

Proof : We have 0 “ 0` p´0q “ ´0. Similarly, 1 “ 1 ¨ 1´1
“ 1´1.

Let a P F be arbitrary but fixed. Then

0 “ 0 ¨ a`
`

´ p0 ¨ aq
˘

“ p0` 0q ¨ a´ 0 ¨ a “ p0 ¨ a` 0 ¨ aq ´ 0 ¨ a
“ 0 ¨ a` p0 ¨ a´ 0 ¨ aq “ 0 ¨ a` 0 “ 0 ¨ a.

Theorem 59
Let pF ,`, ¨q be a field. Then, for all a, b P F ,

p´1q ¨ a “ ´a and ´ p´aq “ a and

p´aq ¨ b “ ´pa ¨ bq “ a ¨ p´bq and p´aq ¨ p´bq “ a ¨ b.
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Field: Properties of the Operations

Theorem 60
Let pF ,`, ¨q be a field. Then, for all a, b P F ,

a ¨ b “ 0 ñ
`

a “ 0 or b “ 0
˘

.

Proof : Let a, b P F be arbitrary but fixed with a ¨ b “ 0 and a ‰ 0. We get

0 “ a´1
¨ 0 “ a´1

¨ pa ¨ bq “ pa´1
¨ aq ¨ b “ 1 ¨ b “ b.

Hence, a field does not have a non-trivial zero divisor, Dt.: nullteilerfrei.

Theorem 61
Let pF ,`, ¨q be a field. Then, for all a, b P Fzt0u,

pa´1
q

´1
“ a and pa ¨ bq´1

“ a´1
¨ b´1.
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Field: Properties of the Operations

Definition 62 (Fraction, Dt.: Bruch)
For a P F , b P Fzt0u, the fraction a

b is defined as

a
b :“ a˜ b.

We call a the enumerator (Dt.: Zähler) and b the denominator (Dt.: Nenner).

Theorem 63
Let pF ,`, ¨q be a field. Then, for all a, x P F and all b, y P Fzt0u,

a
b “

x
y ô a ¨ y “ b ¨ x.

Theorem 64
Let pF ,`, ¨q be a field. Then, for all a, b, x, y P F for which no denominator equals 0,

a
b ˘

x
y “

a ¨ y ˘ b ¨ x
b ¨ y and a

b ¨
x
y “

a ¨ x
b ¨ y and a

b ˜
x
y “

a ¨ y
b ¨ x .
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UNIVERSITÄT SALZBURG

Field: Properties of the Operations

Definition 62 (Fraction, Dt.: Bruch)
For a P F , b P Fzt0u, the fraction a

b is defined as

a
b :“ a˜ b.

We call a the enumerator (Dt.: Zähler) and b the denominator (Dt.: Nenner).

Theorem 63
Let pF ,`, ¨q be a field. Then, for all a, x P F and all b, y P Fzt0u,

a
b “

x
y ô a ¨ y “ b ¨ x.

Theorem 64
Let pF ,`, ¨q be a field. Then, for all a, b, x, y P F for which no denominator equals 0,

a
b ˘

x
y “

a ¨ y ˘ b ¨ x
b ¨ y and a

b ¨
x
y “

a ¨ x
b ¨ y and a

b ˜
x
y “

a ¨ y
b ¨ x .

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 122/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Homomorphism and Isomorphism

A homomorphism is a function that maps one algebraic structure to another
algebraic structure of the same type such that it is compatible with all operations.

So, for two structures A,B and two binary operations ‹A (on A) and ‹B (on B), if
f : A Ñ B is a homomorphism then, for all x, y P A,

fpx ‹A yq “ fpxq ‹B fpyq.

A group homomorphism from A to B maps the neutral element of A to the neutral
element of B, and maps the inverse of an element of A to the inverse of the
image of this element.
E.g., pR,`q and pR`, ¨q form groups. A group homomorphism from pR,`q to
pR`, ¨q is given by the exponential function x ÞÑ ex . (Recall that ex`y

“ ex
¨ ey .)

A ring homomorphism from A to B is compatible with ring addition and
multiplication, and maps the multiplicative neutral element of A to the
multiplicative neutral element of B.
An isomorphism is a bijective homomorphism.
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UNIVERSITÄT SALZBURG

Homomorphism and Isomorphism

A homomorphism is a function that maps one algebraic structure to another
algebraic structure of the same type such that it is compatible with all operations.
So, for two structures A,B and two binary operations ‹A (on A) and ‹B (on B), if
f : A Ñ B is a homomorphism then, for all x, y P A,

fpx ‹A yq “ fpxq ‹B fpyq.

A group homomorphism from A to B maps the neutral element of A to the neutral
element of B, and maps the inverse of an element of A to the inverse of the
image of this element.
E.g., pR,`q and pR`, ¨q form groups. A group homomorphism from pR,`q to
pR`, ¨q is given by the exponential function x ÞÑ ex . (Recall that ex`y

“ ex
¨ ey .)

A ring homomorphism from A to B is compatible with ring addition and
multiplication, and maps the multiplicative neutral element of A to the
multiplicative neutral element of B.
An isomorphism is a bijective homomorphism.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 123/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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E.g., pR,`q and pR`, ¨q form groups. A group homomorphism from pR,`q to
pR`, ¨q is given by the exponential function x ÞÑ ex . (Recall that ex`y

“ ex
¨ ey .)

A ring homomorphism from A to B is compatible with ring addition and
multiplication, and maps the multiplicative neutral element of A to the
multiplicative neutral element of B.

An isomorphism is a bijective homomorphism.
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4 Numbers and Basics of Number Theory
Algebraic Structures
Natural Numbers

Orders
Peano’s Axioms for Introducing the Natural Numbers
The Principle of Mathematical Induction
Cardinality

Integers
Rational Numbers
Real Numbers
More Proof Techniques
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How Shall We Define Natural Numbers or Real Numbers?

Three options:
1 Ignore all formal details and presuppose an “intuitive” understanding of reals,

integers, . . .
2 Introduce the natural numbers, N, and then construct a hierarchy of number

systems: N Ă Z Ă Q Ă R.
3 Set up the reals, R, axiomatically and then define proper subsets for N,Z,Q.

What is the best approach for a course on (applied) discrete mathematics? Much
scholarly debate — no consensus!
We will start with introducing the natural numbers. However, since the gory
details result in a lengthy discussion which provides little additional insight in N —
and this is no course on number theory — we base our introduction of N on a
simplified treatment of the so-called Peano axioms; see a book on number theory
for a more formalized introduction of N.
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Natural Numbers: N

Intuitively, the natural numbers N are given by t1, 2, 3, 4, 5, . . .u or by
t0, 1, 2, 3, 4, 5, . . .u.
Unfortunately, there is no general agreement on whether or not to include 0 . . .

Paulo Ribenboim (1996): “Let P be a set of natural numbers; whenever
convenient, it may be assumed that 0 is an element of P.”

Convention
In this course we adopt the following convention:

N :“ t1, 2, 3, 4, 5, . . .u and N0 :“ t0, 1, 2, 3, 4, 5, . . .u.

Caution: Read a text carefully to learn what an author means by ”natural number”.
In particular, watch for clues such as terms like ”positive natural numbers” (which
indicates that zero is included) or statements like ”n is a natural number, so it
must be greater than zero” (which indicates that zero is not included).
If one treats 0 as an element of N then t1, 2, 3, 4, 5, . . .u is often denoted by N˚.
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Partial Order

Definition 65 (Partial order, Dt.: Halbordnung)
A partial order on a set S is a binary relation ĺ, i.e., a subset of S ˆ S, such that the
following three properties hold for all a, b, c P S:

1 Reflexivity: a ĺ a.
2 Anti-symmetry: pa ĺ b ^ b ĺ aq ñ a “ b.
3 Transitivity: pa ĺ b ^ b ĺ cq ñ a ĺ c.

If ĺ is a partial order on S then pS,ĺq is called a partially ordered set, aka a poset.

Definition 66 (Strict partial order, Dt.: strikte Halbordnung)
A binary relation ă on a set S forms a strict partial order on S if the following two
properties hold for all a, b, c P S:

1 Irreflexivity: ␣pa ă aq.
2 Transitivity: pa ă b ^ b ă cq ñ a ă c.

A strict partial order is always asymmetric: If a ă b then ␣pb ă aq.
pa ă b ^ b ă aq trans.

ñ a ă a, in contradiction to the irreflexivity: ␣pa ă aq.
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Partial Order

Theorem 67
There is a one-to-one correspondence between non-strict and strict partial orders. Let
S be a set and a, b P S.

1 If ĺ is a non-strict partial order on S then the corresponding strict partial order
”ă” on S is the reflexive reduction given by

a ă b :ô a ĺ b and a ‰ b.
2 If, on the other hand, ă is a strict partial order on S then the corresponding

non-strict partial order ”ĺ” on S is the reflexive closure given by

a ĺ b :ô a ă b or a “ b.

As a notational convention, we omit the indication of an equality sign if we refer to
a strict order, e.g., we write ă rather than ĺ or Ă rather than Ď.
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Partial Order

E.g., pZ,�q with (the non-strict order) � as defined below forms a poset:

if a and b are even: a � b :ô a ě b

if a and b are odd: a � b :ô a ď b

Note that we do not know a � b if one of a, b is even and the other one is odd.
That is, if pS,ĺq is a poset then not all pairs of elements of S need to be
comparable!
The subset relation, Ă, on the powerset PpXq of a set X is a strict partial order.

Definition 68 (Dual order, Dt.: duale Ordnung)
Let pS,ĺq resp. pS,ăq be a (strict) poset. The dual order (or reverse order) on S, ľ

resp. ą, is defined as follows for a, b P S:

a ľ b :ô b ĺ a a ą b :ô b ă a.
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Extreme Elements

Definition 69 (Minimal element, Dt.: minimales Element)
Let pS,ĺq be a poset and T Ď S. An element a P T is a minimal element of T if no
b P Tztau exists such that b ĺ a.

Definition 70 (Least element, Dt.: kleinstes Element, Minimum)
Let pS,ĺq be a poset and T Ď S. An element a P T is a least element (or minimum) of
T if @b P Tztau a ĺ b.

Definition 71 (Maximal element, Dt.: maximales Element)
Let pS,ĺq be a poset and T Ď S. An element a P T is a maximal element of T if no
b P Tztau exists such that a ĺ b.

Definition 72 (Greatest element, Dt.: größtes Element, Maximum)
Let pS,ĺq be a poset and T Ď S. An element a P T is a greatest element (or
maximum) of T if @b P Tztau b ĺ a.

Note: If a minimum or maximum exists then the anti-symmetry ensures that it is
unique. Minimal or maximal elements need not be unique, though.
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Total Order

Definition 73 (Total order, Dt.: totale Ordnung)
A binary relation ĺ on a set S forms a total order (or linear order) on S if the following
three statements hold for all a, b, c P S:

1 Totality: a ĺ b _ b ĺ a.
2 Anti-symmetry: pa ĺ b ^ b ĺ aq ñ a “ b.
3 Transitivity: pa ĺ b ^ b ĺ cq ñ a ĺ c.

If ĺ is a total order on S then pS,ĺq is called a totally ordered set.

Note that (1) in Def. 73 implies reflexivity: a ĺ a for all a P S.
That is, a total order on S is a (non-strict) partial order such that every pair of
elements of S is comparable.

Definition 74 (Well-order, Dt.: Wohlordnung)
A total order ĺ on a set S forms a well-order if every non-empty subset of S has a
least element.
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Natural Numbers and Peano’s Axioms

The following definition of N is based on a simplified version of Peano’s Axioms,
as proposed by Giuseppe Peano (1858–1932) in 1889.

Definition 75 (Natural numbers, Dt.: natürliche Zahlen)
The set of all natural numbers, N, together with an order relation ď, is a totally
ordered set defined as follows:

N1 1 P N.
N2 @n P N n` 1 P N ^ n ă n` 1.
N3 @n P N, n ‰ 1 Dm P N n “ m` 1.
N4 Every non-empty subset of N has a least element.

The number n` 1 is called the successor of n, sometimes denoted by succpnq.

N1 together with N2 establish the infinite sequence 1 ă 2 ă 3 ă . . .

N3 guarantees that every n P N (except 1) is the successor of some number in N.
The so-called well-ordering principle, N4, weeds out numbers like 1

2 or π.
One can show that the standard algebraic rules are compatible with the
conditions imposed on N, and that algebra and order interact smoothly within N.
One can also show that (up to a renaming of elements) there is only one set that
fulfills all conditions of Def. 75. Hence, N is uniquely defined.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 132/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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The Principle of Mathematical Induction

Definition 76 (Inductive)
A set K Ď N is inductive if

1 1 P K ,
2 @k P K pk ` 1q P K .

Theorem 77
If a set K Ď N is inductive then K “ N.

Proof : Suppose that K ‰ N, i.e., K Ă N. Hence, K 1 :“ NzK is not empty. By the
well-ordering principle, (N4), K 1 has a least element, n. Since n ‰ 1, (N3) guarantees
that we can pick a number k P N such that k ` 1 “ n. Thus, k ă n. As n is the least
element of K 1, we have k P K . Applying modus ponens to k P K and Condition 2
yields k ` 1 “ n P K , i.e., a contradiction.
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element of K 1, we have k P K . Applying modus ponens to k P K and Condition 2
yields k ` 1 “ n P K , i.e., a contradiction.
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The Principle of Mathematical Induction

Theorem 78 (Weak Principle of Induction (W.P.I.))
Consider a predicate P over N.
If

Pp1q

and if

@k P N pPpkq ñ Ppk ` 1qq

then

@n P N Ppnq.

Proof : Define K :“ tn P N : Ppnqu. We have
1 1 P K , and
2 @k P K pk ` 1q P K .

Thus, Thm. 77 is applicable and we conclude K “ N. That is, the predicate P holds
for all natural numbers.
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UNIVERSITÄT SALZBURG

The Principle of Mathematical Induction

Theorem 78 (Weak Principle of Induction (W.P.I.))
Consider a predicate P over N.
If

Pp1q

and if

@k P N pPpkq ñ Ppk ` 1qq

then

@n P N Ppnq.

Proof : Define K :“ tn P N : Ppnqu. We have
1 1 P K , and
2 @k P K pk ` 1q P K .

Thus, Thm. 77 is applicable and we conclude K “ N. That is, the predicate P holds
for all natural numbers.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 134/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Three Main Steps of a Proof by Induction

Franciscus Maurolicus (1494–1575), an abbot of Messina, seems to have been
first to use induction for proving a theorem. (He proved

řn
i“1p2i ´ 1q “ n2.)

Today’s view of induction is based on the work of Giuseppe Peano (1858–1932).

Induction — we proceed as follows:
Suppose that we want to prove

@n P N Ppnq,

for some predicate P over N by using induction:

1 Induction basis (“IB”): A basis step is done, i.e., Pp1q is proved to be true.
2 Induction hypothesis (“IH”): We assume Ppkq to be true for an arbitrary but fixed

k P N.
3 Inductive step (“IS”): We prove Ppk` 1q based on the knowledge that Ppkq is true.
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Gauß’ Problem Revisited: Sample Inductive Proof

We claim that
řn

i“1 i “ n¨pn`1q

2 holds for all n P N.

Proof : We use induction to prove our claim as follows:
We define a suitable predicate P:

@n P N

˜

Ppnq :ô
n
ÿ

i“1
i “ n ¨ pn` 1q

2

¸

.

Induction basis (IB): We establish the truth of Pp1q:

1
ÿ

i“1
i “ 1 “ 1 ¨ 2

2 .

Induction hypothesis (IH): Assume Ppkq true for an arbitrary but fixed k P N. That
is, we assume (for this k P N)

k
ÿ

i“1
i “ k ¨ pk ` 1q

2 .
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UNIVERSITÄT SALZBURG

Gauß’ Problem Revisited: Sample Inductive Proof

Proof (cont’d) :
Inductive step (IS): We have to prove Ppk ` 1q based on the induction hypothesis.
That is, we have to prove

k`1
ÿ

i“1
i “ pk ` 1q ¨ pk ` 2q

2 .

We get

k`1
ÿ

i“1
i “

˜

k
ÿ

i“1
i
¸

` pk ` 1q

I.H.
“

k ¨ pk ` 1q
2 ` pk ` 1q

“
k ¨ pk ` 1q ` 2pk ` 1q

2

“
pk ` 1q ¨ pk ` 2q

2 .
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Variations of the Induction Principle

Theorem 79 (Strong Principle of Induction (S.P.I.))
Consider a predicate P over N.
If

Pp1q

and if

@k P N
“`

Pp1q ^ Pp2q ^ . . .^ Ppkq
˘

ñ Ppk ` 1q
‰

then

@n P N Ppnq.

Since

rPpkq ñ Ppk ` 1qs ñ rpPp1q ^ Pp2q ^ . . .^ Ppkqq ñ Ppk ` 1qs,

all theorems that can be proved by W.P.I. can also be proved by S.P.I.
But W.P.I. and S.P.I. are equivalent, at least from a theoretical point of view.
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Variations of the Induction Principle

Theorem 80 (S.P.I. with Larger Base)
Consider a predicate P over N, and let m P N.
If

Ppmq

and if

@pk P N, k ě mq
“`

Ppmq ^ Ppm` 1q ^ . . .^ Ppkq
˘

ñ Ppk ` 1q
‰

then

@pn P N, n ě mq Ppnq.

Proof : We define a new predicate P1 over N with

P1
pnq :ðñ Ppm´ 1` nq for all n P N,

and apply the standard S.P.I.

We could also carry out induction for smaller base values. That is, induction
works for claims over N0. (And even for negative base values!)
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Mathematical Induction: Caveats

We may not assume anything in the inductive step n Ñ n` 1 besides that Ppnq
holds and, of course, the standard properties of N.

The inductive step alone does not suffice! By carrying out only the inductive step
one can “prove” that

@n P N n “ n` 5.

Let k P N be arbitrary but fixed and assume as I.H. that k “ k ` 5:

k ` 1 I.H.
“ pk ` 5q ` 1 “ pk ` 1q ` 5.

Thus, proving the base is mandatory!
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UNIVERSITÄT SALZBURG

Mathematical Induction: Caveats

We may not assume anything in the inductive step n Ñ n` 1 besides that Ppnq
holds and, of course, the standard properties of N.
The inductive step alone does not suffice! By carrying out only the inductive step
one can “prove” that

@n P N n “ n` 5.

Let k P N be arbitrary but fixed and assume as I.H. that k “ k ` 5:

k ` 1 I.H.
“ pk ` 5q ` 1 “ pk ` 1q ` 5.

Thus, proving the base is mandatory!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 140/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Mathematical Induction: Caveats

Several base cases alone do not suffice! For n P N0, let

fpnq :“
ż 8

0

˜

n
ź

i“0

sinp x
2i`1 q
x

2i`1

¸

dx.

Calculus shows that

fp0q “ fp1q “ fp2q “ fp3q “ fp4q “ fp5q “ fp6q “ π

2 .

So, what is fp7q? It ought to equal π{2, doesn’t it?
Well . . .

fp7q “ 467807924713440738696537864469π
935615849440640907310521750000 « 0.99999999998529 ¨ π2

For n P N0, let fpnq :“ n2
´ n` 41.

We learn that fpnq is prime for all 0 ď n ď 40.

So, is fpnq always prime?

No! For instance, fp41q is not prime.
Thus, proving the inductive step is truly mandatory!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 141/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Mathematical Induction: Caveats

Several base cases alone do not suffice! For n P N0, let

fpnq :“
ż 8

0

˜

n
ź

i“0

sinp x
2i`1 q
x

2i`1

¸

dx.

Calculus shows that

fp0q “ fp1q “ fp2q “ fp3q “ fp4q “ fp5q “ fp6q “ π

2 .

So, what is fp7q? It ought to equal π{2, doesn’t it?
Well . . .

fp7q “ 467807924713440738696537864469π
935615849440640907310521750000 « 0.99999999998529 ¨ π2

For n P N0, let fpnq :“ n2
´ n` 41.

We learn that fpnq is prime for all 0 ď n ď 40.

So, is fpnq always prime?

No! For instance, fp41q is not prime.
Thus, proving the inductive step is truly mandatory!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 141/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Mathematical Induction: Caveats

George Pólya (1887–1985): ”All cats have the same color”, or
@n P N (for all sets S of n cats (all cats of S have the same color)).

We use induction to prove this claim.
IB: Obviously true for n :“ 1. (No matter what we take as “color” of a cat . . .)
IH: For all sets S of n cats, all cats of S have the same color, for n P N
arbitrary but fixed.
IS: Consider a set S of n` 1 cats, and let A and B be two subsets of S such
that

|A| “ |B| “ n and AY B “ S.

Using the induction hypothesis and the transitivity of the equivalence, we
conclude that all cats of the set S have the same color!

As nature shows, this “proof” is seriously flawed . . .
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Mathematical Induction: Caveats

We claim that 2 ¨ n “ 0 for all n P N0.

We use induction to prove this claim:
IB: Obviously true for n :“ 0.
IH: Suppose that the claim holds for all k P N0 with k ď n, for some arbitrary
but fixed n P N0.
IS: We write n` 1 as n` 1 “ k1 ` k2, where k1, k2 P N0 with k1, k2 ď n. Then

2 ¨ pn` 1q “ 2 ¨ pk1 ` k2q “ 2 ¨ k1 ` 2 ¨ k2
I.H.
“ 0` 0 “ 0,

thus finishing the inductive “proof” . . .
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UNIVERSITÄT SALZBURG

Mathematical Induction: Caveats

We claim that 2 ¨ n “ 0 for all n P N0.
We use induction to prove this claim:

IB: Obviously true for n :“ 0.
IH: Suppose that the claim holds for all k P N0 with k ď n, for some arbitrary
but fixed n P N0.
IS: We write n` 1 as n` 1 “ k1 ` k2, where k1, k2 P N0 with k1, k2 ď n. Then

2 ¨ pn` 1q “ 2 ¨ pk1 ` k2q “ 2 ¨ k1 ` 2 ¨ k2
I.H.
“ 0` 0 “ 0,

thus finishing the inductive “proof” . . .

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 143/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Real-World Application: Fair Resource Distribution

Suppose that some limited and non-uniform resource has to be distributed fairly
among n receivers, for some n P N with n ą 1.
E.g., a cake (with fruits, whipped cream, chocolate crumbs, icing, etc.) might
have to be distributed fairly among n kids. Aka: “Cake Cutting Problem”.

To make the situation worse, each kid might value different portions of the cake
differently. (Bob likes fruits, Alice hates them; Alice likes whipped cream, but Bob
hates it.)
The distribution should involve all kids such that each kid has to agree that it
received a fair share of the cake by his/her preferences.

Definition 81 (Fair distribution protocol)
A protocol for the distribution of a resource among n receivers is considered fair if
each receiver gets at least 1{n-th of the resource (by his/her preferences), no matter
what the preferences of the other receivers are and what the other receivers get.

How can we come up with a fair distribution protocol? Is there a general
algorithm for fair cake cutting in the presence of n kids??
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Real-World Application: Fair Resource Distribution

If n “ 2: Cut-and-choose distribution protocol.
1 Alice cuts the cake into two equal pieces (equal by her preferences).

2 Bob chooses whichever piece seems larger (by his preferences).
3 Alice takes the remaining piece.

If n ą 2: Recursive application of the cut-and-choose distribution protocol.
1 The first n´ 1 kids cut the cake into n´ 1 pieces by applying the

cut-and-choose distribution protocol recursively to n´ 2, n´ 3 etc. kids, thus
each obtaining (hopefully) at least a fair 1{n´1 portion of the cake.

2 The n-th kid asks all other n´ 1 kids to cut his/her portion of the cake into n
pieces such that the cutting is fair according to his/her preferences. (That is,
according to each kid’s preferences, each of the n pieces of his/her portion is
equally desirable, for all of the first n´ 1 kids.)

3 The n-th kid walks around and collects one piece — the most desirable piece
according to his/her preferences! — from all the other n´ 1 kids.

Theorem 82
The recursive cut-and-choose distribution protocol is fair.
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Real-World Application: Fair Resource Distribution

Proof of Thm. 82 by induction : Assume that the total cake is worth 1 for each kid.
I.B.: n :“ 2 Alice cut the cake into two pieces that are equally desirable (according to

her preferences) and, thus, both worth 1{2. Hence, she will get one half of the
cake (by her preferences), no matter how Bob behaves.

Bob sees two pieces, one worth w1 and the other one worth 1´ w1 (by his
preferences). Trivially, either w1 ě 1{2 or 1´ w1 ě 1{2.
Hence, Bob can choose at least one half of the cake (according to his
preferences), and both kids have no reason to complain about an unfair cutting.

I.H.: Assume that the recursive cut-and-choose cake cutting has been considered fair
by the first k ´ 1 kids, for k ě 3 arbitrary but fixed. Hence, each of the first k ´ 1
kids got a portion that is a least worth (according to the kid’s preferences) 1

k´1 .
I.S.: After the cuts for the k-th kid were made, each kid has k pieces each worth

1
pk´1q¨k . After the k-th kid took one piece from each of them, each of the first
k ´ 1 kids is left with k ´ 1 pieces each worth 1

pk´1q¨k , i.e., with a total worth of 1
k .

Suppose that the k-th kid values the portion of the i-th kid with wi , for
i P t1, 2, . . . , k ´ 1u. Of course, w1 `w2 ` . . .`wk´1 “ 1. Since the k-th kid gets
at least wi{k from the i-th kid, the k-th kid gets in total at least

w1
k `

w2
k ` . . .`

wk´1
k “

1
k pw1 ` w2 ` . . .` wk´1q “

1
k .
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Cardinality

Intuitively, the cardinality |A| of a set A specifies the number of elements of A: If
A :“ t1, 2, 3u then |A| “ 3.

However, this notion of cardinality becomes tricky for “infinite” sets.
E.g., Nzt1u should have one element less than N, right?

Definition 83 (Cardinality; Dt.: Mächtigkeit, Kardinalität)
The set A has n elements, aka cardinality n, for some n P N, if there exists a bijection
from t1, 2, . . . , n´ 1, nu to A. The cardinality of A is denoted by |A|.
The sets A,B have the same cardinality, denoted by |A| “ |B|, if there exists a
bijection from A to B.
The set A is of strictly smaller cardinality than B, denoted by |A| ă |B|, if there exists
an injective function but no bijective function from A to B.

Definition 84 (Finite, countably infinite, uncountable, Dt: endlich, abzählbar
unendlich, überabzählbar unendlich)
The set A is a finite set if |A| ă |N|.
The set A is a countably infinite set if |A| “ |N|.
The set A is an uncountable set if |A| ą |N|.
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bijection from A to B.
The set A is of strictly smaller cardinality than B, denoted by |A| ă |B|, if there exists
an injective function but no bijective function from A to B.

Definition 84 (Finite, countably infinite, uncountable, Dt: endlich, abzählbar
unendlich, überabzählbar unendlich)
The set A is a finite set if |A| ă |N|.

The set A is a countably infinite set if |A| “ |N|.
The set A is an uncountable set if |A| ą |N|.
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UNIVERSITÄT SALZBURG

Cardinality

Intuitively, the cardinality |A| of a set A specifies the number of elements of A: If
A :“ t1, 2, 3u then |A| “ 3.
However, this notion of cardinality becomes tricky for “infinite” sets.
E.g., Nzt1u should have one element less than N, right?

Definition 83 (Cardinality; Dt.: Mächtigkeit, Kardinalität)
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Cardinality

Theorem 85
A subset of a countably infinite set is a finite or a countably infinite set itself.

Theorem 86 (Cantor&Schröder&Bernstein)
Consider two sets A and B. If there exist injective functions f : A Ñ B and g : B Ñ A
between the sets A and B, then there exists a bijective function between A and B.

Stated by Cantor in 1887 (without a proof) and with a proof (defacto relying on the
Axiom of Choice) in 1895, proved by Dedekind (not relying on the Axiom of
Choice) in 1887, incorrectly proved by Schröder in 1897, proved by Bernstein (not
relying on the Axiom of Choice) in 1897.
Theorem 86 makes it easier to prove that two sets are of the same cardinality
even if it is difficult to construct a bijection explicitly.
E.g., |N| “ |Nˆ N|.

Corollary 87
Consider three sets A, B and C. If A Ď B Ď C and |A| “ |C| then |A| “ |B| “ |C|.
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UNIVERSITÄT SALZBURG

Cardinality

Theorem 85
A subset of a countably infinite set is a finite or a countably infinite set itself.

Theorem 86 (Cantor&Schröder&Bernstein)
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Consider two sets A and B. If there exist injective functions f : A Ñ B and g : B Ñ A
between the sets A and B, then there exists a bijective function between A and B.

Stated by Cantor in 1887 (without a proof) and with a proof (defacto relying on the
Axiom of Choice) in 1895, proved by Dedekind (not relying on the Axiom of
Choice) in 1887, incorrectly proved by Schröder in 1897, proved by Bernstein (not
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4 Numbers and Basics of Number Theory
Algebraic Structures
Natural Numbers
Integers

Construction of the Integers
Integral Powers
Divisibility and Prime Numbers
Quotient and Remainder
Congruences
Greatest Common Divisor
Chinese Remainder Theorem

Rational Numbers
Real Numbers
More Proof Techniques

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 149/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Integers: Z

Intuitive way to define the integers: Z :“ N0 Y t´n : n P Nu.
Thus, Z “ t0,˘1,˘2,˘3,˘4,˘5, . . .u.
The blackboard-bold letter Z stands for the German word “Zahlen”.

But what are the properties of the elements ´n??
And how could we define a` b and a ¨ b for a, b P Z??

In order to put Z on a more solid basis, we “extend” N to obtain Z.
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Construction of Z Based on N

Let –Z be a relation over N0 such that

pa, bq –Z pc, dq :ô a` d “ c ` b.

Easy to show: –Z is an equivalence relation over N0, with the equivalence
classes shown below.
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(1, 1) (1, 2) (1, 3) ...

(2, 1) (2, 2) (2, 3) ...

(3, 1) (3, 2) (3, 3) ...

(4, 1) (4, 2) (4, 3) (4, 4) ...

(3, 4)

(2, 4)

(1, 4)

: : : : :...

0

-1

-2

-3

:

123...
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Construction of Z Based on N

We interprete rpa, bqs–Z as a´ b.

For n P N, the equivalence classes rpn, 0qs–Z form the natural numbers, while
rp0, nqs–Z form the negative integers.
Zero is given by rp0, 0qs–Z .
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Construction of Z Based on N

Definition 88 (Integers)
The integers Z are defined as Z :“ trpa, bqs–Z : a, b P N0u.

Furthermore, Z` :“ N and Z`

0 :“ N0.
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Construction of Z Based on N

It remains to define addition, multiplication and order on Z. For a, b, c, d P N0 we
define an addition `Z , a multiplication ¨Z and an order ďZ as follows:

rpa, bqs–Z `Z rpc, dqs–Z :“ rpa` c, b` dqs–Z
rpa, bqs–Z ¨Z rpc, dqs–Z :“ rpa ¨ c ` b ¨ d, a ¨ d ` b ¨ cqs–Z
rpa, bqs–Z ďZ rpc, dqs–Z :ô a` d ď b` c

It is easy to show that
addition, multiplication and order are well-defined,
the standard rules of arithmetic hold, with rp0, 0qs–Z as zero element (“zero”),
ďZ defines a total order on N0 ˆ N0.
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It is easy to show that
addition, multiplication and order are well-defined,
the standard rules of arithmetic hold, with rp0, 0qs–Z as zero element (“zero”),
ďZ defines a total order on N0 ˆ N0.

Definition 89 (Positive/negative)
An integer is positive if it is greater than zero and negative if it is less than zero; zero is
neither positive nor negative.
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It is easy to show that
addition, multiplication and order are well-defined,
the standard rules of arithmetic hold, with rp0, 0qs–Z as zero element (“zero”),
ďZ defines a total order on N0 ˆ N0.

Definition 89 (Positive/negative)
An integer is positive if it is greater than zero and negative if it is less than zero; zero is
neither positive nor negative.

Theorem 90
Z is a countably infinite set. That is, |N| “ |Z|.
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Integral Powers

Definition 91 (Integral power, Dt.: ganzzahlige Potenz)
Consider x P F for a field pF ,`, ¨q, with additive neutral element e. For n P N0, we
define integral powers of x as follows:

xn :“

$

&

%

1 if n “ 0 and x ‰ e,
x if n “ 1,

xn´1
¨ x if n ą 1.

Furthermore, for n P Z with n ă 0,

xn :“
1

x´n if x ‰ e.

Normally, in R the term 00 remains undefined, and x ‰ 0 is implicitly assumed for
x0. However, there are applications — e.g., in geometric modeling when defining
Bernstein basis polynomials — for which it is convenient to regard 00 as 1.

Lemma 92
Let pF ,`, ¨q be a field. Then, for all x, y P F and all m, n P Z,

xm
¨ xn

“ xm`n and xn
¨ yn

“ px ¨ yqn.
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Divisibility

Definition 93 (Divisor, Dt.: Teiler, Faktor)
Let a, b P Z with a ‰ 0. Then a divides b, denoted by a  b, if there exists c P Z such
that b “ c ¨ a.

a  b :ô Dc P Z b “ c ¨ a.

In this case, we also say that b is a multiple of a, or a is a divisor or factor of b, or b is
divisible by a. Otherwise we have a ∤ b. We have a genuine divisor if a  b and
a ‰ ˘1 and a ‰ ˘b.

Note that a  0 for all a P Zzt0u.

Definition 94 (Even/odd, Dt.: gerade/ungerade)
A number b P Z is said to be even if and only if 2  b; otherwise, b is odd.
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Divisibility

Lemma 95

1 @a P Zzt0u a  a.
2 @a P Zzt0u @b P Z a  b ñ

`

@c P Z a  pb ¨ cq
˘

.
3 @a, b P Zzt0u @c P Z pa  b ^ b  cq ñ a  c.
4 @a P Zzt0u @b, c P Z pa  b ^ a  cq ñ

`

@s, t P Z a  pb ¨ s` c ¨ tq
˘

.
5 @a, c P Zzt0u @b P Z a  b ô pa ¨ cq  pb ¨ cq.
6 @a, b P Zzt0u pa  b ^ b  aq ñ pa “ b _ a “ ´bq.

Lemma 96
For all a, b, c P Z and all k P Zzt0u,

pa “ b` c ^ k  bq ñ pk  a ô k  cq.
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Divisibility Rules

Lemma 97
A number a P N is divisible by

2 if its last digit is even, i.e., 0, 2, 4, 6 or 8;

3 if the sum of its digits is divisible by three;
4 if its last two digits form a number that is divisible by four;
5 if its last digit is 0 or 5;
6 if it is divisible by two and three;
8 if the hundreds digit is even and the number formed by the last two digits is

divisible by eight, or if the hundreds digit is odd and the number formed by the
last two digits plus four is divisible by eight;

9 if the sum of its digits is divisible by nine;
10 if its last digit is 0;
11 if the alternating sum of its digits is divisible by eleven;
12 if it is divisible by three and four.

There also exist divisibility rules for seven but all of them are a bit ackward . . .
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Divisibility Rules

Proof of Lem. 97 : We prove only the divisibility by three. Let n P N and
a0, a1, . . . , an P t0, 1, . . . , 9u such that

a “
n
ÿ

i“0
ai ¨ 10i .

We get

a “
n
ÿ

i“0
ai ¨ 10i

“

n
ÿ

i“0
ai ¨ p10i

´ 1q `
n
ÿ

i“0
ai .

Since

3 
˜

n
ÿ

i“0
ai ¨ p10i

´ 1q
¸

,

Lemma 96 implies that the number a is divisible by three if and only if

3 
˜

n
ÿ

i“0
ai

¸

.
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Prime Numbers

Definition 98 (Prime, Dt.: Primzahl)
A natural number p P N is a prime number, or is prime, if p ě 2 and if p is divisible
only by 1 and p itself. All other natural numbers p ě 2 are called composite.

The number 1 is no prime number!
The only even prime number is 2.
All primes greater than 2 are odd numbers.
The set of all prime numbers is frequently (but not always) denoted by P.

Definition 99 (Prime factor, Dt.: Primfaktor)
A natural number p P N is a prime factor of n P N if p is prime and p  n. If p is a prime
factor of n then its multiplicity (Dt.: Vielfachheit) is the largest exponent k for which
pk
 n.
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Prime Numbers: Properties

Lemma 100
Let k P N and a1, a2, . . . , ak P Z and p P P. Then

p  a1 ¨ a2 ¨ . . . ¨ ak ô pDp1 ď j ď kq p  ajq.

Corollary 101
If two products of primes are identical then the primes are identical up to the order in
which they appear in the products.

Theorem 102 (Fundamental Theorem of Arithmetic)
Every natural number n ą 1 is representable uniquely in the form

n “ pm1
1 ¨ pm2

2 ¨ . . . ¨ pmk
k ,

where p1 ă . . . ă pk are primes and mj P N are multiplicities for every j “ 1, . . . , k.

Corollary 103
There are infinitely many prime numbers.
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More on Prime Numbers

Definition 104 (Mersenne prime)
A Mersenne number is of the form 2n

´ 1 for n P N. A Mersenne prime is a Mersenne
number which is prime.

INT MAX (in C/C++) is the eight Mersenne prime: 2 147 483 647 “ 231
´ 1.

Mersenne primes are used by the Mersenne twister, a pseudo-random number
generator developed in 1997 by Matsumoto and Nishimura.
Several unsolved problems related to Mersenne numbers:

Since 211
´ 1 “ 2047 “ 23 ¨ 89, not all Mersenne numbers are primes!

Are there infinitely many Mersenne primes? Only 52 Mersenne primes are
known, with 2136 279 841

´ 1 being the largest known prime. (It was discovered
by the “Great Internet Mersenne Prime Search”, www.mersenne.org, in
October 2024.)
What is a sufficient condition on n for 2n

´ 1 to be prime?

Lemma 105
If 2n

´ 1 is prime for some n P N then n is prime.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 162/406

www.mersenne.org


Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Chances to Become Famous: Conjectures About Primes

Conjecture 106 (Goldbach 1742, “weak version” or “ternary conjecture”)
Every odd natural number greater than 5 can be written as the sum of three primes.

Conjecture 107 (Goldbach-Euler 1742, “strong version”)
Every even natural number greater than 3 can be written as the sum of two primes.

Christian Goldbach (1690–1764), Leonhard Euler (1707–1783).
The strong version of this conjecture implies the weak version: If n P N, with
n ě 7, is odd then n1 :“ n´ 3 is even with n1

ą 3. Hence, if n1 can be written as
the sum of two primes, then n can be written as the sum of three primes.
In 1937, Vinogradov proved the weak version for ”sufficiently large numbers”, and
later on his student Borozdin proved 3315 to be sufficiently large.
By means of distributed computer search, as of Dec 2012, Tomás Oliveira e Silva
verified the strong version of Goldbach’s conjecture up to 4 ¨ 1018.
Also by distributed computing, in 2013 Harald Helfgott and David Platt verified the
weak Goldbach conjecture up to (roughly) 8 ¨ 1030.
In 2013, Helfgott released a 240-page analysis that, if accepted as correct, yields
a formal proof of the weak conjecture for all natural numbers greater than « 1030.
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The strong version of this conjecture implies the weak version: If n P N, with
n ě 7, is odd then n1 :“ n´ 3 is even with n1

ą 3. Hence, if n1 can be written as
the sum of two primes, then n can be written as the sum of three primes.
In 1937, Vinogradov proved the weak version for ”sufficiently large numbers”, and
later on his student Borozdin proved 3315 to be sufficiently large.
By means of distributed computer search, as of Dec 2012, Tomás Oliveira e Silva
verified the strong version of Goldbach’s conjecture up to 4 ¨ 1018.
Also by distributed computing, in 2013 Harald Helfgott and David Platt verified the
weak Goldbach conjecture up to (roughly) 8 ¨ 1030.
In 2013, Helfgott released a 240-page analysis that, if accepted as correct, yields
a formal proof of the weak conjecture for all natural numbers greater than « 1030.
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Chances to Become Famous: Conjectures About Primes

Conjecture 108 (Polignac, 1849)
For every natural number k there exist infinitely many numbers p such that p and
p` 2k are consecutive primes.

For k :“ 1, the conjecture by Alphonse de Polignac (1817–1890) is known as the
twin prime conjecture. As of 19-Sep-2016, the largest known twin primes are
2 996 863 034 8951 290 000

˘ 1; these numbers have 388 342 digits.
In April 2013, Yitang Zhang proved that their exist infinitely many consecutive
prime numbers pn`1 and pn such that pn`1 ´ pn ă 7 ¨ 107.
In November 2013, James Maynard reduced this bound to 600.
This bound seems to have been further reduced to 246 by the Polymath project.
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UNIVERSITÄT SALZBURG

Chances to Become Famous: Conjectures About Primes

Conjecture 108 (Polignac, 1849)
For every natural number k there exist infinitely many numbers p such that p and
p` 2k are consecutive primes.

For k :“ 1, the conjecture by Alphonse de Polignac (1817–1890) is known as the
twin prime conjecture. As of 19-Sep-2016, the largest known twin primes are
2 996 863 034 8951 290 000

˘ 1; these numbers have 388 342 digits.

In April 2013, Yitang Zhang proved that their exist infinitely many consecutive
prime numbers pn`1 and pn such that pn`1 ´ pn ă 7 ¨ 107.
In November 2013, James Maynard reduced this bound to 600.
This bound seems to have been further reduced to 246 by the Polymath project.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 164/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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A Chance Missed to Become Famous: Fermat’s Last Theorem

A Diophantine equation is an equation for which only integer solutions are sought.
E.g., p3, 4, 5q is an integer solution triple for a2

` b2
“ c2.

Theorem 109 (Wiles&Taylor, 1995)
For every natural number n ą 2, the Diophantine equation an

` bn
“ cn has no

solution pa, b, cq P Nˆ Nˆ N.

Dt.: Großer Satz von Fermat.
Stated in 1637 by Pierre de Fermat (1607(?)–1665) without proof, but with a
famous side remark: ”Cuius rei demonstrationem mirabilem sane detexi. Hanc
marginis exiguitas non caperet.”
Proved for n :“ 4 by Fermat himself.
Finally proved by Andrew Wiles in 1993; a gap in the proof was fixed by Wiles
and his former student Richard Taylor; the full proof was published in 1995.
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Quotient and Remainder

Lemma 110
Let a P N and b P Z. Then there exist a unique quotient q P Z and a unique
remainder r P N0 such that

b “ a ¨ q ` r and 0 ď r ă a.

We will use the operators div and mod for computing the quotient and remainder.
That is, q and r of Lemma 110 are given by q :“ b div a and r :“ b mod a.

In many programming languages the remainder r can be obtained by means of
the modulo operator. See, e.g., the operator % in C, C++, C#, Java, and Perl.
IEEE 754 defines a remainder function based on the round-to-nearest convention.

Warning
If one or both of a and b are allowed to be negative integers then the sign of the
remainder may differ among different implementations!
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Real-World Application: Base Conversion

We know that 25 “ p11001q2, i.e., p11001q2 is the base-two representation of
25 “ p25q10. (After all, 25 “ 1 ¨ 24

` 1 ¨ 23
` 0 ¨ 22

` 0 ¨ 21
` 1 ¨ 20.)

How can we represent an integer relative to an arbitrary base b P Nzt1u?
Lemma 110 tells us that there exist unique q0, r0 P N0 such that

n “ b ¨ q0 ` r0 with 0 ď r0 ă b.

The number r0 becomes the rightmost digit of the base-b representation of n, and
we seek q1, r1 such that

q0 “ b ¨ q1 ` r1 with 0 ď r1 ă b,

and so on until some qi “ 0.
E.g.,

25 “ 12 ¨ 2` 1
12 “ 6 ¨ 2` 0
6 “ 3 ¨ 2` 0
3 “ 1 ¨ 2` 1
1 “ 0 ¨ 2` 1

and therefore 25 “ p11001q2.
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Congruences

Introduced by Carl Friedrich Gauss (1777–1855) in 1801.

Definition 111 (Congruence, Dt.: Kongruenz)
Let a, b P Z and m P N. We say that a is congruent to b modulo m, and write

a ”m b,

if a´ b is divisible by m. The term a ”m b is called a congruence.

Hence: a ”m b :ô m  pa´ bq.
Note: Some authors prefer to write a ” b pmq or a ” b mod m for a ”m b.

Lemma 112
For all a, b P Z and m P N, we have a ”m b if and only if a and b have the same
remainder after dividing by m, i.e., if and only if a mod m “ b mod m.
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UNIVERSITÄT SALZBURG

Congruences

Introduced by Carl Friedrich Gauss (1777–1855) in 1801.

Definition 111 (Congruence, Dt.: Kongruenz)
Let a, b P Z and m P N. We say that a is congruent to b modulo m, and write

a ”m b,

if a´ b is divisible by m. The term a ”m b is called a congruence.

Hence: a ”m b :ô m  pa´ bq.
Note: Some authors prefer to write a ” b pmq or a ” b mod m for a ”m b.

Lemma 112
For all a, b P Z and m P N, we have a ”m b if and only if a and b have the same
remainder after dividing by m, i.e., if and only if a mod m “ b mod m.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 168/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Congruences

38 ”12 2 even` even ”2 even
´3 ”5 2 even` odd ”2 odd

0 ”3 3 odd ` odd ”2 even
8 ”3 2 even ¨ even ”2 even
7 ”3 1 even ¨ odd ”2 even
7 ”3 ´8 odd ¨ odd ”2 odd

Lemma 113
For m P N, the relation ”m is an equivalence relation on Z, i.e., for all a, b, c P Z,

reflexivity a ”m a,
symmetry if a ”m b then b ”m a, and

transitivity if a ”m b and b ”m c then a ”m c
hold.
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Residues and Zm

Lemma 114
For m P N, the relation ”m is a congruence relation on Z, i.e., it respects addition,
subtraction, and multiplication: Let a, b, c, d P Z and m P N, and suppose that

a ”m b and c ”m d.

Then

a` c ”m b` d and a´ c ”m b´ d and a ¨ c ”m b ¨ d.

Definition 115 (Residue, Dt.: Residuum, Restklasse)
Let m P N with m ě 2. The equivalence classes of Z modulo m are called residues (or
remainders) modulo m. For a P Z, its equivalence class modulo m is denoted by rasm.
The set of residues modulo m is denoted by Zm or Z{mZ.
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Residues and Zm: Modulo Arithmetic

Definition 117 (Arithmetic on Zm)
Let m P N with m ě 2, and rasm, rbsm P Zm. On Zm we define an addition `m and a
multiplication ¨m as follows.

rasm `m rbsm :“ ra` bsm
rasm ¨m rbsm :“ ra ¨ bsm

Lemma 118
Let m P N with m ě 2. Then addition `m and multiplication ¨m on Zm are well-defined.
Furthermore, pZm,`m, ¨mq forms a commutative ring.

Often the notation rasm is simplified by omitting the modulus m, i.e., by writing ras,
or even by simply writing a if it is clear that a P Zm. Similarly for `m and ¨m.
It is also common to write

a mod m

instead of

rasm.
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Real-World Application: Fermat Primality Test

Theorem 119 (Fermat’s Little Theorem)
If p P N is prime then ap

”p a for every a P N.

If a is not divisible by p then this yields ap´1
”p 1. In particular, this congruence

holds for all 1 ď a ď p´ 1.
Hence, if an´1

ın 1 for n P N (and 1 ď a ď n´ 1) then n is composite, i.e., not a
prime.
Fermat Primality Test for n P N:

1 Pick a random integer a with 1 ă a ă n´ 1.
2 If we get an´1

ın 1 then a is a Fermat witness for the compositeness of n.
That is, n is not prime.

3 Otherwise, repeat the test for some other value of a P t2, 3, . . . , n´ 2u.
One can prove that the probability for incorrectly classifying n as prime goes to
zero (in most cases) as the number of tests is increased.
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UNIVERSITÄT SALZBURG

Real-World Application: Pseudo-Random Numbers

Since computers cannot flip a coin to obtain a random result, one resorts to
algorithms that generate “random” numbers: pseudo-random number generators.

Linear congruential generators (LCG, [Lehmer 1954]) have been well studied, are
easy to implement and used frequently.
They generate a sequence of non-negative integers less than some specified
modulus m P N according to the following recursive definition:

xn`1 :“ pa ¨ xn ` cq mod m,

where
m P N with m ą 1 . . . . . . . . . modulus,
a P N with a ă m . . . . . . . . . multiplier,
c P N0 with c ă m . . . . . . . . . increment,
x0 P N0 with x0 ă m . . . . . . . . . seed.

E.g., m :“ 15, a :“ 1, c :“ 4 and x0 :“ 2 yields the following sequence of
numbers:

2 6 10 14 3 7 11 0 4 8 12 1 5 9 13 2 6 . . .

GCC/glibc: m :“ 231
´ 1, a :“ 1103515245, c :“ 12345. More advanced

pseudo-random number generators exist, e.g., Mersenne twister.
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Greatest Common Divisor

Lemma 120
Let a, b P N. Then there exists a unique n P N such that

1 n  a and n  b, and
2 for all m P N, if m  a and m  b then m ď n.

Definition 121 (Greatest common divisor, Dt.: größter gemeinsamer Teiler (ggT))
Let a, b P N. The unique number n P N that exists according to Lem. 120 is called
greatest common divisor of a and b, and is denoted by gcdpa, bq.

Conventionally, gcdpa, 0q “ gcdp0, aq :“ a, since 0 is divisible by all integers.

Definition 122 (Relatively prime, Dt.: teilerfremd, relativ prim)
The numbers a, b P N are relatively prime, or coprime, if gcdpa, bq “ 1.

Definition 123 (Pairwise relatively prime)
A set S of natural numbers is called pairwise relatively prime (or pairwise coprime or
mutually coprime) if all pairs of numbers a and b in S, with a ‰ b, are relatively prime.
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Greatest Common Divisor

Lemma 124 (Bézout’s Identity)
Let a, b P N. Then there exist x, y P Z such that gcdpa, bq “ a ¨ x ` b ¨ y. Conversely,
the smallest positive number a ¨ x ` b ¨ y, for all x, y P Z, equals gcdpa, bq.

That is, gcdpa, bq “ min
`

NX ta ¨ x ` b ¨ y : x, y P Zu
˘

.
For a, b, d P Z given, the identity d “ a ¨ x ` b ¨ y over Zˆ Z is called a linear
Diophantine equation in x and y.
Lemma 124 was first stated by Étienne Bézout (1730–1783), and numbers
x, y P Z with gcdpa, bq “ a ¨ x ` b ¨ y are called Bézout numbers.
Note: Bézout numbers are not unique! For instance, gcdp10, 15q “ 5, and
10x ` 15y “ 5 has the solutions x :“ ´1 and y :“ 1, and x :“ 2 and y :“ ´1.

Corollary 125
The numbers a, b P N are relatively prime if and only if the linear Diophantine equation
a ¨ x ` b ¨ y “ 1 has a solution, i.e., if and only if there exist x, y P Z such that
a ¨ x ` b ¨ y “ 1.
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x, y P Z with gcdpa, bq “ a ¨ x ` b ¨ y are called Bézout numbers.
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Euclidean Algorithm for GCD Computation

Theorem 126 (Euclidean Algorithm)
The following algorithm computes gcdpa, bq for a, b P N0 with a ą b.

function gcdpa, bq
precondition: a, b P N0 with a ą b.
postcondition: t “ gcdpa, bq

while b ą 0 do
t Ð b
b Ð a mod b
a Ð t

end while
t Ð a
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Euclidean Algorithm for GCD Computation: Sample Run

function gcdpa, bq
precondition: a, b P N0 with a ą b.
postcondition: t “ gcdpa, bq

while b ą 0 do
t Ð b
b Ð a mod b
a Ð t

end while
t Ð a

We want to compute the gcd of 78 and 99. Hence, b :“ 78 and
a :“ 99 “ 1 ¨ 78` 21.

We get after different passes through the loop:

after 1st pass: t “ 78, b “ 21, a “ 78 “ 3 ¨ 21` 15
after 2nd pass: t “ 21, b “ 15, a “ 21 “ 1 ¨ 15` 6
after 3rd pass: t “ 15, b “ 6, a “ 15 “ 2 ¨ 6` 3
after 4th pass: t “ 6, b “ 3, a “ 6 “ 2 ¨ 3` 0
after 5th pass: t “ 3, b “ 0, a “ 3

Hence, t “ 3 “ gcdp78, 99q.
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UNIVERSITÄT SALZBURG

Euclidean Algorithm for GCD Computation: Sample Run

function gcdpa, bq
precondition: a, b P N0 with a ą b.
postcondition: t “ gcdpa, bq

while b ą 0 do
t Ð b
b Ð a mod b
a Ð t

end while
t Ð a

We want to compute the gcd of 78 and 99. Hence, b :“ 78 and
a :“ 99 “ 1 ¨ 78` 21. We get after different passes through the loop:

after 1st pass: t “ 78, b “ 21, a “ 78 “ 3 ¨ 21` 15

after 2nd pass: t “ 21, b “ 15, a “ 21 “ 1 ¨ 15` 6
after 3rd pass: t “ 15, b “ 6, a “ 15 “ 2 ¨ 6` 3
after 4th pass: t “ 6, b “ 3, a “ 6 “ 2 ¨ 3` 0
after 5th pass: t “ 3, b “ 0, a “ 3

Hence, t “ 3 “ gcdp78, 99q.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 177/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Does pZm,`m, ¨mq Form a Field?

Theorem 127
Let m P N with m ě 2. An element rasm P Zm has a multiplicative inverse if and only if
a is relatively prime to m.

Corollary 128
Let m P N with m ě 2. The ring pZm,`m, ¨mq forms a (finite) field if and only if m is
prime.

If m is not prime then pZm,`m, ¨mq may contain non-trivial zero divisors.

Lemma 129
Let m P N with m ě 2 and rasm P Zm such that m and a are relatively prime. Let
x, y P Z such that a ¨ x `m ¨ y “ 1. Then rasm ¨m rxsm “ r1sm, i.e., rxsm is the
multiplicative inverse element for rasm.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 178/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Euclidean Algorithm Revisited

Recursive formulation of the Euclidean Algorithm.

function gcd recursivepa, bq
precondition: a, b P N with a ą b.

if pa mod bq “ 0 then
return b

else
return gcd recursivepb, a mod bq

end if
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Extended Euclidean Algorithm for GCD Computation

Theorem 130 (Extended Euclidean Algorithm)
The following algorithm computes x, y P Z and d P N such that
gcdpa, bq “ d “ a ¨ x ` b ¨ y for a, b P N0 with a ą b.

function gcd extendedpa, bq
precondition: a, b P N0 with a ą b.
postcondition: pd, x, yq P Nˆ Zˆ Z such that gcdpa, bq “ d “ a ¨ x ` b ¨ y

if pa mod bq “ 0 then
return pb, 0, 1q

else
pd, x, yq Ð gcd extendedpb, a mod bq
return pd, y, x ´ y ¨ pa div bqq

end if
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Extended Euclidean Algorithm for GCD Computation: Sample Run

function gcd extendedpa, bq
postcondition: pd, x, yq P Nˆ Zˆ Z such that gcdpa, bq “ d “ a ¨ x ` b ¨ y

if pa mod bq “ 0 then
return pb, 0, 1q

else
pd, x, yq Ð gcd extendedpb, a mod bq
return pd, y, x ´ y ¨ pa div bqq

end if

We want to compute x, y P Z and d P N such that gcdp99, 78q “ d “ 99x ` 78y.
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Extended Euclidean Algorithm for GCD Computation: Sample Run

function gcd extendedpa, bq
postcondition: pd, x, yq P Nˆ Zˆ Z such that gcdpa, bq “ d “ a ¨ x ` b ¨ y

if pa mod bq “ 0 then
return pb, 0, 1q

else
pd, x, yq Ð gcd extendedpb, a mod bq
return pd, y, x ´ y ¨ pa div bqq

end if

We want to compute x, y P Z and d P N such that gcdp99, 78q “ d “ 99x ` 78y.

a b a div b a mod b d x y
99 78 1 21

Hence, gcdp99, 78q “ ´11 ¨ 99` 14 ¨ 78 “ ´1089` 1092 “ 3.
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We want to compute x, y P Z and d P N such that gcdp99, 78q “ d “ 99x ` 78y.

a b a div b a mod b d x y
99 78 1 21
78 21 3 15

Hence, gcdp99, 78q “ ´11 ¨ 99` 14 ¨ 78 “ ´1089` 1092 “ 3.
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Extended Euclidean Algorithm for GCD Computation: Sample Run

function gcd extendedpa, bq
postcondition: pd, x, yq P Nˆ Zˆ Z such that gcdpa, bq “ d “ a ¨ x ` b ¨ y

if pa mod bq “ 0 then
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end if

We want to compute x, y P Z and d P N such that gcdp99, 78q “ d “ 99x ` 78y.

a b a div b a mod b d x y
99 78 1 21
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Hence, gcdp99, 78q “ ´11 ¨ 99` 14 ¨ 78 “ ´1089` 1092 “ 3.
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Chinese Remainder Theorem

Old Chinese folk tale: A Chinese Emperor used to count his army after a battle by
ordering them to form groups of different sizes:

1 The soldiers should form groups of 3 and report back the number of soldiers
that did not end up in a group consisting of 3 soldiers.

2 Then the soldiers should form groups of 5 and report back the number of
soldiers that did not end up in a group consisting of 5 soldiers.

3 Then the soldiers should form groups of 7 and report back the number of
soldiers that could not join a group consisting of 7 soldiers.

4 Then the soldiers should form groups of 11 and report back the number of
soldiers that did not end up in a group consisting of 11 soldiers.

5 ¨ ¨ ¨

Based on this information he was able to figure out the number n of soldiers in his
army.
Indeed, a mathematical solution was provided by the Chinese mathematician Sun
Tzu sometime in the third to fifth century, and republished by Qin Jiushao in 1247!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 182/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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that did not end up in a group consisting of 3 soldiers.

2 Then the soldiers should form groups of 5 and report back the number of
soldiers that did not end up in a group consisting of 5 soldiers.

3 Then the soldiers should form groups of 7 and report back the number of
soldiers that could not join a group consisting of 7 soldiers.

4 Then the soldiers should form groups of 11 and report back the number of
soldiers that did not end up in a group consisting of 11 soldiers.

5 ¨ ¨ ¨

Based on this information he was able to figure out the number n of soldiers in his
army.
Indeed, a mathematical solution was provided by the Chinese mathematician Sun
Tzu sometime in the third to fifth century, and republished by Qin Jiushao in 1247!
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UNIVERSITÄT SALZBURG

Chinese Remainder Theorem

n mod 3 = 1
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Chinese Remainder Theorem

n mod 3 = 1 n mod 5 = 2
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Chinese Remainder Theorem

n mod 3 = 1 n mod 5 = 2 n mod 7 = 2
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Chinese Remainder Theorem

Theorem 131 (Chinese Remainder Theorem, Dt.: Chinesischer Restsatz)
If, for some k P N, the numbers m1,m2, ¨ ¨ ¨ ,mk P N are pairwise relatively prime, then
the following system of simultaneous congruences has an integer solution b for all
a1, a2, . . . , ak P Z given:

b ”m1 a1
b ”m2 a2

...
b ”mk ak

,

/

/

/

.

/

/

/

-

p˚q

Furthermore, all solutions of p˚q are congruent modulo m :“
śk

i“1 mi . That is, the
solution is unique if constrained to t1, 2, . . . ,mu.
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Constructive Proof of Chinese Remainder Theorem 131

Proof : We show the existence of an integer solution. Consider i P N with 1 ď i ď k.
Since m1,m2, ¨ ¨ ¨ ,mk are pairwise relatively prime, gcdp m

mi
,miq “ 1. Using the

extended Euclidean algorithm (Thm. 130), we can find integers xi and yi such that

xi ¨mi ` yi ¨
m
mi
“ 1. p‹q

Let bi :“ yi ¨
m
mi

. Equation p‹q guarantees that the remainder of bi when divided by mi

is 1. On the other hand, for j ‰ i every mj divides bi evenly. Thus,

bi ”mi 1 and bi ”mj 0 for all j with j ‰ i and 1 ď j ď k.

Since congruences respect multiplication, we get

ai ¨ bi ”mi ai and ai ¨ bi ”mj 0 for all j with j ‰ i and 1 ď j ď k.

Thus, one solution of the simultaneous congruences is given by

b :“
k
ÿ

i“1
ai ¨ bi .
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Helping the Emperor

The Emperor collected the following information:
When the soldiers formed groups of 3, one soldier was left out.
When the soldiers formed groups of 5, two soldiers were left out.
When the soldiers formed groups of 7, again two soldiers were left out.

That is, since a1 “ 1, a2 “ 2, a3 “ 2 and m1 “ 3,m2 “ 5,m3 “ 7 and
m “ 3 ¨ 5 ¨ 7 “ 105:

n ”3 1 n ”5 2 n ”7 2

Hence, we are to find x1, x2, x3, y1, y2, y3 P Z such that

3x1 ` 35y1 “ 1 5x2 ` 21y2 “ 1 7x3 ` 15y3 “ 1.

We have x1 :“ 12, y1 :“ ´1, x2 :“ ´4, y2 :“ 1, x3 :“ ´2, y3 :“ 1 and, thus,

n “ p35 ¨ p´1q ¨ 1` 21 ¨ 1 ¨ 2` 15 ¨ 1 ¨ 2q mod 105 “ 37 mod 105 “ 37.
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UNIVERSITÄT SALZBURG

Helping the Emperor

The Emperor collected the following information:
When the soldiers formed groups of 3, one soldier was left out.
When the soldiers formed groups of 5, two soldiers were left out.
When the soldiers formed groups of 7, again two soldiers were left out.

That is, since a1 “ 1, a2 “ 2, a3 “ 2 and m1 “ 3,m2 “ 5,m3 “ 7 and
m “ 3 ¨ 5 ¨ 7 “ 105:

n ”3 1 n ”5 2 n ”7 2

Hence, we are to find x1, x2, x3, y1, y2, y3 P Z such that

3x1 ` 35y1 “ 1 5x2 ` 21y2 “ 1 7x3 ` 15y3 “ 1.

We have x1 :“ 12, y1 :“ ´1, x2 :“ ´4, y2 :“ 1, x3 :“ ´2, y3 :“ 1 and, thus,

n “ p35 ¨ p´1q ¨ 1` 21 ¨ 1 ¨ 2` 15 ¨ 1 ¨ 2q mod 105 “ 37 mod 105 “ 37.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 186/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Helping the Emperor

The Emperor collected the following information:
When the soldiers formed groups of 3, one soldier was left out.
When the soldiers formed groups of 5, two soldiers were left out.
When the soldiers formed groups of 7, again two soldiers were left out.

That is, since a1 “ 1, a2 “ 2, a3 “ 2 and m1 “ 3,m2 “ 5,m3 “ 7 and
m “ 3 ¨ 5 ¨ 7 “ 105:

n ”3 1 n ”5 2 n ”7 2

Hence, we are to find x1, x2, x3, y1, y2, y3 P Z such that

3x1 ` 35y1 “ 1 5x2 ` 21y2 “ 1 7x3 ` 15y3 “ 1.

We have x1 :“ 12, y1 :“ ´1, x2 :“ ´4, y2 :“ 1, x3 :“ ´2, y3 :“ 1 and, thus,

n “ p35 ¨ p´1q ¨ 1` 21 ¨ 1 ¨ 2` 15 ¨ 1 ¨ 2q mod 105 “ 37 mod 105 “ 37.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 186/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Real-World Application: Secret Sharing

Secret sharing refers to the distribution of information related to a secret (e.g., a
number) among a group of receivers such that the secret can only be
reconstructed if all or, at least, a large percentage of the receivers cooperate.
Ideally, the information received by one individual receiver shall be of no (or very
little) help for the receiver to obtain the secret without the help of the others.

A secret sharing scheme is called a pt, nq threshold scheme, or t-out-of-n
scheme, if at least t of the n receivers have to cooperate. (Of course, t ď n.)
Typically, t is large relative to n but not identical to n.
Several different variants of schemes for secret sharing are used in practice.
At least two published schemes rely on the Chinese Remainder Theorem 131.
We sketch the very basic idea of a scheme based on the Chinese Remainder
Theorem 131. (In our simple scheme we have t :“ n.)
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Real-World Application: Secret Sharing

Suppose that the number 1234 is the secret b to be shared by five receivers.

We choose

m1 :“ 2, m2 :“ 3, m3 :“ 5, m4 :“ 7, m5 :“ 11.

Note that

m :“
5
ź

i“1
mi “ 2 ¨ 3 ¨ 5 ¨ 7 ¨ 11 “ 2310 ą 1234.

Now consider ai :“ 1234 mod mi , for 1 ď i ď 5. This gives us the numbers

a1 “ 0, a2 “ 1, a3 “ 4, a4 “ 2, a5 “ 2.

The numbers mi and ai are passed to the i-th receiver.
Note that each individual receiver has gained little information about the secret b.
Rather, in our simple approach, all five receivers need to cooperate in order to
recover b: They have to solve the following set of five congruences:

b ”2 0 b ”3 1 b ”5 4 b ”7 2 b ”11 2
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Real-World Application: Secret Sharing

The five receivers have to solve the following set of five congruences:

b ”2 0 b ”3 1 b ”5 4 b ”7 2 b ”11 2

Since a1 “ 0, we need to solve only four congruences and get the following four
Diophantine equations.

3x2`770y2 “ 1 5x3`462y3 “ 1 7x4`330y4 “ 1 11x5`210y5 “ 1

Solving these equations yields the following solutions:

x2 :“ 257, y2 :“ ´1 x3 :“ 185, y3 :“ ´2 x4 :“ ´47, y4 :“ 1 x5 :“ ´19, y5 :“ 1

Hence, the secret sought is recovered as

b “ p´1q ¨770 ¨1`p´2q ¨462 ¨4`1 ¨330 ¨2`1 ¨210 ¨2 “ ´3386 ”2310 1234.
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UNIVERSITÄT SALZBURG

Real-World Application: Arithmetic with Large Integers

Standard integer arithmetic cannot handle arbitrarily large integers.

One way to carry out integer arithmetic with large integers is to apply modulo
arithmetic and the Chinese Remainder Theorem 131:

1 Select k modules m1,m2, . . . ,mk P Nzt1u which are relatively prime, for
some k P N.

2 Let m :“ m1 ¨m2 ¨ . . . ¨mk .
3 Represent an integer n ă m by its k remainders n1, n2, . . . , nk upon division

by m1,m2, . . . ,mk .
4 Perform the arithmetic operations of your algorithm on these remainders,

with the calculations involving ni being carried out modulo mi .
5 Recover the actual result by applying the Chinese Remainder Theorem 131.

This approach works as long as all intermediate results are less than m.
Advantages:

One can use (mostly) standard arithmetic to handle integers larger than
those normally handled.
One can run the computations for the different remainders in parallel, thus
speeding up the computation.

Standard choices for the modules are numbers of the form 2i
´ 1:

One can prove gcdp2i
´ 1, 2j

´ 1q “ 2gcdpi,jq
´ 1, which makes it easy to

ensure that the modules are relatively prime.
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Real-World Application: Arithmetic with Large Integers

Suppose that we want to limit our arithmetic operations to numbers less than 12.
We choose the five modules

m1 :“ 2, m2 :“ 3, m3 :“ 5, m4 :“ 7, m5 :“ 11.

and remember that m :“ m1 ¨m2 ¨m3 ¨m4 ¨m5 “ 2310.
Hence, we can deal with numbers less than 2310.

Recall that n :“ 1234 can be represented by the five remainders p0, 1, 4, 2, 2q.
Similarly, 1000 can be represented by the five remainders p0, 1, 0, 6, 10q.
We get

p0, 1, 4, 2, 2q ` p0, 1, 0, 6, 10q “ p0 mod 2, 2 mod 3, 4 mod 5, 8 mod 7, 12 mod 11q
“ p0, 2, 4, 1, 1q.

Thus, b :“ 1234` 1000 is uniquely determined as the solution of the following
set of five congruences:

b ”2 0 b ”3 2 b ”5 4 b ”7 1 b ”11 1
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4 Numbers and Basics of Number Theory
Algebraic Structures
Natural Numbers
Integers
Rational Numbers

Construction of the Rational Numbers
Properties

Real Numbers
More Proof Techniques

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 192/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Rational Numbers: Q

Definition 132 (Rational equivalence)
On Zˆ N we define the binary relation –Q as follows:

pp1, q1q –Q pp2, q2q :ô p1 ¨ q2 “ p2 ¨ q1.

Lemma 133
The relation –Q is an equivalence relation on Zˆ N.

Definition 134 (Rational numbers)
The rational numbers Q are defined as

Q :“ trpp, qqs–Q : p P Z, q P Nu.

The canonical representative of rpp, qqs–Q is denoted by p1

q1 , where
p1 :“ p div gcdp|p|, qq and q1 :“ q div gcdp|p|, qq.
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Rational Numbers: Q

It is easy to define an addition `Q, multiplication ¨Q and order ďQ on Q that turns
pQ,`, ¨q into a totally ordered field. E.g.,

rpp1, q1qs–Q `Q rpp2, q2qs–Q :“ rpp1 ¨ q2 ` p2 ¨ q1, q1 ¨ q2qs–Q

Of course, it is standard to simplify the notation and write
p
q instead of rpp, qqs

–Q
.

But keep in mind that fractions are equivalence classes. Thus,

p1, 3q –Q p3, 9q –Q p3000, 9000q i.e., 1
3 “

3
9 “

3000
9000 .

In the sequel we resort to standard knowledge and deal with rational numbers as
we learned in school. (However, this could be formalized based on Def. 134!)
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Properties: Q Is Not Complete

Theorem 135

The equation x2
“ 2 has no solution over Q.

Proof : Suppose that there exists x P Q such that x2
“ 2. Hence, there exist p P Z and

q P N such that

gcdp|p|, qq “ 1 and 2 “
ˆ

p
q

˙2
“

p2

q2 .

The second equation is equivalent to 2q2
“ p2, implying that p2

”2 0, and, thus, also
p ”2 0. This in turn implies q2

”2 0, and, therefore, also q ”2 0. We have a
contradiction to gcdp|p|, qq “ 1.

Hence,
?

2 R Q.

Lemma 136
There exists a rational number between any two distinct rational numbers.
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UNIVERSITÄT SALZBURG

Properties: Q Is Not Complete

Theorem 135

The equation x2
“ 2 has no solution over Q.

Proof : Suppose that there exists x P Q such that x2
“ 2. Hence, there exist p P Z and

q P N such that

gcdp|p|, qq “ 1 and 2 “
ˆ

p
q

˙2
“

p2

q2 .

The second equation is equivalent to 2q2
“ p2, implying that p2

”2 0, and, thus, also
p ”2 0. This in turn implies q2

”2 0, and, therefore, also q ”2 0. We have a
contradiction to gcdp|p|, qq “ 1.

Hence,
?

2 R Q.

Lemma 136
There exists a rational number between any two distinct rational numbers.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 195/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Properties: Q Is Countably Infinite

Theorem 137
Q is a countably infinite set.

Proof by Cantor : Construct a bijection between N and Zˆ N (as a “superset” of Q) .

This gives the sequence 1, 2, 1
2 ,

1
3 ,

2
2 , 3, . . ..

Now start with zero and include every
number’s negative number, thus obtaining a systematic enumeration of Zˆ N:

0 1 ´ 1 2 ´ 2 1
2 ´ 1

2
1
3 ´ 1

3
2
2 ´ 2

2 3 ´ 3 . . .

Numbering this sequence yields a bijection from N onto ZˆN, and Cor. 87 implies the
claim.
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UNIVERSITÄT SALZBURG

Properties: Q Is Countably Infinite

Theorem 137
Q is a countably infinite set.

Proof by Cantor : Construct a bijection between N and Zˆ N (as a “superset” of Q) .
1 2 3 4 · · ·
1
2

2
2

3
2

4
2 · · ·

1
3

2
3

3
3

4
3

· · ·1
4

2
4

3
4

4
4

· · ·

...
...

...
... . . .

This gives the sequence 1, 2, 1
2 ,

1
3 ,

2
2 , 3, . . ..

Now start with zero and include every
number’s negative number, thus obtaining a systematic enumeration of Zˆ N:

0 1 ´ 1 2 ´ 2 1
2 ´ 1

2
1
3 ´ 1

3
2
2 ´ 2

2 3 ´ 3 . . .

Numbering this sequence yields a bijection from N onto ZˆN, and Cor. 87 implies the
claim.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 196/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Properties: Q Is Countably Infinite

Theorem 137
Q is a countably infinite set.

Proof by Cantor : Construct a bijection between N and Zˆ N (as a “superset” of Q) .
1 2 3 4 · · ·
1
2

2
2

3
2

4
2 · · ·

1
3

2
3

3
3

4
3

· · ·1
4

2
4

3
4

4
4

· · ·

...
...

...
... . . .

This gives the sequence 1, 2, 1
2 ,

1
3 ,

2
2 , 3, . . ..

Now start with zero and include every
number’s negative number, thus obtaining a systematic enumeration of Zˆ N:

0 1 ´ 1 2 ´ 2 1
2 ´ 1

2
1
3 ´ 1

3
2
2 ´ 2

2 3 ´ 3 . . .

Numbering this sequence yields a bijection from N onto ZˆN, and Cor. 87 implies the
claim.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 196/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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4 Numbers and Basics of Number Theory
Algebraic Structures
Natural Numbers
Integers
Rational Numbers
Real Numbers

Decimal Notation
Properties and Cardinality

More Proof Techniques
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Real Numbers: R

Intuitively, the reals comprise both rational and irrational numbers like
?

2 or π.
A formal introduction of the reals, R, based on Q — e.g., based on Dedekind cuts
or based on equivalence classes of Cauchy sequences — is beyond the scope of
this lecture.

Convenient notations for intervals of real numbers:
@a, b P R ra, bs :“ tx P R : a ď x ď bu;
@a, b P R sa, br :“ tx P R : a ă x ă bu;
@a, b P R ra, br :“ tx P R : a ď x ă bu;
@a, b P R sa, bs :“ tx P R : a ă x ď bu.
Note: Some authors prefer to denote the open interval sa, br by pa, bq.
Floor and ceiling function (Dt.: Ab- und Aufrundungsfunktion): For x P R,

txu :“ maxtk P Z : k ď xu,

rxs :“ mintk P Z : k ě xu.

Gauß introduced the square-bracket notation rxs (“Gaussklammer”) in 1808. The
names “floor” and “ceiling” and the corresponding notations were introduced by
Iverson in 1962 in his book on APL.
We have rxs “ txu for all x P R.
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Decimal Notation

Definition 138 (Decimal representation, Dt.: Dezimalzahl)

A real number x P R`

0 is in decimal representation (or a decimal number) if it is
represented as a sum of (negative) powers of ten:

x “ x0 `

8
ÿ

i“1

xi

10i , with an integer part x0 P N0 and with 0 ď xi ď 9 for all i P N.

The decimal representation is finite if, for some n0 P N0, we have xi “ 0 for all i ě n0.

It is straightforward to extend Def. 138 to negative reals.
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Decimal Notation

Definition 139 (Recurring decimal, Dt.: periodische Dezimalzahl)
A decimal representation of a real number is a recurring decimal (or repeating
decimal) if it becomes periodic at some point: a finite subsequence of the digits after
the decimal separator is repeated indefinitely.

Recurring decimals, e.g.,

1
3 “ 0.333 ¨ ¨ ¨

or
1
7 “ 0.142857142857142857 ¨ ¨ ¨

are written as 0.3 or 0. 93, and 0.142857. (The horizontal line is known as
vinculum.)

Note: The decimal representation is not unique: we have 1.0 “ 0. 99 “ 0.9999 . . .,
where the ellipsis “. . .” represents an infinite sequence of the digit 9.
In fact, every non-zero, finitely represented decimal number has an alternate
representation with trailing 9s, such as 123.4567 as 123.4566 99.
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Decimal Notation: Is It a Rational Number?

Lemma 140
A real number has a finite or recurring decimal representation if and only if it is a
rational number.

We proceed as follows to convert 0.4321 to a rational number.
Let x :“ 0.0021. Then 100x “ 0.21. This gives

99x “ 100x ´ x “ 0.21´ 0.0021 “ 0.21 “ 21
100 .

We get

x “ 21
99 ¨ 100 “

21
9900 “

7
3300 .

Hence,

0.4321 “ 0.43` x “ 43
100 `

7
3300 “

1426
3300 “

713
1650 .

Definition 141 (Irrational)
A number x P RzQ is called irrational.
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UNIVERSITÄT SALZBURG

Decimal Notation: Is It a Rational Number?

Lemma 140
A real number has a finite or recurring decimal representation if and only if it is a
rational number.

We proceed as follows to convert 0.4321 to a rational number.
Let x :“ 0.0021. Then 100x “ 0.21. This gives

99x “ 100x ´ x “ 0.21´ 0.0021 “ 0.21 “ 21
100 .

We get

x “ 21
99 ¨ 100 “

21
9900 “

7
3300 .

Hence,

0.4321 “ 0.43` x “ 43
100 `

7
3300 “

1426
3300 “

713
1650 .

Definition 141 (Irrational)
A number x P RzQ is called irrational.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 201/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Decimal Notation

Definition 142 (Decimal separator)
The decimal separator is a symbol which is used to mark the boundary between the
integer part and the fractional part of a number in decimal representation.

Warning
A least two symbols are in wide-spread use for the decimal separator!

Most of Europe, most of South America and French Canada use the comma,
while the UK, USA, Australia, English Canada and several Asian countries use a
dot (“period”, “full stop”). The dot also prevails in English-language publications.
Dots or commas are frequently used to group three digits into groups within the
integer part. However, this practice is discouraged by ISO!
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UNIVERSITÄT SALZBURG

Decimal Notation

Definition 142 (Decimal separator)
The decimal separator is a symbol which is used to mark the boundary between the
integer part and the fractional part of a number in decimal representation.

Warning
A least two symbols are in wide-spread use for the decimal separator!

Most of Europe, most of South America and French Canada use the comma,
while the UK, USA, Australia, English Canada and several Asian countries use a
dot (“period”, “full stop”). The dot also prevails in English-language publications.
Dots or commas are frequently used to group three digits into groups within the
integer part. However, this practice is discouraged by ISO!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 202/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Well-Ordering the Reals

By definition, pN,ďq is well-ordered. And we have already hinted at
well-orderings for Z and Q.

Question: Can the reals be well-ordered?
Answer: We don’t know it for sure!
It has been proved that it is impossible to write down an explicit well-ordering for
the reals.

Well-Order “Theorem”
Every set can be well-ordered.

In 1883, Georg Cantor stated that the Well-Order Theorem is a ”fundamental law
of thought”. This statement started a mathematical flame war!
In any case, this “theorem” can only be taken as an axiom, since it has been
proved that it does not follow from any of the other commonly accepted axioms of
set theory.
In first-order logic, the Well-Order Theorem is equivalent to the Axiom of Choice
(Dt.: Auswahlaxiom) and to Zorn’s Lemma, in the sense that either one of them
together with the Zermelo-Fraenkel Axioms allows to deduce the other ones.
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The Reals are Not Countable

Theorem 143
The real numbers are uncountable, i.e., there exists no bijection from N onto R.

Proof by Cantor (1891) : Suppose to the contrary that there exists a bijection
a : NÑ R. We show that we can construct a number r which is not in the list
a1, a2, a3, . . .: For k P N let dk be the k-th digit after the decimal separator in ak if ak
has at least k digits after the decimal separator, and dk :“ 0 otherwise.

a1 = —.d1 – – – – . . .
a2 = —.– d2 – – – . . .
a3 = —.– – d3 – – . . .

...

If dk “ 1 then rk :“ 2 else rk :“ 1. Now regard rk as the k-th digit of a number r P R:
we have r “ 0.r1r2r3r4 . . .. Since at least the k-th digit of r differs from the k-th digit of
ak , we conclude that r ‰ an for all n P N.

Hence, |N| ă |R|.
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Q Is Dense in R

Theorem 144
For every x P R, every arbitrarily small neighborhood of x contains a rational number.

Sketch of proof : Let x P R and ε P R` be arbitrary but fixed. W.l.o.g, 0 ă x ă 1. Let
k P N such that 10´k

ă ε.

We define the rational number p{q as follows:

p :“
Y

x ¨ 10k
]

q :“ 10k

This gives
ˇ

ˇ

ˇ

ˇ

x ´ p
q

ˇ

ˇ

ˇ

ˇ

ď
1

10k ă ε.

E.g., π « 3.1415 “ 31 415
10 000 with |π ´ 31 415

10 000 | ď
1

10 000 .
Thus, we can approximate a real number by a rational number p{q.
If the denominator q is a power of 10 then we can guarantee the error to be at
most 1{q. Otherwise, if we allow an arbitrary integer q as denominator, we can
guarantee the error to be at most 1{q2.
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More on Cardinalities

Theorem 145
No (non-empty) set A has the same cardinality as its power set PpAq.

This implies that |N| ă |PpNq| ă |PpPpNqq| ă . . .

The cardinality of N is denoted by ℵ0.

Theorem 146
|R| “ |PpNq| “ 2ℵ0 ą ℵ0 “ |N| “ |Z| “ |Q|.

Continuum hypothesis: There is no set with cardinality strictly between that of the
integers and the reals.
The continuum hypothesis started out as a conjecture, until it was shown to be
consistent with the usual axioms of the reals (by Gödel in 1940), and independent
of those axioms (by Cohen in 1963).
Under this hypothesis, the cardinality of R equals ℵ1, and we have 2ℵ0 “ ℵ1.
Furthermore, |PpRq| “: ℵ2, etc.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 206/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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4 Numbers and Basics of Number Theory
Algebraic Structures
Natural Numbers
Integers
Rational Numbers
Real Numbers
More Proof Techniques

Pigeonhole Principle
Well-founded Induction
Structural Induction
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The Pigeonhole Principle

In 1834, Johann Dirichlet noted that if there are five objects in four drawers then
there is a drawer with two or more objects.
Pigeonhole Principle: If n letters are posted to m pigeonholes, then

at least one pigeonhole receives more than one letter if n ą m.
at least one pigeonhole remains empty if n ă m.
each pigeonhole might receive exactly one letter if n “ m.

Theorem 147 (Pigeonhole Principle, Dt.: Schubfachschluss)
Consider two finite sets A and B. If A has more elements then B then every mapping
from A to B will cause at least one element of B to be the target of two or more
elements of A.
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The Pigeonhole Principle: Sample Application

Lemma 148
Consider a rectangular grid of points which consists of four rows and 100 columns.

Each point is colored with a color which is picked randomly among red, green and
blue.

Prove that there always exist four points of the same color that form the corners
of a rectangle (with sides parallel to the grid), no matter how the coloring is done.

Proof : A column pattern is the top-to-bottom sequence of colors assigned to the four
points of a column of the grid.

There are exactly 34
“ 81 different column patterns.

Since there are more than 81 columns, we are guaranteed to have at least two
columns with the same column pattern.

Consider two such columns.

Since there are
four rows but only three colors, we conclude that two of the rows have the same color,
thus giving us the four corners of the rectangle sought.

Note: Just 19 columns suffice to guarantee the existance of such a rectangle.
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Real-World Application: Chessboard Tilings Revisited

Question: Can our modified chessboard be covered completely by 31 domino
blocks of arbitrary color combinations?

?
?

?

?

?

We observe that every permissible domino placement covers exactly one black
square and one white square of the chessboard.
Thus, all domino placements would establish a one-to-one mapping between
black and white squares.

However, there are 32 black squares and only 30 white
squares! We conclude that our chessboard cannot be covered completely by
domino blocks.
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Real-World Application: Analysis of Lossless Data Compression

Could one design an algorithm for lossless data compression that is guaranteed
not to increase the file size of some input file while achieving a genuine
compression for at least one other file?

No!
Assume that every file is represented as a string of bits of some arbitrary length.
Suppose further that there exists a compression algorithm that transforms every
file into a distinct file which is no longer than the original file, and that at least one
file will be compressed into something that is shorter than itself.
Let m be the least number such that there is a file f with length m bits that gets
compressed to something shorter. Let n be the number of bits of the compressed
version of f . Hence, n ă m.
Since n ă m, every file of length n keeps its size during compression. There are
2n many such files. Together with f we would have 2n

` 1 files which all compress
into one of the 2n files of length n.
By the pigeonhole principle there must exist some file f 1 of length n which is the
output of the compression algorithm for two different inputs. That file f 1 cannot be
decompressed reliably, which contradicts the assumption that the algorithm is
lossless.
Hence, every compression algorithm will increase the size of at least some file, or
keep the sizes of all files unchanged.
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UNIVERSITÄT SALZBURG

Real-World Application: Analysis of Lossless Data Compression

Could one design an algorithm for lossless data compression that is guaranteed
not to increase the file size of some input file while achieving a genuine
compression for at least one other file? No!
Assume that every file is represented as a string of bits of some arbitrary length.
Suppose further that there exists a compression algorithm that transforms every
file into a distinct file which is no longer than the original file, and that at least one
file will be compressed into something that is shorter than itself.
Let m be the least number such that there is a file f with length m bits that gets
compressed to something shorter. Let n be the number of bits of the compressed
version of f . Hence, n ă m.
Since n ă m, every file of length n keeps its size during compression. There are
2n many such files. Together with f we would have 2n

` 1 files which all compress
into one of the 2n files of length n.

By the pigeonhole principle there must exist some file f 1 of length n which is the
output of the compression algorithm for two different inputs. That file f 1 cannot be
decompressed reliably, which contradicts the assumption that the algorithm is
lossless.
Hence, every compression algorithm will increase the size of at least some file, or
keep the sizes of all files unchanged.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 211/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Well-founded Order

Definition 149 (Well-founded order, Dt.: wohlfundierte Ordnung)

A strict partial order ă on M is called well-founded if every X Ď M, with X ‰ {0, has at
least one minimal element relative to ă. A poset pM,ăq is called a well-founded poset
if ă is well-founded.

Of course, pN,ăq is well-founded.
Some authors call a well-founded order also a Noetherian order, named after
Emmy Noether (1882-1935).
Not to be confused with a well-order (Dt.: Wohlordnung).

Lemma 150
The poset pM,ăq is well-founded if and only if no infinite strictly decreasing sequence
in M exists, i.e., if an a : NÑ M with ai`1 ă ai for all i P N does not exist.
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Lexicographical Order

Definition 151
Let pM1,ă1q and pM2,ă2q be two posets. The lexicographical ordering pă1,ă2qlex on
M1 ˆM2 is defined as

pa1, b1q pă1,ă2qlex pa2, b2q :ô
`

pa1 ă1 a2q _ ppa1 “ a2q ^ pb1 ă2 b2qq
˘

,

where pa1, b1q, pa2, b2q P M1 ˆM2.

Lemma 152
Let pM1,ă1q and pM2,ă2q be two posets. Then M1 ˆM2 together with the
lexicographical order pă1,ă2qlex is a poset.

Similarly for a non-strict partial order ĺ.

Lemma 153
The posets pM1,ă1q and pM2,ă2q are well-founded if and only if pM1 ˆM2, pă1,ă2qlexq

is well-founded.
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Induction Revisited

Consider a predicate P over N and recall the Strong Induction Principle (Thm 79):
If Pp1q and if

@k P N
“`

@pm P N,m ď kq Ppmq
˘

ñ Ppk ` 1q
‰

then

@n P N Ppnq.
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Induction Revisited

And yet another version with “implicit” base:
If

@k P N
“`

@pm P N,m ă kq Ppmq
˘

ñ Ppkq
‰

then

@n P N Ppnq.

Note: The base case was not lost! Rather, it is included since we have to prove
Pp1q using the “helpful knowledge” that Ppmq holds for all m P N with m ă 1.
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Well-founded Induction

Theorem 154 (Principle of Well-founded Induction, Dt.: wohlfundierte Induktion)
Let pM,ăq be well-founded and P be a predicate on M.
If

@k P M
“`

@pm P M,m ă kq Ppmq
˘

ñ Ppkq
‰

then

@m P M Ppmq.

That is, as inductive step we have to prove that the predicate holds for k if it holds
for all predecessors m of k relative to ă.

Proof : Let X :“ tm P M : Ppmq is falseu, and suppose X ‰ {0. Since pM,ăq is
well-founded, X has a minimal element n. Thus, @m P M with m ă n the predicate
Ppmq holds. The inductive step

`

@pm P M,m ă nq Ppmq
˘

ñ Ppnq

yields that Ppnq holds, in contradiction to n P X .

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 216/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Sample Well-founded Induction

We give a proof of the existance claim made by the Fundamental Theorem of
Arithmetic (Thm. 102): Every natural number n ą 1 is either a prime number or
has a prime factorization.

Proof : We begin with observing that the relation “is genuine divisor of” (Def. 93) over
Nzt1u is well-founded. The minimal elements relative to this relation are the primes.

We consider an arbitrary but fixed k P Nzt1u and assume as inductive hypothesis that
the claim holds for all m P Nzt1u that are smaller than k relative to this order.

Of course, if k is prime then the claim given by the theorem holds.
So suppose that k is not prime. By definition of primality, this means that there exist
m1,m2 P Nzt1u such that k “ m1 ¨m2.

Now we have

m1 is genuine divisor of k and m2 is genuine divisor of k.

Hence, both m1 and m2 are predecessors of k. By the inductive hypothesis, we know
that m1 is either prime or has a prime factorization; same for m2. Thus, also k has a
prime factorization, which establishes the inductive step.
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UNIVERSITÄT SALZBURG

Sample Well-founded Induction

We give a proof of the existance claim made by the Fundamental Theorem of
Arithmetic (Thm. 102): Every natural number n ą 1 is either a prime number or
has a prime factorization.

Proof : We begin with observing that the relation “is genuine divisor of” (Def. 93) over
Nzt1u is well-founded. The minimal elements relative to this relation are the primes.

We consider an arbitrary but fixed k P Nzt1u and assume as inductive hypothesis that
the claim holds for all m P Nzt1u that are smaller than k relative to this order.

Of course, if k is prime then the claim given by the theorem holds.
So suppose that k is not prime. By definition of primality, this means that there exist
m1,m2 P Nzt1u such that k “ m1 ¨m2.

Now we have

m1 is genuine divisor of k and m2 is genuine divisor of k.

Hence, both m1 and m2 are predecessors of k. By the inductive hypothesis, we know
that m1 is either prime or has a prime factorization; same for m2. Thus, also k has a
prime factorization, which establishes the inductive step.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 217/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Sample Well-founded Induction

We give a proof of the existance claim made by the Fundamental Theorem of
Arithmetic (Thm. 102): Every natural number n ą 1 is either a prime number or
has a prime factorization.

Proof : We begin with observing that the relation “is genuine divisor of” (Def. 93) over
Nzt1u is well-founded. The minimal elements relative to this relation are the primes.

We consider an arbitrary but fixed k P Nzt1u and assume as inductive hypothesis that
the claim holds for all m P Nzt1u that are smaller than k relative to this order.

Of course, if k is prime then the claim given by the theorem holds.
So suppose that k is not prime. By definition of primality, this means that there exist
m1,m2 P Nzt1u such that k “ m1 ¨m2.

Now we have

m1 is genuine divisor of k and m2 is genuine divisor of k.

Hence, both m1 and m2 are predecessors of k. By the inductive hypothesis, we know
that m1 is either prime or has a prime factorization; same for m2. Thus, also k has a
prime factorization, which establishes the inductive step.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 217/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Partial Order on Recursive Structures

Many structures in computer science are defined recursively:
1 There are one or more base cases that allow to create an instance of that

structure from scratch.

2 There are recursive rules (“constructors”) that take multiple instances of that
structure and combine them to form a new instance of that structure.

E.g., recall the definition of words (Def. 35).
A key aspect is that every instance of the structure is obtained by applying a finite
number of constructors.
The fact that “complex” instances of such a structure are obtained from “simpler”
instances by means of constructors suggests that one can define a comparison
among them.
E.g., for a P Σ and σ, σ1

P Σ˚, if σ “ aσ1 then we could regard σ1 to be “smaller”
than σ.
More generally, σ1

ăΣ σ if and only if σ can be obtained from σ1 and other words
over Σ by applying constructors finitely often. (Hence, in this case σ1 is a
sub-string of σ.)
Easy to prove: ăΣ is a well-founded partial order on Σ˚.
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UNIVERSITÄT SALZBURG

Partial Order on Recursive Structures

Many structures in computer science are defined recursively:
1 There are one or more base cases that allow to create an instance of that

structure from scratch.
2 There are recursive rules (“constructors”) that take multiple instances of that

structure and combine them to form a new instance of that structure.
E.g., recall the definition of words (Def. 35).
A key aspect is that every instance of the structure is obtained by applying a finite
number of constructors.

The fact that “complex” instances of such a structure are obtained from “simpler”
instances by means of constructors suggests that one can define a comparison
among them.
E.g., for a P Σ and σ, σ1

P Σ˚, if σ “ aσ1 then we could regard σ1 to be “smaller”
than σ.
More generally, σ1

ăΣ σ if and only if σ can be obtained from σ1 and other words
over Σ by applying constructors finitely often. (Hence, in this case σ1 is a
sub-string of σ.)
Easy to prove: ăΣ is a well-founded partial order on Σ˚.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 218/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Structural Induction

Theorem 155 (Structural induction)
Let S be a recursively defined structure, and P be a predicate on S.

If
Ppsq for every instance s P S specified in the base case(s),

and if
Ppsq for every instance s P S under the assumption Pps1q,Pps2q, . . . ,Ppskq,
for some suitable k P N, if s can be obtained in one recursive construction
step from s1, s2, . . . , sk P S,

then
@s P S Ppsq.

Structural induction can be seen as a special case of a well-founded induction.
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UNIVERSITÄT SALZBURG

Structural Induction

Theorem 155 (Structural induction)
Let S be a recursively defined structure, and P be a predicate on S.
If

Ppsq for every instance s P S specified in the base case(s),

and if
Ppsq for every instance s P S under the assumption Pps1q,Pps2q, . . . ,Ppskq,
for some suitable k P N, if s can be obtained in one recursive construction
step from s1, s2, . . . , sk P S,

then
@s P S Ppsq.

Structural induction can be seen as a special case of a well-founded induction.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 219/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Structural Induction

Lemma 156
Let Σ be a finite set. For every σ P Σ˚ we have σ ‚ ϵ “ ϵ ‚ σ “ σ.

Proof : Def. 37 immediately gives ϵ ‚ σ “ σ for all σ P Σ˚.

We prove σ ‚ ϵ “ σ by
means of structural induction.
The empty word ϵ is the only minimal element stated in the base case of the definition
of Σ˚, and we have

ϵ ‚ ϵ
Def. 37
“ ϵ.

Now consider an arbitrary but fixed word σ P Σ˚ with σ ‰ ϵ. Then there exist a P Σ
and σ1

P Σ˚ such that σ “ aσ1
“ pa, σ1

q. Suppose as I.H. that σ1
‚ ϵ “ σ1. We get

σ ‚ ϵ “ pa, σ1
q ‚ ϵ

Def. 37
“ pa, σ1

‚ ϵq
I.H.
“ pa, σ1

q “ σ.
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Real-World Application: Functional Completeness of NAND

Theorem 157 (Functional completeness of Nand)
The Nand junctor, Ò, is (truth-functionally) complete.

Thus, every formula of propositional logic has a logically equivalent formula that
uses only Nand junctors.
Hence, any digital circuit can be realized by using only one type of gate: Nand
gates. (This is also true for the Nor inverter.)

Lemma 158
Let p, q denote two Boolean variables. The following logical equivalences hold:

␣p ” pp Ò pq pp^ qq ” ppp Ò qq Ò pp Ò qqq pp_ qq ” ppp Ò pq Ò pq Ò qqq

pp ñ qq ” p␣p_ qq pp ô qq ” ppp ñ qq ^ pq ñ pqq

J ” pp Ò pp Ò pqq K ” pJ Ò Jq
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Real-World Application: Functional Completeness of Nand

Proof of Thm. 157 : Recall Def. 2: Propositional formulas (over some fixed set of n
propositional variables p1, p2, . . . , pn) follow a rigid recursive construction scheme.

Hence, we may use structural induction:
1 The minimal elements of the base case are given by the variables p1, p2, . . . , pn

and the constants K and J. Lem. 158 tells us that K and J can be expressed
using Nand junctors.

2 Consider an arbitrary but fixed propositional formula ϕ0 that contains at least one
junctor. By the construction scheme of propositional formulas, the formula ϕ0 is of
the form p␣ϕ1q or pϕ1 #ϕ2q, for suitable propositional formulas ϕ1, ϕ2 and where
# is one of the junctors ^,_,ô,ñ.

Assume as inductive hypothesis that ϕ1, ϕ2 can be expressed using only Nand
junctors (or are simply variables).

By using the scheme outlined in Lem. 158, also ϕ0 can be expressed using only
Nand junctors.
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5 Principles of Elementary Counting and Combinatorics
Sum and Product Rule
Inclusion-Exclusion Principle
Binomial Coefficient
Permutations
Ordered Selection (Variation)
Unordered Selection (Combination)
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UNIVERSITÄT SALZBURG

5 Principles of Elementary Counting and Combinatorics
Sum and Product Rule
Inclusion-Exclusion Principle
Binomial Coefficient
Permutations
Ordered Selection (Variation)
Unordered Selection (Combination)

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 224/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sum and Product Rule

Theorem 159 (Sum rule, Dt.: Additionsprinzip)

Let A,B be two finite sets with AX B “ {0. Then

|AY B| “ |A| ` |B|.

Corollary 160
For n P N, let A1,A2, . . . ,An be n finite sets that are pairwise disjoint. Then

|A1 Y A2 Y . . .Y An| “

n
ÿ

i“1
|Ai |.

Theorem 161 (Product rule, Dt.: Multiplikationsprinzip)
Let A,B be two finite sets. Then

|Aˆ B| “ |A| ¨ |B|.
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Sum and Product Rule

Proof of Theorem 161 :
We observe that

Aˆ B “
ď

bPB
pAˆ tbuq, with pAˆ tb1uq X pAˆ tb2uq “ {0 if b1 ‰ b2.

There exists a bijective mapping between A and Aˆ tbu for every b P B. Thus,
|A| “ |Aˆ tbu|, and the theorem is a consequence of Corollary 160.

Corollary 162
For n P N, let A1,A2, . . . ,An be n finite sets. Then

|A1 ˆ A2 ˆ . . .ˆ An| “

n
ź

i“1
|Ai |.

Corollary 163
For a propositional formula that contains n variables, 2n evaluations are necessary in
order to test all possible combinations of truth assignments to its variables.
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Characteristic Function and Cardinality of Power Set

Definition 164 (Characteristic function, Dt.: Indikatorfunktion)
Let A be a finite set, and B Ď A. The characteristic function 1B : A Ñ t0, 1u indicates
membership of an element of A in B:

1Bpaq :“
"

1 if a P B,
0 if a R B.

Lemma 165

A finite set A has 2|A| many different subsets. That is, |PpAq| “ 2|A|.

Proof : We observe that every subset of A, including {0 and A itself, has a one-to-one
correspondance to a characteristic function. Thus, every subset of A corresponds to a
sequence of n 0’s and 1’s, where n :“ |A|. We conclude that the power set PpAq has
2n members.

Lemma 166
Let A be a finite set, and B Ď A. Then |B| “

ř

aPA 1Bpaq.
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Real-World Application: Counting Strings

How many 3-element strings s can be formed over the standard Latin alphabet —
26 lower-case letters — such that every string contains at least one x?

Obviously such a 3-element string s is in exactly one of the following sets:

A1 :“ ts : first x in first place of su,
A2 :“ ts : first x in second place of su,
A3 :“ ts : first x in third place of su.

Applying the Product Rule 161 yields

|A1| “ |txu ˆ ta, b, . . . , zu ˆ ta, b, . . . , zu| “ 1 ¨ 26 ¨ 26,
|A2| “ |pta, b, . . . , zuztxuq ˆ txu ˆ ta, b, . . . , zu| “ 25 ¨ 1 ¨ 26,
|A3| “ |pta, b, . . . , zuztxuq ˆ pta, b, . . . , zuztxuq ˆ txu| “ 25 ¨ 25 ¨ 1.

Since A1,A2,A3 are pairwise disjoint, the Sum Rule 159 implies

|A1 Y A2 Y A3| “ |A1| ` |A2| ` |A3| “ 26 ¨ 26` 25 ¨ 26` 25 ¨ 25 “ 1951.
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Real-World Application: Counting Passwords

Suppose that passwords are limited to strings of six to eight characters, where
each character is one of the 26 uppercase letters or a digit. Every password has
to contain at least one digit.
How many different passwords do exist under these restrictions?

Let N be the total number of passwords, and let N6,N7,N8 denote the number of
passwords with six (seven, eight, resp.) characters.
By the Product Rule 161, the total number of six-character strings (over the 26
letters and the 10 digits) is 366, with 266 of them containing no digit at all. Hence,

N6 “ 366
´ 266

“ 1 867 866 560.

Similarly,

N7 “ 367
´ 267

“ 70 332 353 920

and

N8 “ 368
´ 268

“ 2 612 282 842 880.

Hence, by the Sum Rule 159,

N “ N6 ` N7 ` N8 “ 2 684 483 063 360.
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UNIVERSITÄT SALZBURG

Real-World Application: Counting Passwords

Suppose that passwords are limited to strings of six to eight characters, where
each character is one of the 26 uppercase letters or a digit. Every password has
to contain at least one digit.
How many different passwords do exist under these restrictions?
Let N be the total number of passwords, and let N6,N7,N8 denote the number of
passwords with six (seven, eight, resp.) characters.

By the Product Rule 161, the total number of six-character strings (over the 26
letters and the 10 digits) is 366, with 266 of them containing no digit at all. Hence,

N6 “ 366
´ 266

“ 1 867 866 560.

Similarly,

N7 “ 367
´ 267

“ 70 332 353 920

and

N8 “ 368
´ 268

“ 2 612 282 842 880.

Hence, by the Sum Rule 159,

N “ N6 ` N7 ` N8 “ 2 684 483 063 360.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 229/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Inclusion-Exclusion Principle

Theorem 167 (Inclusion-exclusion principle, Dt.: Siebprinzip, Poincaré-Formel)
Let A1,A2, . . . ,An be finite sets. Then

|

n
ď

i“1
Ai | “

ÿ

I‰{0
IĎt1,...,nu

p´1q|I|`1
|
č

iPI
Ai |.

For |I| “ 1:

ÿ

1ďiďn
p´1q1`1

|Ai | “

n
ÿ

i“1
|Ai |.

For |I| “ 2:
ÿ

1ďiăjďn
p´1q2`1

|AiXAj | “ ´
ÿ

1ďiăjďn
|AiXAj |.

In particular:

|A1 Y A2| “ |A1| ` |A2| ´ |A1 X A2|

|A1YA2YA3| “ |A1|`|A2|`|A3|´|A1XA2|´|A1XA3|´|A2XA3|`|A1XA2XA3|
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Real-World Application: Counting Bit Strings

How many bit strings of length eight either start with 1 as first bit or end in 00 as
the two last bits? (This is a non-exclusive or!)

Let A1 be the set of 8-bit strings that start with 1. Similarly, let A2 be the set of
8-bit strings that end in 00.
Then the number sought equals |A1 Y A2|.
By the Product Rule 161,

|A1| “ 27
“ 128 and |A2| “ 26

“ 64 and |A1XA2| “ 25
“ 32.

Hence, by the Inclusion-Exclusion Principle (Thm. 167),

|A1 Y A2| “ |A1| ` |A2| ´ |A1 X A2| “ 128` 64´ 32 “ 160.
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UNIVERSITÄT SALZBURG

5 Principles of Elementary Counting and Combinatorics
Sum and Product Rule
Inclusion-Exclusion Principle
Binomial Coefficient
Permutations
Ordered Selection (Variation)
Unordered Selection (Combination)

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 233/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Binomial Coefficients

Definition 168 (Binomial coefficient, Dt.: Binomialkoeffizient)
Let n P N0 and k P Z. The binomial coefficient

`n
k
˘

of n and k is defined as follows:

˜

n
k

¸

:“

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if k ă 0,

n!
k! ¨ pn´ kq! if 0 ď k ď n,

0 if k ą n.

Recall k! :“ 1 for k :“ 0.
The binomial coefficient

`n
k
˘

is pronounced as “n choose k”; Dt.: “n über k”.
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Lemma 169
Let n P N0 and k P Z.

˜

n
0

¸

“

˜

n
n

¸

“ 1
˜

n
1

¸

“

˜

n
n´ 1

¸

“ n
˜

n
k

¸

“

˜

n
n´ k

¸
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Binomial Coefficients

The following table contains the non-zero values of
`n

k
˘

for 0 ď n, k ď 6.
k

n 0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Trivial to observe:
Each row begins and ends with 1.
Initially each row contains increasing numbers till its middle but then the
numbers start to decrease.
Each row’s first half is exactly the mirror image of its second half.
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Binomial Coefficients: Pascal’s Triangle

A simple rearrangement of the previous table yields what is known as Pascal’s
Triangle in the Western world (Blaise Pascal, 1623–1662). But it was already
studied in India in the 10th century, and discussed by Omar Khayyam
(1048–1131)!

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

All entries in this triangle, except for the left-most and right-most entries per row,
are the sum of the two entries above them in the previous row.

Theorem 170 (Khayyam, Yang Hui, Tartaglia, Pascal)
For n P N and k P Z,

˜

n
k

¸

“

˜

n´ 1
k ´ 1

¸

`

˜

n´ 1
k

¸

.
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Binomial Theorem

We know: pa` bq2 “ a2
` 2ab` b2 and pa` bq3 “ a3

` 3a2b` 3ab2
` b3.

Theorem 171 (Binomial Theorem, Dt.: Binomischer Lehrsatz)
For all n P N0 and a, b P R,

pa` bqn “
˜

n
0

¸

an
`

˜

n
1

¸

an´1b` ¨ ¨ ¨ `
˜

n
n

¸

bn

or, equivalently,

pa` bqn “
n
ÿ

i“0

˜

n
i

¸

an´ibi .

Corollary 172
For all n P N and all x P R:

n
ÿ

i“0

˜

n
i

¸

x i
“ p1` xqn

n
ÿ

i“0

˜

n
i

¸

“ 2n
n
ÿ

i“0
p´1qi

˜

n
i

¸

“ 0
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Permutations

Definition 173 (Permutation)
Let A be a finite set. A permutation of A is a bijective function from A to A.

A permutation on a finite set A of cardinality n can be regarded as an (ordered)
sequence of length n in which every element of A appears exactly once.
Many encryption schemes used in cryptography can be seen as permutations.

Standard notation for a permutation π of t1, 2, . . . , nu:
ˆ

1 2 3 . . . n
πp1q πp2q πp3q . . . πpnq

˙

E.g., for n :“ 4:
ˆ

1 2 3 4
2 3 1 4

˙

Definition 174 (Product of permutations)
Let A be a finite set together with two permutations α, β. Then the product (or
composition) α ˝ β is the function

α ˝ β : A Ñ A with pα ˝ βqpaq :“ αpβpaqq for all a P A.
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Permutations

The product of two permutations is itself a bijective function, i.e., a permutation.
Note: It is common to drop ˝ in α ˝ β and simply write αβ.

The product of two permutations is not commutative.

α :“

ˆ

1 2 3 4
1 3 4 2

˙

β :“

ˆ

1 2 3 4
2 1 3 4

˙

αβ “

ˆ

1 2 3 4
3 1 4 2

˙

βα “

ˆ

1 2 3 4
2 3 4 1

˙

Lemma 175
For all n P N and all finite sets A with n “ |A|, the set of all permutations, Sn, over A
together with ˝ as operation forms a group, the so-called symmetric group.

Common assumption when talking about Sn: We have A :“ t1, 2, . . . , nu.

Lemma 176
For all n P N and all finite sets A with n “ |A|, the group pSn, ˝q is a finite group with
exactly n! members.
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α :“

ˆ

1 2 3 4
1 3 4 2

˙

β :“

ˆ

1 2 3 4
2 1 3 4

˙

αβ “

ˆ

1 2 3 4
3 1 4 2

˙

βα “

ˆ

1 2 3 4
2 3 4 1

˙

Lemma 175
For all n P N and all finite sets A with n “ |A|, the set of all permutations, Sn, over A
together with ˝ as operation forms a group, the so-called symmetric group.

Common assumption when talking about Sn: We have A :“ t1, 2, . . . , nu.

Lemma 176
For all n P N and all finite sets A with n “ |A|, the group pSn, ˝q is a finite group with
exactly n! members.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 240/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Permutations

Definition 177 (Cycle, Dt.: Zyklus)
Let A be a finite set of cardinality n. A permutation π of A is a cycle of length k ď n if
there exists a set B Ď A with |B| “ k such that, with B :“ tb1, b2, . . . , bku,

πpb1q “ b2, πpb2q “ b3, . . . , πpbk´1q “ bk , πpbkq “ b1,

and πpaq “ a for all a P AzB. In this case this k-cycle is written as

pb1 b2 . . . bkq or as b1 ÞÑ b2 ÞÑ . . . ÞÑ bk ÞÑ b1.

A cycle is non-trivial if k ě 2.

Definition 178 (Transposition)
A transposition is a cycle of length two, aka 2-cycle.

Lemma 179
Every permutation (of two or more elements) can be written as

(1) a product of cycles,
(2) a product of transpositions.
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Permutations

Lemma 180
If two different products of transpositions correspond to the same permutation then
both products consist of either an even or an odd number of transpositions.

Definition 181 (Signature, Dt.: Signum)
The signature of a permutation is `1, and the permutation is even, if it consists of an
even number of transpositions. Otherwise, the signature is ´1 and the permutation is
odd.

Definition 182 (Derangement, Dt.: Permutation ohne Fixpunkt)
A permutation π of A is a derangement if πpaq ‰ a for all a P A.

The Christmas tradition “Secret Santa” (Dt.: Wichteln) is based on an (unknown)
derangement.

Definition 183 (Inversion, Dt.: Inversion, Fehlstand)
A permutation π P Sn has an inversion pi, jq if πpiq ą πpjq for 1 ď i ă j ď n.
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5 Principles of Elementary Counting and Combinatorics
Sum and Product Rule
Inclusion-Exclusion Principle
Binomial Coefficient
Permutations
Ordered Selection (Variation)
Unordered Selection (Combination)
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Ordered Selection

Definition 184 (Ordered selection without repetition, Dt.: Variation ohne
Zurücklegen, Variation ohne Wiederholung)
Let n P N and k P N0, with k ď n, and A be a finite set of cardinality n. An ordered
selection without repetition of k elements from A is a k-tuple

pa1, a2, . . . , akq with ai P A for i “ 1, 2, . . . , k and ai ‰ aj for 1 ď i ă j ď k.

Lemma 185
Let n P N and k P N0, with k ď n, and A be a finite set of cardinality n. There exist

Vn
k :“

n!
pn´ kq!

many different ordered selections without repetition of k elements from A.

Convention: Vn
k :“ 0 for k ą n.

Vn
k is the number of injective functions from Ik to A.

Sometimes, Vpn, kq is written instead of Vn
k . English-language textbooks often

speak of a k-permutation rather than of an ordered selection without repetition.
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n!
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Ordered Selection

Definition 186 (Ordered selection with repetition, Dt.: Variation mit Zurücklegen,
Variation mit Wiederholung)
Let n P N and k P N0, and A be a finite set of cardinality n. An ordered selection with
repetition of k elements from A is a k-tuple

pa1, a2, . . . , akq with ai P A for i “ 1, 2, . . . , k.

Lemma 187
Let n P N and k P N0, and A be a finite set of cardinality n. There exist

rVn
k :“ nk

many different ordered selections with repetition of k elements from A.

Note: rVn
k “ |Ak

|.
Sometimes, Vrpn, kq is written instead of rVn

k .
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Unordered Selection

Definition 188 (Unordered selection without repetition, Dt.: Kombination ohne
Zurücklegen, Kombination ohne Wiederholung)
Let n P N and k P N0, with k ď n, and A be a finite set of cardinality n. An unordered
selection without repetition of k elements from A is a set B such that

B Ď A with |B| “ k.

Lemma 189
Let n P N and k P N0, with k ď n, and A be a finite set of cardinality n. There exist

Cn
k :“

˜

n
k

¸

many different unordered selections without repetition of k elements from A.

Convention: Cn
k :“ 0 for k ą n. Sometimes, Cpn, kq is written instead of Cn

k .
Lemma 189 yields an alternate proof of |PpAq| “ 2n. It also implies that there
exist

`n
k
˘

different binary sequences where exactly k elements are 1.
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Unordered Selection

Definition 190 (Unordered selection with repetition, Dt.: Kombination mit
Zurücklegen, Kombination mit Wiederholung)
Let n P N and k P N0, and A be a finite set of cardinality n. An unordered selection
with repetition of k elements from A is a k-element multiset, i.e., a set B together with
a multiplicity function, mult, such that

B Ď A and mult : B Ñ N with
ÿ

bPB
multpbq “ k.

Lemma 191
Let n P N and k P N0, and A be a finite set of cardinality n. There exist

rCn
k :“

˜

n` k ´ 1
k

¸

many different unordered selections with repetition of k elements from A.

Sometimes, Crpn, kq is written instead of rCn
k .
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Proofs of Lemmas 185–191

Proof of Lemma 185 : We have n options for a1, leaving n´ 1 options for a2, etc.
Thus, we have n ¨ pn´ 1q ¨ . . . ¨ pn´ k ` 1q “ n!

pn´kq!
options.

Proof of Lemma 187 : We have n options for every selection. Thus, we have nk

options in total.
Proof of Lemma 189 : We know that Vn

k “
n!

pn´kq!
. There are k! many different ordered

selections that correspond to the same unordered selection. Thus,
Cn

k “ Vn
k {k! “ n!

pn´kq!k! “
`n

k
˘

.

Proof of Lemma 191 : Let a1, . . . , an be the n elements of A, and k P N0. We encode
such an unordered selection with repetition of k elements from A as a sequence of
length n` k ´ 1 of k crosses ˆ which are separated by n´ 1 vertical bars |, where i
crosses between the j-th vertical bar and the pj ` 1q-st vertical bar, for 1 ď j ď n´ 2,
indicate that element aj`1 was chosen with multiplicity i. Similarly for the multiplicities
of a1 and an for crosses before the first and after the last vertical bar.
We note that we have exactly

Cn`k´1
k “

˜

n` k ´ 1
k

¸

ways to choose the positions of the k crosses within this sequence.
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Proof of Lemma 187 : We have n options for every selection. Thus, we have nk

options in total.
Proof of Lemma 189 : We know that Vn

k “
n!

pn´kq!
. There are k! many different ordered

selections that correspond to the same unordered selection. Thus,
Cn

k “ Vn
k {k! “ n!

pn´kq!k! “
`n

k
˘

.
Proof of Lemma 191 : Let a1, . . . , an be the n elements of A, and k P N0. We encode
such an unordered selection with repetition of k elements from A as a sequence of
length n` k ´ 1 of k crosses ˆ which are separated by n´ 1 vertical bars |, where i
crosses between the j-th vertical bar and the pj ` 1q-st vertical bar, for 1 ď j ď n´ 2,
indicate that element aj`1 was chosen with multiplicity i. Similarly for the multiplicities
of a1 and an for crosses before the first and after the last vertical bar.
We note that we have exactly

Cn`k´1
k “

˜

n` k ´ 1
k

¸

ways to choose the positions of the k crosses within this sequence.
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Real-World Application: Elementary Probability

What is the probability to win in the Austrian “6-aus-45” lottery after choosing one
set of six numbers?

As usual, we define the probability of an event among (finitely many)
equally-likely outcomes as the number of favorable outcomes divided by the total
number of possible outcomes.
Assuming that the lottery is fair and, thus, that all combinations are equally likely
to win, we get

1
C45

6
“

1
`45

6
˘ “

1
8 145 060 « 1.22774 ¨ 10´7

as probability for having all six numbers right.
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Real-World Application: Elementary Probability

A standard deck of cards contains 52 cards grouped into four suits (Dt.: Farben)
— diamonds (Dt.: Schelle, Karo), clubs (Dt.: Eichel, Kreuz), hearts (Dt.: Herz),
and spades (Dt.: Laub, Pik) — with 13 cards in each suit (ace, 2, 3, 4, 5, 6, 7, 8,
9, 10, jack, queen, king).

What is the probability that all hearts appear in consecutive (but arbitrary) order
after a decent shuffling of the deck?
There are 52! different permutations of the 52 cards.
There are 40! different permutations of the block of 13 hearts and the other 39
cards, and 13! many permutations of the 13 hearts within that block.
Hence, the probability that all hearts are consecutive is given by

40! ¨ 13!
52! « 6.29908 ¨ 10´11.
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6 Complexity Analysis and Recurrence Relations
Growth Rates
Bachmann-Landau (Asymptotic) Notation
Recurrence Relations
Master Theorem

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 252/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Growth Rate of Functions

Algorithms/codes tend to process inputs of small sizes instantaneously.
Therefore we are most interested in how an algorithm performs as the input size
n gets large: asymptotic complexity analysis.

Determine the dominating term in the complexity function — it gives the order of
magnitude of the asymptotic behavior.

1, log n, log2n,
?

n, n, n log n, n log2n, n
7
6 , n2, n3, . . . , 2n, 3n, 2p2nq, . . .

Convention regarding logarithms
In this course, log n will always denote the logarithm of n to the base 2, i.e.,
log n :“ log2 n.

Recall that logα n “ 1
log2 α

log2 n.
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UNIVERSITÄT SALZBURG

Growth Rate of Functions

Algorithms/codes tend to process inputs of small sizes instantaneously.
Therefore we are most interested in how an algorithm performs as the input size
n gets large: asymptotic complexity analysis.
Determine the dominating term in the complexity function — it gives the order of
magnitude of the asymptotic behavior.

1, log n, log2n,
?

n, n, n log n, n log2n, n
7
6 , n2, n3, . . . , 2n, 3n, 2p2nq, . . .

Convention regarding logarithms
In this course, log n will always denote the logarithm of n to the base 2, i.e.,
log n :“ log2 n.

Recall that logα n “ 1
log2 α

log2 n.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 254/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Growth Rates: Bachmann-Landau Notation

Let’s consider f , g : NÑ R` with fpnq :“ n and gpnq :“ 9n` 20.

We get for all n P N with n ě 20

gpnq “ 9n` 20 ď 9n` n “ 10n “ 10fpnq,

Also for all n P N

fpnq ď gpnq.
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Growth Rates: Bachmann-Landau Notation

Let’s consider f , g : NÑ R` with fpnq :“ n and gpnq :“ 9n` 20.
We get for all n P N with n ě 20

gpnq “ 9n` 20 ď 9n` n “ 10n “ 10fpnq, that is gpnq ď 10fpnq.

Also for all n P N

fpnq ď gpnq.

c1 · f (n) ≤ g(n) ≤ c2 · f (n)


for all n ≥ n0
where n0 := 20,
c1 := 1, c2 := 10.

Thus, we have

︸ ︷︷ ︸

︸ ︷︷ ︸
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g grows at most as fast as c2 · f
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︸ ︷︷ ︸

g has same growth rate as f
we’ll say that g ∈ Θ(f )


for all n ≥ n0
where n0 := 20,
c1 := 1, c2 := 10.

Thus, we have

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 255/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

6 Complexity Analysis and Recurrence Relations
Growth Rates
Bachmann-Landau (Asymptotic) Notation

Bachmann-Landau Symbols
Limit of a Sequence
Basic Facts
Conditional Asymptotic Notation and Smoothness Rule

Recurrence Relations
Master Theorem
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UNIVERSITÄT SALZBURG

Asymptotic Notation: Big-O

c1 · f (n) ≤ g(n) ≤ c2 · f (n)

g grows at most as fast as c2 · f
f is an asymptotic upper bound on g

we’ll say that g ∈ O(f )

{
for all n ≥ n0 and
fixed c1, c2 ∈ R+.

Definition 192 (Big-O, Dt.: Groß-O)

Let f : NÑ R`. Then the set Opfq is defined as

Opfq :“
␣

g : NÑ R`
| Dc2 P R`

Dn0 P N @n ě n0 gpnq ď c2 ¨ fpnq
(

.

Some authors prefer to use the symbol O instead of O.
Note: Opfq is a set of functions! Definitions of the form

Opfpnqq :“ tg : NÑ R`
| Dc2 P R`

Dn0 P N @n ě n0 gpnq ď c2 ¨ fpnqu
are a (wide-spread) formal nonsense.
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Graphical Illustration of Opfq

Definition 192 (Big-O, Dt.: Groß-O)

Let f : NÑ R`. Then the set Opfq is defined as

Opfq :“
␣

g : NÑ R`
| Dc2 P R`

Dn0 P N @n ě n0 gpnq ď c2 ¨ fpnq
(

.

n

c2 · f

g

︸ ︷︷ ︸n0

g(n) ≤ c2 · f (n) for all n ≥ n0

Equivalent definition used by some authors:

Opfq :“

"

g : NÑ R`
| Dc2 P R`

Dn0 P N @n ě n0
gpnq
fpnq ď c2

*

.
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Why Don’t We Care About Constants?

Note that this notation hides all lower-order terms and multiplicative constants.
Why don’t we care?

Since it doesn’t matter for large values of n.
Consider the following two nested for-loops:
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Why Don’t We Care About Constants?

Note that this notation hides all lower-order terms and multiplicative constants.
Why don’t we care?
Since it doesn’t matter for large values of n.
Consider the following two nested for-loops:

for i “ 1 to n do
for j “ i to n do

Compute(i, j)
end for

end for

How often is Compute() being called?
Let g : NÑ R` be the function that
models the number of calls in
dependence on n.
We get

gpnq “ n` pn´ 1q ` . . .` 2` 1

“
npn` 1q

2 “
1
2n2

`
1
2n.
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UNIVERSITÄT SALZBURG

Why Don’t We Care About Constants?

Note that this notation hides all lower-order terms and multiplicative constants.
Why don’t we care?
Since it doesn’t matter for large values of n.
Consider the following two nested for-loops:

for i “ 1 to n do
for j “ i to n do

Compute(i, j)
end for

end for
How often is Compute() being called?
Let g : NÑ R` be the function that
models the number of calls in
dependence on n.
We get

gpnq “ n` pn´ 1q ` . . .` 2` 1

“
npn` 1q

2 “
1
2n2

`
1
2n.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 259/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Since it doesn’t matter for large values of n.
Consider the following two nested for-loops:

for i “ 1 to n do
for j “ i to n do

Compute(i, j)
end for

end for
How often is Compute() being called?
Let g : NÑ R` be the function that
models the number of calls in
dependence on n.
We get

gpnq “ n` pn´ 1q ` . . .` 2` 1

“
npn` 1q

2 “
1
2n2

`
1
2n.

Consider f : NÑ R` with fpnq :“ n2.

Let’s compare the growth rates of f
and g when we double n:

n gpnq fpnq
5 15 25

10 55 100
20 210 400
40 820 1600
80 3240 6400

Doubling n causes both fpnq and gpnq
to (roughly) quadruple!
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Why Don’t We Care About Constants?

We plot the growth ratio gpnq

fpnq
for f , g : NÑ R` with fpnq :“ n2 and

gpnq :“ 1
2 n2

` 1
2 n.

The plots suggest gpnq

fpnq
ď 1 for all n ě 200, that is, gpnq ď fpnq, which would imply

g P Opfq.
More precisely, they suggest gpnq

fpnq
ď 1

2 ` ε for any positive ε and all sufficiently
large values of n.
The plots also suggest gpnq

fpnq
ě 1

2 , which would imply g P Ωpfq.

Hence gpnq « 1
2 fpnq, which would imply g P Θpfq.
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Asymptotic Notation: Big-Omega

c1 · f (n) ≤ g(n) ≤ c2 · f (n)

g grows at least as fast as c1 · f
f is an asymptotic lower bound on g

we’ll say that g ∈ Ω(f )

{
for all n ≥ n0 and
fixed c1, c2 ∈ R+.

Definition 193 (Big-Omega, Dt.: Groß-Omega)

Let f : NÑ R`. Then the set Ωpfq is defined as

Ωpfq :“
␣

g : NÑ R`
| Dc1 P R`

Dn0 P N @n ě n0 c1 ¨ fpnq ď gpnq
(

.

Equivalently,

Ωpfq :“

"

g : NÑ R`
| Dc1 P R`

Dn0 P N @n ě n0 c1 ď
gpnq
fpnq

*

.
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Graphical Illustration of Ωpfq

Definition 193 (Big-Omega, Dt.: Groß-Omega)

Let f : NÑ R`. Then the set Ωpfq is defined as

Ωpfq :“
␣

g : NÑ R`
| Dc1 P R`

Dn0 P N @n ě n0 c1 ¨ fpnq ď gpnq
(

.

n

g

︸ ︷︷ ︸n0

c1 · f (n) ≤ g(n) for all n ≥ n0

c1 · f
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Asymptotic Notation: Big-Theta

c1 · f (n) ≤ g(n) ≤ c2 · f (n)︸ ︷︷ ︸
g has same growth rate as f

we’ll say that g ∈ Θ(f )

{
for all n ≥ n0 and
fixed c1, c2 ∈ R+.

Definition 194 (Big-Theta, Dt.: Groß-Theta)

Let f : NÑ R`. Then the set Θpfq is defined as

Θpfq :“
␣

g : NÑ R`
| Dc1, c2 P R`

Dn0 P N @n ě n0

c1 ¨ fpnq ď gpnq ď c2 ¨ fpnqu .
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Graphical Illustration of Θpfq

Definition 194 (Big-Theta, Dt.: Groß-Theta)

Let f : NÑ R`. Then the set Θpfq is defined as

Θpfq :“
␣

g : NÑ R`
| Dc1, c2 P R`

Dn0 P N @n ě n0

c1 ¨ fpnq ď gpnq ď c2 ¨ fpnqu .

n

c2 · f

g

︸ ︷︷ ︸n0

c1 · f (n) ≤ g(n) ≤ c2 · f (n) for all n ≥ n0

c1 · f

which is equivalent to c1 ≤ g(n)
f (n) ≤ c2 for all n ≥ n0
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Sample Proof of g P Θpfq

We prove g P Θpfq for fpnq :“ n2 and gpnq :“ 1
2 n2

` 1
2 n.

Proof :
We get, for all n P N,

gpnq “ 1
2n2

`
1
2n ď 1

2n2
`

1
2n2

“ n2
“ fpnq, that is gpnq ď fpnq.

Thus, g P Opfq with c2 :“ 1 and n0 :“ 1.
Now we prove g P Ωpfq and get, again for all n P N,

gpnq “ 1
2n2

`
1
2n ě 1

2n2
“

1
2 fpnq, that is 1

2 fpnq ď gpnq.

Thus, g P Ωpfq with c1 :“ 1
2 and n0 :“ 1. Def. 194 or Lemma 201 yield

g P Θpfq.

Don’t be overly zealous!
There is no need to try to obtain the best-possible values for n0 and c1, c2!
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Asymptotic Notation: Small-Oh

Definition 195 (Small-Oh, Dt.: Klein-O)

Let f : NÑ R`. Then the set opfq is defined as

o pfq :“
␣

g : NÑ R`
| @c P R`

Dn0 P N @n ě n0 gpnq ď c ¨ fpnq
(

.

Mind the difference

Opfq :“
␣

g : NÑ R`
| Dc P R`

Dn0 P N @n ě n0 gpnq ď c ¨ fpnq
(

o pfq :“
␣

g : NÑ R`
| @c P R`

Dn0 P N @n ě n0 gpnq ď c ¨ fpnq
(

Similarly, ωpfq can be defined relative to Ωpfq.
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0 (or even R) provided that all
functions are eventually positive.
The same comments apply to the subsequent slides.
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Asymptotic Notation: Limit of a Sequence

Definition 196 (Sequence, Dt.: Folge)
A (real) sequence is a function from N (or N0) to R. For x : NÑ R it is common to
write the sequence as pxnqnPN or xxnynPN, or simply pxnq or xxny.

Definition 197 (Limit, Dt. Grenzwert)
The value x̄ P R is the limit of the (real) sequence pxnq, denoted by limnÑ8 xn “ x̄, if

@ε P R`
Dn0 P N @n ě n0 |xn ´ x̄| ă ε.

Lemma 198
If zn “ xn ` yn for three sequences pxnq, pynq, pznq and if limnÑ8 xn and limnÑ8 yn exist,
then limnÑ8 zn exists and we have limnÑ8 zn “ limnÑ8 xn ` limnÑ8 yn.
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Asymptotic Notation: Limit of a Sequence

Theorem 199 (Squeeze theorem, Dt.: Einschnürungssatz)
Consider three real sequences pxnq, pynq, pznq and suppose that xn ď yn ď zn for all
n ě n0 for some n0 P N. If the limits of pxnq and pznq exist such that

lim
nÑ8

xn “ lim
nÑ8

zn,

then the limit of pynq exists with

lim
nÑ8

xn “ lim
nÑ8

yn “ lim
nÑ8

zn.

For zn :“ 8
n it is easy to see that limnÑ8 zn “ 0.

Now consider the following sequences:

xn :“ 0 yn :“
log n` 7

?
n´ 10

n2 zn :“
8
n

We have for all n P Nzt1, 2, 3u

xn ď yn ď zn and lim
nÑ8

xn “ 0 “ lim
nÑ8

zn.

Thus, limnÑ8 yn “ 0.
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Asymptotic Notation: Limit of a Sequence

The following theorem (by Guillaume de l’Hôpital, 1661–1704) allows to handle
limits that involve indeterminate terms of the form

0
0 or 8

8
.

Theorem 200 (L’Hôpital’s rule)
Consider two real functions f and g, and a real value c.
If

1 limxÑc fpxq “ 0 “ limxÑc gpxq or limxÑc fpxq “ ˘8 “ limxÑc gpxq,
2 f and g are differentiable in an open interval I with c P I, except possibly at c itself,
3 g1

pxq ‰ 0 for all x P Iztcu, and if
4 limxÑc

f 1pxq

g1pxq
exists,

then

lim
xÑc

fpxq
gpxq “ lim

xÑc

f 1
pxq

g1pxq .
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Asymptotic Notation: Basic Facts

Lemma 201
Let f1, f2, g1, g2 : NÑ R`, and c P R`. Then the following relations hold:

1
`

g1 P Opf1q ^ g2 P Opf2q
˘

ñ g1 ` g2 P Opf1 ` f2q

2
`

g1 P Opf1q ^ g2 P Opf2q
˘

ñ g1 ¨ g2 P Opf1 ¨ f2q
3 f2 ¨Opf1q Ď Opf1 ¨ f2q
4 Opc ¨ f1q “ Opf1q
5 g1 P Opf1q ñ c ¨ g1 P Opf1q
6 Θpf1q “ Opf1q X Ωpf1q
7 g1 P Θpf1q ô f1 P Θpg1q

8
`

g1 P Opf1q ^ g1 P Ωpf1q
˘

ñ g1 P Θpf1q
9

`

g1 P Θpf1q ^ g2 P Θpf1q
˘

ñ g1 P Θpg2q
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UNIVERSITÄT SALZBURG

Asymptotic Notation: Basic Facts

Lemma 201
Let f1, f2, g1, g2 : NÑ R`, and c P R`. Then the following relations hold:

1
`

g1 P Opf1q ^ g2 P Opf2q
˘

ñ g1 ` g2 P Opf1 ` f2q
2

`

g1 P Opf1q ^ g2 P Opf2q
˘

ñ g1 ¨ g2 P Opf1 ¨ f2q
3 f2 ¨Opf1q Ď Opf1 ¨ f2q

4 Opc ¨ f1q “ Opf1q
5 g1 P Opf1q ñ c ¨ g1 P Opf1q
6 Θpf1q “ Opf1q X Ωpf1q
7 g1 P Θpf1q ô f1 P Θpg1q

8
`

g1 P Opf1q ^ g1 P Ωpf1q
˘

ñ g1 P Θpf1q
9

`

g1 P Θpf1q ^ g2 P Θpf1q
˘

ñ g1 P Θpg2q

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 270/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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8
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9
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Asymptotic Notation: Basic Facts

Lemma 202
Let f , g : NÑ R` and c P R`. Then:

lim
nÑ8

gpnq
fpnq “ c ñ g P Θpfq,

and

lim
nÑ8

gpnq
fpnq “ 0 ô g P opfq.

For example, let f , g, h : NÑ R` with fpnq :“ n2
´ 7n, gpnq :“ 3n2

` 5n
?

n and
hpnq :“ n2.
We have g P Θpfq since f P Θphq and g P Θphq:

lim
nÑ8

fpnq
hpnq “ lim

nÑ8

n2
´ 7n
n2 “ lim

nÑ8

ˆ

1´ 7
n

˙

“ 1

lim
nÑ8

gpnq
hpnq “ lim

nÑ8

3n2
` 5n

?
n

n2 “ lim
nÑ8

ˆ

3` 5
?

n

˙

“ 3
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Asymptotic Notation: Wide-spread Notational Abuse

It is common to write

gpnq “ Opn2
q or g P Opn2

q

as an informal short-hand notation for

g P Opfq with f : NÑ R`, n ÞÑ n2.

Similarly,

gpnq “ hpnq `Opn3
q

means

|g ´ h| P Opfq with f : NÑ R`, n ÞÑ n3.

Furthermore,

gpnq “ nOp1q

indicates that

g P Opfq with f : NÑ R`, n ÞÑ nc

for some constant c P R`.
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Asymptotic Notation: Wide-spread Notational Abuse — Caveats!

Warning
1 In the equation-based notation the equality sign does not assert the equality of

two functions or sets!

2 The property expressed by this equality sign is not symmetric! That is,

Opn2
q “ Opn3

q but Opn3
q ‰ Opn2

q.

3 Stipulating

gpmq “ Opmn
q

is not the same as stipulating

gpnq “ Opmn
q.

It is convenient to be a bit sloppy and write, e.g., n2
“ Opn3

q, rather than to resort
to the λ-quantifier and write λn.n2

P Opλn.n3
q. But keep in mind that an

is-element-of or subset relation is meant even if an equality sign is used!
Unfortunately, several textbooks are fuzzy about this important distinction . . .
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Conditional Asymptotic Notation

Definition 203 (Conditional Asymptotic Notation)

Consider a function f : NÑ R`

and a predicate P : NÑ tF ,Tu.

Opf

| P

q :“
␣

g : NÑ R`
| Dc P R`

Dn0 P N @n ě n0 :

Ppnq ñ

gpnq ď c ¨ fpnqu .

Ωpf | Pq :“
␣

g : NÑ R`
| Dc P R`

Dn0 P N @n ě n0 :

Ppnq ñ gpnq ě c ¨ fpnqu .

Θpf | Pq :“
␣

g : NÑ R`
| Dc1, c2 P R`

Dn0 P N @n ě n0 :

Ppnq ñ c1 ¨ fpnq ď gpnq ď c2 ¨ fpnqu .

o pf | Pq :“
␣

g : NÑ R`
| @c P R`

Dn0 P N @n ě n0 :

Ppnq ñ gpnq ď c ¨ fpnqu .

E.g., let Ppnq :ô n ”2 0, or Ppnq :ô pDk P N0 n “ 2k
q.
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Smoothness

Definition 204 (Eventually non-decreasing, Dt.: schlussendlich nicht
abnehmend)
A function f : NÑ R` is eventually non-decreasing exactly if

Dn0 P N @n ě n0 fpnq ď fpn` 1q.

Definition 205 (b-smooth, Dt.: b-glatt)

A function f : NÑ R` is b-smooth for some integer b ě 2 exactly if f is eventually
non-decreasing and if

Dc P R`
Dn0 P N @n ě n0 fpb ¨ nq ď c ¨ fpnq.

Definition 206 (smooth, Dt.: glatt)

A function f : NÑ R` is smooth if it is b-smooth for all integers b ě 2.

Lemma 207
If f : NÑ R` is b1-smooth for some integer b1

ě 2 then it is smooth.
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Smoothness Rule

Theorem 208 (Smoothness Rule)
Let f , g : NÑ R`, and consider an integer b ě 2.

If
1 f is a smooth function,
2 g P Opf | “is power of b”q, and if
3 g is an eventually non-decreasing function,

then g P Opfq.

Similarly for Ωpfq and Θpfq.
Again, it is trivial to extend the definitions and lemmas such that N0 rather than N
is taken as the base set. Similarly, we can replace R` by R`

0 or even by R
provided that all functions are eventually positive.
The same comments apply to the subsequent slides.
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Smoothness Rule: Sample Application

For a, b P R`

0 we define g : NÑ R`

0 as

gpnq :“
"

a if n “ 1,
4 ¨ g

`P n
2
T˘

` b ¨ n otherwise.

Note that
P n

2
T

“ 2k´1 if n “ 2k .
We would like to show that g P Θpn2

q:
It suffices to

prove that f , with fpnq :“ n2, is smooth,
prove that g P Θpf | “is power of 2”q,
prove that g is eventually non-decreasing.

Standard application in computer science: Solving the recurrence relation

Tpnq “ T
´Qn

2

U¯

` T
´Yn

2

]¯

` b ¨ n,

e.g., as derived when analyzing the complexity of merge sort.
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6 Complexity Analysis and Recurrence Relations
Growth Rates
Bachmann-Landau (Asymptotic) Notation
Recurrence Relations

Heuristics for Solving Recurrences
Solving Linear Recurrence Relations

Master Theorem
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Recurrence Relations

Sample sequence t : N0 Ñ R: (1, 2, 4, 8, 16, 32, 64, 128, 256, . . .)

Definition 209 (Recurrence relation, Dt.: Rekurrenzgleichung)
A recurrence relation for a sequence t is an equation that relates elements of t. It is of
order k, for some k P N, if tn can be expressed in terms of n and tn´1, tn´2, . . . , tn´k ,
i.e., if tn is of the form tn “ fptn´1, tn´2, . . . , tn´k , nq for f : Rk

ˆ NÑ R (or for
f : Rk

ˆ N0 Ñ R).

Recurrence relation (of order 1) for the sample sequence given above:

tn :“

"

1 if n “ 0,
2 ¨ tn´1 if n ą 0.

Easy to see: tn “ 2n for all n P N0.

Note
We will freely mix the notations tk and tpkq for denoting the k-th element of a
sequence ptnqnPN or ptnqnPN0 .
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Recurrence Relations: The Tower-of-Hanoi Recurrence

According to legend, life on Earth will end once the Brahmin priests managed to
move the last disk in their 64-disk Tower-of-Hanoi problem . . .

Also according to legend, the priests apply a recursive algorithm, thereby moving
(1) the top n´ 1 disks (recursively) from pole I to the auxiliary pole III,
(2) the largest (bottom-most) disk from pole I to pole II,
(3) the top n´ 1 disks (recursively) from pole III to pole II.

If Tpnq denotes the number of moves for the n-disk ToH problem, the priests need
two times Tpn´ 1q moves for the recursive Steps (1) and (3), and one move for
getting the largest disk from pole I to II in Step (2).
Of course, Tp1q “ 1.
Hence, we get the recurrence relation

Tpnq “ 2Tpn´ 1q ` 1 with Tp1q :“ 1

for the number T of moves for solving the Tower-of-Hanoi problem recursively.
A solution of this recurrence relation tells us when life on Earth might end . . .
So, is it already time for an apocalyptic mood?
We start with heuristics for solving recurrence relations.
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Heuristics for Solving Recurrences

Constructive Induction:
First ”guess” a solution.
Use ”constructive” induction to verify that the solution guessed is correct.

Cascading:
Restate the recurrence relation for tn, tn´1, tn´2, . . ..
Manipulate and rearrange the individual equations such that summing over
all equations yields a closed-form expression for tn.

Iteration:
Expand the recurrence relation.
Derive a closed-form solution.

Note
All heuristics require induction to prove that the result obtained is indeed correct!
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UNIVERSITÄT SALZBURG

Heuristics for Solving Recurrences

Constructive Induction:
First ”guess” a solution.
Use ”constructive” induction to verify that the solution guessed is correct.

Cascading:
Restate the recurrence relation for tn, tn´1, tn´2, . . ..
Manipulate and rearrange the individual equations such that summing over
all equations yields a closed-form expression for tn.

Iteration:
Expand the recurrence relation.
Derive a closed-form solution.

Note
All heuristics require induction to prove that the result obtained is indeed correct!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 281/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Heuristics for Solving Recurrences: Constructive Induction

Solve the recurrence relation tn “ tn´1 ` n, with t0 :“ 0.
Guess: t P Opfq for fpnq :“ n2.

Our guess could be verified by showing tn ď a ¨ n2 for all n P N0 for a suitable (but
yet unknown) a P R`.
If we assume tn ď a ¨ n2 then we get

tn`1 “ tn ` pn` 1q
ď a ¨ n2

` pn` 1q
ď a ¨ n2

` 4n` 2

“ 2pa2 ¨ n
2
` 2n` 1q

a:“2
“ 2pn2

` 2n` 1q
“ 2pn` 1q2.

Now use standard induction to show that tn ď 2n2 is indeed correct for all n P N0.
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Heuristics for Solving Recurrences: Cascading

Solve the recurrence relation tn “ tn´1 ` n, with t0 :“ 0.
Restating the recurrence yields the following set of equations:

tn “ tn´1 ` n

tn´1 “ tn´2 ` n´ 1
tn´2 “ tn´3 ` n´ 2

...
t2 “ t1 ` 2
t1 “ t0 ` 1
tn “ t0 ` 1` 2` ¨ ¨ ¨ ` pn´ 2q ` pn´ 1q ` n
“ 0` 1` 2` ¨ ¨ ¨ ` pn´ 2q ` pn´ 1q ` n

This indicates that

tn “
n
ÿ

i“0
i “ npn` 1q

2 P Θpn2
q,

which is proved by induction.
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Real-World Problem: When Will Life on Earth End?

We have the Tower-of-Hanoi recurrence relation

Tpnq “ 2Tpn´ 1q ` 1 with Tp1q :“ 1.

Iteration yields the following identities:

Tpnq “ 2Tpn´ 1q ` 1 “ 21Tpn´ 1q ` 20

“ 2
`

21Tpn´ 2q ` 20˘
` 20

“ 22Tpn´ 2q ` 21
` 20

“ 22`21Tpn´ 3q ` 20˘
` 21

` 20
“ 23Tpn´ 3q ` 22

` 21
` 20

...
“ 2n´1Tpn´ pn´ 1qq ` 2n´2

` . . .` 22
` 21

` 20

“ 2n´1
` 2n´2

` . . .` 22
` 21

` 20

“ 2n
´ 1

Hence, if the priests manage to move one disk per second then we would have to
expect the end of Earth 264

´ 1 seconds after they started, i.e., roughly within
5 ¨ 1011 years . . .
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UNIVERSITÄT SALZBURG

Real-World Problem: When Will Life on Earth End?

We have the Tower-of-Hanoi recurrence relation

Tpnq “ 2Tpn´ 1q ` 1 with Tp1q :“ 1.

Iteration yields the following identities:

Tpnq “ 2Tpn´ 1q ` 1 “ 21Tpn´ 1q ` 20

“ 2
`

21Tpn´ 2q ` 20˘
` 20

“ 22Tpn´ 2q ` 21
` 20

“ 22`21Tpn´ 3q ` 20˘
` 21

` 20

“ 23Tpn´ 3q ` 22
` 21

` 20

...
“ 2n´1Tpn´ pn´ 1qq ` 2n´2

` . . .` 22
` 21

` 20

“ 2n´1
` 2n´2

` . . .` 22
` 21

` 20

“ 2n
´ 1

Hence, if the priests manage to move one disk per second then we would have to
expect the end of Earth 264

´ 1 seconds after they started, i.e., roughly within
5 ¨ 1011 years . . .

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 285/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Types of Recurrence Relations

Definition 210 (Homogeneous recurrence, Dt.: homogene Rekurrenz)
A recurrence relation of order k is homogeneous if it is satisfied by the zero sequence.

E.g., tn :“ 3 ¨ n2
¨ tn´1 ¨ tn´2.

Definition 211 (Linear homogeneous recurrence)

A homogeneous recurrence relation of order k is linear if tn “
řk

i“1 aipnq ¨ tn´i , where
ai : NÑ R for i “ 1, 2, . . . , k.

E.g., tn :“ n2
¨ tn´1 ` 3 ¨ tn´2.

Definition 212 (Linear homogeneous recurrence with constant coefficients)
A linear homogeneous recurrence relation of order k has constant coefficients if
tn “

řk
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UNIVERSITÄT SALZBURG

Solving Linear Homogeneous Recurrence Relations
With Constant Coefficients

Lemma 213
Consider the recurrence relation a0tn ` a1tn´1 ` ¨ ¨ ¨ ` ak tn´k “ 0, with ai P R. If pfnq
and pgnq satisfy the recurrence relation then pαfn ` βgnq satisfies the recurrence
relation for all α, β P R.

Proof : Suppose that

a0fn ` a1fn´1 ` ¨ ¨ ¨ ` ak fn´k “

k
ÿ

i“0
ai fn´i “ 0 and

k
ÿ

i“0
aign´i “ 0

for all n ě k. Let α, β P R arbitrary but fixed and consider pαfn ` βgnq. We get

k
ÿ

i“0
aipαfn´i ` βgn´iq “ α

k
ÿ

i“0
ai fn´i ` β

k
ÿ

i“0
aign´i “ 0.
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Solving Linear Homogeneous Recurrence Relations
With Constant Coefficients

So, consider a0tn ` a1tn´1 ` ¨ ¨ ¨ ` ak tn´k “ 0
Guess tn “ xn for some unknown x P R.

Then a0xn
` a1xn´1

` ¨ ¨ ¨ ` akxn´k
“ 0.

Further xn´k
pa0xk

` a1xk´1
` ¨ ¨ ¨ ` akq “ 0.

If we ignore the trivial solution x :“ 0 then we get

a0xk
` a1xk´1

` ¨ ¨ ¨ ` ak “ 0

as the so-called characteristic equation of the recurrence relation

a0tn ` a1tn´1 ` ¨ ¨ ¨ ` ak tn´k “ 0.

Hence, any root r of this equation serves as a partial solution of the recurrence
relation, with tn :“ rn.
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Solving Linear Homogeneous Recurrence Relations
With Constant Coefficients

Suppose that the characteristic equation has k distinct roots r1, . . . , rk such that
all roots are real numbers. I.e., the characteristic equation is given as

k
ź

i“1
px ´ riq “ 0.

Then, the general solution of the recurrence relation is of the form

tn “
k
ÿ

i“1
ci ¨ rn

i ,

for some constants c1, c2, . . . , ck P R.
The constants ci are determined based on the initial condition(s).
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Solving Linear Homogeneous Recurrence Relations
With Constant Coefficients: Fibonacci Sequence

Consider the Fibonacci sequence (over N0)

Fn :“

$

&

%

0 if n “ 0,
1 if n “ 1,
Fn´1 ` Fn´2 if n ě 2.

Hence, Fn ´ Fn´1 ´ Fn´2 “ 0, and we get

x2
´ x ´ 1 “ 0

as the characteristic equation.
This characteristic equation has the roots

r1 :“
1`

?
5

2 and r2 :“
1´

?
5

2 .

Note: r1 is known as the golden ratio, ϕ, with ϕ « 1.618.
This yields

Fn “ c1 ¨

˜

1`
?

5
2

¸n

` c2 ¨

˜

1´
?

5
2

¸n

.
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Solving Linear Homogeneous Recurrence Relations
With Constant Coefficients: Fibonacci Sequence

This yields

Fn “ c1 ¨

˜

1`
?

5
2

¸n

` c2 ¨

˜

1´
?

5
2

¸n

.

The constants c1, c2 are determined by resorting to the initial conditions.
n :“ 0 : F0 “ 0 “ c1 ` c2

n :“ 1 : F1 “ 1 “ c1 ¨
1`

?
5

2 ` c2 ¨
1´

?
5

2

By solving this linear system we obtain c1 “ ´c2 “
1?
5 .

Hence,

Fn “
1
?

5
¨

˜

1`
?

5
2

¸n

´
1
?

5
¨

˜

1´
?

5
2

¸n

.
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Solving Linear Homogeneous Recurrence Relations
With Constant Coefficients

Multiple roots: Suppose that the characteristic equation has s distinct roots
r1, . . . , rs of multiplicities m1, . . . ,ms such that all roots are real numbers. I.e., the
characteristic equation is given as

s
ź

i“1
px ´ riq

mi “ 0.

Then we have

tn “
s
ÿ

i“1

mi ´1
ÿ

j“0
cij ¨ nj

¨ rn
i ,

for constants cij P R.
E.g., for the characteristic equation px ´ 1q ¨ px ´ 2q2 “ 0 we have s “ 2, r1 “ 1,
r2 “ 2, m1 “ 1, m2 “ 2, and get

tn “ c10 ¨ n0
¨ 1n

` c20 ¨ n0
¨ 2n

` c21 ¨ n1
¨ 2n

“ c10 ` c20 ¨ 2n
` c21 ¨ n ¨ 2n.
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Solving Linear Inhomogeneous Recurrence Relations
With Constant Coefficients

Assume we have an inhomogeneous recurrence relation of the following form:

a0 ¨ tn ` a1 ¨ tn´1 ` ¨ ¨ ¨ ` ak ¨ tn´k “ bn
1 ¨ p1pnq ` bn

2 ¨ p2pnq ` ¨ ¨ ¨ ` bn
t ¨ ptpnq,

where t P N0 and bi is constant and pi is a polynomial in n of degree di P N0 for
each 1 ď i ď t.

Then the characteristic polynomial is

pa0 ¨ xk
` a1 ¨ xk´1

` ¨ ¨ ¨ ` akq ¨

t
ź

i“1
px ´ biq

di `1
“ 0.

Now proceed as in the homogeneous case.
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Solving Linear Inhomogeneous Recurrence Relations
With Constant Coefficients

Theorem 214
Consider the linear inhomogeneous recurrence relation

a0tn ` a1tn´1 ` ¨ ¨ ¨ ` ak tn´k “

t
ÿ

i“1
bn

i ¨ pipnq,

where t P N0, and bi is constant and pi is a polynomial in n of degree di P N0 for each
1 ď i ď t,

and suppose that its characteristic equation

pa0xk
` a1xk´1

` ¨ ¨ ¨ ` akq ¨

t
ź

i“1
px ´ biq

di `1
“ 0

has s distinct roots r1, . . . , rs of multiplicities m1, . . . ,ms such that all roots are real
numbers. Then the general solution of the recurrence relation is given by

tn “
s
ÿ

i“1

mi ´1
ÿ

j“0
cij ¨ nj

¨ rn
i ,

for constants cij P R.
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UNIVERSITÄT SALZBURG

Solving Linear Inhomogeneous Recurrence Relations
With Constant Coefficients

Theorem 214
Consider the linear inhomogeneous recurrence relation

a0tn ` a1tn´1 ` ¨ ¨ ¨ ` ak tn´k “

t
ÿ

i“1
bn

i ¨ pipnq,

where t P N0, and bi is constant and pi is a polynomial in n of degree di P N0 for each
1 ď i ď t, and suppose that its characteristic equation

pa0xk
` a1xk´1

` ¨ ¨ ¨ ` akq ¨

t
ź

i“1
px ´ biq

di `1
“ 0

has s distinct roots r1, . . . , rs of multiplicities m1, . . . ,ms such that all roots are real
numbers.

Then the general solution of the recurrence relation is given by

tn “
s
ÿ

i“1

mi ´1
ÿ

j“0
cij ¨ nj

¨ rn
i ,

for constants cij P R.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 294/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Solving Linear Inhomogeneous Recurrence Relations
With Constant Coefficients: Sample Solution

Consider

tn :“

"

0 if n “ 0,
2tn´1 ` n` 2n otherwise.

The standard form of this recurrence is

tn ´ 2tn´1 “ n` 2n
“ 1n

¨ n1
` 2n

¨ n0.

Hence, relative to Thm. 214, we get

k “ 1 a0 “ 1 a1 “ ´2 t “ 2

b1 “ 1 p1pnq “ n d1 “ 1 b2 “ 2 p2pnq “ 1 d2 “ 0.
This results in

0 “ px ´ 2q ¨ px ´ 1q2 ¨ px ´ 2q1 “ px ´ 1q2 ¨ px ´ 2q2

as the characteristic equation, and we get, with r1 :“ 1, r2 :“ 2,m1 “ m2 :“ 2,

tn “ c10 ¨ n0
¨ 1n

` c11 ¨ n1
¨ 1n

` c20 ¨ n0
¨ 2n

` c21 ¨ n1
¨ 2n

“ c10 ` c11 ¨ n` c20 ¨ 2n
` c21 ¨ n ¨ 2n.
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UNIVERSITÄT SALZBURG

Solving Linear Inhomogeneous Recurrence Relations
With Constant Coefficients: Sample Solution

Consider

tn :“

"

0 if n “ 0,
2tn´1 ` n` 2n otherwise.

The standard form of this recurrence is

tn ´ 2tn´1 “ n` 2n

“ 1n
¨ n1

` 2n
¨ n0.

Hence, relative to Thm. 214, we get

k “ 1 a0 “ 1 a1 “ ´2 t “ 2

b1 “ 1 p1pnq “ n d1 “ 1 b2 “ 2 p2pnq “ 1 d2 “ 0.
This results in

0 “ px ´ 2q ¨ px ´ 1q2 ¨ px ´ 2q1 “ px ´ 1q2 ¨ px ´ 2q2

as the characteristic equation, and we get, with r1 :“ 1, r2 :“ 2,m1 “ m2 :“ 2,

tn “ c10 ¨ n0
¨ 1n

` c11 ¨ n1
¨ 1n

` c20 ¨ n0
¨ 2n

` c21 ¨ n1
¨ 2n

“ c10 ` c11 ¨ n` c20 ¨ 2n
` c21 ¨ n ¨ 2n.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 295/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Solving Linear Inhomogeneous Recurrence Relations
With Constant Coefficients: Sample Solution

So, we know that

tn “ c10 ` c11 ¨ n` c20 ¨ 2n
` c21 ¨ n ¨ 2n.

The constants c10, c11, c20, c21 are determined by resorting to the initial conditions:

n :“ 0 : 0 “ c10 ` c11 ¨ 0` c20 ¨ 20
` c21 ¨ 0 ¨ 20

“ c10 ` c20

n :“ 1 : 3 “ c10 ` c11 ` 2 ¨ c20 ` 2 ¨ c21

n :“ 2 : 12 “ c10 ` 2 ¨ c11 ` 4 ¨ c20 ` 8 ¨ c21

n :“ 3 : 35 “ c10 ` 3 ¨ c11 ` 8 ¨ c20 ` 24 ¨ c21

Solving this system of four linear equations for c10, c11, c20, c21 yields

c10 “ ´2, c11 “ ´1, c20 “ 2, c21 “ 1.

We conclude that

tn “ ´2´ n` 2 ¨ 2n
` n ¨ 2n, i.e., tn “ ´2´ n` 2n`1

` n ¨ 2n.
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6 Complexity Analysis and Recurrence Relations
Growth Rates
Bachmann-Landau (Asymptotic) Notation
Recurrence Relations
Master Theorem
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Master Theorem

Theorem 215 (Master theorem, Dt.: Hauptsatz der Laufzeitfunktionen)

Consider constants c P R`, k, n0 P N and a, b P N with b ě 2, and let T : NÑ R`

0 be
an eventually non-decreasing function such that

Tpnq “ a ¨ T
´n

b

¯

` c ¨ nk

for all n P N with n ě n0, where we interpret Tp n
b q as (a combination of) Tpr n

b sq or
Tpt n

b uq.

Then we have

T P

$

&

%

Θpnk
q if a ă bk ,

Θpnk log nq if a “ bk ,

Θpnlogb a
q if a ą bk .

E.g., we get T P Θpn log nq for T defined as follows:

Tpnq “ T
´Qn

2

U¯

` T
´Yn

2

]¯

` c ¨ n.
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Master Theorem (Asymptotic Version)

Theorem 216
Consider constants k, n0 P N and a, b P N with b ě 2, and a function f : NÑ R`

0 with
f P Θpnk

q. Let T : NÑ R`

0 be an eventually non-decreasing function such that

Tpnq “ a ¨ T
´n

b

¯

` fpnq

for all n P N with n ě n0, where we interpret Tp n
b q as (a combination of) Tpr n

b sq or
Tpt n

b uq.
Then we have

T P

$

&

%

Θpnk
q if a ă bk ,

Θpnk log nq if a “ bk ,

Θpnlogb a
q if a ą bk .
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Master Theorem (Refined Asymptotic Version)

Theorem 217
Consider constants n0 P N and a P N, b P R with b ą 1, and a function f : NÑ R`

0 . Let
T : NÑ R`

0 be an eventually non-decreasing function such that

Tpnq “ a ¨ T
´n

b

¯

` fpnq

for all n P N with n ě n0, where we interpret Tp n
b q as (a combination of) Tpr n

b sq or
Tpt n

b uq.

Then we have

T P

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Θpfq if

$

’

’

&

’

’

%

f P Ωpnplogb aq`ε
q for some ε P R`,

and if the following regularity condition holds
for some 0 ă s ă 1 and all sufficiently large n:

a ¨ fpn{bq ď s ¨ fpnq,
Θ
`

nlogb a log n
˘

if f P Θpnlogb a
q,

Θpnlogb a
q if f P Opnplogb aq´ε

q for some ε P R`.

This is a simplified version of the Akra-Bazzi Theorem [Akra&Bazzi 1998].
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Real-World Application: Analysis of Fast Integer Multiplication

The standard multiplication of two integers a, b represented as binary numbers
with 2n bits each requires Θpn2

q many additions and shifts of bits.

Can we do any better and achieve opn2
q time?

[Karatsuba (1960–1963)]: Let

pa2n´1a2n´2 ¨ ¨ ¨ a1a0q2 and pb2n´1b2n´2 ¨ ¨ ¨ b1b0q2

be the 2n-bit binary representations of a and b. Hence, a “
ř2n´1

i“0 ai2i and
b “

ř2n´1
i“0 bi2i .

We have

a „ 2nA1 ` A0 and b „ 2nB1 ` B0

with

A1 :“ pa2n´1a2n´2 ¨ ¨ ¨ an`1, anq2, A0 :“ pan´1an´2 ¨ ¨ ¨ a1a0q2,

B1 :“ pb2n´1b2n´2 ¨ ¨ ¨ bn`1, bnq2, B0 :“ pbn´1bn´2 ¨ ¨ ¨ b1b0q2.

We get

a ¨ b „ 22nA1 ¨ B1 ` 2n
pA1 ¨ B0 ` A0 ¨ B1q ` A0 ¨ B0.
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UNIVERSITÄT SALZBURG

Real-World Application: Analysis of Fast Integer Multiplication

The standard multiplication of two integers a, b represented as binary numbers
with 2n bits each requires Θpn2

q many additions and shifts of bits.
Can we do any better and achieve opn2

q time? Yes!
[Karatsuba (1960–1963)]: Let

pa2n´1a2n´2 ¨ ¨ ¨ a1a0q2 and pb2n´1b2n´2 ¨ ¨ ¨ b1b0q2

be the 2n-bit binary representations of a and b. Hence, a “
ř2n´1

i“0 ai2i and
b “

ř2n´1
i“0 bi2i .

We have

a „ 2nA1 ` A0 and b „ 2nB1 ` B0

with

A1 :“ pa2n´1a2n´2 ¨ ¨ ¨ an`1, anq2, A0 :“ pan´1an´2 ¨ ¨ ¨ a1a0q2,

B1 :“ pb2n´1b2n´2 ¨ ¨ ¨ bn`1, bnq2, B0 :“ pbn´1bn´2 ¨ ¨ ¨ b1b0q2.

We get

a ¨ b „ 22nA1 ¨ B1 ` 2n
pA1 ¨ B0 ` A0 ¨ B1q ` A0 ¨ B0.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 301/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Real-World Application: Analysis of Fast Integer Multiplication

We get

a ¨ b „ 22nA1 ¨ B1 ` 2n
pA1 ¨ B0 ` A0 ¨ B1q ` A0 ¨ B0,

which can be rewritten as

a ¨ b „ p22n
` 2n

qA1 ¨ B1 ` 2n
pA1 ´ A0q ¨ pB0 ´ B1q ` p2n

` 1qA0 ¨ B0.

Thus, the multiplication of two 2n-bit binary numbers can be carried out
recursively by computing

1 three multiplications of n-bit binary numbers, plus
2 a constant number of additions and shifts on n-bit binary numbers.

Hence, if Tpnq denotes the total number of bit operations used by this recursive
algorithm for n-bit binary numbers, then

Tpnq “ 3T
´n

2

¯

` fpnq with f P Θpnq.

The asymptotic version of the Master Theorem 216 allows us to conclude that

T P Θpnlog2 3
q, i.e., that T P Θpn1.58496...

q and, thus, T P opn2
q.

[Schönhage&Strassen (1971), Fürer (2007)]: Faster methods based on Fast
Fourier Transform.
[Harvey&van der Hoeven (2021)]: Achieved Opn log nq.
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7 Graph Theory
What is a (Directed) Graph?
Paths
Trees
Special Graphs
Graph Coloring
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7 Graph Theory
What is a (Directed) Graph?

Undirected and Directed Graph
Applications: Hasse Diagram and Precedence Graphs
Adjacency and Degree
Euler’s Handshaking Lemma

Paths
Trees
Special Graphs
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Basic Definitions: Undirected Graph

Definition 218 (Graph, Dt.: (schlichter endlicher ungerichteter) Graph)
For n P N and m P N0, a (simple finite undirected) graph G :“ pV ,Eq with n vertices
(aka nodes) and m edges consists of a vertex set V :“ tv1, v2, . . . , vnu and an edge
set E :“ te1, e2, . . . , emu, where V X E “ {0 and each edge is an unordered pair of
distinct vertices:

E Ď ttu, vu : u, v P V and u ‰ vu.

It is common to mix the terms “node” (Dt.: Knoten) and “vertex” (Dt.: Ecke) freely.
An edge tu, vu is often denoted by uv.
If we allow edges of the form uu then we get a loop (Dt.: Schlinge, Schleife) and
the graph is no longer simple (Dt.: schlicht, einfach).
If we allow multiple edges between two vertices then we get a multigraph.
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Basic Definitions: Graphical Representation

Graphical representation of a graph:
Denote the vertices by markers of the same form (circles, dots, squares, . . .).
For every pair of vertex markers, draw a curve between them if the graph
contains an edge between the corresponding vertices.

The edges drawn may be curved and may intersect.
However, it is poor practice to let an edge pass or touch any other vertex in
addition to its two defining vertices.
Use arrows to denote directed edges.
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Basic Definitions: Graphical Representation

Which of the following drawings show simple graphs?

multigraph
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UNIVERSITÄT SALZBURG

Basic Definitions: Graphical Representation

Which of the following drawings show simple graphs?

not a simple graph: loop!

not a graph

this is a graph!

multigraph
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Basic Definitions: Directed Graph

Definition 219 (Directed graph, Dt.: (schlichter endlicher) gerichteter Graph)
For n P N and m P N0, a (simple finite) directed graph, or digraph, G :“ pV ,Eq with n
vertices (aka nodes) and m edges consists of a vertex set V :“ tv1, v2, . . . , vnu and an
edge set E :“ te1, e2, . . . , emu, where V X E “ {0 and each edge is an ordered pair of
distinct vertices:

E Ď tpu, vq : u, v P V and u ‰ vu.

a

b

c

d

e a

b

c

d

e

For a digraph, uv indicates the edge pu, vq, i.e., an edge where u is the tail and v
is the head.
In this lecture we will always specify a directed graph explicitly; that is, the term
“graph” without the qualifier “directed” shall mean “undirected graph”.
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b

c

d

e a

b

c

d

e

For a digraph, uv indicates the edge pu, vq, i.e., an edge where u is the tail and v
is the head.
In this lecture we will always specify a directed graph explicitly; that is, the term
“graph” without the qualifier “directed” shall mean “undirected graph”.
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Basic Definitions: How to Deal with V “ {0

There is no consensus on whether or not to allow V “ {0 in the definition of a
graph. (Of course, if V “ {0 then E “ {0.)
And, indeed, there are pros and cons of allowing V “ {0.

Furthermore, if V “ {0 is allowed then there is little consensus on how to call such
a graph:

Common terms are order-zero graph, K0, and null graph.
Some authors also use the term empty graph to indicate V “ {0 while other
authors prefer to reserve this term for a graph with E “ {0 but V ‰ {0.

Convention
We will always assume that every (directed) graph has at least one node.
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Basic Definitions — Warning!

No common terminology
The terminology in graph theory lacks a rigorous standardization, both in the German
and in the English literature.

In several cases the meanings of different terms coincide for simple undirected
graphs, which seems to serve as a justification for authors to freely mix and
match terms.
Thus, always make sure to check how some author defines standard terms of
graph theory . . .
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Undirected Graphs as Directed Graphs

It is straightforward to represent an undirected graph as a directed graph.

Hence, undirected graphs can be seen as a special case of directed graphs, and
most algorithms that work for directed graphs are applicable to undirected
graphs, too.

a b c

d e f
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UNIVERSITÄT SALZBURG

Undirected Graphs as Directed Graphs

It is straightforward to represent an undirected graph as a directed graph.
Hence, undirected graphs can be seen as a special case of directed graphs, and
most algorithms that work for directed graphs are applicable to undirected
graphs, too.

a b c

d e f

a b c

d e f

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 311/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Directed Graphs and Relations

There is an elementary mapping from relations to digraphs!

E.g., the relation R on the set ta, b, c, d, eu, with

R :“ tpa, bq, pb, aq, pd, cq, pe, aq, pe, bqu,

corresponds to the following directed graph:

a

b

c

d

e

Hence, statements about relations can be translated to statements about
digraphs, and vice versa.
Note, though, that the digraph corresponding to a relation

need not be simple but might contain loops,
need not have a finite vertex set.

Simplified representation of the digraph of an order relation: Hasse diagram.
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Directed Graphs and Relations: Hasse Diagram

Consider the poset pS,Rq, where S :“ tn P N : 1 ă n ď 12u and R denotes the
partial order of divisibility on S. (That is, for a, b P S, we have a R b iff a | b.)

(1) Redraw the digraph such that all oriented (non-loop) edges point upwards.
(2) Now remove all loops (that result from the reflexivity of the partial order).
(3) Next, remove all edges implied by transitivity.
(4) Finally, shrink all node markers to dots.
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Directed Graphs and Relations: Hasse Diagram

Consider the poset pS,Rq, where S :“ tn P N : 1 ă n ď 12u and R denotes the
partial order of divisibility on S. (That is, for a, b P S, we have a R b iff a | b.)
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Hasse diagram

(1) Redraw the digraph such that all oriented (non-loop) edges point upwards.
(2) Now remove all loops (that result from the reflexivity of the partial order).
(3) Next, remove all edges implied by transitivity.
(4) Finally, shrink all node markers to dots.

Definition 220 (Hasse diagram)
The graph obtained after carrying out Steps (1)–(4) is the Hasse diagram of the poset.
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Real-World Application: Precedence Graph

Typically, some statements of a computer program could be executed in parallel.

A precedence graph is a directed graph that models dependences. E.g., the
dependence of statements of a computer program on other statements:

Each statement is represented by a vertex.
There is an edge from vertex u to vertex v if the statement that corresponds
to v has to be executed after the statement of u.

Precedence graphs are used in all sorts of scheduling tasks: E.g., job
scheduling, concurrency control and instruction scheduling, resolving linker
dependencies, data serialization, automated parallelization of sequential code.

(1) a := 1
(2) b := 2
(3) c := 3
(4) d := a + 2
(5) e := 2a + b
(6) f := d + c
(7) g := c + e
(8) h := d + e + f

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 314/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Basic Definitions: Adjacency and Degree

Definition 221 (Adjacent, Dt.: benachbart)
Two vertices u, v P V of a graph G :“ pV ,Eq are adjacent if uv P E; the edge uv is
incident to the vertices u and v.

Definition 222 (Degree, Dt.: Grad)
The degree (aka valence) of a vertex u of a graph G :“ pV ,Eq is the number of edges
incident to u. It is denoted by degpuq.
For directed graphs, it is common to distinguish between the in-degree, deg´

puq, i.e.,
the number of edges vu for v P V , and the out-degree, deg`

puq, i.e., the number of
edges uv for v P V .
The degree of a graph is the maximum of the degrees of its vertices.

Definition 223 (Subgraph, Dt.: Teilgraph)
A graph G1 :“ pV 1,E1

q is a subgraph of a (directed) graph G :“ pV ,Eq if V 1
Ď V and

E1
Ď E such that all edges of E1 are formed by vertices of V 1.
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UNIVERSITÄT SALZBURG

Basic Definitions: Adjacency and Degree

Definition 221 (Adjacent, Dt.: benachbart)
Two vertices u, v P V of a graph G :“ pV ,Eq are adjacent if uv P E; the edge uv is
incident to the vertices u and v.

Definition 222 (Degree, Dt.: Grad)
The degree (aka valence) of a vertex u of a graph G :“ pV ,Eq is the number of edges
incident to u. It is denoted by degpuq.
For directed graphs, it is common to distinguish between the in-degree, deg´

puq, i.e.,
the number of edges vu for v P V , and the out-degree, deg`

puq, i.e., the number of
edges uv for v P V .
The degree of a graph is the maximum of the degrees of its vertices.

Definition 223 (Subgraph, Dt.: Teilgraph)
A graph G1 :“ pV 1,E1

q is a subgraph of a (directed) graph G :“ pV ,Eq if V 1
Ď V and

E1
Ď E such that all edges of E1 are formed by vertices of V 1.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 315/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Basic Definitions: Adjacency Matrix

Definition 224 (Adjacency matrix, Dt.: Adjazenzmatrix)
The adjacency matrix of a (directed) graph G :“ pV ,Eq is an nˆ n matrix M, where
n :“ |V | and

mij :“

"

1 if vivj P E,
0 otherwise.

a

b

c

d

e a b c d e
a
b
c
d
e

0 1 1 1 0
1 0 0 1 0
1 0 0 0 1
0 0 1 0 1
1 1 0 0 0

i j

The adjacency matrix M is symmetric for undirected graphs, and all diagonal
elements are zero for simple graphs.
Note: Storing M (as an nˆ n array) requires Θpn2

q memory!
Adjacency lists (and their variants) help to preserve memory if |E| ! |V |2.
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Basic Definitions: Regularity

Definition 225 (Regular graph, Dt.: regulärer Graph)
A graph G is regular if every vertex of G has the same degree. A regular graph with
vertices of degree k is called a k-regular graph or regular graph of degree k.

A 3-regular graph is known as a cubic graph, and a 4-regular graph is known as a
quartic graph.
For directed regular graphs it is common to demand that the in-degree and the
out-degree of each vertex is identical.
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Basic Properties of Graphs

Lemma 226 (Degree sum formula)
The sum over all degrees of vertices of a graph G :“ pV ,Eq equals twice the number
of its edges, i.e.,

ř

νPV degpνq “ 2|E|.

Sketch of proof : Adding one edge increases the sum of the degrees by two.

Corollary 227 (Euler’s Handshaking Lemma, Dt.: Handschlag-Lemma)
In every graph the number of vertices of odd degree is even.

Simple application of Euler’s Handshaking Lemma:
Suppose that a party is attended by 15 guests. Is it possible that every guest
at the party knows all others except for precisely one guest?
No: Consider a graph with 15 nodes (guests) where two nodes are linked by
an edge if the corresponding guests do not know each other. Hence, we
would get 15 nodes of degree one, in contradiction to Cor. 227.
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7 Graph Theory
What is a (Directed) Graph?
Paths

Walks
Connectedness
Euler Tour and Hamilton Cycle

Trees
Special Graphs
Graph Coloring
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Walks

Definition 228 (Walk, Dt.: Wanderung, Kantenfolge)
A walk of length k, with k P N0, on G :“ pV ,Eq is an alternating sequence

v0e1v1e2v2 . . . ekvk

of k ` 1 vertices v0, v1, . . . , vk P V and k edges e1, . . . , ek P E such that

@p1 ď i ď kq ei “ vi´1vi .

Often, a walk of length k is written simply as

v0v1v2 . . . vk .

Conventionally, v0 is called the start vertex (or initial vertex) of the walk, and vk is
called its end vertex (or terminal vertex). Note that vi´1 ‰ vi for i P t1, 2, . . . , ku.

Definition 229 (Closed walk, Dt.: geschlossene Wanderung)
A walk is called closed if the start vertex and the end vertex are identical. A closed
walk of length k is called trivial if k ď 2.
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Paths, Trails, Tours and Cycles

Definition 230 (Trail, Dt.: Weg)
A trail in a (directed) graph G is a walk in which all edges are distinct.

Definition 231 (Path, Dt.: Pfad)
A path in a (directed) graph G is a walk in which all vertices are distinct.

Definition 232 (Tour, Dt.: Tour)
A tour in a (directed) graph G is a closed trail.

Definition 233 (Cycle, Dt.: Zyklus, Kreis)
A cycle in a (directed) graph G is a non-trivial closed walk in which all but the start and
the end vertices are distinct.

Note: Distinct vertices implies distinct edges; i.e., every path is a trail and every
cycle is a tour.
Note that some authors prefer to use the terms “path”, “simple path”, “cycle” and
“simple cycle” instead of “trail”, “path”, “tour” and “cycle” . . .
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Connectedness

Definition 234 (Connected component, Dt.: Zusammenhangskomponente)
A connected component of a graph G :“ pV ,Eq is a maximal subgraph G1 :“ pV 1,E1

q

of G such that for every unordered pair tu, vu, with u, v P V 1 and u ‰ v, there exists a
path between u and v within G1.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 322/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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path between u and v within G1.

cut vertex

Definition 235 (Cut vertex, Dt.: Artikulationspunkt, Schnittknoten)
A cut vertex of a graph G :“ pV ,Eq is a vertex v P V such that the removal of v and of
all edges incident to v would increase the number of connected components.
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path between u and v within G1.

cut vertex

Definition 235 (Cut vertex, Dt.: Artikulationspunkt, Schnittknoten)
A cut vertex of a graph G :“ pV ,Eq is a vertex v P V such that the removal of v and of
all edges incident to v would increase the number of connected components.

Definition 236 (Connected, Dt.: zusammenhängend)
A graph is connected if it contains only one connected component.
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Connectedness

Definition 237 (Weakly connected, Dt.: schwach zusammenhängend)
A directed graph is weakly connected if replacing all its directed edges by undirected
edges results in a connected (undirected) graph.

Definition 238 (Strong component, Dt.: starke Zusammenhangskomponente)
A strong component (aka strongly connected component) of a directed graph
G :“ pV ,Eq is a maximal subgraph G1

“ pV 1,E1
q of G such that for every ordered pair

pu, vq, with u, v P V 1 and u ‰ v, there exists a path from u to v within G1.

Definition 239 (Strongly connected, Dt.: stark zusammenhängend)
A directed graph G :“ pV ,Eq is strongly connected if it consists of only one strong
component, i.e., if for every ordered pair pu, vq, with u, v P V and u ‰ v, there exists a
path from u to v.
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Seven Bridges of Königsberg

Early 18th century: Does there exist a trail (or even a tour) through the city of
Königsberg that crosses every of its seven bridges exactly once? (Of course,
every bridge had to be crossed fully, and no other means to get across the river
Pregel were allowed.)

A

B C

D

1 2

3

4

5 6 7

[Image credit for background image: Wikipedia.]

In 1736, Leonhard Euler (1707–1783) treated this problem as a graph problem
and proved, using a parity argument, that such a trail or tour does not exist.
His solution is generally regarded as the first theorem of graph theory.
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In 1736, Leonhard Euler (1707–1783) treated this problem as a graph problem
and proved, using a parity argument, that such a trail or tour does not exist.

His solution is generally regarded as the first theorem of graph theory.
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Euler Tour and Hamilton Cycle

Definition 240 (Euler trail, Dt.: Eulerscher Weg)
An Euler trail is a trail that contains all edges of a graph exactly once.

Definition 241 (Euler tour, Dt.: Eulersche Tour)
An Euler tour is a tour that contains all edges of a graph exactly once. A graph is an
Eulerian graph if it has an Euler tour.

Definition 242 (Hamilton path, Dt.: Hamiltonscher Pfad)
A Hamilton path is a path that passes through all vertices of a graph exactly once.

Definition 243 (Hamilton cycle, Dt.: Hamiltonscher Kreis)
A Hamilton cycle is a cycle that passes through all vertices of a graph exactly once.
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Euler Tour and Hamilton Cycle

walk
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Euler Tour

Theorem 244
Suppose that every node of a graph G has degree at least one. Then G has an Euler
tour if and only if G is connected and every vertex of G has even degree.

Theorem 245
Suppose that every node of a graph G has degree at least one. Then G has an Euler
trail (but no Euler tour) if and only if G is connected and exactly two vertices of G have
odd degrees.

Corollary 246
An Euler tour or trail in a graph G :“ pV ,Eq can be determined in Op|E|q time, if it
exists. Otherwise, again in Op|E|q time, we can determine that neither an Euler tour
nor an Euler trail exists in G.
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Constructive Proof of Theorem 244

Sketch of proof of Theorem 244 : Let G :“ pV ,Eq be a graph such that every node of
a graph G has degree at least one.

Suppose that G has an Euler tour T . It is obvious that G is connected. Every
occurrence of a vertex v P V in T is preceded and followed by an edge. Thus, each
time T passes through v, two of the edges incident to v are consumed. Since T does
neither start nor end in v, it is necessary that degpvq is even.

Now suppose that every vertex of G has even degree, and, of course, that G is
connected. We give a constructive proof that G admits an Euler tour. Pick any vertex v
to start with and trace out a trail T . Every edge that is being traversed is marked. As
above, we observe that passing through a vertex that is neither the start nor the end
vertex of T consumes two edges.
We realize that, eventually, T will get us back to v. (We cannot be stuck in some other
vertex w since w has even degree.) If at the time when we are back at v every vertex
of T has no unmarked incident edge then we are done. Otherwise, we start a new trail
T 1 at a vertex w of T which has an unmarked incident edge and follow it until we get
back to w.
This process continues until no unmarked edges remain. At the end the trails are
spliced together appropriately.
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Sketch of proof of Theorem 244 : Let G :“ pV ,Eq be a graph such that every node of
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Hamilton Cycle

Theorem 247
It is NP-complete to determine whether a Hamilton cycle or Hamilton path exists in a
general graph.

Informally, Theorem 247 says that no (deterministic sequential) algorithm is
known which determines the existence of a Hamilton cycle or path in an n-vertex
graph in a time that is a polynomial function of n.
Even worse, an efficient (polynomial-time) algorithm will never be found unless
P “ NP holds, which seems rather unlikely.

Theorem 248 (Dirac, 1952)
If the degree of every vertex of an n-vertex graph G, with n ě 3, is at least r n

2 s then G
has a Hamilton cycle.

Theorem 249 (Ore, 1960)
If the sum of the degrees of every pair of non-adjacent vertices of an n-vertex graph G,
with n ě 3, is at least n then G has a Hamilton cycle.
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7 Graph Theory
What is a (Directed) Graph?
Paths
Trees

Basic Definitions
Elementary Properties
Binary Trees
Balance and Height
Spanning Trees
Recursion Trees

Special Graphs
Graph Coloring
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Trees

Definition 250 (Acyclic, Dt.: zyklenfrei)
A graph is called acyclic if it contains no cycles.

Definition 251 (Tree, Dt.: Baum)
A tree is an undirected graph that is acyclic and connected.

For trees most authors prefer to speak about nodes rather than vertices.
Unless explicitly stated otherwise, we will only deal with trees that have at least
one node. (Some authors call a tree with V “ E “ {0 a null tree.)
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Trees

Definition 252 (Rooted tree, Dt.: Baum mit Wurzel, Wurzelbaum)
A rooted tree is a directed graph with a node u such that

1 the graph contains u as node (“root”),

2 paths from u to all other nodes of the graph exist,
3 the in-degree of u is zero,
4 the in-degree of every other node of the graph is one.

It is common practice to draw rooted trees from the root downwards such that the
(downwards) orientations of the edges are implied by the positions of the nodes.

u
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Trees

Definition 253 (Child and parent, Dt.: Kind und Eltern)
For a rooted tree T :“ pV ,Eq and nodes a, b P V , the node b is a child of the node a,
and a is the parent of b, if the edge ab belongs to E. Siblings are nodes which share
the same parent.

Definition 254 (Descendant and ancestor, Dt.: Nachfahre und Vorfahre)
In a rooted tree T :“ pV ,Eq, with c, d P V , a node d is a descendant of a node c, and
c is an ancestor of d, if c ‰ d and if the path from the root to d contains c.

u
a

b
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Definition 253 (Child and parent, Dt.: Kind und Eltern)
For a rooted tree T :“ pV ,Eq and nodes a, b P V , the node b is a child of the node a,
and a is the parent of b, if the edge ab belongs to E. Siblings are nodes which share
the same parent.

Definition 254 (Descendant and ancestor, Dt.: Nachfahre und Vorfahre)
In a rooted tree T :“ pV ,Eq, with c, d P V , a node d is a descendant of a node c, and
c is an ancestor of d, if c ‰ d and if the path from the root to d contains c.
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Trees

Definition 255 (Leaf, Dt.: Blatt)
A leaf of a rooted tree is a node without children. For a tree (that is not rooted) a leaf
is a node with degree 1. All non-leaf nodes of a (rooted) tree are called inner nodes.

Of course, the root of a rooted tree T may also be the (only) leaf of T .

u
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Trees

Definition 256 (Subtree, Dt.: Teilbaum)
A tree T 1 :“ pV 1,E1

q is a subtree of a tree T :“ pV ,Eq rooted at the node u if
1 T 1 is a subgraph of T ,

2 T 1 is rooted at a node v that is a descendant of u,

and

3 T 1 contains all descendants of v in T , together with the appropriate edges of E.
A subtree rooted at v is called a proper subtree if v is a child of u.

Warning
Some authors do not make the
distinction between the node v
being a child of u or some
arbitrary descendant of u.

u

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 335/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Trees

Definition 257 (Ordered tree, Dt.: geordneter Baum)
An ordered tree is a rooted tree T such that the children of every node of T are
arranged in some specific order, e.g., by means of a numbering scheme.

Definition 258 (Forest, Dt.: Wald)
A forest is a graph such that all its connected components are trees.
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Real-World Application: File System as a Rooted Tree

/

bin home lib usr tmp var

bash cowi1 cowi2 bin include

man sshaugsten held

public-www

held.html

bin

cl.shpics

tmp

f.txt

img1.jpg img2.jpg img3.jpg

The root of the tree is the root
directory /.
Inner nodes are (non-empty)
directories.
Leaves are files (or empty
directories).
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Trees: Elementary Properties

Theorem 259
Every pair of nodes in a tree is connected by exactly one path.

Theorem 260
In a rooted tree there exists exactly one path from the root to any node.

Lemma 261
Removing an edge from a (rooted) tree results in a graph with two connected
components, each of which is a (rooted) tree.
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Trees: Elementary Properties

Theorem 262
For every (rooted) tree T :“ pV ,Eq we get |E| “ |V | ´ 1.

Proof of Theorem 262 for rooted trees : We use structural induction relative to proper
subtrees. Obviously, the claim holds for the minimal elements, i.e., for trees that
contain no proper subtrees and, thus, have only a root and no edges.
Now consider an arbitrary but fixed rooted tree T :“ pV ,Eq and suppose that the
equality claimed holds for all its k ą 0 proper subtrees pV1,E1q, . . . , pVk ,Ekq. (We do
not need to assume explicitly that it holds for all subtrees of T .) We get

|E| “ k `
k
ÿ

i“1
|Ei | “ k `

k
ÿ

i“1
p|Vi | ´ 1q “ k ` p´kq `

k
ÿ

i“1
|Vi | “

k
ÿ

i“1
|Vi |

“ |V | ´ 1,

thus establishing the claim also for T “ pV ,Eq.

Corollary 263
If |V | ą 1 holds for a (rooted) tree T :“ pV ,Eq, then T has at least one leaf.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 339/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Trees

Definition 264 (Depth, Dt.: Tiefe)
The depth of the root u of a rooted tree T :“ pV ,Eq is 0, and the depth of a node
v ‰ u of T is k if the depth of the parent of v is k ´ 1, for all v P V .

Warning
Some authors prefer to regard the root as a node at depth 1. Hence, make sure to
check how depth is defined in a textbook prior to using the results stated!

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 340/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Trees

Definition 265 (Level, Dt.: Niveau)
A level of a rooted tree T comprises all nodes of T which have the same depth.

Definition 266 (Height, Dt.: Höhe)
The height of a rooted tree T is the maximum depth of nodes of T .
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2 2 2

3

Level 1

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 341/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Binary Tree

Definition 267 (Binary tree, Dt.: Binärbaum)
A binary tree is an ordered tree T with a root node u and at most two proper subtrees
that are called left subtree, L, and right subtree, R. If T has a left (right, resp.) subtree
then L (R, resp.) is in turn a binary tree rooted in the left (right, resp.) child of u.

Definition 268 (Complete binary tree, Dt.: vollständiger Binärbaum)
A complete binary tree is a binary tree in which every level, except possibly the last
level, is completely filled, and the last level is filled from left to right.

E.g., a (binary) heap is a complete binary tree.

Definition 269 (Perfect binary tree, Dt.: perfekter Binärbaum)
A perfect binary tree is a binary tree that has the maximum number of nodes (relative
to its height).
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Binary Search Tree

Definition 270 (Binary search tree, Dt.: binärer Suchbaum)
A binary search tree is a binary tree T which has distinct values associated with its
nodes such that (relative to some total order)

if it has a left subtree L then
1 all values of nodes in L are less than the root value,
2 L is a binary search tree itself,

if it has a right subtree R then
3 all values of nodes in R are greater than the root value,
4 R is a binary search tree itself.
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Balanced Binary Trees

Definition 271 (k-balanced tree, Dt.: k-balanzierter Baum)
A binary tree is height-balanced with balance factor k if it either has no proper
subtrees

or if
1 it has two proper subtrees and the heights of both subtrees differ by not more

than k, or if
2 it has one proper subtree of height at most k ´ 1,

and if
3 all proper subtrees are height-balanced with balance factor k.

E.g., for k :“ 1: AVL tree.
Trees with balance factor 1 are simply called balanced or self-balancing.

Definition 272 (Perfectly balanced binary tree, Dt.: perfekt balanz. Binärbaum)
A binary tree T is perfectly balanced if all inner nodes of T , except possibly on the
second-last level, have exactly two children.

E.g., a (binary) heap is a perfectly balanced binary tree.
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Balanced Binary Trees

Lemma 273
A perfectly balanced binary tree has leaves only at its two bottom-most levels.

Lemma 274
A complete binary tree is perfectly balanced.
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Height-Related Properties of Binary Trees

Lemma 275
For i P N0, level i of a binary tree contains at most 2i nodes.

Sketch of proof by induction : The claim holds for i :“ 0. If we have at most 2k nodes
on level k then we have at most 2 ¨ 2k

“ 2k`1 nodes on level k ` 1.

Lemma 276
Let h be the height and n be the number of nodes of a binary tree. Then
h ě rlogpn` 1qs´ 1, i.e., h P Ωplog nq.

Proof : Lemma 275 implies that a binary tree with height h contains at most
h
ÿ

i“0
2i
“ 2h`1

´ 1

nodes. Hence, n ď 2h`1
´ 1 and, thus, h ě rlog2pn` 1qs´ 1.

Theorem 277
If T is a balanced binary tree with n nodes and height h then h P Θplog nq.
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Spanning Trees

Definition 278 (Spanning tree, Dt.: spannender Baum)
A spanning tree of a connected graph G is a subgraph of G that

1 is a tree,
2 includes all vertices of G.

Theorem 279
Every connected graph G contains a spanning tree.

a d

b c

e
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Spanning Trees

Definition 280 (Weighted graph, Dt.: gewichteter Graph)
An (edge-)weighted graph is a graph in which every edge is assigned a (non-negative)
real number, the so-called weight or cost.
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Definition 280 (Weighted graph, Dt.: gewichteter Graph)
An (edge-)weighted graph is a graph in which every edge is assigned a (non-negative)
real number, the so-called weight or cost.

Definition 281 (Minimum spanning tree, Dt.: minimal spannender Baum)
A minimum spanning tree (MST) of a weighted connected graph G is a spanning tree
T of G such that the sum of the weights of the edges of T is minimum over all
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Recursion Tree

A recursion tree visualizes the recursive calls and the work done at each call for a
recurrence relation.

E.g., consider Tpnq “ 2Tpn{2q ` n2.

We get the following recursion tree with
height h “ log2 n`Op1q.

Summing across every level gives the total work done per level.
Summing over all levels yields Tpnq: This is a geometric series, with T P Θpn2

q.
Master Theorem 215: We have a “ b “ k “ 2 and, thus, a ă bk .
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Recursion Tree

Note that in this case the height of the tree does not really matter: The amount of
work done at every level decreases so quickly that the total work is only a
constant factor more than the work done at the root.
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Recursion Tree

For the recurrence relation Tpnq “ a ¨ T
` n

b
˘

` nk we get an a-ary recursion tree:

The problem size at level i is n{bi .
The work done at every node at level i is pn{biq

k .
The total work done at level i is ai

¨ pn{biq
k .

The tree has logb n`Op1q levels, i.e., a height of Oplog nq.
The total number of leaves is alogb n

“ nlogb a. (Recall logb x “ loga x{loga b.)
The work done is constant per leaf.
Total work:

Tpnq “
ÿ

0ďiălogb n
ai
¨

´ n
bi

¯k
`Opnlogb a

q.
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Recursion Tree and Master Theorem

Total work:

Tpnq “
ÿ

0ďiălogb n
ai
¨

´ n
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¯k
`Opnlogb a

q.

If a “ bk , i.e., if k “ logb a, then

ai
¨

´ n
bi

¯k
“

´ a
bk

¯i
¨ nk

“ nk
“ nlogb a.

Hence, the same order of work is done on every level, and since the tree has
Oplog nq levels, we get T P Θpnlogb a log nq; recall Thm. 215.
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If a ă bk , i.e., if k ą logb a, then nk grows asymptotically faster than the number of
leaves. Hence, asymptotically the total work is dominated by the work done at the
root, and we get T P Θpnk

q; recall Thm. 215.
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Real-World Application: Collaboration Graph and the Erdös Number

A collaboration graph for a set of n scientists is a graph with n vertices such that
two vertices are connected by an edge if the corresponding scientists have at
least one joint publication.

The Erdös number of a scientist is the “collaborative distance” of a scientist to the
extremely prolific Hungarian mathematician Paul Erdös (1913–1996, more than
500 co-authors and more than 1500 publications): Erdös has 0, and a scientist
has Erdös number k ` 1 if k is the lowest Erdös number of his/her co-authors.
One’s Erdös number can be obtained by computing minimum-weight paths on a
collaboration graph.
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Real-World Application: Algebraic Expression Trees

An algebraic expression tree is a rooted tree that corresponds to an expression.
E.g., an in-order traversal of the tree

2 x

3

4

*

*

+

produces the standard (infix) expression p2x ` 3q ¨ 4.

A post-order traversal yields the postfix expression 2 x ¨ 3` 4 ¨ , while a pre-order
traversal yields the prefix expression ¨ p`p¨ p2 xq 3q 4q.
The analysis of expression trees is a central task for the simplification and parallel
evaluation of an expression.
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7 Graph Theory
What is a (Directed) Graph?
Paths
Trees
Special Graphs

Complete and Bipartite Graphs
Hypercube
Isomorphic Graphs
Planar Graphs

Graph Coloring
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Complete and Bipartite Graphs

Definition 282 (Complete graph, Dt.: vollständiger Graph)
For n P N, the complete graph on n vertices, commonly denoted by Kn, is an
undirected graph with n vertices in which every pair of vertices is adjacent.

Definition 283 (Bipartite graph, Dt.: bipartiter Graph)
An undirected graph G :“ pV ,Eq is a bipartite graph if V can be partitioned into two
(non-empty) subsets V1,V2 such that E Ď t tv1, v2u : v1 P V1, v2 P V2u.

Definition 284 (Complete bipartite graph, Dt.: vollständig-bipartiter Graph)
An undirected graph G :“ pV ,Eq is a complete bipartite graph if V can be partitioned
into two (non-empty) subsets V1,V2 such that E “ t tv1, v2u : v1 P V1, v2 P V2u. If
n :“ |V1| and m :“ |V2| then G is denoted by Kn,m.
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For n P N, the complete graph on n vertices, commonly denoted by Kn, is an
undirected graph with n vertices in which every pair of vertices is adjacent.

a

b

c
d

eK5
a

b

c

d

f

e

Definition 283 (Bipartite graph, Dt.: bipartiter Graph)
An undirected graph G :“ pV ,Eq is a bipartite graph if V can be partitioned into two
(non-empty) subsets V1,V2 such that E Ď t tv1, v2u : v1 P V1, v2 P V2u.

Definition 284 (Complete bipartite graph, Dt.: vollständig-bipartiter Graph)
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Definition 283 (Bipartite graph, Dt.: bipartiter Graph)
An undirected graph G :“ pV ,Eq is a bipartite graph if V can be partitioned into two
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n :“ |V1| and m :“ |V2| then G is denoted by Kn,m.
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UNIVERSITÄT SALZBURG

Complete and Bipartite Graphs

The edges and corners of a cube can be interpreted as a bipartite graph.
E H

A B

C D

E F

G H

A B

CD

F G

If we add all diagonals that cross the cube then we get K4,4.
E H

A B

C D

E F

G H

A B

CD

F G
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Complete and Bipartite Graphs

Lemma 285
Let G :“ pV ,Eq be a bipartite graph and let V1,V2 be the partition of V according to
Def. 283. Then

ÿ

v1PV1

degpv1q “
ÿ

v2PV2

degpv2q “ |E|.

Proof :
As each edge has exactly one vertex from V1, we can write

ÿ

v1PV1

degpv1q “ |E|.

Similarly,
ÿ

v2PV2

degpv2q “ |E|.
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Real-World Application: Task Assignment and Matchings

Suppose that we are given a set of tasks and a set of processors. We know
which processor can carry out which tasks.

These relations can be represented as a bipartite graph.
How can we get the maximum number of tasks processed concurrently?
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UNIVERSITÄT SALZBURG

Hypercube

Definition 287 (Hypercube)
For n P N0, the hypercube Qn is defined recursively as follows:

1 Q0 is a single vertex;
2 Qn`1 is obtained by taking two disjoint copies of Qn and linking each vertex in one

copy of Qn to the corresponding vertex in the other copy of Qn.

Q2

Q0

Q1

We could also obtain Qn by labeling 2n vertices with distinct n-bit binary strings,
and by connecting those vertices by edges whose strings differ in exactly one bit.
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Lemma 288
For n P N0, the hypercube Qn is a regular graph of degree n with 2n vertices and
n ¨ 2n´1 edges; it is bipartite for n ě 1.

We could also obtain Qn by labeling 2n vertices with distinct n-bit binary strings,
and by connecting those vertices by edges whose strings differ in exactly one bit.
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Lemma 288
For n P N0, the hypercube Qn is a regular graph of degree n with 2n vertices and
n ¨ 2n´1 edges; it is bipartite for n ě 1.
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Real-World Application: Hamilton Cycles in Qn Yield Gray Codes

Definition 289 (Gray code)
A (cyclic) Gray code of an ordered sequence of 2n entities, for n P N, is a sequence of
n-bit binary strings such that the encodings of two neighboring entities have Hamming
distance one, i.e., differ by exactly one bit.

Gray codes are widely used in position encoders and for error detection and
correction in digital communication.

Lemma 290
For n P N with n ě 2, the number of different n-bit cyclic Gray codes equals the
number of different Hamilton cycles in Qn.
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UNIVERSITÄT SALZBURG

Real-World Application: Hamilton Cycles in Qn Yield Gray Codes

Definition 289 (Gray code)
A (cyclic) Gray code of an ordered sequence of 2n entities, for n P N, is a sequence of
n-bit binary strings such that the encodings of two neighboring entities have Hamming
distance one, i.e., differ by exactly one bit.

Gray codes are widely used in position encoders and for error detection and
correction in digital communication.

Lemma 290
For n P N with n ě 2, the number of different n-bit cyclic Gray codes equals the
number of different Hamilton cycles in Qn.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 363/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Isomorphic Graphs

Definition 291 (Isomorphic, Dt.: isomorph)
Two (directed) graphs G1 “ pV1,E1q and G2 “ pV2,E2q are isomorphic, denoted by
G1 » G2, if there exists a one-to-one mapping f between V1 and V2 that preserves
adjacency; i.e., uv P E1 ô fpuqfpvq P E2 for all u, v P V1. Such a suitable function f is
called graph isomorphism.
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Lemma 292
The relation » is an equivalence relation on graphs.
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Isomorphic Graphs

Don’t be fooled by drawings! Two graphs may be isomorphic even if their
drawings look strikingly different.

Necessary (but not sufficient) conditions for two graphs to be isomorphic: same
numbers of vertices and edges, same degrees.
The complexity of the graph isomorphism problem for general n-vertex graphs is
unknown. No polynomial-time algorithm is known, but the problem is also not
known to be NP-complete. In December 2015, Babai announced a deterministic
algorithm that runs in time 2Oplogc nq time for some positive constant c, i.e., in
quasi-polynomial time. In 2017, Helfgott claimed that one can take c :“ 3.
Practically efficient algorithms for graph canonical labeling are known, though.
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Real-World Application: Non-Isomorphic Trees Represent Molecules

[Cayley 1857]: Molecules can be represented as graphs, where atoms are
represented by vertices and bonds are represented by edges.
Saturated hydrocarbons, CnH2n`2, are given by trees where each carbon atom is
represented by a degree-four vertex and each hydrogen atom is a leaf.

How many different isomers can exist for n :“ 4?
We have exactly two non-isomorphic trees of this type and, thus, two different
isomers of C4H10, namely butane and isobutane.
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Planar Graphs

Definition 293 (Planar graph, Dt.: planarer oder plättbarer Graph)
A planar graph is a graph which can be drawn in the plane without edge crossings. A
suitable drawing is called a (planar) embedding (Dt.: planare Einbettung).

Note: A graph may be planar even if a non-planar embedding is seen!
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UNIVERSITÄT SALZBURG

Planar Graphs

Definition 293 (Planar graph, Dt.: planarer oder plättbarer Graph)
A planar graph is a graph which can be drawn in the plane without edge crossings. A
suitable drawing is called a (planar) embedding (Dt.: planare Einbettung).

Note: A graph may be planar even if a non-planar embedding is seen!

A B C D

E F G H

A

B
C

D

E

F
G

H

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 367/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Real-World Applications of Planar Graphs

Graphs that can be drawn in the plane without edge crossings should be drawn
without edge crossings if a human is to interprete such a drawing: e.g., bus or
subway map, drawing of a molecule, social network.

VLSI circuits are easier/cheaper to manufacture if their connections live in fewer
layers.
A scheme for a planetary gearset is compatible if and only if a suitably designed
graph is planar.

[Image credit: Rohloff AG, http://www.rohloff.de/]

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 368/406

http://www.rohloff.de/


Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Subdivision of a Graph

Definition 294 (Subdivision, Dt.: Unterteilung)
An edge subdivision of the edge uv P E by means of the vertex w R V transforms the
graph G :“ pV ,Eq into the graph G1

“ pV 1,E1
q, where V 1

“ V Y twu and
E1
“ pEztuvuq Y tuw,wvu.

Definition 295 (Subdivision graph, Dt.: Unterteilungsgraph)
A graph G1 is a subdivision graph of G if G1 is obtained from G via a finite sequence of
edge subdivisions.

u

v
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Subdivision of a Graph: Planarity

Theorem 296 (Kuratowski (1930))
A graph is planar if and only if it does not contain a subgraph that is isomorphic to a
subdivision graph of K5 or K3,3.

Is the following graph planar?

No: It contains a subdivision graph of K5 as a
subgraph. Hence, it is not planar.
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Edge Contraction

Definition 298 (Edge contraction, Dt.: Kantenkontraktion)
In a graph G :“ pV ,Eq, the contraction of an edge e P E, with e “ uv for some
u, v P V , replaces u and v by a new vertex w R V such that edges incident to w are all
edges other than e that were incident with u or v. All other nodes and edges are
preserved.

Parallel edges may be unified to get a simple graph rather than a
multigraph with loops.
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Theorem 299 (Wagner (1937))
A graph is planar if and only if it does not contain a subgraph that can be contracted to
K5 or K3,3 via a finite sequence of edge contractions.
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Planar Graphs

Theorem 300 (Hopcroft&Tarjan (1974))
Testing whether a given graph with n vertices is planar can be done in Opnq time.

Definition 301 (Planar subdivision, Dt.: planare Unterteilung)
A face of a PSLG embedding of a planar graph is a maximal connected region of the
plane that is disjoint from all edges.

The embedding of the graph together with the
collection of faces induced is called planar subdivision.

Note that one of the faces of a planar
subdivision is unbounded: outer face.
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Euler’s Formula for Planar Graphs

Theorem 303 (Euler, Dt.: Eulerscher Polyedersatz)
Consider a planar subdivision induced by a connected planar graph G. We denote

the number of its vertices by v,
the number of its edges by e,
the number of its faces by f .

Then
v ´ e ` f “ 2.

Proof : Suppose that G is connected but no tree. Therefore G contains a cycle, and
we may remove an edge from G without destroying its connectivity. The removal of
one edge of a cycle decreases both e and f by one, implying that the value of
v ´ e` f does not change. By using induction we can prove that a series of such
edge removals (for breaking up cycles) does not change the value of v ´ e` f , while
allowing us to transform G into a tree.
If, however, G is a tree then Thm. 262 tells us that 1 “ v ´ e. Since f “ 1, we get
2 “ v ´ e` f , thus establishing the claim.

Euler’s Formula generalizes to v ´ e` f “ 1` c for a planar graph with c
connected components.
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Euler’s Formula for Planar Graphs

Corollary 304
Let v, e, f for a connected planar graph G as defined in Theorem 303. If v ě 3 then

e ď 3v ´ 6 and f ď 2v ´ 4 and f ď 2
3e.

If every vertex of G has a degree of three or greater then we get

v ď 2
3e and e ď 3f ´ 6 and v ď 2f ´ 4.

Furthermore, every planar graph contains one node with degree at most five.

Proof : We prove that 3f ď 2e, which is obvious if f “ 1. We call an edge a “side” of a
face if the edge is in the boundary of the face. Let k denote the total number of sides.
If f ą 1 then each face is bounded by at least three sides, so k ě 3f .
But each edge has at most two different sides, so k ď 2e.
We conclude 3f ď 2e.
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UNIVERSITÄT SALZBURG

Euler’s Formula for Planar Graphs

Corollary 304
Let v, e, f for a connected planar graph G as defined in Theorem 303. If v ě 3 then

e ď 3v ´ 6 and f ď 2v ´ 4 and f ď 2
3e.

If every vertex of G has a degree of three or greater then we get

v ď 2
3e and e ď 3f ´ 6 and v ď 2f ´ 4.

Furthermore, every planar graph contains one node with degree at most five.

Proof : We prove that 3f ď 2e, which is obvious if f “ 1. We call an edge a “side” of a
face if the edge is in the boundary of the face. Let k denote the total number of sides.
If f ą 1 then each face is bounded by at least three sides, so k ě 3f .

But each edge has at most two different sides, so k ď 2e.
We conclude 3f ď 2e.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 374/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Euler’s Formula for Planar Graphs

Corollary 305
K5 is not planar.

Proof : We get v “ 5 and e “
`5

2
˘

“ 10. So, e ď 3v ´ 6 (Cor. 304) does not hold.

Definition 306 (Triangle-free, Dt.: dreiecksfrei)
A triangle-free graph is a graph which does not contain a cycle of length three, i.e., in
which no three vertices form a triangle of edges.

Corollary 307
A triangle-free planar graph has one node of degree at most three and e ď 2v ´ 4
holds (if v ě 3).

Corollary 308
K3,3 is not planar.

Proof : K3,3 is triangle-free and has six vertices and nine edges. If it were planar then,
by Cor. 307, it could have at most 2 ¨ 6´ 4 “ 8 edges. Thus, K3,3 is non-planar.
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Real-World Application: Number of Edges of a Polyhedron

Suppose that a polyhedral model has n vertices. How many edges and faces can
it have at most? What is the storage complexity relative to n?

Theorem 309
The vertices and edges of a simple (bounded) polyhedron form a planar graph.

Corollary 310
A simple (bounded) polyhedron with n vertices has at most 3n´ 6 edges and 2n´ 4
faces.
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Real-World Application: Reducing the Face Count

Recent improvements in laser rangefinder technology allow the digitization of the
shapes of physical objects at extremely high resolutions.
The resulting polyhedral models are huge: E.g., a 0.25 mm model of
Michelangelo’s 5-meter statue of David contains about 1 billion polygonal faces!

Goal of multi-resolution modeling and level-of-detail modeling: Reduce the face
count without sacrificing the visual appearance.
E.g., the left dental model has 424 376 faces, while the other two models have
only a few thousand faces.
Edge contraction is one of the techniques used for reducing the face count.

[Image credit: Michael Garland, Eurographics’99 STAR]
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7 Graph Theory
What is a (Directed) Graph?
Paths
Trees
Special Graphs
Graph Coloring
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Graph Coloring

Definition 311 (Coloring, Dt.: Färbung)
An assignment of colors to all vertices of a graph G is called a (vertex) coloring if
adjacent vertices are assigned different colors.

Definition 312 (k-colorable, Dt.: k-färbbar)
A graph G is k-colorable if k colors suffice to establish a coloring of G.

Definition 313 (Chromatic number, Dt.: chromatische Zahl)
The chromatic number of a graph G, written as χpGq, is the least number of colors
required to color G.

χpKnq “ n.
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The chromatic number of a graph G is two if and only if G is bipartite.
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Graph Coloring

It is straightforward that every planar graph can be colored by six colors and that
every triangle-free planar graph can be colored by four colors.

Still easy to see: Every planar graph can be colored by five colors.

Theorem 315 (Four Color Theorem, Haken and Appel (1976))
Every planar graph can be colored using no more than four colors.

Haken and Appel used a super-computer at the University of Illinois to check
1936 “reducible” configurations. The proof is not accepted by all mathematicians
as it has two parts, one of which can only be solved using computers. (And the
second part that is solveable by hand is also very tedious.)
In 1996, Robertson et alii reduced the number of computer-checked cases to 633.
In 2005, Werner and Gonthier used a general-purpose proof assistant (“Coq”) to
prove the theorem.
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Graph Coloring of 4-Regular Planar Graphs

Determining χpGq is NP-hard even if G is a planar 4-regular graph!

Thus, it is rather unlikely that a polynomial-time algorithm will ever be found for
determining χpGq.
However, fairly efficient heuristics exist for approximate graph coloring.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 381/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Graph Coloring of 4-Regular Planar Graphs

Determining χpGq is NP-hard even if G is a planar 4-regular graph!

Thus, it is rather unlikely that a polynomial-time algorithm will ever be found for
determining χpGq.
However, fairly efficient heuristics exist for approximate graph coloring.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 381/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Graph Coloring and Topographic Maps in a Plane

[Image credit: Wikipedia]

In 1852, Francis Guthrie noticed that the map
of the English counties could be colored with
only four colors.

Subsequent attempts for prove the Four Color
Theorem by de Morgan and Cayley.
In 1879, Kempe released an alleged proof
that was understood to be incorrect eleven
years later. But his work provided the ideas
for Haken and Appel.

Corollary 316
If every entity of a topographic map is a connected area then four colors suffice to
color the map such that no two entities that share a common border (other than a
common point) are colored with the same color.

Note that this result holds only in the plane! E.g., on the surface of a torus seven
colors are sufficient and may be necessary.
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Real-World Application: Channel Assignment

We can solve the channel assignment problem by considering its so-called
unit-disk graph, where

the vertices are given by the broadcast stations,
two vertices are connected by an edge if their service areas overlap.

Obviously, the chromatic number of that graph equals the minimum number of
frequencies needed.
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Real-World Application: Minimum Plane Partition

CG:SHOP Geometric Optimization Challenge 2022: Given is a set S of line
segments in the plane.

We seek a partitioning of S into a minimum number of k subsets S1, . . . ,Sk such
that, for all 1 ď i ď k, the line segments of Si do not intersect pairwise.
An obvious attempt to solve this problem is to construct the conflict graph G for S
and then apply graph coloring to G.
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UNIVERSITÄT SALZBURG

Real-World Application: Index Registers

Optimizing compilers try to store frequently used variables of the body of a loop in
index registers of the CPU (rather than in regular memory).
How many index registers are needed for a given loop?

We set up a graph whose vertices are given by the variables, and where two
vertices are connected by an edge if the corresponding variables ought to be kept
in registers at the same time.
Then the chromatic number of that graph gives the minimum number of registers
needed.

Other applications of graph coloring:
Scheduling consumer-producer interactions to allow concurrency.
Sudoku puzzles.
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UNIVERSITÄT SALZBURG

8 Cryptography
Introduction
Symmetric-Key Cryptography
Public-Key Cryptography
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Introduction — What is Cryptography?

Cryptography is the science of sending and receiving messages in secret code.
A sender A (“Alice”) sends an encoded message to a receiver B (“Bob”).
The goal is to keep the transmission of the message secure (from others to read
it) and to ensure successful communication of the information.

Cryptography has been used for at least 2500 years:
The use of invisible ink and, more generally, steganography can be traced
back to 440 BCE, due to writings by Aeneas Tacticus and Herodotos.
Caesar used an encryption scheme for military communication.

Two main schemes in use nowadays
Symmetric-Key Cryptography (SKC): The same secret key is used for both

encryption and decryption; aka secret-key cryptography.
Public-Key Cryptography (PKC): Different keys are used for encryption and

decryption, with some keys being known publicly; aka asymmetric-key
cryptography.
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Basic Terms

Plaintext — original message.
Ciphertext — encoded/encrypted message.
Encryption — generating ciphertext from plaintext.
Decryption / Deciphering — generating plaintext from ciphertext.
Cryptanalysis — trying to break the encryption by applying various methods.
Adversary, Spy — the message thief.
Eavesdropper — a secret listener who listens to private conversations.
Authentication — the process of proving one’s identity.
Privacy — ensuring that the message is read only by the intended receiver.
(GnuPG: “Privacy is not a crime!”)
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Eavesdropper Attacks

Alice Bob

Eve

ciphertext

ciphertextciphertext
plaintext = Decrypt(ciphertext,key )ciphertext= Encrypt( plaintext,key )

Eve might attempt to
break the encryption,
replay the encrypted message (e.g., login) without breaking the encryption,
modify the message,
block the message,
fabricate a new message.
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Classical Cryptography: Caesar’s Cipher

According to Suetonius, Caesar (100–44 BCE) used an encryption scheme (for
communication with his generals) that shifted the alphabet of the plaintext by
some fixed position value n.

X Y Z A B CW D E F GV

V X Y Z A B CW D E F G

With n :“ 4:
Plaintext: alea iacta est

Ciphertext: epie megxe iwx

Suppose that the (Roman) letters are mapped to the numbers 0, 1, . . . , 25.
Then Caesar’s encryption and decryption with shift n can be computed as follows:

ciphertext :“ Encryptnpplaintextq “ pplaintext ` nq mod 26
plaintext :“ Decryptnpciphertextq “ pciphertext ´ nq mod 26
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Classical Cryptography: Caesar’s Cipher

Likely, Caesar’s cipher was reasonably secure at the time when it was used.

It is broken easily by means of frequency analysis and brute-force attacks — it
offers no security by today’s standards!
Nevertheless, Caesar’s cipher with n :“ 13, aka ROT13, has been (mis-)used for
serious applications even rather recently.
However, it is used within more complex systems, e.g., the Vigenère cipher.

On a Unix machine, the tr utility can be used for carrying out Caesar’s cipher.
E.g.,

echo "alea iacta est" | tr ’A-Za-z’ ’E-ZA-De-za-d’

yields
epie megxe iwx,

and
echo "epie megxe iwx" | tr ’E-ZA-De-za-d’ ’A-Za-z’

recovers the original text
alea iacta est.
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Symmetric-Key Cryptography

A single secret key is used for both encryption and decryption (aka “secret-key
algorithms”).

plaintext ciphertext plaintext
key key

Simple example: Suppose that Alice wants to encrypt a bit string A. Then Alice
and Bob could choose a secret key B and apply a bit-wise XOR (exclusive OR,
‘) — an output bit is 1 if exactly one of the two input bits is 1 — in order to
transmit A‘ B. Then Bob would compute pA‘ Bq ‘ B and, thus, retrieve A.

A B A‘ B pA‘ Bq ‘ B
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Of course, the key B must be known to both Alice and Bob, and, in fact, it must
not be known to anybody else.
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Key Distribution Problem

The key B must be known to both Alice and Bob, and, in fact, it must not be
known to anybody else.
That is, Alice and Bob need to share the secret key in order to be able to encrypt
and decrypt their messages!
What is a secure mechanism for them to exchange a key??

Meet in person at a secret place and share the key?!
Share in parts?!

The key distribution problem is a major roadblock on the road to secure
communication among folks who do not meet regularly.
A second big disadvantage is the need for multiple keys in order to encrypt
messages intended for different receivers.
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Public-Key Cryptography

A pair of keys is used to encrypt and decrypt the messages, with one key being
public.

plaintext ciphertext plaintext
key1 key2

PKC schemes make use of so-called one-way functions which are “easy” to
compute for every input but extremely “hard” to invert for an output given ([Jevons
1874]). For example, consider

multiplication versus factorization (“factorization problem”):
If fpa, bq :“ a ¨ b, then
fpa, bq “ 533 for a :“ 13, b :“ 41;
While you can calculate fp13, 41q in your head, it is less trivial to obtain
a, b such that fpa, bq “ 533;

exponentiation versus logarithms (“discrete log problem”):
If fpa, bq :“ ab, then
fpa, bq “ 243 for a :“ 3, b :“ 5;
Again, finding a and b such that loga 243 “ b is considerably more
difficult.

Diffie and his advisor Hellman were the first to publish a PKC scheme in 1976.
(They were the recipients of the 2015 ACM Turing Award.)
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Diffie-Hellman Symmetric Key Exchange

Alice and Bob share two public numbers: a (large) prime number p P P and a
so-called generator g P t2, 3, . . . , p´ 1u such that for every n P t1, 2, . . . , p´ 1u
there exists a k P N with n “ gk mod p.

Alice Bob
(1) selects s with 1 ă s ă p´ 1 selects t with 1 ă t ă p´ 1
(2) sends S :“ gs mod p to Bob sends T :“ gt mod p to Alice
(3) calculates T s mod p calculates St mod p

We have

T s
“ pgt mod pqs ”p pgt

q
s
“ gts

“ pgs
q

t
”p St .

Hence, k :“ T s mod p “ St mod p can be used as a common key by Alice and
Bob.
In general, the public information is p, g,S and T , while s and t are secret.
To find s, Eve could attempt to solve the discrete log problem S “ gs mod p.
Same for t. At present, nobody knows how to solve this problem efficiently.
Diffie-Hellman key exchange is used by the Tor system to set-up secure
communication links with onion routers.
The Diffie-Hellman key exchange is vulnerable to man-in-the-middle attacks.
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Real-World Application: Diffie-Hellman Key Exchange Sample

Alice Bob
(1) selects s with 1 ă s ă p´ 1 selects t with 1 ă t ă p´ 1
(2) sends S :“ gs mod p to Bob sends T :“ gt mod p to Alice
(3) calculates T s mod p calculates St mod p

Alice and Bob make p :“ 13 and g :“ 2 public.

The number 2 is indeed a
generator modulo 13 because the following powers of two taken modulo 13 yield
the integers 1, 2, . . . , 12: 212, 21, 24, 22, 29, 25, 211, 215, 28, 210, 27, 26.

Alice chooses the private value s :“ 5, while Bob chooses t :“ 6.
We get S “ gs mod p “ 25 mod 13 “ 32 mod 13 “ 6, and
T “ gt mod p “ 26 mod 13 “ 12, which can be exchanged publicly.
Finally, T s mod p “ 125 mod 13 “ p12140 ¨ 13` 12q mod 13 “ 12, and
St mod p “ 66 mod 13 “ p3588 ¨ 13` 12q mod 13 “ 12.
Hence, Alice and Bob have managed to exchange 12 as a master key for their
future communication.

No toy numbers!
Of course, in practice considerably larger values are chosen for p!!
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Number Theory and Cryptography

Lemma 317

Let a, b P N such that gcdpa, bq “ 1. Then there exists x P Z such that a ¨ x ”b 1.

Proof : Since gcdpa, bq “ 1, Cor. 125 tells us that there exist x, y P Z such that
a ¨ x ` b ¨ y “ 1. Hence, a ¨ x “ 1´ b ¨ y ”b 1.

Definition 318 (Euler’s Totient Function, Dt.: Eulersche φ-Funktion)
Euler’s totient function φ : NÑ N is defined as

φpnq :“ |Un|, with Un :“ tx P N : 1 ď x ď n ^ gcdpx, nq “ 1u.

The set Un is called the group of units of n.

Hence, φpnq is the number of integers among 1, 2, . . . , n that are coprime to n.
We have φp4q “ 2, φp5q “ 4, φp6q “ 2, and φppq “ p´ 1 for every p P P.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 400/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Number Theory and Cryptography

Lemma 317

Let a, b P N such that gcdpa, bq “ 1. Then there exists x P Z such that a ¨ x ”b 1.

Proof : Since gcdpa, bq “ 1, Cor. 125 tells us that there exist x, y P Z such that
a ¨ x ` b ¨ y “ 1. Hence, a ¨ x “ 1´ b ¨ y ”b 1.

Definition 318 (Euler’s Totient Function, Dt.: Eulersche φ-Funktion)
Euler’s totient function φ : NÑ N is defined as

φpnq :“ |Un|, with Un :“ tx P N : 1 ď x ď n ^ gcdpx, nq “ 1u.

The set Un is called the group of units of n.

Hence, φpnq is the number of integers among 1, 2, . . . , n that are coprime to n.
We have φp4q “ 2, φp5q “ 4, φp6q “ 2, and φppq “ p´ 1 for every p P P.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 400/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Number Theory and Cryptography

Lemma 319

Let p, q P P. If p ‰ q then φppqq “ pp´ 1qpq ´ 1q.

Proof : There are q multiples of p and p multiples of q within t1, 2, . . . , pqu, and the
only common multiple of both p and q is pq. Hence, by the Inclusion-Exclusion
Principle (Thm. 167), φppqq “ pq ´ p´ q ` 1 “ pp´ 1qpq ´ 1q.

Lemma 320 (Fermat/Euler)

Let n P N and x P Un. Then xφpnq
”n 1.

Corollary 321

Let n P N and x P Un. If n “ pq, with p, q P P and p ‰ q, then xpp´1qpq´1q
”n 1.
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RSA Encryption

The RSA system [Rivest, Shamir, Adleman 1977] makes use of Lemma 320 and
of the fact that state-of-the-art factorization methods take far too long for products
of numbers with several hundred digits each.

The basic idea is very simple:
Select two distinct prime numbers p and q (each of which, in practice, has at
least 150 digits) and compute n “ p ¨ q.
Lemma 319 tells us that φpnq “ pp´ 1q ¨ pq ´ 1q.
Select an integer e P Nzt1u such that gcdpe, φpnqq “ 1.
The numbers n and e are published (Bob’s public key).
Compute a number d which is the inverse of e in Zφpnq, i.e., such that
d ¨ e ”φpnq 1. (Such a number exists due to Lem. 317.)
The number d is called Bob’s private key and is kept secret.
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RSA Encryption

Hence, we have n “ p ¨ q and, thus, φpnq “ pp´ 1q ¨ pq ´ 1q.
Furthermore, gcdpe, φpnqq “ 1 and d ¨ e ”φpnq 1.

Encoding the ciphertext:
Alice encodes a message x P N, with x ă n to keep it in Zn and with
gcdpx, nq “ 1, by using Bob’s public key e and n:
y :“ xe mod n with 0 ă y ă n.

Decoding the ciphertext:
Bob computes z :“ yd mod n with 0 ă z ă n.

Why does z “ x mod n hold?
The condition d ¨ e ”φpnq 1 ensures that there exists k P Z such that

d ¨ e “ k ¨ φpnq ` 1.

It follows that

z ”n yd
”n xde

“ xkφpnq`1
“ pxφpnq

q
kx L. 320

”n p1qkx “ x.
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gcdpx, nq “ 1, by using Bob’s public key e and n:
y :“ xe mod n with 0 ă y ă n.

Decoding the ciphertext:
Bob computes z :“ yd mod n with 0 ă z ă n.

Why does z “ x mod n hold?
The condition d ¨ e ”φpnq 1 ensures that there exists k P Z such that

d ¨ e “ k ¨ φpnq ` 1.

It follows that

z ”n yd
”n xde

“ xkφpnq`1
“ pxφpnq

q
kx L. 320

”n p1qkx “ x.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 403/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

RSA Encryption

Hence, we have n “ p ¨ q and, thus, φpnq “ pp´ 1q ¨ pq ´ 1q.
Furthermore, gcdpe, φpnqq “ 1 and d ¨ e ”φpnq 1.
Encoding the ciphertext:

Alice encodes a message x P N, with x ă n to keep it in Zn and with
gcdpx, nq “ 1, by using Bob’s public key e and n:
y :“ xe mod n with 0 ă y ă n.

Decoding the ciphertext:
Bob computes z :“ yd mod n with 0 ă z ă n.

Why does z “ x mod n hold?
The condition d ¨ e ”φpnq 1 ensures that there exists k P Z such that

d ¨ e “ k ¨ φpnq ` 1.

It follows that

z ”n yd
”n xde

“ xkφpnq`1
“ pxφpnq

q
kx L. 320

”n p1qkx “ x.

© M. Held (Univ. Salzburg) Diskrete Mathematik (SS 2025) 403/406



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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RSA Encryption: Sample

Suppose that p :“ 5 and q :“ 11. Hence n “ 55 and φpnq “ 40. Suppose further
that three users chose the following keys:

e d
Alice 23 7
Bob 37 13
Caesar 9 9

We have 23 ¨ 7 ”40 1 and 37 ¨ 13 ”40 1 and 9 ¨ 9 ”40 1.
Let x :“ 2 (and use Mathematica to do the arithmetic).

Alice: 223
“ 8388608 “ 152520 ¨ 55` 8 ”55 8 “: y

87
“ 2097152 “ 38130 ¨ 55` 2 ”55 2 “: z

Bob: 237
“ 137438953472 “ 2498890063 ¨ 55` 7 ”55 7 “: y

713
“ 96889010407 “ 1761618371 ¨ 55` 2 ”55 2 “: z

Caesar: 29
“ 512 “ 9 ¨ 55` 17 ”55 17 “: y

179
“ 118587876497 “ 2156143209 ¨ 55` 2 ”55 2 “: z
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RSA Encryption: Analysis

Note that there are φpnq many messages that can be sent for n given.
Since

φpnq
n “

pp´ 1qpq ´ 1q
pq “ p1´ 1

p qp1´
1
q q

is close to 1 for large p, q, the probability of selecting a message that is coprime
to n is the larger the larger p, q are.

Although n is publicly known, it is important to keep φpnq and, thus, also p, q
secret!
An eavesdropper who only knows n, e, and y cannot do much with this
information. In particular, no efficient algorithm is known to factor n into p, q as a
simple means to obtain φpnq.
It is also important to ensure that xe

ą n, i.e., that y is obtained by exponentiation
and then by a reduction modulo n.

If xe
ă n then one could simply recover x by taking the e-th root of y. (After

all, e is known publicly!)
Hence, it is wise to select e such that 2e

ą n.
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The End!

I hope that you enjoyed this course, and I wish you all the best for your future studies.

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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