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Personalia
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Formalia

URL of course (VO+PS): Base-URL/teaching/compgeo/comp_geo.html.

Lecture times (VO): Friday 1215–1415.

Venue (VO): PLUS, FB Informatik, T03, Jakob-Haringer Str. 2, 5020
Salzburg-Itzling.

Lecture times (PS): Friday 1100–1200.

Venue (PS): PLUS, FB Informatik, T03, Jakob-Haringer Str. 2, 5020
Salzburg-Itzling.

Note — PS is graded according to continuous-assessment mode!

— regular attendance is compulsory!

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 3/418

https://www.cosy.sbg.ac.at/~held/teaching/compgeo/comp_geo.html


Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Electronic Slides and Online Material

In addition to these slides, you are encouraged to consult the WWW home-page of
this lecture:

www.cosy.sbg.ac.at/~held/teaching/compgeo/comp_geo.html.

In particular, this WWW page contains up-to-date information on the course, plus links
to online notes, slides and (possibly) sample code.
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A Few Words of Warning

I hope that these slides will serve as a practice-minded introduction to various
aspects of computational geometry. I would like to warn you explicitly not to
regard these slides as the sole source of information on the topics of my course.
It may and will happen that I’ll use the lecture for talking about subtle details that
need not be covered in these slides! In particular, the slides won’t contain all
sample calculations, proofs of theorems, demonstrations of algorithms, or
solutions to problems posed during my lecture. That is, by making these slides
available to you I do not intend to encourage you to attend the lecture on an
irregular basis.

See also In Praise of Lectures by T.W. Körner.

A basic knowledge of algorithms, data structures and discrete mathematics, as
taught typically in undergraduate courses, should suffice to take this course. It is
my sincere intention to start at such a hypothetical level of “typical prior
undergrad knowledge”. Still, it is obvious that different educational backgrounds
will result in different levels of prior knowledge. Hence, you might realize that you
do already know some items covered in this course, while you lack a decent
understanding of some items which I seem to presuppose. In such a case I do
expect you to refresh or fill in those missing items on your own!
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Legal Fine Print and Disclaimer

To the best of our knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder(s) grant you the
right to download and print it for your personal use. Any other use, including non-profit
instructional use and re-distribution in electronic or printed form of significant portions
of it, beyond the limits of “fair use”, requires the explicit permission of the copyright
holder(s). All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder(s) and/or their
respective employers be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.
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Motivation: Convex Hull

Given is a set S of n points in R2.

Question: How efficiently can we determine the convex hull of S?

Answer: The convex hull of S can be computed in O(n log n) steps.

Lower bound: In the worst case, Ω(n log n) steps will be necessary.
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Motivation: Distance between Point Sets

Le S1 and S2 be sets of blue and red points in R2.
For each blue point, consider the distance to its closest red point.
Question: What is the maximum of these distances?
Answer: This is the so-called directed Hausdorff distance, and it can be obtained
in O(n log n) time, where n := max{|S1|, |S2|}.
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Motivation: Maximum Inscribed Circle

Given is a simple polygon P. A circle is called inscribed to P if it lies completely
inside of P.

Question: How efficiently can we determine a maximum inscribed circle?

Answer: In theory, a maximum inscribed circle can be computed in time linear in
the number n of vertices of P. (And O(n log n) time is achievable in practice.)
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Motivation: Offset Pattern

Given is a simple polygon P.

Question: How can we compute offset patterns reliably and efficiently? How can
we compute even just one offset?

Answer: If the Voronoi diagram of the input is known, then all offset curves of one
offset can be determined in O(n) time.
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t
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t
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Motivation: Tool Path

Given is a simple polygon P.

Question: How can we compute a tool path — e.g., for machining or 3D printing
— inside of P reliably and efficiently?

Answer: Again, this can be done with the help of Voronoi diagrams.
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Motivation: Smooth Tool Path

Given is a simple polygon P.

Question: How can we compute a smooth tool path — e.g., for high-speed
machining — inside of P reliably and efficiently?

Answer: Again, this can be done with the help of Voronoi diagrams.
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Motivation: Triangulation

Given is a simple polygon P.

Question: How can we compute a triangulation of P reliably and efficiently?

Answer: In theory, a triangulation can be computed in time linear in the number n
of vertices of P. (And slightly super-linear time is achievable in practice.)
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Motivation: Automatic Roof Construction

Given is a simple polygon P, which we consider as the cross-section of a house.

Question: How can we compute a roof for P?

Answer: This can be done with the help of straight skeletons.
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Motivation: Approximation of Polygonal Profiles

How can we solve the following approximation problem?
For a set of planar (polygonal) profiles,
and an approximation threshold given,
compute an approximation such that the approximation threshold is not
exceeded.

Approximations can be obtained by biarc or B-spline curves, based on tolerance
zones generated by means of Voronoi diagrams.
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Motivation: Minimum Plane Partition

CG:SHOP Geometric Optimization Challenge 2022: Given is a set S of n line
segments in the plane.

We seek a partitioning of S into a minimum number of k subsets S1, . . . ,Sk such
that, for all 1 ≤ i ≤ k , the line segments of Si do not intersect pairwise.

Question: How can we check in o(n2) time whether any pair of line segments of
S intersect? How can we determine all intersections efficiently?

Answer: This can be done with the help of a plane sweep.
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Geometric Intuition: Roundness of a Convex Shape

We define the width of a planar shape relative to a direction vector v as the
minimum distance dv of its two parallel lines of support normal to the direction
vector such that the shape is enclosed (“caliper probe”).

dv
v

Question: Can we conclude that the shape resembles a circle of diameter d if an
arbitrarily large number of caliper probes all yield a uniform width d (irrespective
of the direction vectors chosen)?
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Geometric Intuition: Roundness of a Convex Shape

Answer: No!! Even an infinite number of caliper probes all would yield a uniform
width d for a Reuleaux triangle!

d

d d

d

d d

x A B

C

A B

C

Apparently, three caliper probes where applied when checking parts of the
Challenger’s solid-fuel booster rockets for roundness. (R. Feynman (1988):
“What do you care what other people think?”)

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 23/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Geometric Intuition or “It’s Obvious!?”

Problem: EUCLIDEANTRAVELINGSALESMANPROBLEM (ETSP)

Input: A set S of n points in the Euclidean plane.

Output: A cycle of minimal length that starts and ends in one point of S and visits all
points of S.

Natural strategy to solve an instance of ETSP:
1 Pick a point p0 ∈ S.
2 Find its nearest neighbor p′ ∈ S, move to p′, and let p := p′.
3 Continue from p to the nearest unvisited neighbor p′ ∈ S of p, and let

p := p′.
4 Repeat the last step until all points have been visited, and return back to p0.

S

p0
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Geometric Intuition or “It’s Obvious!?”

The strategy to always pick the shortest missing link can be seen as a greedy
strategy.

It is obvious that this strategy will always solve ETSP, isn’t it?

Well . . . The tour computed need not even be close in length to the optimum tour!

In the example, the tour computed has length 58, while the optimum tour has
length 46!

Geometric intuition . . .

. . . is important, but may not replace formal reasoning. Intuition might misguide, and
computational geometry without formal reasoning does not make sense.

0 1-1 4-7 16
x
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UNIVERSITÄT SALZBURG

History of Computational Geometry

1000 BCE: Length, area and volume are known for simple objects (cube, box,
cylinder).

Antiquity: Move from empirical mathematics to deductive mathematics.

Thales of Milet (≈ 600 BCE): He proved(!) that the two base angles of an
isosceles triangle are identical.

Euclid of Alexandria (≈ 300 BCE): “The Elements”.
definitions,
five postulates,
five axioms,
115 propositions.
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History of Computational Geometry

Da Vinci (1452–1519) and others: Introduced perspective and projective
geometry.
Descartes (1596–1650) and P. de Fermat (1607–1665): Coordinates and the
foundation of analytical geometry.
Riemann (1826–1866): Differential geometry.
Poincaré (1854–1912) and D. Hilbert (1862–1943): Axiom-based mathematics,
proved consistency of axioms.

Knuth: “The Art of Computer Programming” published 1968–1973.

Bézier, Forrest, Riesenfeld: Modeling of spline curves and surfaces called
“computational geometry”.
Minsky and Papert: Book entitled “Perceptrons” with chapter on “computational
geometry”: Which geometric properties of a figure can be recognized with neural
networks?

Birth of today’s computational geometry

Shamos (1978): PhD thesis “Computational Geometry” at Yale University, USA.
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Notation

Numbers:
The set {1, 2, 3, . . .} of natural numbers is denoted by N, with N0 := N ∪ {0}.
The set {2, 3, 5, 7, 11, 13, . . .} ⊂ N of prime numbers is denoted by P.
The (positive and negative) integers are denoted by Z.
Zn := {0, 1, 2, . . . , n − 1} and Z+

n := {1, 2, . . . , n − 1} for n ∈ N.
The reals are denoted by R; the non-negative reals are denoted by R+

0 , and
the positive reals by R+.

Open or closed intervals I ⊂ R are denoted using square brackets: e.g.,
I1 = [a1, b1] or I2 = [a2, b2[, with a1, a2, b1, b2 ∈ R, where the right-hand “[”
indicates that the value b2 is not included in I2.
The set of all elements a ∈ A with property P(a), for some set A and some
predicate P, is denoted by

{x ∈ A : P(x)} or {x : x ∈ A ∧ P(x)}

or

{x ∈ A | P(x)} or {x | x ∈ A ∧ P(x)}.

Bold capital letters, such as M, are used for matrices.
The set of all (real) m × n matrices is denoted by Mm×n.
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Notation

Points are denoted by letters written in italics: p, q or, occasionally, P,Q. We do
not distinguish between a point and its position vector.

The coordinates of a vector are denoted by using indices (or numbers): e.g.,
v = (vx , vy ) for v ∈ R2, or v = (v1, v2, . . . , vn) for v ∈ Rn.

In order to state v ∈ Rn in vector form we will mix column and row vectors freely
unless a specific form is required, such as for matrix multiplication.

The vector dot product of two vectors v ,w ∈ Rn is denoted by ⟨v ,w⟩. That is,
⟨v ,w⟩ =

∑n
i=1 vi · wi for v ,w ∈ Rn.

The vector cross-product (in R3) is denoted by a cross: v × w .

The length of a vector v is denoted by ∥v∥.
The straight-line segment between the points p and q is denoted by pq.

The supporting line of the points p and q is denoted by ℓ(p, q).
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Polygonal Curve

Definition 1 (Polygonal curve, Dt.: Polygonzug)

Consider the sequence of points p0, p1, p2, . . . , pn ∈ Rd , for some d , n ∈ N0. The
polygonal curve (or polygonal chain, polygonal profile) specified by these points
(“vertices”) is given by γ : [0, n]→ Rd with

γ(t) := pi + (t − i) · (pi+1 − pi) if t ∈ [i, i + 1] for i ∈ {1, 2, . . . , n − 1}.

Hence, a polygonal curve is a sequence of finitely many vertices connected by
straight-line segments such that each segment (except for the first) starts at the
end of the previous segment.

Unless stated otherwise, we will always assume that all vertices of a polygonal
curve are co-planar, i.e., that the polygonal curve is plane. The default plane is
R2.

It is common to extend this definition by allowing n = 0, in which case we get a
single point.
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Polygon

Definition 2 (Polygon)

For n ∈ N with n ≥ 3, a polygon with vertices p0, p1, p2, . . . , pn ∈ Rd , aka n-gon, is a
polygonal curve such that p0 = pn.

Definition 3 (Simple polygon, Dt.: einfaches Polygon)

An n-gon is simple if it admits a simple parametrization.

If a plane polygon P is simple then, by the Jordan Curve Theorem, it splits the
plane into two regions, one of which is bounded.

In this case it is common to be a bit liberal and use the term “polygon” for either
the (simple) polygonal curve P or for the entire region bounded by P; the actual
meaning has to be inferred from the context.

If P is regarded to be only the simple polygonal curve then the bounded region
(without P itself) is called the polygon’s interior, and points within that region are
said to be inside of P.
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Planar Straight-Line Graph

Definition 4 (Planar straight-line graph)

A planar straight-line graph (PSLG) is a finite collection of isolated vertices and
straight-line segments such that

each two segments intersect only in vertices shared by both of them,

no segment passes through a vertex other than one of its two end-points.

Hence, a PSLG is an embedding of a planar graph such that all its edges are
drawn as straight-line segments.

Aka: Plane geometric graph.

Hence, simple polygonal curves and simple polygons are special PSLGs.

Of course, Euler’s Theorem applies to the faces, edges and vertices of a PSLG.
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Sample Polygonal Chains and PSLGs

polygonal curve polygon, not simple

simple polygonplanar straight-line graph
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Polygonal Region

Definition 5 (Polygonal region)

A polygonal region is a (possibly) multiply-connected but connected subset of R2 that
is bounded by k simple polygons P1,P2, . . . ,Pk , for some k ∈ N, such that

1 no pair of polygons (seen as curves) intersect,
2 the polygons P2, . . . ,Pk lie in the interior of P1,
3 for 2 ≤ i, j ≤ k , the polygon Pi does not lie in the interior of the polygon Pj .

The polygon P1 is called outer polygon and the polygons P2, . . . ,Pk are called islands
or holes.
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Polyhedron

Definition 6 (Polyhedron, Dt.: Polyeder)

A polyhedron in R3 is either

a (possibly unbounded) solid given by the intersection of finitely many
halfspaces, or

a connected bounded solid whose (closed manifold) boundary is formed by a
finite collection of plane polygons (“faces”) such that

1 each vertex is incident to at least three edges and faces,
2 each edge is shared by exactly two faces,
3 each two faces intersect only in vertices and edges shared by both of them,
4 the faces that share a vertex form a cyclic chain of polygons in which every

pair of consecutive polygons shares an edge.

Note: Plural of “polyhedron” is “polyhedra”.

Recall that Euler’s Formula v − e + f = 2 holds for the vertices, edges and faces
of a polyhedron.
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Polyhedron

Unfortunately, even in R3 there there is no universal agreement over how to
define the analogue to a polygon in R3 . . .

The situation gets worse once different fields of mathematics and computer
science are considered!

Grünbaum (1994)

“The Original Sin in the theory of polyhedra goes back to Euclid, . . . and many others,
. . . at each stage . . . the writers failed to define what are the polyhedra.”

Polyhedron versus Polytope

1 For convex solids, some authors (in some fields of mathematics) prefer to use the
term “polytope” for a bounded polyhedron, whereas “polyhedron” is a generic
convex object.

2 From this point of view, a polyhedron is the intersection of a finite number of
halfspaces and is defined by its faces whereas a polytope is the convex hull of a
finite number of points and is defined by its vertices.
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Logarithms

Definition 7 (Logarithm)

The logarithm of a positive real number x ∈ R+ with respect to a base b, which is a
positive real number not equal to 1, is the unique solution y of the equation by = x . It
is denoted by logb x .

Hence, it is the exponent by which b must be raised to yield x .
Common bases:

ld x := log2 x ln x := loge x with e := lim
n→∞

(
1 +

1
n

)n

≈ 2.71828. . .

Lemma 8

Let x , y , p ∈ R+ and b ∈ R+ \ {1}.

logb(xy) = logb(x) + logb(y) logb

(
x
y

)
= logb(x)− logb(y)

logb

(
xp) = p logb(x) logb

(
p
√

x
)
=

logb(x)
p
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Logarithms

Lemma 9 (Change of base)

Let x ∈ R+ and α, β ∈ R+ \ {1}. Then logα(x) and logβ(x) differ only by a
multiplicative constant:

logα(x) =
1

logβ(α)
· logβ(x)

Convention

In this course, log n will always denote the logarithm of n to the base 2, i.e.,
log n := log2 n.
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Asymptotic Notation: Big-O

Definition 10 (Big-O, Dt.: Groß-O)

Let f : N→ R+. Then the set O(f ) is defined as

O(f ) :=
{

g : N→ R+ | ∃c2 ∈ R+ ∃n0 ∈ N ∀n ≥ n0 g(n) ≤ c2 · f (n)
}
.

n

c2 · f

g

︸ ︷︷ ︸n0

g(n) ≤ c2 · f (n) for all n ≥ n0

Equivalent definition used by some authors:

O(f ) :=

{
g : N→ R+ | ∃c2 ∈ R+ ∃n0 ∈ N ∀n ≥ n0

g(n)
f (n)

≤ c2

}
.
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Asymptotic Notation: Big-Omega

Definition 11 (Big-Omega, Dt.: Groß-Omega)

Let f : N→ R+. Then the set Ω(f ) is defined as

Ω(f ) :=
{

g : N→ R+ | ∃c1 ∈ R+ ∃n0 ∈ N ∀n ≥ n0 c1 · f (n) ≤ g(n)
}
.

n

g

︸ ︷︷ ︸n0

c1 · f (n) ≤ g(n) for all n ≥ n0

c1 · f

Equivalently,

Ω(f ) :=

{
g : N→ R+ | ∃c1 ∈ R+ ∃n0 ∈ N ∀n ≥ n0 c1 ≤

g(n)
f (n)

}
.
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Asymptotic Notation: Big-Theta

Definition 12 (Big-Theta, Dt.: Groß-Theta)

Let f : N→ R+. Then the set Θ(f ) is defined as

Θ(f ) :=
{

g : N→ R+ | ∃c1, c2 ∈ R+ ∃n0 ∈ N ∀n ≥ n0

c1 · f (n) ≤ g(n) ≤ c2 · f (n)} .

n

c2 · f

g

︸ ︷︷ ︸n0

c1 · f (n) ≤ g(n) ≤ c2 · f (n) for all n ≥ n0

c1 · f

which is equivalent to c1 ≤ g(n)
f (n) ≤ c2 for all n ≥ n0
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Asymptotic Notation: Small-Oh and Small-Omega

Definition 13 (Small-Oh, Dt.: Klein-O)

Let f : N→ R+. Then the set o(f ) is defined as

o (f ) :=
{

g : N→ R+ | ∀c ∈ R+ ∃n0 ∈ N ∀n ≥ n0 g(n) ≤ c · f (n)
}
.

Definition 14 (Small-Omega, Dt.: Klein-Omega)

Let f : N→ R+. Then the set ω(f ) is defined as

ω (f ) :=
{

g : N→ R+ | ∀c ∈ R+ ∃n0 ∈ N ∀n ≥ n0 g(n) ≥ c · f (n)
}
.

We can extend Defs. 10–14 such that N0 rather than N is taken as the domain
(Dt.: Definitionsmenge). We can also replace the codomain (Dt.: Zielbereich) R+

by R+
0 (or even R) provided that all functions are eventually positive.

Warning

The use of the equality operator “=” instead of the set operators “∈” or “⊆” to denote
set membership or a subset relation is a common abuse of notation.
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Master Theorem

Theorem 15

Consider constants n0 ∈ N and a ∈ N, b ∈ R with b > 1, and a function f : N→ R+
0 .

Let T : N→ R+
0 be an eventually non-decreasing function such that

T (n) = a · T
(n

b

)
+ f (n)

for all n ∈ N with n ≥ n0, where we interpret T ( n
b ) as (a combination of) T (⌈ n

b ⌉) or
T (⌊ n

b ⌋).
Then we have

T ∈


Θ(f ) if


f ∈ Ω(n(logb a)+ε) for some ε ∈ R+,
and if the following regularity condition holds
for some 0 < s < 1 and all sufficiently large n:

a · f (n/b) ≤ s · f (n),
Θ
(
nlogb a log n

)
if f ∈ Θ(nlogb a),

Θ(nlogb a) if f ∈ O(n(logb a)−ε) for some ε ∈ R+.

This is a simplified version of the Akra-Bazzi Theorem [Akra&Bazzi 1998].

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 46/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Fibonacci Numbers

Definition 16 (Fibonacci numbers)

For all n ∈ N0,

Fn :=

{
n if n ≤ 1,
Fn−1 + Fn−2 if n ≥ 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

Lemma 17

For n ∈ N with n ≥ 2:

Fn =
1√
5
·
(

1 +
√

5
2

)n

− 1√
5
·
(

1−
√

5
2

)n

≥
(

1 +
√

5
2

)n−2

Lots of interesting mathematical properties. For instance,

lim
n→∞

Fn+1

Fn
= ϕ, where ϕ :=

1 +
√

5
2

= 1.618 . . . is the golden ratio.
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Catalan Numbers

Definition 18 (Catalan numbers)

For n ∈ N0,

C0 := 1 and Cn+1 :=
n∑

i=0

Ci · Cn−i .

n 0 1 2 3 4 5 6 7 8 9 10 11
Cn 1 1 2 5 14 42 132 429 1430 4862 16796 58786

Lemma 19

For n ∈ N0,

Cn =
1

n + 1

n∑
i=0

(
n
i

)2

=
1

n + 1

(
2n
n

)
∈ Θ

(
4n

n1.5

)
.
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Harmonic Numbers

Definition 20 (Harmonic numbers)

For n ∈ N,

Hn := 1 +
1
2
+

1
3
+ · · ·+ 1

n
=

n∑
k=1

1
k
.

Lemma 21

The sequence s : N→ R with

sn := Hn − ln n

is monotonically decreasing and convergent. Its limit is the Euler-Mascheroni constant

γ := lim
n→+∞

(Hn − ln n) ≈ 0.5772 . . . ,

and we have

ln n < Hn − γ < ln(n + 1), i.e. Hn ∈ Θ(ln) = Θ(log).
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Reduction of a Problem

Definition 22 (Reduction)

A problem A can be reduced (or transformed) to a problem B if
1 every instance A of A can be converted to an instance B of B,
2 a solution S for B can be computed, and
3 S can be transformed back into a correct solution for A.

A BA B

solution S for B

τ (|A|) time

solution for A

Definition 23

A problem A is τ -reducible to B, denoted by A ≤τ B, if
1 A can be reduced to B,
2 for any instance A of A, steps 1 and 3 of the reduction can be carried out in at

most τ(|A|) time, where |A| denotes the input size of A.
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Transfer of Complexity Bounds

Lemma 24 (Upper bound via reduction)

Suppose that A is τ -reducible to B such that the order of the input size is preserved. If
problem B can be solved in O(T ) time, then A can be solved in at most O(T + τ) time.

A BA B

solution S for B

τ (|A|) time

solution for A

Lemma 25 (Lower bound via reduction)

Suppose that A is τ -reducible to B such that the order of the input size is preserved.
If problem A is known to require Ω(T ) time, then B requires at least Ω(T − τ) time.
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2 Geometric Concepts and Paradigms
Plane Sweep
Arrangements
Point-Line Duality
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Line Segment Intersection

Problem: LINESEGMENTINTERSECTION

Given: A set S of line segments in R2.

Decide: Do any two segments of S intersect?

LINESEGMENTINTERSECTION
does not require us to find and
report one or all intersections.

Still, we explain how all
intersections can be found.

Stopping the algorithm at the first
intersection (if one exists) yields
an answer to the original problem.

bc
d

yes!

a
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Line Segment Intersection

Theorem 26 (Bentley&Ottmann (1979))

All k intersections among n line segments in R2 can be detected in O((n + k) log n)
time and O(n) space, using a plane-sweep algorithm.

Corollary 27

LINESEGMENTINTERSECTION can be solved in optimal O(n log n) time and O(n)
space for n line segments.

Note that n line segments may yield Θ(n2) many intersections. Hence,
k ∈ O(n2), and in the worst case the Bentley-Ottmann algorithm runs in
Θ(n2 log n) time.

[Chazelle&Edelsbrunner (1992)] explain how to detect all k intersections in
O(k + n log n) time, using O(n + k) space.

[Balaban (1995)] improves this to O(k + n log n) time and O(n) space.
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Line Segment Intersection: General Position Assumed

General position assumed

For the sake of descriptional simplicity, we assume that

no two end-points or intersections of line segments of S have the same
y -coordinate;

no two line segments overlap;

no three line segments intersect at the same point;

no segment is horizontal.

A GPA assumption makes perfect sense since it allows to avoid special cases
and, thus, to focus on the essential ideas of a (geometric) algorithm.

Different GPA assumptions might be made depending on the actual application.
(See the slides on Voronoi diagrams later in this course!)

Caveat

A GPA assumption will not hold for most real-world data. Thus, a GPA assumption
may make it necessary to work out all the (possibly subtle) details and to close all
(possibly non-trivial) gaps on one’s own prior to an actual implementation . . .
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Line Segment Intersection: Plane Sweep

Suppose that we draw horizontal lines through all 2n end-points of the line
segments and all k intersection points.

These 2n + k lines split R2 into 2n + k + 1 horizontal slabs.

Note that the left-to-right order of the line segments does not change within a
slab. And this observation holds for all slabs!
Question: When does the relative
order of two line segments change?

Answer: The relative order of two
line segments ℓ1, ℓ2 changes at the
border line of two adjacent slabs if
that border line passes through the
point of intersection of ℓ1 and ℓ2.

Lemma 28

Two line segments ℓ1, ℓ2 intersect if and
only if there exist two adjacent slabs such
that ℓ1, ℓ2 are neighbors in the left-to-right
orders and such that the relative order of
ℓ1, ℓ2 within the two slabs is different.

bc
d

(a, c, b)a

(a)
(a, b)

(a, c, d, b)
(a, c, b)
(a, b, c)
(b, c)
(b)

()

()
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Line Segment Intersection: Plane Sweep

Basic idea:
Sweep a horizontal line over the line segments and keep track of their
left-to-right orders.
Halt and update these left-to-right orders whenever necessary.

Plane-sweep algorithm (aka:
“sweep-line algorithm”)

A plane-sweep algorithm uses two data
structures:

1 Event-point schedule: Sequence of
halting positions to be assumed by
the sweep line.

2 Sweep-line status: Description of
the intersection of the sweep line
with the geometric object(s) being
swept at the current event.

Sweep for line-segment intersection

Plane sweep applied to line-segment
intersection detection:

1 Event-point schedule: End-points
of all line segments of S and all
intersection points, arranged
according to ascending
y -coordinates. (The sweep is
bottom-to-top.)

2 Sweep-line status: Left-to-right
sequence of the line segments of S
that intersect the sweep line.
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Line Segment Intersection: Plane Sweep

1 Initialize a priority queue Q of future
events:

Every event is associated with
a point in R2 and with the up to
two line segments on which it
lies.
The events are prioritized
according to the points’
y -coordinates.

2 Insert all 2n end-points of the n line
segments into Q.

3 Initialize a binary search tree T that
will contain those line segments of S
which are crossed by the sweep
line:

The segments are ordered
according to the x-coordinates
of the crossing points.
Initially, T is empty.

bc
d

(a, c, b)a

(a)
(a, b)

(a, c, d, b)
(a, c, b)
(a, b, c)
(b, c)
(b)

()

()
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Line Segment Intersection: Plane Sweep

4 While Q is not empty, fetch and remove the next event from Q. Let p be the point
associated with that event, and let yp be its y -coordinate:

a If p is the lower end-point of a line segment ℓ:
i Insert ℓ into T .
ii Let ℓL and ℓR be the line segments that are immediately to the left and

right of ℓ, if they exist. (Use T to locate ℓL, ℓR .)
iii If ℓL, ℓR intersect above yp then remove the intersection from Q.
iv If ℓL, ℓ or ℓ, ℓR intersect above yp then insert the intersection(s) into Q.

bc
d

(a, c, b)a
(a, c, d, b)

`L = c `R = b ` = d
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Line Segment Intersection: Plane Sweep

4 While Q is not empty, fetch and remove the next event from Q. Let p be the point
associated with that event, and let yp be its y -coordinate:

b If p is the upper end-point of a line segment ℓ:
i Let ℓL and ℓR be the line segments that are immediately to the left and

right of ℓ, if they exist. (Use T to locate ℓL, ℓR .)
ii Remove ℓ from T .
iii If ℓL, ℓR intersect above yp then insert the intersection into Q.

`L = c `R = b

bc
d

(a, c, b)a
(a, c, d, b)

` = d

(a, c, b)
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Line Segment Intersection: Plane Sweep

4 While Q is not empty, fetch and remove the next event from Q. Let p be the point
associated with that event, and let yp be its y -coordinate:

c If p is a point of intersection of ℓ1 and ℓ2:
i Let ℓL and ℓR be the line segments that are immediately to the left of ℓ1

and right of ℓ2, if they exist. (Use T to locate ℓL, ℓR .)
ii If ℓL, ℓ1 or ℓ2, ℓR intersect above yp then remove the intersection(s) from

Q.
iii If ℓ1, ℓR or ℓL, ℓ2 intersect above yp then insert the intersection(s) into Q.
iv Trade the order of ℓ1 and ℓ2 in T .

`L = c `R = b

bc d (a, c, d, e, b)a
(a, c, e, d, b)

`1 = d

e

`2 = e
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Line Segment Intersection: Plane Sweep

Correctness:
Whenever two line segments ℓ1, ℓ2 are neigbors in the sorted left-to-right order
of segments, the point of intersection of ℓ1, ℓ2 is present in Q, if it exists and
has a higher y -coordinate.
Hence, no future event and, in particular, no point of intersection is missed.

Complexity:
The algorithm processes a sequence of 2n + k events.
Since future intersections between line segments are maintained in the priority
queue Q if and only if the line segments currently are neighbors in the
left-to-right order, at any given point in time we will never need to do maintain
more than 3n − 1 events in Q.
The algorithm stores up to n line segments in left-to-right order in T .
Every event requires a constant number of updates of Q and T .
If Q and T allow insertions, deletions and searches in logarithmic time then
every event is handled in O(log n) time.
Any standard balanced binary search tree (e.g., AVL-tree, red-black tree) and
any logarithmic-time priority queue (e.g., binary heap) suffices.
Summarizing, the Bentley-Ottmann algorithm finds all intersections among n
line segments in O((n + k) log n) time, using O(n) space.
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Generalizations of the Sweep Paradigm

Rotational sweep:
A line (or ray) rotates about a point.

Space sweep:
A plane (which is parallel to one of the coordinate planes) sweeps through
3D space.
A recursive application of this idea sometimes allows to replace a
d-dimensional problem by a series of (d − 1)-dimensional problems.

Topological sweep:
Edelsbrunner&Guibas (1991).
A “topological” line is used instead of a straight line.
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Computing Boolean Operations on Curvilinear Polygons

A
B

A ∪ B

A
B

A ∩ B

A
B

A \ B
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Sweep-Line Algorithm for Boolean Operations

Consider a vertical line ℓ that sweeps from left to right. Study
(1) its intersection with the union of the curvilinear polygons,
(2) the top-to-bottom order of the segments/arcs intersected by ℓ.

Q: At which events does the
intersection of ℓ with the union
change topologically?
A: Whenever ℓ enters or leaves a
curvilinear polygon.

Q: At which events does the
top-to-bottom order of the
segments/arcs intersected by ℓ
change?
A: Whenever ℓ moves through a
vertex or an intersection point.

Put events into a priority queue and process in left-to-right order.
Intersection points can be detected on the fly between segments/arcs that are
neighbors in the top-to-bottom order!
Handling of circular arcs on the same circle requires some care.
Complexity: O((n + k) log n) for n segments/arcs and k intersection points.
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Line Arrangement

Definition 29 (Arrangement)

Consider a set L of lines in the plane. The (line) arrangement A(L) induced by L is the
subdivision of the plane that consists of

vertices: points of intersection of two or more lines of L,

edges: connected components of all lines of L without all vertices,

faces: the connected components of the subset of the plane not intersected
by any line of L. Aka: cells.

An arrangement is simple if no more than two lines of L intersect at a vertex.

Arrangements can also be induced by other primitives (e.g., circles) and studied
in higher dimensions.

face vertex
edge
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UNIVERSITÄT SALZBURG

Line Arrangement: Combinatorial Complexity

Lemma 30

Every face of an arrangement is convex.

Lemma 31

The arrangement induced by a set of n lines has

at most
(n

2

)
vertices,

at most n2 edges,

at most
(n+1

2

)
+ 1 faces,

i.e., its combinatorial complexity is O(n2). Equality holds for simple arrangements.

face vertex
edge
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Line Arrangement: Combinatorial Complexity

Definition 32

The zone of a line ℓ ̸∈ L in an arrangement A(L) of a set L of lines is the set of all
faces of A(L) whose closure is intersected by ℓ.

Theorem 33 (Zone theorem)

The complexity of the zone of a line in an arrangement of n lines is O(n).

Sketch of Proof : Assume that ℓ is horizontal and construct the zone by inserting the
lines of L from left to right along ℓ. Then one can show by induction that each new line
adds at most 6 new zone edges.

`
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Line Arrangement: Construction

Problem: LINEARRANGEMENT

Given: A set L of lines in the plane.

Compute: A (combinatorial) representation of the arrangement A(L) that allows to
traverse A(L).

Theorem 34

A combinatorial representation of the arrangement A(L) of a set L of n lines in the
plane can be computed incrementally in time O(n2).

Sketch of Proof : The Zone Theorem 33 implies O(n) complexity per insertion of a
line of L.
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Point-Line Duality

We study two incarnations of the plane, both with right-handed Cartesian
coordinate systems:

the primal plane with coordinates x , y , and
the dual plane with coordinates a, b.

We will identify a line in one plane with a point in the other plane, and vice versa.

Remember: A (non-vertical) line ℓ has the equation y = ℓax − ℓb, where ℓa

models the slope and ℓb models the y -intercept of ℓ.

x

y

0 0

b

a

primal plane dual plane

duality
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Point-Line Duality: Motivation

Goal

A duality mapping between points and lines in the plane shall allow us to translate
theorems and algorithms about

points and lines
into theorems and algorithms about

lines and points.

x

y

0 0

b

a

primal plane dual plane

duality
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Point-Line Duality

Definition 35 (Point-line duality)

1 Let ℓ be a line in primal space with equation y = ℓax − ℓb. We associate with ℓ
the point ℓ⋆ in the dual plane with coordinates (ℓa, ℓb).

2 Let p be a point in primal space with coordinates (px , py ). We associate with p
the line p⋆ in the dual plane with equation b = px a− py .

x

y

0 0

b

a

primal plane dual plane

y = ℓax − ℓb

(ℓa, ℓb)
duality
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Point-Line Duality

Definition 35 (Point-line duality)

1 Let ℓ be a line in primal space with equation y = ℓax − ℓb. We associate with ℓ
the point ℓ⋆ in the dual plane with coordinates (ℓa, ℓb).

2 Let p be a point in the primal space with coordinates (px , py ). We associate with
p the line p⋆ in the dual plane with equation b = px a− py .

x

y

0 0

b

a

primal plane dual plane

duality
(px ,py)

b = pxa − py

(0,−py)

1

px
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Point-Line Duality: Properties

Of course, we can apply the same duality mapping ⋆ to points and lines in the
dual plane, and map them to lines and points in the primal plane.

Lemma 36 (Self-inverse mapping)

The duality mapping ∗ is self-inverse:
(1) For every point p in the primal plane: (p⋆)⋆ = p.
(2) For every line ℓ in the primal plane: (ℓ⋆)⋆ = ℓ.

Proof : (1) For p with coordinates (px , py ) we get the dual line p⋆ with equation
b = px a− py . This line dualizes to a point (p⋆)⋆ with coordinates (px ,−(−py )), i.e.,
to p.
(2) A line ℓ with equation y = ℓax − ℓb dualizes to the point ℓ⋆ with coordinates (ℓa, ℓb),
which in turn dualizes to the line (ℓ⋆)⋆ with equation y = ℓax − ℓb, i.e., to ℓ.
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Point-Line Duality: Properties

Lemma 37 (Incidence-preserving mapping)

For every point p and every line ℓ in primal space: p ∈ ℓ if and only if ℓ⋆ ∈ p⋆.

Proof : Assume that p ∈ ℓ, with point coordinates (px , py ) and line equation
y = ℓax − ℓb. Then py = ℓapx − ℓb. Hence, ℓb = pxℓa − py , and ℓ⋆ = (ℓa, ℓb) ∈ p⋆.
Now assume that ℓ⋆ ∈ p⋆. We get (p⋆)⋆ ∈ (ℓ⋆)⋆, and by Lem. 36, p ∈ ℓ.

Corollary 38

The points p1, p2, p3 lie
on the line ℓ if and only iff
the lines p⋆

1 , p
⋆
2 , p

⋆
3

intersect in the common
point ℓ⋆. x

y

0 0

b

a

primal plane dual plane

p1

p2

p3
p⋆

1

p⋆
2

p⋆
3

ℓ
ℓ⋆
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Point-Line Duality: Properties

Lemma 39

The signed vertical distance from a point p to a line ℓ equals the signed vertical
distance from the point ℓ⋆ to the line p⋆.

This lemma implies Lem. 37.

Corollary 40

A point p lies above a line ℓ if and only if the point ℓ⋆ lies above the line p⋆.
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Point-Line Duality: Properties

Corollary 41

A line ℓ intersects the line segment pq if and only if the point ℓ⋆ lies in the “horizontal”
double wedge defined by the lines p⋆ and q⋆. (I.e., the double wedge which does not
contain the vertical line through the intersection point of p⋆ and q⋆.)

x

y

0 0

b

a

primal plane dual plane

p

q
p⋆

q⋆

ℓ

ℓ⋆

ℓ(p,q)

(ℓ(p,q))⋆
r

r⋆

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 80/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Detecting Collinearity

Problem: COLLINEARITY

Given: A set S of n points in the plane.

Decide: Are any three points of S collinear?

Naïve algorithm: Check all triples of points of S in O(n3) time.

Better: Recall duality (Cor. 38) and compute the arrangement of the dual lines of
the points of S in O(n2) time.
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UNIVERSITÄT SALZBURG

Smallest Triangle

Problem: MINIMUMAREATRIANGLE

Given: A set S of n points in the plane.

Find: The triangle with smallest area whose three vertices are in S.

A naïve solution evaluates all triples of points of S and, thus, runs in O(n3) time.

General position assumed: No three points are collinear.
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Smallest Triangle: Characterization of Solution

Lemma 42

Let p, q ∈ S with p ̸= q. Then the point r ∈ S which forms the smallest triangle
∆(p, q, r) with fixed base edge pq is a point of S which lies on the boundary of the
largest empty corridor along the line ℓ(p, q).

Let ℓ be the line through p, q.

Then r lies on a line ℓr such that
ℓr is parallel to ℓ,
there is no other line with the same slope through a point of S that lies
strictly between ℓ and ℓr .

p q
r
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Smallest Triangle: Interpretation in Dual Space

This implies for the dual space:
ℓ⋆r is on r⋆,
ℓ⋆r and ℓ⋆ have the same x-coordinate (since ℓr and ℓ have the same slope),
no line s⋆, for s ∈ S, crosses the line segment with endpoints ℓ⋆ and ℓ⋆r
(since then s would lie between ℓ and ℓr ).

Hence,
ℓ⋆ is a vertex of A(S⋆),
ℓ⋆r lies on the boundary of the same cell of A(S⋆) as ℓ⋆,
ℓ⋆r lies vertically below or above ℓ⋆.

This implies that we have only two candidate lines parallel to ℓ for any fixed pair
p, q, namely the duals of the two points u, v on A(S⋆) right below or above ℓ⋆.

Thus, it suffices to determine u, v for every vertex w of A(S⋆).

Since all faces of A(S⋆) are convex, this can be done on a face-by-face basis for
all vertices of A(S⋆), in total O(n2) time.

Theorem 43

MINIMUMAREATRIANGLE can be solved in O(n2) time for n points.
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3 Geometric Searching
Introduction
Point Inclusion
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Introduction to Geometric Searching

Point-Inclusion Query: In which “cell” (of, e.g., a map) does a query point lie?

Range Searching:
Report Query: Which points are within a query object (rectangle,
circle)?
Count Query: Only the number of points within an object matters.

Another way to distinguish geometric searching queries:

Single-Shot Query: Only one query per data set.

Repetitive-Mode Query: Many queries per data set; preprocessing may make
sense.

The complexity of a query is determined relative to four cost measures:
query time,
preprocessing time,
memory consumption,
update time (in the case of dynamic data sets).
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Point Inclusion

Given: Decomposition of the plane into polygonal regions, as induced by a PSLG
G, and a query point q.

Problem: Which face of G contains q?

Aka “point location”. Obviously, point-inclusion problems can also be studied in
higher dimensions.

q

Theorem 44

A brute-force point location within an n-vertex planar
subdivision can be carried out in O(n) time, using O(n)
space.

Sketch of Proof : An “even-odd” test can be used for
the individual point-in-face tests.

This is not an efficient solution for repetitive-mode queries!

Goal: Create geometric data structure that supports some kind of binary search.
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Point-in-Polygon Query for Star-Shaped Polygons

1 Preprocessing: Find point p within kernel of polygon.
2 Preprocessing: Shoot rays starting at p through each vertex.
3 For a query point q: Perform binary search.
4 Determine sidedness relative to one edge of the polygon.

p

2

3

q
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Point-in-Polygon Query for Star-Shaped Polygons

Theorem 45

For an n-vertex star-shaped polygon, a point-location query can be answered in
O(log n) query time, after O(n) preprocessing and within O(n) space.

Sketch of Proof : Determining a point p within the kernel can be seen as a solution of
an LP, which can be obtained in O(n) time [Megiddo (1983)].
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Triangulation Refinement Technique

Aka: Dobkin-Kirkpatrick Hierarchy [1990] in 3D, based on Kirkpatrick [1983].

For a given n-vertex PSLG G, generate a PSLG G′ with the following properties:
1 G′ is a super-graph of G,
2 G′ is a triangulation,
3 G′ has a triangular boundary, and, by Euler’s formula,
4 G′ has exactly 3n − 6 edges.

Triangulation refinement in a nutshell

Construct hierarchy of triangulations above G′, and set up a directed acyclic
search graph T , in time O(n log n) and space O(n).

Perform point-location queries within T in time O(log n).
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Triangulation Refinement Technique

Convert G into a triangulation G′ with triangular outer face.
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Triangulation Refinement: Hierarchy of Triangulations

Consider a triangulated PSLG G′ (with triangular outer face) on n vertices.

We construct a hierarchy of triangulations S1,S2, ...,Sh(n), where S1 := G′ and Si

is obtained from Si−1 as follows:
Step 1: Select and remove a maximal independent set of non-boundary
vertices of Si−1 together with their incident edges.
Step 2: Re-triangulate the holes arising from the removal of those vertices
and edges.

The final triangulation in the hierarchy, Sh(n), is just one triangle.
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Triangulation Refinement: Hierarchy of Triangulations
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UNIVERSITÄT SALZBURG

Triangulation Refinement: Directed Acyclic Search Graph

We set up a directed acyclic search graph T on S1,S2, ...,Sh(n).

The graph T contains an edge from triangle ∆k to triangle ∆j if, when
constructing triangulation Si from triangulation Si−1, we have:

1 ∆j is removed from Si−1 in Step 1.
2 ∆k is created in Si in Step 2.
3 ∆j ∩∆k ̸= /0.

22

17 20 21

17 20 14 15 19

17 5 13 14151618

1 2 3 6 45 13 7 8 9 10 11 12 S1

S2

S3

S4

S5

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 96/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Triangulation Refinement Technique: Query

For a query point q, perform a point-in-triangle test of q relative to the root
triangle of T .

If q is
outside then q lies in the unbounded (exterior) face.
inside then q is tested for triangle inclusion with each of the descendants of
the current node.

This scheme is applied recursively until a leaf of T is reached.

What is the complexity of a query? This depends on
the height h(n) of T ,
the maximum number m of point-in-triangle tests needed per node.

Both terms seem to depend on how we select those vertices of Si−1 that will not
be part of Si .

Goal: Construct T such that m = O(1) and h(n) = O(log n).
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Analysis of Triangulation Refinement Technique

Let Ni denote the number of vertices of triangulation Si .

Criterion for selecting vertices that are to be removed:
Remove a set of non-adjacent vertices of degree less than K ,

where K := 12.

Easy to prove: This criterion allows us to delete at least

1
12

(
Ni−1

2
− 3)

vertices within Si−1.

We get:
Ni ≤ αNi−1, where α ≈ 23

24 .
h(n) ≤ ⌈log1/α n⌉ ≈ 16 log n, and only O(n) triangles need to be stored.
Finally, m = (K − 1)− 2 = 9.

Other choices for K yield tighter bounds! E.g., K := 9 yields the slightly better
bounds α ≈ 17

18 and 12 log n per query, and more elaborate choices for the
vertices to be deleted bring down the query complexity to roughly 9

2 log n.
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Analysis of Triangulation Refinement Technique

The key step in the preprocessing is the initial triangulation of the PSLG, which
takes O(n log n) time (or O(n) time if the PSLG is connected and Chazelle’s
linear-time triangulation algorithm is used).

All other triangulation operations can easily be carried out in time linear in the
number of vertices involved.

Theorem 46 (Kirkpatrick (1983))

For a connected n-vertex PSLG, triangulation refinement supports point-location
queries in O(log n) query time, after O(n) preprocessing and within O(n) space.

Although this point-inclusion algorithm is optimum in terms of the O-notation, it is
not very practical and better (but more elaborate) algorithms are known.
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4 Convex Hulls
Basics
Algorithms
Convex Hull of Polygons
Convex Hulls in 3D
Applications of Convex Hulls
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Linear Combination and Convex Combination

Definition 47 (Linear combination, Dt.: Linearkombination)

Let p1, p2, . . . , pk be k points in Rn. A linear combination of p1, . . . , pk is given by

k∑
i=1

λi pi

where λ1, λ2, . . . , λk ∈ R are scalars.

Definition 48 (Convex combination, Dt.: Konvexkombination)

Let p1, p2, . . . , pk be k points in Rn. A convex combination of p1, . . . , pk is given by

k∑
i=1

λi pi with
k∑

i=1

λi = 1 and ∀(1 ≤ i ≤ k) λi ≥ 0,

where λ1, λ2, . . . , λk ∈ R are scalars.
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Convex Hull

Definition 49 (Convex hull, Dt.: konvexe Hülle)

Let p1, p2, . . . , pk be k points in Rn. The convex hull of p1, . . . , pk is the set

{
k∑

i=1

λi pi : λ1, . . . λk ∈ R+
0 and

k∑
i=1

λi = 1}.

For a set S ⊆ Rn (with possibly infinitely many points), the convex hull of S is the set

{
k∑

i=1

λi pi : k ∈ N and p1, p2, . . . , pk ∈ S and λ1, . . . λk ∈ R+
0 and

k∑
i=1

λi = 1}.

The convex hull of S is commonly denoted by CH(S).
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Convexity

Definition 50 (Convex set, Dt.: konvexe Menge)

A set S ⊆ Rn is called convex if for all p, q ∈ S

pq ⊆ S

where pq denotes the straight-line segment between p and q.

Lemma 51

For S ⊆ Rn, the convex hull CH(S) of S is a convex set.

Lemma 52

For a set S of n points in R2, the convex hull CH(S) is a convex polygon.
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Convexity

Definition 53 (Convex superset)

A set B ⊆ Rn is called a convex superset of a set A ⊆ Rn if

A ⊆ B and B is convex.

Lemma 54

For A ⊆ Rn, the following definitions are equivalent to Def. 49:

CH(A) is the smallest convex superset of A.

CH(A) is the intersection of all convex supersets of A.

The definition of a convex hull (and of convexity) is readily extended from Rn to
other vector spaces over R.
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Complexity of Computing Convex Hulls

Problem: CONVEXHULL

Given: A set S of n points in the plane.

Compute: The convex hull CH(S), as an ordered list of vertices.

Question: Can we state a worst-case lower bound on the time complexity of
CONVEXHULL, i.e., for computing CH(S)?

Theorem 55

SORTING is linear-time transformable to CONVEXHULL.

Corollary 56

Solving CONVEXHULL for n points requires at least Ω(n log n) time.
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Reduction From Sorting to Convex Hulls

Sketch of Proof : of Theorem 55
Suppose the instance of SORTING is the set of S′ := {x1, x2, ..., xn} ⊂ R.
We transform S′ into an instance of CONVEXHULL by mapping each real number
xi to the point (xi , xi

2). All points of the resulting set S of points lie on the
parabola y = x2.
The convex hull of S contains a list of vertices sorted by x-coordinates.
One pass through this list will find the smallest element. The sorted numbers can
be obtained by a second pass through this list.

x

y

x

y

x

y
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Complexity of Computing Convex Hulls

The Ω(n log n) lower bound also applies if only the unordered set of hull vertices
is sought. (But the proof becomes a bit trickier . . .)

If also the size h of the output is considered (in addition to the input size n), then
one can prove the lower bound Ω(n log h).

This lower bound is matched by a “marriage-before-conquest” algorithm
(Kirkpatrick&Seidel) and by Chan’s algorithm. Chan’s algorithm is simpler and
also extends to 3D.

Theorem 57 (Kirkpatrick&Seidel (1986), Chan (1996))

The convex hull of n points in the plane can be computed in O(n log h) time and within
O(n) storage, where h denotes the number of vertices of CH(S).
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Discarding Internal Points

Lemma 58

Consider three points p, q, r ∈ CH(S). Then every point q that lies strictly within
∆(p, q, r) is internal to CH(S).

p

q

r

In particular, no point strictly within ∆(p, q, r) can be a vertex of the convex hull.

This lemma can be generalized to any convex quadrangle (or polygon) whose
vertices lie within CH(S).
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Discarding Internal Points: Interior Elimination

Discard all points within a large (axis-aligned) rectangle.

Heuristic improvement; does not change worst-case complexity.
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Graham’s Scan

Find a point O internal to CH(S), e.g, the center of three points of S.
Sort the n points of S lexicographically on

1 polar angle relative to O,
2 distance from O.

Choose a point p0 ∈ S guaranteed to be a vertex of CH(S), and re-number the
points.
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UNIVERSITÄT SALZBURG

Graham’s Scan

CCW scan algorithm: The algorithm repeatedly examines triangles defined by
triples of consecutive points △(pi , pi+1, pi+2):

If △(pi , pi+1, pi+2) is a left turn, advance to △(pi+1, pi+2, pi+3) .
If △(pi , pi+1, pi+2) is a right turn, eliminate pi+1 from S and backtrack to
△(pi−1, pi , pi+2).
If pi , pi+1, pi+2 are collinear then eliminate pi+1 and advance to
△(pi , pi+2, pi+3) .
Scan ends when it returns to p0.

left
turn

right
turn

pi

pi+1

pi+2 pi+2

pi+1

pi
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Graham’s Scan: Advancing and Backtracking

Backtracking may occur more than once in succession, eliminating a sequence of
points.

Backtracking sure to stop at p0.

O O
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Animation of Graham’s Scan
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Analysis of Graham’s Scan

Theorem 59 (Complexity of Graham’s Scan)

Graham’s Scan computes the convex hull of n points in the plane in O(n log n) time
and within O(n) storage.

Proof :
1 Find a point O within CH(S): O(1).
2 Sort the points relative to O in polar coordinates: O(n log n).
3 Find a point on CH(S): O(n).
4 Scan algorithm: Use amortized analysis to argue O(n).

Corollary 60

Graham’s Scan computes the convex hull of a star-shaped polygon in linear time.
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Practice-Minded Simplification of Graham’s Scan

Compute upper and lower convex hull separately: Then a conventional
lexicographical sort with respect to x-coordinates (and y -coordinates) suffices.
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Divide-and-Conquer Convex Hull

1 If |S| ≤ k0, where k0 is a small integer (e.g., k0 = 3), then construct the convex
hull CH(S) directly by some method and stop, else go to Step 2.

2 Partition the set S arbitrarily into two subsets S1 and S2 of approximately equal
sizes.

3 Recursively find the convex hulls CH(S1) and CH(S2).
4 Merge the two hulls together to form CH(S).

Observations

The convex hull of the union of the two subsets is the same as the convex hull of
the union of the convex hulls of the two subsets.

Computing the convex hull of CH(S1) ∪ CH(S2) is relatively simple since CH(S1)
and CH(S2) are convex polygons P1,P2 and, thus, have a natural ordering of
their vertices.
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Divide-and-Conquer Convex Hull: Supporting Lines

Definition 61 (Supporting line, Dt.: Stützgerade)

A supporting line of a convex polygon P is a straight line ℓ passing through a vertex of
P such that the interior of P lies entirely to one side of ℓ.

This definition is readily generalized to general convex sets.
Two convex polygons P1 and P2, where no polygon is entirely contained within
the other polygon, have up to four common supporting lines.
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Divide-and-Conquer Convex Hull: Merge

1 Find a point p that is internal to P1; e.g., the centroid. Note that this point p will be
internal to CH(P1 ∪ P2).

2 Determine whether or not p is internal to P2.
3 Case: Point p is internal to P2:

Merge P1 and P2 into one polygon that is star-shaped, with p within its kernel.
4 Apply Graham’s Scan to the resulting polygon.

P1

P2

p
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Divide-and-Conquer Convex Hull: Merge

3 Case: Point p is not internal to P2:
(a) Find vertices u and v on P2 such that pu and pv are supporting lines of P2.
(b) Split P2 into two chains at u and v .
(c) Merge P1 and one chain of P2 into one polygon that is star-shaped, with p
within its kernel.

4 Apply Graham’s Scan to the resulting polygon.

P1

P2

p

v

u
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Divide-and-Conquer Convex Hull: Analysis

If polygon P1 has n1 vertices and polygon P2 has n2 vertices, then the merge
algorithm computes CH(P1 ∪ P2) in O(n1 + n2) time.

Obviously, an O(n) merge yields an O(n log n) time bound for this
divide-and-conquer algorithm.

Theorem 62 (Complexity of divide&conquer convex hull)

The divide&conquer algorithm computes the convex hull of n points in the plane in
O(n log n) time and within O(n) storage.
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Convex Hull of a Simple Polygon

Given is the sequence (p1, p2, ..., pn) of n points in R2 which form the vertices of a
simple polygon P.

Obviously, CH(P) can be computed in O(n log n) time.

Can we do any better? Note: The lower bound for computing the convex hull of n
points does not carry over to this problem!

Recall that Graham’s Scan runs in linear time when applied to a star-shaped
polygon.

Thus, the fact that the points are vertices of a polygon can be expected to help
when designing a linear-time algorithm.

Caveats
1 Several invalid linear-time “algorithms” were published in the early days of

computational geometry.
2 Graham’s Scan does not work properly for arbitrary simple polygons!
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Convex Hull of a Simple Polygon

Graham’s Scan does not work properly for arbitrary simple polygons!
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Convex Hull of a Simple Polygon: Melkman’s Algorithm

Melkman’s algorithm (1987) operates on a double-ended queue (“deque”)
< db, . . . , dt >, with db = dt ; the di ’s will represent vertices of the convex hull.

Deque operations:
Push(v ) increments t by one, and inserts v at the new top;
Pop(dt ) deletes the top element and decrements t by one;
Insert(v ) decrements b by one, and inserts v at the new bottom;
Delete(db) deletes the bottom element and increments b by one.

Melkman’s algorithm incrementally computes the convex hull of the polygon by
adding one vertex at a time.

A deque D is used to maintain the vertices of the convex hull constructed so far
in CW order.

The input polygon needs to be oriented CW.

In the pseudo-code the vertices are retrieved online from “input”, and an actual
implementation needs to check for an end of the input data.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 126/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Convex Hull of a Simple Polygon: Melkman’s Algorithm

Algorithm Melkman’s Algorithm
1. t ← −1; b ← 0; (∗ The current convex hull is maintained in the deque D ∗)
2. v1 ← input; v2 ← input; v3 ← input; (∗ Obtain vertices in CW order ∗)
3. if det(v1, v2, v3) < 0 then (∗ Initialize D ∗)
4. Push(v1); Push(v2);
5. else
6. Push(v2); Push(v1);
7. Push(v3); Insert(v3);
8. repeat
9. repeat
10. v ← input;
11. until det(db, db+1, v) > 0 or det(dt−1, dt , v) > 0 (∗ Skip v if interior to D ∗)
12. while det(dt−1, dt , v) > 0 do
13. Pop(dt ); (∗ Delete interior vertices from top of D ∗)
14. Push(v ); (∗ Insert v at top of D ∗)
15. while det(db, db+1, v) > 0 do
16. Delete(db); (∗ Delete interior vertices from bottom of D ∗)
17. Insert(v );
18. until input is empty.
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Animation of Melkman’s Algorithm

2

1

3

4 5
67 8

9

b t

-2 -1 0 1 2 3
3 1 2 3

4 3 1 2 4
5 1 2 4 5
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Convex Hull of a Simple Polygon: Analysis of Melkman’s Algorithm

Theorem 63 (Melkman (1987))

Melkman’s algorithm computes the convex hull of a simple n-vertex polygon in O(n)
time.

Proof : Similar to the analysis of Graham’s Scan:
Each vertex of the polygon is classified as either interior or exterior to the current
hull in O(1) time.
If vertex vi is exterior to the current hull then ki other vertices may end up being
deleted, with O(1) time per each vertex that is deleted.
Since

∑n
i=1 ki ≤ n − 3, the entire algorithm runs in O(n) time.

The first correct linear-time convex-hull algorithm for polygons is due to
McCallum&Avis (1979).
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Convex Hulls in 3D

Consider a set S of n points {p1, p2, . . . , pn} ⊂ R3. We want to compute CH(S).

Easy to prove: CH(S) is a convex polyhedron with at most 3n − 6 edges.

The Ω(n log n) lower bound extends trivially from 2D to 3D.

Divide-and-conquer algorithm for computing convex hulls in 3D:
1 Sort (and re-number) the points of S according to their x-coordinates.
2 Partition the set S into two subsets:

S1 := {p1, p2, . . . , p⌊n/2⌋}, and
S2 := {p⌊n/2⌋+1, . . . , pn}.

3 Recursively find the convex hulls P1 := CH(S1) and P2 := CH(S2).
4 Merge P1 and P2 together to form CH(S).

In order to assist the merge, during all steps of the divide-and-conquer algorithm
we maintain convex hulls of the point sets projected to 2D.
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Convex Hulls in 3D: Divide-and-Conquer Algorithm

The key idea of the merge step is similar to “gift wrapping”:
1 Find a supporting edge e of the projections of P1 and P2 to 2D.
2 Construct the first merge facet of the hull by "wrapping" a 2D plane through

e around P1 and P2.
3 Find a neighboring facet of the hull, again by “wrapping”.
4 Continue from each facet to its neighbor until all merge facets are found.

etc.P1 P2
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Convex Hulls in 3D: Divide-and-Conquer Algorithm

Lemma 64

The merge step of the divide&conquer algorithm for computing the convex hull of n
points in R3 can be carried out in O(n) time.

Sketch of Proof : Each new facet runs through the last constructed edge e and
through an endpoint of another edge e′ either on P1 or on P2, where e and e′ share a
common endpoint.

Theorem 65

The full convex hull of n points in R3 can be computed in O(n log n) time.

Theorem 66 (Seidel (1984))

The computation of the convex hull of a star-shaped polyhedron in R3 with n vertices
requires Ω(n log n) time in the worst case.
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Convex Hulls in Higher Dimensions

Theorem 67 (Seidel (1981))

The convex hull of n points in Rd can have Ω(n⌊d/2⌋) facets.

Theorem 68 (Chazelle (1993))

The convex hull of n points in Rd can be computed in O(n log n + n⌊d/2⌋) time.
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Sample Application of Convex Hulls: Lower Envelope

Definition 69 (Lower envelope)

Let L be a set of n lines with equations

y = k1x − d1, y = k2x − d2, . . . , y = knx − dn.

Then the lower envelope LL of L is the function LL : R→ R with

LL(x) := min
1≤i≤n

(kix − di).

Similarly for the upper envelope UL.

Note that a line of L may belong to both the lower and the upper envelope.

upper envelope

lower envelope
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UNIVERSITÄT SALZBURG

Sample Application of Convex Hulls: Lower Envelope

Lemma 70

Let L be a set of lines. For α ∈ R arbitrary but fixed let β− := LL(α) and β+ := UL(α).
Let (α, β−) be the coordinates of the point p and (α, β+) be the coordinates of the
point q. Then the lines p⋆ and q⋆ support CH(L⋆).

Proof : By Cor. 40, all
points of L⋆ are below
or on the line p⋆.
Furthermore, since p
is on the lower
envelope and, thus, on
a line of L, the line p⋆

must pass through one
of the points of L⋆.
Hence, p⋆ supports
CH(L⋆) and lies above
it. Similarly for q⋆.

x

y

0 0

b

a

primal plane dual plane

α

p

q

p?

q?

CH(L?)
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Sample Application of Convex Hulls: Lower Envelope

Lemma 71

Let L be a set of lines. Then p is a vertex of the lower envelope of L if and only if p⋆

contains an edge on the (upper) convex hull CH(L⋆).

Proof : If p is a vertex
of the lower envelope
of L, then it is given by
the intersection of two
lines g and h. By
Lem 70, all points of L⋆

lie below or on p⋆.
Furthermore, p⋆

passes through g⋆ and
h⋆. Hence, p⋆ contains
an edge of CH(L⋆).
The other direction is
argued similarly.

x

y

0 0

b

a

primal plane dual plane

CH(L?)

p

g

h

p?

g?

h?
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Sample Application of Convex Hulls: Lower Envelope

Theorem 72

The lower (or upper) envelope of a set L of n lines in the plane can be computed in
O(n log n).

The y -extreme
points p, q of
CH(L⋆)
correspond to the
two lines which
appear on both
the upper and
lower envelope of
L and which
contain the four
infinite rays of
these envelopes.

x

y

0 0

b

a

primal plane dual plane

CH(L?)

q

q?

p

p?
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Sample Application of Convex Hulls: Onion Layers

Consider a set S of n points in R2, with general position assumed.

Let S0 ⊆ S be the set of all vertices of CH(S).

The points of S0 are said to have depth 0.

S0

S1S2S3

S

Now let S := S \ S0, and re-consider CH(S).

All points of S that are on CH(S) are said to have depth 1, and are assigned to
S1.

Similarly for depths 2, 3, . . . , k , where Sk ̸= /0 and Sk+1 = /0.

The sets S0,S1,S2, . . . are called shells or onion layers or convex layers of S.
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Sample Application of Convex Hulls: Onion Layers

Lemma 73

It takes Ω(n log n) time to compute all depths of n
points in R2.

S0

S1S2S3

S

Theorem 74 (Chazelle (1985))

All depths of n points in R2, together with their onion layers, can be computed in time
O(n log n).

Statistics: The points of Sk ,Sk−1,Sk−2, . . . lie close to the “center” of S, and
computing their mean tends to discard “outliers”, thus yielding a more robust
statistical estimator of the mean of S than the mean of all point samples.

Rendering: Onion layers can be used to generate Hamiltonian triangulations.
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Sample Application of Convex Hulls: Kinetic AABB

Definition 75 (AABB)

The (axis-aligned) bounding box (AABB) of a set S ⊂ Rd , denoted by AABB(S), is the
smallest box (with sides parallel to the coordinate planes) which contains S.

If S can be described by a set of n vertices then AABB(S) can be computed in
O(d · n) time in a straightforward manner.
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Sample Application of Convex Hulls: Kinetic AABB

What happens if S moves? We observe that AABB(S) equals AABB(CH(S)): up
to six vertices v1, v2, . . . , v6 of CH(S) determine AABB(S) in R3.
Goal: Avoid re-scanning all vertices of S in order to re-compute the axis-aligned
bounding box from scratch.
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Sample Application of Convex Hulls: Kinetic AABB

What happens if S moves? We observe that AABB(S) equals AABB(CH(S)): up
to six vertices v1, v2, . . . , v6 of CH(S) determine AABB(S) in R3.
We can exploit coherence by applying a hill-climbing algorithm, starting at each
of these six vertices (resp. four vertices in 2D).
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Sample Application of Convex Hulls: Kinetic AABB

What happens if S moves? We observe that AABB(S) equals AABB(CH(S)): up
to six vertices v1, v2, . . . , v6 of CH(S) determine AABB(S) in R3.
Hill-climbing means to move from one vertex to a neighboring vertex of CH(S) if
it has a smaller/larger x-coordinate, y -coordinate, . . .
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UNIVERSITÄT SALZBURG

Sample Application of Convex Hulls: Kinetic AABB

What happens if S moves? We observe that AABB(S) equals AABB(CH(S)): up
to six vertices v1, v2, . . . , v6 of CH(S) determine AABB(S) in R3.
If S has moved only a little then few steps of the hill-climbing algorithm will
suffice. Of course, this scheme can be extended to k -dops.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 146/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

5 Voronoi Diagrams of Points
Definition and Properties
Algorithms
Generalizations
Applications
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A Set of Proximity Problems

Problem: PROXIMITY

Given: A set S := {p1, p2, . . . , pn} of n points in R2 under the Euclidean metric.

CLOSESTPAIR: Determine two points of S whose mutual distance is smallest.

ALLNEARESTNEIGHBORS: Determine the “nearest neighbor” (point of minimum
distance within S) for each point in S.

EUCLIDEANMINIMUMSPANNINGTREE (EMST): Construct a tree of minimum total
(Euclidean) length whose vertices are the points of S. (No Steiner points
allowed.)

MAXIMUMEMPTYCIRCLE: Find a circle with largest radius which does not contain a
point of S in its interior and whose center lies within CH(S).

TRIANGULATION: Join the points in S by non-intersecting straight-line segments so
that every region internal to the convex hull of S is a triangle.

NEARESTNEIGHBORSEARCH: Given a query point q, determine which point p ∈ S is
closest to q.

Unless stated explicitly otherwise, we will always deal with the Euclidean metric.
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Lower Bounds

Theorem 76

NEARESTNEIGHBORSEARCH among n points in R2 has an Ω(log n) lower bound;
CLOSESTPAIR, ALLNEARESTNEIGHBORS, EMST, MAXIMUMEMPTYCIRCLE and
TRIANGULATION all have Ω(n log n) lower bounds (in the ACT model of computation).

Sketch of Proof :
NEARESTNEIGHBORSEARCH: standard information-theoretic arguments yield
Ω(log n) comparisons.
CLOSESTPAIR: ELEMENTUNIQUENESS, which requires Ω(n log n) time (in the
ACT model of computation), is linearly reducible to CLOSESTPAIR.
ALLNEARESTNEIGHBORS: CLOSESTPAIR is linearly reducible to
ALLNEARESTNEIGHBORS.
EMST: CLOSESTPAIR is linearly reducible to EMST. (Also, SORTING can be
reduced linearly to EMST.)
MAXIMUMEMPTYCIRCLE in 1D solves MAXGAP, which establishes the Ω(n log n)
lower bound.
TRIANGULATION: CONVEXHULL is linearly reducible to TRIANGULATION.
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UNIVERSITÄT SALZBURG

Lower Bounds: Summary of Reductions

Thus, we have Ω(n log n) lower bounds due to a variety of reductions.

If Voronoi diagram is available then these problems can be solved in O(n) time!

Theorem 77

The computation of the Voronoi diagram of n points in R2 requires Ω(n log n) time.

ElementUniqueness

Sorting

ClosestPair AllNearestNeighbors

EMST

ConvexHull Triangulation

VoronoiDiagram
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UNIVERSITÄT SALZBURG

Voronoi Diagram: Motivation

Prairie fire

Let’s ignite a fire in a grassland, and watch it spread out. In an idealized setting —
uniform grassland, no wind — the fire wavefronts will form concentric circles!
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Voronoi Diagram of Points

Prairie fire

Now ignite two fires simultaneously: As the fire wavefronts meet — which propagate
at the same speeds! — the bisector line between the two fire sites is traced out.

δ

δ

δ

δ

p1

p2

v

d(v,p1) = δ = d(v,p2)
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Voronoi Diagram of Points

Prairie fire

We repeat the experiment with three fires ignited simultaneously: Again, the fire
wavefronts trace out the bisectors between the fire sites as they meet.

d(v,p1) = d(v,p2) = d(v,p3) = δ

δ
δ

δ

p1
p3

p2

v
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Voronoi Diagram: Motivation

Voronoi regions

The red bisectors defined by the three fires partition the plane into Voronoi regions:
Each region is the loci of points q closer to its defining fire site than to any other fire.

p1

p2

p3

v

q

d(q,p2) ≤ min{d(q,p1),d(q,p3)}
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Voronoi Diagram: Definition

Consider a set S := {p1, p2, · · · , pn} of n distinct points in R2 and denote the
Euclidean distance by d(·, ·), with d(q,S) := min{d(q, p) : p ∈ S}.

Definition 78 (Voronoi region, Dt.: Voronoi-Zelle)

The Voronoi region (VR, aka “Voronoi cell”) of a point p ∈ S is the locus of points of
R2 whose distance to p is not greater than the distance to any other point of S:

VR(p,S) := {q ∈ R2 : d(q, p) ≤ d(q,S) }.

VR(p,S)
p
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Voronoi Diagram: Definition

Definition 79 (Voronoi polygon)

The Voronoi polygon (VP) of p ∈ S is defined as

VP(p,S) := ∂ VR(p,S).

The segments of a Voronoi polygon are called Voronoi edges.

VP(p,S)
p
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Voronoi Diagram: Definition

Definition 80 (Voronoi diagram)

The Voronoi diagram (VD) of S is defined as

VD(S) :=
⋃

1≤i≤n

VP(pi ,S).
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Voronoi Diagram: Definition

Definition 81 (Bisector)

The bisector of two points u, v ∈ R2 is the set of points of R2 which are equidistant to
u and v :

b(u, v) := {q ∈ R2 : d(u, q) = d(v , q)}.

d
d

u

v

q

A Voronoi edge always lies on a bisector. Thus, points on a Voronoi edge are
equidistant to two points of S.

Lemma 82

For p ∈ S we get VP(p,S) = {q ∈ R2 : d(q, p) = d(q,S \ {p}) }.
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Voronoi Diagram: Definition

Definition 83 (Voronoi node, Dt.: Voronoi-Knoten)

Intersections of Voronoi edges are called Voronoi nodes.

p1

p2

p3
v
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Sample Voronoi Diagram

Input set S of points, Voronoi diagram and one Voronoi region, Voronoi nodes.
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Historical Remarks

René Descartes (1596–1650) drew Voronoi-like diagrams to illustrate the
subdivision of space by celestial bodies [Descartes 1644].
Gustav Lejeune Dirichlet (1805–1859) provided the first formal definition of
Voronoi diagrams in two dimensions [Dirichlet 1850].
Georgy Feodosevich Voronoi (1868–1908) generalized them to n dimensions
[Voronoi 1908].

Several other Latin spellings of his name: Voronoï, Voronoy, Woronoi.
Born at Zhuravky (near Kyiv).
Studied at Saint Petersburg University as a student of Andrey Markov.
Professor at the University of Warsaw.
Students (among others): Boris Delaunay (Kyiv) and Wacław Sierpiński
(Warsaw).
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Voronoi Diagram: Properties

Lemma 84

The Voronoi region VR(pi ,S) is the intersection of half-planes defined by bisectors
between pi ∈ S and the other points of S:

VR(pi ,S) =
⋂

1≤j≤n
j ̸=i

H(pi , pj),

where H(pi , pj) is the half-plane that contains pi and is bounded by b(pi , pj).

Corollary 85

Every Voronoi region is a convex polygonal area.

Lemma 86

Every point of S has its own Voronoi region that is not empty.

Lemma 87

The (topological) interiors of Voronoi regions of distinct points of S are disjoint.
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Voronoi Diagram: Properties

General position assumed (GPA)

No four points of S are co-circular!

Lemma 88

A Voronoi node is the common intersection of exactly three Voronoi edges. It is
equidistant to the three points of S which lie in the Voronoi regions it belongs to.

Corollary 89

A Voronoi diagram is a 3-regular (plane) graph.

Lemma 90

The disk D centered at a Voronoi node v that passes through the node’s three
equidistant points p1, p2, p3 ∈ S contains no other points of S in its interior.
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Voronoi Diagram: Properties

Lemma 91

For pi ∈ S, every nearest neighbor of pi defines an edge of VP(pi ,S).

Proof :
Let pj ∈ S be a nearest neighbor of pi , and let v be their midpoint.
Suppose that v does not lie on the boundary of VR(pi ,S). Then it has to lie
outside of VP(pi ,S)!

pi

pj

pk

u
v

VR(pi,S)
b(pi,pk)

Then the line segment piv would intersect some edge of VP(pi ,S). Assume that
it intersects the bisector of pipk in the point u. Now |piu| < |piv |, and therefore
|pipk | ≤ 2|piu| < 2|piv | = |pipj |, and we would have pk closer to pi than pj , which
is a contradiction.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 165/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Delaunay Triangulation: Definition and Properties

Definition 92 (Delaunay triangulation)

A Delaunay triangulation (DT), DT (S), of S is a plane geometric graph that is dual to
the Voronoi diagram of S:

The nodes of the graph are given by the points of S.

Two points are connected by a line segment, and form an edge of DT (S), exactly
if they share a Voronoi edge of VD(S).

Named after Boris
Nikolaevich Delaunay
(1890–1980).
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Delaunay Triangulation: Definition and Properties

Lemma 93

The structure DT (S) does indeed form a triangulation of S.

Thus, the interior faces of DT (S) are triangles that are defined by triples of S,
with each face corresponding to exactly one node of VD(S).

By definition, every edge of the Delaunay triangulation has a corresponding edge
in the Voronoi diagram.

DT (S) is called the straight-line dual of VD(S).

Note: An edge of DT (S)
need not intersect its dual
Voronoi edge.

If no four points of S are
co-circular then its Delaunay
triangulation is unique.
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Complexity of Voronoi Diagram and Delaunay Triangulation

Lemma 94

The Delaunay triangulation of n points has at most 3n − 6 edges and at most 2n − 4
faces (for all n ≥ 3).

Proof : Recall that a Delaunay triangulation forms a connected planar graph on n
nodes, where every bounded face is bounded by exactly three edges. Hence, Euler’s
formula V − E + F = 2 can be applied, with V := n, and we get

E ≤ 3V − 6 and F ≤ 2V − 4 and F ≤ 2
3

E .

We conclude that
DT : ≤ 3n − 6 edges and thus VD: ≤ 3n − 6 edges,
DT : ≤ 2n − 4 faces and thus VD: ≤ 2n − 5 nodes.

Lemma 95

The Voronoi diagram of n points has at most 3n − 6 edges and at most 2n − 5 nodes.

Corollary 96

A Voronoi polygon has at most n − 1 edges, but only six edges on average.
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Proximity Problems Solved by Voronoi Diagrams

The fact that the Voronoi polygons of nearest neighbors always have a Voronoi
edge in common implies that it is sufficient to check all points in adjacent Voronoi
regions to find a nearest neighbor of a point pi ∈ S.

Thus, knowledge of the Voronoi diagram helps to solve CLOSESTPAIR and
ALLNEARESTNEIGHBORS in O(n) time.

The Voronoi polygon of pi ∈ S is unbounded if and only if pi is a vertex of the
convex hull of the set S. (Proof: See Preparata&Shamos.) This means that the
vertices of CH(S) are those points of S which have unbounded Voronoi polygons.

Thus, knowledge of the Voronoi diagram allows to solve CONVEXHULL in O(n)
time.

A MAXIMUMEMPTYCIRCLE can be found in O(n) time by scanning all nodes of
the Voronoi diagram; see later.

After O(n) preprocessing for building a search data structure of size O(n) on top
of the Voronoi diagram, NEARESTNEIGHBORSEARCH queries can be handled in
O(log n) time. (However, the constants are high — better techniques are known
for point sites!)
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Reductions Among Proximity Problems

Lemma 97

The Voronoi diagram of n points in R2 can be obtained in O(n) time from the
Delaunay triangulation, and the Delaunay triangulation can be obtained in O(n) time
from the Voronoi diagram.

ElementUniqueness

Sorting

ClosestPair AllNearestNeighbors

EMST

ConvexHull

VoronoiDiagram

DelaunayTriangulation

Theorem 98 (Chazelle 1993)

The Voronoi diagram of n points in Rd can be computed in optimal O(n log n + n⌈ d
2 ⌉)

time.
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Divide&Conquer Algorithm

Preprocessing: Sort the points of S by x-coordinates. This takes O(n log n) time.

Divide:
Divide S into two subsets S1 and S2 of roughly equal size such that the
points in S1 lie to the left and the points in S2 lie to the right of a vertical line.
This step can be carried out in O(n) time.

Conquer (aka “Merge”):
Assume that VD(S1) and VD(S2) are known.
Clip those parts of VD(S1) that lie to the “right” of a so-called dividing chain.
Analogously for VD(S2).

S1 S2 VD(S1) VD(S2) VD(S1) VD(S2)
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Divide&Conquer Algorithm: Merge

1 Find upper and lower
supporting edges of
CH(S1) and CH(S2) in
order to form the convex
hull CH(S).

Bisector (ray)
defined by upper
bridge of convex hull
is part of the
dividing chain.
Bisector (ray)
defined by lower
bridge of convex hull
is part of the
dividing chain.
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Divide&Conquer Algorithm: Merge

2 Build dividing chain from
top to bottom:

Start by walking
down along the
upper ray.
Intersect the ray with
VD(S1) and
VD(S2).
Pick the first
intersection as new
Voronoi node.
The next ray is the
new bisector
originating at this
node.
Continue this jagged
walk until the lower
ray is reached.

VD(S1)
VD(S2)

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 174/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Divide&Conquer Algorithm: Complexity Analysis

Lemma 99

The merge can be carried out in O(n) time, based on the Shamos-Hoey scanning
scheme that prevents Voronoi edges from being searched for an intersection for more
than a constant number of times.

If the merge is carried out in linear time then we get a familiar recurrence relation
for the time T :

T (n) = 2T
(n

2

)
+ O(n),

and therefore

T ∈ O(n log n).

Theorem 100

The divide&conquer algorithm computes VD(S) for a set S of n points in optimal
O(n log n) time.
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Incremental Construction

We compute the Voronoi diagram VD(S) of a set S := {p1, p2, . . . , pn} of n points
by inserting the i-th point pi into VD({p1, p2, . . . , pi−1}), for 1 ≤ i ≤ n.

If we could achieve constant complexity per insertion then a linear algorithm
would result:
−→ Best case: O(n).

An insertion could, however, affect all other sites:
−→Worst case: O(n2), or even worse.

Since, on average, every Voronoi region is bounded by six Voronoi edges there is
reason to hope that a close-to-linear time complexity can be achieved.

Let S′ := {p1, p2, . . . , pi−1}.
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Incremental Construction: Basic Algorithm

1 Nearest-neighbor search among S′: Determine 1 ≤ j < i such that the new point
pi lies in VR(pj ,S′).

pi

pj
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Incremental Construction: Basic Algorithm

2 Construct the bisector b(pi , pj) between pi and pj , intersect it with VP(pj ,S′), and
clip that portion of VP(pj ,S′) which is closer to pi than to pj .

pi

pj
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UNIVERSITÄT SALZBURG

Incremental Construction: Basic Algorithm

3 Generate VP(pi , {p1, p2, . . . , pi}) by a circular scan around pi , similar to the
construction of the dividing chain in the divide&conquer algorithm.

pi

pj

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 179/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Incremental Construction: Basic Algorithm

The scan is finished once it returns to VR(pj ,S′).

pi

pj
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Incremental Construction: Complexity

The complexity mainly depends on the complexity of the nearest-neighbor search
and on the number of edges generated/deleted during the scan.

It is fairly easy to pick n points and number them “appropriately” such that the
insertion of the i-th point requires the generation of O(i) Voronoi edges!

But randomization comes to our rescue, and one can prove the following result.

Theorem 101

Randomized incremental construction allows to compute the Voronoi diagram of n
points in O(n log n) expected time.

Sketch of Proof : A search data structure (“history DAG”) can be maintained that has
O(n) expected size, and supports nearest-neighbor queries in O(log n) expected
time. Updates can be done in O(1) expected time.

The actual proof of these claims relies on backwards analysis.

This result is independent of the point distribution, as long as the insertion order
is random!

This is a nice result seen from a theoretical point of view, but an actual
implementation of the search structure would require a bit of work . . .
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Geometric Hashing for Nearest-Neighbor Searching

The bounding box of S (or of a slightly larger region that contains S) is partitioned
into rectangular cells of uniform size by means of a regular grid.

For every cell c, all points of {p1, p2, . . . , pi−1} that lie in c are stored with c.
(Alternatively, only one point is stored per cell.)
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Geometric Hashing for Nearest-Neighbor Searching

To find the point pj closest to point pi :
Determine the cell c in which pi lies.
By searching in c (and possibly in its neighboring cells, if c is empty), we find
a first candidate for the nearest neighbor.
Let δ be the distance from pi to this point.
We continue searching in c and in those cells around c which are
intersected by a disk D with radius δ centered at pi .
Whenever a point of {p1, p2, . . . , pi−1} that is closer to pi is found, we reduce
δ appropriately.
The search stops once no unsearched cell exists that is intersected by D.
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Geometric Hashing for Nearest-Neighbor Searching

What is a suitable resolution of the grid? There is no universally valid answer. In
any case, the grid should not use more than O(n) memory!

Personal experience

Grids of the form (w ·
√

n)× (h ·
√

n) seem to work nicely, with w · h = c for some
constant c.

The parameters w , h are chosen to adapt the resolution of the grid to the aspect
ratio of the bounding box of the points.

By experiment: 1 ≤ c ≤ 2.

This basic scheme can be tuned considerably:
Switch to multi-level hashing or to kd-trees if a small sample of the points
indicates that the points are distributed highly non-uniformly.
Adapt the grid resolution and re-hash if the number of points stored changes
significantly due to insertions and deletions of points.

Hash-based nearest-neighbor searching will work best for points that are
distributed uniformly, and will fail miserably if all points end up in one cell!
Still, personal experience tells me that (tuned) geometric hashing works
extremely well even for point sets that are distributed highly irregularly!
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Sweep-Line Algorithm

Can a sweep-line algorithm be applied to compute the Voronoi diagram?

Principal problem: When a top-down sweep line reaches the top-most vertex of
VP(pi ,S), then it has not yet moved over pi !

Thus, the information on the corresponding point site is missing when a Voronoi
polygon is first encountered and Voronoi nodes are to be computed.

This problem is independent of the sweep direction chosen.

Hence, for quite some time it was assumed that the sweep-line paradigm is not
applicable to Voronoi diagrams.

W.l.o.g., we move the sweep line ℓ from top to bottom.

Remarkable idea (by S. Fortune): Rather than keeping the actual intersection of
the Voronoi diagram with ℓ, we maintain information on that part of the Voronoi
diagram of the points above ℓ that is guaranteed not to be affected by points
below ℓ.
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Sweep-Line Algorithm: Beach Line

The part of the Voronoi diagram that will not change any more as the sweep line
continues to move downwards lies above the so-called beach line formed by the
lower envelope of parabolic arcs: Each parabolic arc is defined by ℓ and by a
point above ℓ.

d

d
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Animation of Sweep-Line Algorithm

The beach line moves downwards as the sweep-line is moved from top to bottom.
A full sweep reveals the complete Voronoi diagram.
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Sweep-Line Algorithm: Events

The following two events need to be considered for the event-point schedule:
1 Site event:

The sweep line ℓ passes through an input point, and a new parabolic
arc needs to be inserted into the beach line.

2 Circle event:
A parabolic arc of the beach line vanishes, i.e., degenerates to a point
v , and a new Voronoi node has to be inserted at v .
What does this mean for the sweep line ℓ? What is the appropriate
y -position of ℓ to catch this event?
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Sweep-Line Algorithm: Site Event

If the sweep line ℓ passes through an input point then a new parabolic arc needs
to be inserted into the beach line. Initially, this arc is degenerate.

This event occurs whenever the sweep line ℓ passes through an input point pi .

It is responsible for the initialization of a new Voronoi region that will become
VR(pi ,S).
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Sweep-Line Algorithm: Circle Event

If a parabolic arc of the beach line degenerates to a point v then a new Voronoi
node needs to be inserted at v .

A circle event occurs when the sweep line ℓ passes over the south pole of a circle
through the three defining input points pi , pj , pk of three consecutive parabolic
arcs of the beach line.

The center v of such a circle is equidistant to pi , pj , pk and also to ℓ; it becomes a
new node of the Voronoi diagram.
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Sweep-Line Algorithm: False Alarms

Not all scheduled circle events correspond to valid new Voronoi nodes: A circle
event has to be processed only if its defining three parabolic arcs still are
consecutive members of the beach line at the time when the sweep line ℓ passes
over the south pole of the circle.
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Sweep-Line Algorithm: Event-Point Schedule and Sweep-Line Status

All input points are stored in sorted order (according to y -coordinates) in the
event-point schedule.

Whenever three parabolic arcs become consecutive for the first time — when a
site event occurs — the y -coordinate of the corresponding circle event is inserted
into the event-point schedule at the appropriate place.

Parabolic arcs have to be inserted into the beach line when processing site
events, and have to be deleted when processing circle events.

Both structures are best represented as balanced binary search trees, since this
allows logarithmic insertion/deletion.
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Sweep-Line Algorithm: Analysis

Lemma 102

The beach line is monotone with respect to the x-axis.

Lemma 103

An arc can appear on the beach line only through a site event.

Corollary 104

The beach line is a sequence of at most 2n − 1 parabolic arcs.

Lemma 105

An arc can disappear from the beach line only through a circle event.

Theorem 106 (Fortune (1986))

A sweep-line algorithm computes the Voronoi diagram of n points in O(n log n) time,
using O(n) storage.
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Construction via Lifting to 3D

Consider the transformation that maps a point
p = (px , py ) to the non-vertical plane
h(p) ≡ z = 2px x + 2py y − (p2

x + p2
y ) in R3.

This plane is tangent to the unit paraboloid
z = x2 + y2 at the point (px , py , p2

x + p2
y ).

Let h+(p) be the half-space induced by h(p)
which contains the unit paraboloid.

Theorem 107

For S := {p1, p2, . . . , pn}, consider the convex
polyhedron P := ∩1≤i≤nh+(pi). The normal
projection of the vertices and edges of P onto the
xy -plane yields VD(S).

Corollary 108

This lifting allows to construct Voronoi diagrams in
O(n log n) time.

z

x

y
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Voronoi Diagram as Minimization Diagram

Edelsbrunner&Seidel (1986)

1 For each site: Construct (in R3) one upside-down, infinitely tall, right pyramid
whose apex coincides with the site’s location.

2 Every cross-section of a site’s pyramid corresponds to a wavefront of the site: A
point p ∈ R3 with coordinates (x , y , t) lies on the pyramid of site s if the point
pxy ∈ R2 with coordinates (x , y) is at weighted distance t from s.

3 Then the minimization diagram of all pyramids matches the Voronoi diagram.
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Discrete Voronoi Diagram

For a input points given, a regular grid is constructed over a super-set of their
bounding box.

Then discrete Voronoi regions are determined by deciding on a cell-by-cell basis
which input point is closest.

The Voronoi diagram is extracted from the grid.

D

A

B
C

E

F
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Approximate Voronoi Diagram by Means of Graphics Hardware

Regard R2 as the xy -plane of R3, and construct upright circular unit cones at
every point of S. (All cones point upwards, are of the same size and form the
same angle with the xy -plane!) Assign a unique color to every cone.
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Approximate Voronoi Diagram by Means of Graphics Hardware

Hoff et al. (1999)

Look at the cones from below the xy -plane, and use graphics hardware to render
them. This yields a subdivision of the xy -plane into approximate Voronoi regions.
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Generalizations of Voronoi Diagrams

The definition of a Voronoi region allows generalizations in three different
directions.

VR(p,S) := {q ∈ R2 : d(q,p) ≤ d(q,S)}

sites
points

line segments
circular arcs

ellipses
...

dimension

distance
weighted distance

L1,L∞
convex distance function
abstract Voronoi diagram

...
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Additively-Weighted Voronoi Diagram

We define the distance of a point q to a site pi as d(q, pi)− wi , where d(·, ·)
denotes the standard Euclidean distance and where wi is non-negative.

The resulting diagram is called Appollonius diagram or additively-weighted VD.

It can be seen as the Voronoi diagram of circles with radii wi ; all its edges are
hyperbolic arcs (and straight-line segments).
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Multiplicatively-Weighted Voronoi Diagram of Points

Weighted Prairie fire

Unweighted: Each wavefront propagates at the same speed.

Weighted: The speed of a wavefront is proportional to the weight of the fire site.

(1)

(2)

(3)
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Multiplicatively-Weighted Voronoi Diagram

We define the weighted distance of a point q to a site p as

dw (p, q) :=
d(p, q)
w(p)

,

where d(·, ·) denotes the standard Euclidean distance and where w(p) ∈ R+.
The resulting diagram is called the multiplicatively-weighted Voronoi diagram.
All its edges are circular arcs (and straight-line segments).
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Multiplicatively-Weighted Voronoi Diagram of Points

Note that the Voronoi regions of (higher-weighted) sites may be disconnected.

s1
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Multiplicatively-Weighted Voronoi Diagram of Points

Aurenhammer&Edelsbrunner (1984)

The multiplicatively-weighted VD of n points is computed in Θ(n2) time.

Held&de Lorenzo (2020)

The multiplicatively-weighted VD of n points is computed in O(n log4 n) expected time.
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Multiplicatively-Weighted Voronoi Diagram as Minimization Diagram

The approach by Edelsbrunner&Seidel (1986) is also applicable to
multiplicatively-weighted Voronoi diagrams: The inclinations of the lateral
surfaces are chosen indirectly proportional to the weights of the points.

s1 s2 s3 s4
x, y

t
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L1 and L∞ Voronoi Diagram

x

y

r

L1 : |x| + |y| = r

r
r x

y

L2 :
√

x2 + y2 = r

x

y

L∞ : max{|x|, |y|} = r

r
r
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L1 Voronoi Diagram

Eder&Held (2019)

The combinatorial complexity of the VD of n multiplicatively-weighted points in the L1

norm has a Θ(n2) worst-case bound. All its bisectors are polygonal curves of constant
complexity. It can be computed by an incremental algorithm in O(n2 log n) time.
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L∞ Voronoi Diagram

Eder&Held (2019)

The combinatorial complexity of the Voronoi diagram of n multiplicatively-weighted
points, axis-aligned rectangular boxes and straight-line segments in the L∞ norm has
a tight Θ(n2) worst-case bound. All its bisectors are polygonal curves of constant
complexity. It can be computed by an incremental algorithm in O(n2α(n) log n) time.
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Power Diagram

We are again given a set of sites pi with non-negative weights wi . Then the
power of a point q from pi is defined as d(q, pi)

2 − w2
i .

The resulting diagram is called power diagram.

All its edges are straight-line segments.
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Higher-Order Voronoi Diagram

We are given a set S of n points p1, p2, . . . , pn, and consider the standard
Euclidean distance.

The second-order Voronoi diagram is a partition of the plane such that each
Voronoi region is the locus of points closer to two distinct sites pi , pj than to any
other site of S. Similar for higher orders.
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Farthest-Point Voronoi Diagram

Again we are given a set S of n points p1, p2, . . . , pn.

The farthest-point Voronoi diagram is a partition of the plane such that each
Voronoi region is the locus of points which have the same point of S as the
farthest point. The farthest-point VD is the (n − 1)-st order VD. A point pi of S
has a region in the farthest-point VD if and only if pi is a vertex of CH(S).

It can be computed in O(n log n) time.
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Centroidal Voronoi Diagram

Definition 109 (Centroidal Voronoi Diagram (CVD))

A Voronoi diagram of a set of points is called centroidal if the points are also centroids
of the Voronoi regions, i.e., centers of mass with respect to a given density function.

Applications of CVDs: data compression, image segmentation, mesh generation,
modeling of territorial behavior of animals, etc.
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Euclidean Minimum Spanning Tree

Consider a set S := {p1, p2, . . . , pn} ⊂ R2 of n points, and assume that we want
to compute a Euclidean minimum spanning tree (EMST) of S.

Note: An EMST is unique if all inter-point distances on S are distinct.
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Euclidean Minimum Spanning Tree

Obviously, we could apply standard techniques of graph theory by computing an
EMST on the weighted graph G := (V ,E), where V := S and E := S × S, and
where the Euclidean length of an edge is taken as its weight.

Lemma 110 (Jarnik (1930), Prim (1957), Dijkstra (1959))

Assume that G is connected, and let V1,V2 be a partition of V . There is a minimum
spanning tree of G which contains the shortest of the edges with one terminal in V1

and the other in V2.

Prim’s algorithm starts with a small tree T and grows it until it contains all nodes
of G. Initially, T contains just one arbitrary node of V . At each stage one node
not yet in T but closest to (a node of) T is added to T . Prim’s algorithm can be
implemented to run in O(|V |2) time.

Kruskal’s algorithm begins with a spanning forest, where each forest is initialized
with one node of V . It repeatedly joins two trees together by picking the shortest
edge between them until a spanning tree of the entire graph is obtained.
Kruskal’s algorithm can be implemented to run in O(|E | log |E |) time.

Can we do any better than O(n2) when computing EMSTs?
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Euclidean Minimum Spanning Tree

Can we do any better than O(n2) when computing EMSTs?

Lemma 111

The EMST of a set S of points is a sub-graph of DT (S).
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Euclidean Minimum Spanning Tree

Thus, there is no need to consider the complete graph, Kn, on S.

Rather, we can apply Kruskal’s algorithm to DT (S), and obtain an O(n log n)
algorithm for computing EMSTs.

Lemma 112

An EMST of S can be computed in time O(n log n).

Theorem 113

An EMST of S can be computed from the Delaunay triangulation of S in time O(n).

Sketch of Proof : Observe that DT (S) is a planar graph, and use Cheriton and
Tarjan’s “clean-up refinement” of Kruskal’s algorithm.
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Approximate Traveling Salesman Tour

The EUCLIDEANTRAVELINGSALESMANPROBLEM (ETSP) asks to compute a
shortest closed path on S ⊂ R2 that visits all n points of S.
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Approximate Traveling Salesman Tour

Theorem 114

TSP is NP-complete, and ETSP is NP-hard.

Intuitively, ETSP ought to be NP-complete, too.

And, indeed, the NP-completeness of ETSP is claimed in many publications . . .

However, this claim is wrong! (The title of [Papadimitriou (1977)] is misleading!)
ETSP, and several other optimization problems involving Euclidean distance, are
not known to be in NP due to a “technical twist”: For ETSP, the length of a tour
on n points is a sum of n square roots. Comparing this sum to a number c may
require very high precision, and no polynomial-time algorithm is known for
solving this problem. (E.g., repeated squaring of n square roots may lead to
numbers that need 2n bits to store.)

Open problem: Can the sum of n square roots of integers be compared to
another integer in polynomial time?
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Approximate Solution for Euclidean Traveling Salesman Problem

Let OPT be the true length of a TSP tour, and let APX be the length of an
approximate solution.

Definition 115 (Constant-factor approximation)

An approximation algorithm provides a constant-factor approximation (for TSP) if a
constant c ∈ R+ exists such that APX ≤ c ·OPT holds for all inputs.

Simple constant-factor approximations to ETSP:
Doubling-the-EMST heuristic: c = 2; runs in O(n log n) time.
Christofides’ heuristic [1976]: c = 3/2; runs in O(n3) time.
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Approximate ETSP: Doubling-the-EMST Heuristic

1 Compute the Euclidean minimum spanning tree T (S) of S.
2 Select an arbitrary node v of T (S) as root.
3 Compute a (pre-order-like) traversal of T (S) rooted at v to obtain a tour C(S).
4 By-pass points already visited, thus shortening C(S).
5 Apply 2-opt moves (at additional computational cost).
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Approximate ETSP: Doubling-the-EMST Heuristic

Time complexity: O(n log n) for computing the EMST T (S).

Factor of approximation: c = 2.

Theorem 116

The doubling-the-EMST heuristic computes a tour on n points within O(n log n) time
that is at most 100% longer than the shortest tour.
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Approximate ETSP: Christofides’ Heuristic

1 Compute the Euclidean minimum spanning tree T (S) of S.
2 Get a minimum Euclidean matchingM on the vertices of odd degree in T (S).
3 Compute an Eulerian tour C on T ∪M.
4 By-pass points already visited, thus shortening C.
5 Apply 2-opt moves (at additional computational cost).
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Approximate ETSP: Christofides’ Heuristic

Time complexity: O(n3) for computing the Euclidean matching.

Factor of approximation: c = 3
2 .

Theorem 117

Christofides’ heuristic computes a tour on n points within O(n3) time that is at most
50% longer than the shortest tour.
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Statistical Classification and Shape Estimation

Given are sets of differently colored points in the plane. What is a suitable
partition of the plane according to the colors of the points?

Well-known idea: Compute the Voronoi diagram and color every Voronoi region
with its point’s color.
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Estimating Electrical Distribution Boundaries

TXU Energy (Dallas, TX, USA):
Which area is serviced by a particular electric device?
How can we display (feeder-level) statistical information within a geographic
context?
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Estimating Electrical Distribution Boundaries

[Held&Williamson (2004)] generate distribution boundaries as boundaries of
unions of Voronoi regions of basic devices (e.g., transformers) and integrate
them into TXU’s geographic information system.
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UNIVERSITÄT SALZBURG

Natural-Neighbor Interpolation

Problem: INTERPOLATION

Given: A set S of m + 1 sites p0, p1, . . . , pm ∈ R2 with associated (scalar or
vector-valued) “data” v0, v1, . . . , vm, and q ∈ CH(S).

Compute: An estimate f (q) of the data at q, obtained by interpolation of
v0, v1, . . . , vm.

Natural-neighbor interpolation (NNI)

[Sibson (1981)]: Use ratios of Voronoi
areas as weights λi(q) in the interpolation:

f (q) :=
m∑

i=0

vi · λi(q).

Natural-neighbor extrapolation

[Bobach et al. (2009)]: NNI outside of
convex hull.

q
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Natural-Neighbor Interpolation

Definition 118 (NNI)

Consider a set S of m + 1 sites
p0, p1, . . . , pm ∈ R2 with associated (scalar
or vector-valued) “data” v0, v1, . . . , vm, and
q ∈ CH(S). Let S′ := S ∪ {q}. Then

f (q) :=
m∑

i=0

vi · λi(q)

gives the interpolated data for q obtained
by natural-neighbor interpolation (NNI), with

λi(q) :=
|VR(q, pi ,S′)|
|VR(q,S′)| ,

where |VR(q,S′)| denotes the area of the
Voronoi region of q within S′, and
|VR(q, pi ,S′)| corresponds to the area of
the second-order Voronoi region of q and pi

within S′.

Theorem 119

Sibson’s NNI interpolant is

C0 if q ∈ S,

C1 if q lies on a Delaunay
circle of S, and

C∞ otherwise.

q

piVR(q,pi ,S′)
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Improved Laser Sintering Based on Natural-Neighbor Interpolation

Laser sintering is a manufacturing process used in rapid prototyping:
A laser is used to manufacture a part by sintering powder-based materials
layer by layer.
Small-series production is possible.
Snap fits and living hinges can be produced.

Images courtesy of EOS GmbH
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Improved Laser Sintering Based on Natural-Neighbor Interpolation

Major problem:
The laser-induced heating and subsequent cooling down of the material may
cause the “warpage” phenomenon.
Warpage is the result of a change in the morphology of the molten powder:
amorphous to part-crystalline.
Crystalline regions have a higher density than the amorphous regions,
leading to a loss of volume.
Different layers undergo different loss in volume, leading to inter-layer
tension.
This tension may result in a bimetallic effect: “curl”.
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Improved Laser Sintering Based on Natural-Neighbor Interpolation

Bold idea: Apply a pre-deformation in order to manufacture an inversely
deformed part!

It seems natural to use interpolation — but how shall we interpolate vectors on
the surface of a polyhedron?

[Held&Pfligersdorffer (2009)]: Pre-deformation by means of approximate
natural-neighbor interpolation (NNI) helps to reduce warpage by 90%.

Pre-deformation works neatly for reasonably triangulated parts and a reasonable
number of deformation vectors.
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Maximum Empty Circle

1 Restrict VD(S) to CH(S).
2 Determine the largest circle centered at an intersection of VD(S) and CH(S).
3 Determine the largest circle centered at an interior node of VD(S).
4 Pick the largest circle among those two categories of circles.
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Hausdorff Distance

Definition 120 (Hausdorff distance)

Let A,B be two non-empty subsets of Rd . The directed Hausdorff distance, h(A,B),
from A to B (relative to the standard Euclidean distance d(., .)) is defined as

h(A,B) := sup
a∈A

(
inf
b∈B

d(a, b)
)
.

The (symmetric) Hausdorff distance, H(A,B), between A and B is defined as

H(A,B) := max {h(A,B), h(B,A)} .

Introduced by Felix Hausdorff in 1914.

If both A and B are bounded then H(A,B) is guaranteed to be finite.

For compact sets we can replace inf by min and sup by max.

Theorem 121

The Hausdorff distance between two finite sets S1,S2 of points in R2 can be
computed in O(n log n) time, where n := max{|S1|, |S2|}.
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Hausdorff Distance

Sketch of Proof of Theorem 121 :
1 Consider sets S1 and S2 of blue and red points.
2 Compute VD(S2).
3 Locate each point of S1 within the Voronoi regions of VD(S2).
4 The maximum distance yields h(S1,S2).

h(S1,S2)
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Centroidal Voronoi Diagrams and Territorial Behavior

Tilapia mossambica (Dt.: Weißkehl-Buntbarsch):
The male fishes dig nesting pits into sandy grounds.
The centers and corners of the pits are adjusted until the final configuration
resembles a centroidal Voronoi diagram.

[Image credit: G. Barlow, “Hexagonal Territories”, Animal Behavior 22:876–878, 1974.]
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Evaporation as a Massively Parallel Algorithm?

Salar de Atacama in the Chilean Andes: 3 000 km2, average elevation about
2 300 m asl., 3 500 milliliters annual evaporation, only a few milliliters of annual
rainfall.
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6 Skeletal Structures
Voronoi Diagram of Points, Line Segments and Circular Arcs
Straight Skeleton
Applications
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Generalizing the Wavefront

The wavefront of a point is a circle of radius r , for some non-negative value of r .

The wavefront of a straight-line segment is a box with semi-circular caps.

Of course, individual portions of the wavefront may interact again.

It is natural to split up the wavefront into parts according to the input items that
emitted them.

r

r

r

rr
r

r

r
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Voronoi Diagram of Points, Line Segments and Arcs: Wavefront

Consider a set S of n points, straight-line segments, and circular arcs (“sites”).

For technical reasons we assume that all end-points of all segments and arcs are
members of S. Furthermore, the segments and arcs are allowed to intersect only
at common end-points. Such a set of sites is called “admissible”.

Now perform a (generalized) wavefront propagation.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 243/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Voronoi Diagram of Points, Line Segments and Arcs

Intuitively, the Voronoi diagram of S partitions the Euclidean plane into regions
that are closer to one site than to any other.

Natural generalization of Voronoi diagrams of points, but Voronoi regions are now
bounded by conics and need not be convex.
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Voronoi Diagram of Points, Line Segments and Arcs

Problem: GENERALIZEDVORONOIDIAGRAM

Given: Admissible set S of points, line segments and circular arcs in 2D.

Compute: Voronoi diagram VD(S) under the Euclidean distance d(·, ·).

Formal definition requires some technicalities . . . [Yap (1987), Held (1991)]
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Voronoi Diagram of Points, Line Segments and Arcs: Technical Problem

Consider an admissible set S of n points, line segments and circular arcs as input
sites in 2D, and two sites s1, s2 ∈ S.

Problem: We need to avoid “two-dimensional” and “non-intuitive” bisectors.

s1 s2

s1

s2

p

p

q

q

d(q,p) = d(q, s1) = d(q, s2)
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Voronoi Diagram of Points, Line Segments and Arcs: Definitions

Definition 122 (Cone of influence)

The cone of influence, CI(s), of

a circular arc s is the closure of the cone bounded by the pair of rays originating
in the arc’s center and extending through its endpoints;

a straight-line segment s is the closure of the strip bounded by the normals
through its endpoints;

a point s is the entire plane.
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Voronoi Diagram of Points, Line Segments and Arcs: Definitions

Definition 123 ((Generalized) Voronoi region)

The (generalized) Voronoi region of si ∈ S relative to S is defined as

VR(si ,S) := cl{q ∈ int CI(si) : d(q, si) ≤ d(q,S)}.

It is common to drop the attribute “generalized” if the meaning is clear.

Definition 124 ((Generalized) Voronoi polygon)

The (generalized) Voronoi polygon of si ∈ S relative to S is defined as

VP(si ,S) := ∂ VR(si ,S).

Definition 125 ((Generalized) Voronoi diagram)

The (generalized) Voronoi diagram of S is defined as

VD(S) :=
⋃

1≤i≤n

VP(si ,S).
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Sample Voronoi Diagram Dissected

angular bisector

parabolic arc
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Bisectors

Lemma 126

The structure VD(S) is a planar graph and consists of O(n) parabolic, hyperbolic,
elliptic and straight-line edges.

p

d

r

dr
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Voronoi Diagram of Points, Line Segments and Arcs: Medial Axis

Definition 127 (Clearance)

The clearance of a point q relative to S is
the radius r of the largest disk (“clearance
disk ”) centered at q which does not
contain any site of S in its interior.

Definition 128 (Medial axis)

A point in the interior of a
(multiply-connected) polygonal region
belongs to the medial axis (MA) of the
region if and only if its clearance disk
touches the boundary in at least two
disjoint points.

q
r
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Voronoi Diagram of Points, Line Segments and Arcs: State of the Art

Theorem 129 (Fortune (1987))

The Voronoi diagram of n points and straight-line segments can be constructed in
O(n log n) time by means of a sweep-line algorithm.

Theorem 130 (Yap (1987))

The Voronoi diagram of n points, straight-line segments and circular arcs can be
constructed in O(n log n) time by means of a divide&conquer algorithm.

Theorem 131 (Aichholzer et alii (2009))

The Voronoi diagram of n points, straight-line segments and circular arcs can be
constructed in O(n log2 n) expected time by means of randomization combined with a
divide&conquer algorithm.

Theorem 132 (Held&Huber (2009), based on Held (2001))

The Voronoi diagram of n points, straight-line segments and circular arcs can be
constructed in O(n log n) expected time by means of randomized incremental
construction.
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Voronoi Diagram of Points, Line Segments and Arcs: State of the Art

Several other O(n log n) expected-time algorithms for polygons and/or line
segments . . .

What about Voronoi diagrams of polygons? Can one achieve o(n log n)?

Theorem 133 (Aggarwal et alii (1989))

The Voronoi diagram of a convex polygon can be constructed in linear time.

Theorem 134 (Chin et alii (1999))

The Voronoi diagram of a simple polygon can be constructed in linear time.
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Randomized Incremental Construction

[Held (2001), Held&Huber (2009)]: Start with the vertices of S, and compute their
Voronoi diagram. (E.g., use randomized incremental construction.) Insert
segments, in random order, one after the other. Same for the arcs.
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Storing a Voronoi Diagram: Topological Data

Any standard way to represent a planar graph is good enough to store the
topology of a Voronoi diagram.

E.g., we
store CCW pointers around all nodes,
store pointers to the two defining sites of every edge,
store pointers to the first and last edge of a site’s Voronoi region.
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Storing a Voronoi Diagram: Numerical Data

We assign a clearance-based parameterization f : [a, b]→ R2 to every edge e,
where a is the minimum and b is the maximum clearance of points of e.

The coordinates of a point p of e with clearance t are obtained by evaluating f :
we have p = f (t).

a

b

t

t

u

v

pe
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Straight Skeletons: Constant-Radius vs. Mitered Wavefront

Voronoi diagram: constant-radius wavefront.

Straight skeleton: mitered wavefront.

rrt
t

rrt
t

rrt
t

t

t

t

t

t
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Straight Skeletons: Motivation

Aichholzer&Alberts&Aurenhammer&Gärtner (1995)

Self-parallel mitered offsetting of input polygon P yields wavefrontWF(P, t) for
offset distance t .

Wavefront propagation: Shrinking process via continued self-parallel offsetting
with unit speed, where offset distance t equals time.

Straight skeleton SK(P) is union of traces of wavefront vertices.
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Change of Wavefront Topology

Edge event

Topology of wavefrontWF(P, t) changes over time.

Edge event : an edge ofWF(P, t) vanishes.

Such a change of topology ofWF(P, t) corresponds to a node of SK(P).

edge events
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Change of Wavefront Topology

Split event

Topology of wavefrontWF(P, t) changes over time.

Split event : WavefrontWF(P, t) splits into two parts.

Also split events correspond to nodes of SK(P).

split event
edge events

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 261/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Straight Skeleton of Polygon

Definition 135

The straight skeleton SK(P) of a polygon P is
given by the union of traces of wavefront vertices of
P over the entire wavefront propagation process.

Lemma 136
1 The topology of the wavefrontWF(P, t)

changes with time/distance t due to edge and
split events.

2 These events correspond to nodes of SK(P).
3 No metric-based definition of straight

skeletons exists.
4 If P has n segments then SK(P) consists of

O(n) nodes and O(n) straight-line edges.
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Straight Skeleton of a Planar Straight-Line Graph

Generalization to PSLGs

The definition of straight skeletons can be extended easily to arbitrary planar straight
line graphs (PSLGs) within the entire plane, i.e., to a collection of straight-line
segments that do not intersect except possibly at common endpoints.
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Weighted Straight Skeletons

Multiplicative weights: Edges move at different speeds, possibly even at negative
speeds.

[Barequet et alii (2008)]: Weighted straight skeletons in 2D can be used for
computing a straight skeleton in the interior of a polyhedron in 3D.

Which of the properties of the straight skeleton (planarity, tree structure, faces
are monotone) carry over to weighted straight skeletons?

+3

+3 +1

+3

+1 +3

+3 −1

−3

−1
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Weighted Straight Skeletons

Theorem 137 (Biedl et alii (2014))

The geometric, graph-theoretical, and combinatorial properties of multiplicatively
weighted straight skeletons are identical to unweighted straight-skeletons if all weights
are positive. If negative weights are allowed then the weighted straight skeleton of
even a convex polygon may contain crossings and cycles.

+3

+3 +1

+3

+1 +3

+3 −1

−3

−1
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Straight Skeleton: State of the Art

Theorem 138 (Aichholzer et alii (1995))

The straight skeleton of a simple n-gon with r reflex vertices can be computed in
O(nr log n) time.

Theorem 139 (Aichholzer&Aurenhammer (1998))

A wavefront-propagation can be used to compute the straight skeleton of an n-vertex
PSLG in O(n3 log n) time.

Theorem 140 (Eppstein&Erickson (1999))

Efficient closest-pair data structures can be combined in a hierarchical fashion to
achieve an O(n17/11 +ε) time and space complexity for computing the straight skeleton
of an n-vertex PSLG.

Theorem 141 (Cheng&Vigneron (2007))

Based on 1/
√

r cuttings, the straight skeleton of a simple n-gon with r reflex vertices
can be computed in expected time O(n log2 n + r

√
r log r).
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Straight Skeleton: State of the Art

Theorem 142 (Huber&Held (2012))

A straight-skeleton algorithm based on motorcycle-graph computations can be
engineered to run in O(n log n) time and O(n) space for practical n-vertex PSLGs.
However, its worst-case complexity is O(n2 log n).

Theorem 143 (Palfrader&Held&Huber (2012))

A wavefront-propagation based on kinetic triangulations can be engineered to run in
O(n log n) time and O(n) space for practical n-vertex PSLGs. In particular, only O(n)
flip events occur in practice. However, its worst-case complexity is O(n3 log n).

Theorem 144 (Biedl et alii (2014))

The weighted straight skeleton of an n-vertex convex polygon (with positive
multiplicative weights) admits a non-procedural characterization and can be computed
in O(n) time.
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Straight Skeleton: State of the Art

Theorem 145 (Vigneron&Yan (2013))

A motorcycle-graph based algorithm allows to compute the straight skeleton of a
non-degenerate polygon with n vertices and h holes in time
O(n
√

h + 1 log2 n + n4/3 +ε), for any ε > 0. If all coordinates are O(log n)-bit rationals
then the straight skeleton of a simple polygon can be computed in O(n log3 n)
expected time.

Theorem 146 (Cheng&Mencel&Vigneron (2014))

A motorcycle-graph based algorithm allows to compute the straight skeleton of a
non-degenerate polygon with n vertices, with r vertices being reflex, in time
O(n log n log r + r 4/3 +ε), for any ε > 0. For degenerate input the time increases to
O(n log n log r + r 17/11 +ε).
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Wavefront Propagation for Computing Straight Skeletons

Basic idea

Simulate the wavefront propagation.

Problem: When will the next event happen? Which event?

If we can solve this problem then we can construct straight skeletons.
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Triangulation-Based Algorithm

Aichholzer&Aurenhammer (1998)

Maintain a kinetic triangulation of (the interior of) the wavefront.

Collapsing triangles witness edge and split events.

A triangle collapses when its area becomes zero.
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Triangulation-Based Algorithm

Algorithmic insight

Collapsing triangles witness edge and split events.

Compute collapse times of triangles.

That is, determine when the area of a
triangle becomes zero.

Maintain a priority queue of collapse
events.

Update triangulation and priority
queue as required upon events.

Wavefront propagation based on kinetic triangulations . . .

. . . allows to determine all events and to compute straight skeletons.
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Triangulation-Based Algorithm

Flip events

Caveat: Not all collapses witness changes in the wavefront topology.

Such collapses cannot be ignored!

Rather these collapes need special processing: flip events.
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Implementation of Triangulation-Based Algorithm

Long way to go from the theoretical sketch by Aichholzer&Aurenhammer (1998)
to an actual implementation . . .

[Palfrader&Held&Huber (2012)]: Need to avoid flip-event loops.

[Palfrader&Held (2015)]: Need to handle degeneracies that cause multiple
simultaneous events.

[Palfrader&Held (2015)]: Need to detect and classify simultaneous events reliably
on a standard floating-point arithmetic.
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Implementation of Triangulation-Based Algorithm: SURFER

SURFER

Straight-skeleton algorithm, based on kinetic triangulations and standard
floating-point arithmetic, implemented in C and named SURFER.

Experimental result [Palfrader&Held (2015)]

SURFER runs in O(n log n) time for n-vertex PSLGs. In particular, only a (small) linear
number of flip events occur.

How many flip events can occur in the worst case?

This is an open problem! Trivial upper bound is Θ(n3), but only (highly contrived)
inputs with Θ(n2) flips are known.
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Straight Skeleton of Monotone Polygons

The (positively weighted) straight skeleton of a convex polygon can be computed
in O(n) time. (Recall Thm. 144 by [Biedl et al. (2014)].)

Can we also do better for other specific input classes?

Yes!

Theorem 147 (Biedl et alii (2015))

The straight skeleton of an n-vertex monotone polygon can be computed in O(n log n)
time.
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Origami and Cut-and-Fold Problems

Theorem 148 (Demaine et alii (1999))

Every polygon can be cut out of a sheet of
paper by one straight cut after adequate
folding. The folding creases can be
constructed by a straight-skeleton-based
algorithm.

[Image courtesy of Erik Demaine]

Other applications of straight skeletons comprise
design of pop-up cards [Sugihara (2013)];
shape reconstruction and contour interpolation [Oliva et alii (1996)];
computing centerlines of roads and area collapsing in GIS maps
[Haunert&Sester (2008)].
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Unweighted and Weighted Offsets of Point

The unweighted offset area OA(p, r) of the point p of R2 for offset value r ≥ 0 is
the set of all points u of R2 whose unweighted distance d(u, p) to p is at most r .

The weighted offset area OAw (p, r) of the point p of R2 for offset value r ≥ 0 and
weight w(p) > 0 is the set of all points v of R2 whose weighted distance dw (v , p)
to p is at most r .

For w(p) := 1 we get standard offsetting.
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Unweighted and Weighted Offsets of Line Segment

The unweighted offset area OA(pq, r) of the straight-line segment pq for offset
value r ≥ 0 is the set of all points u of R2 whose minimum unweighted distance
to a point v of pq is at most r :

OA(pq, r) := {u ∈ R2 : min
v∈pq

d(u, v) ≤ r}

This definition is generalized easily to circular arcs and to offsets of (curvilinear)
polygons.
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Unweighted and Weighted Offsets of Line Segment

Suppose that p has weight w(p) > 0 and q has weight w(q) > 0, possibly with
w(p) ̸= w(q). (In the figure, w(p) := 1 and w(q) := 2.)

For 0 ≤ λ ≤ 1, the weight of a point (1− λ)p + λq on pq is given by
(1− λ)w(p) + λw(q), i.e., by linear interpolation of the weights of p and q.

Then the variable-radius offset area OAv (pq, r) of the straight-line segment pq
for offset value r ≥ 0 is the set of all points u of R2 whose minimum weighted
distance to a (weighted) point v of pq is at most r :

OAv (pq, r) := {u ∈ R2 : min
v∈pq

dw (u, v) ≤ r}
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Unweighted and Weighted Offsets of Line Segment

[Held&Huber&Palfrader (2016)]

The variable-radius offset area OAv (pq, r) of the straight-line segment pq for offset
value r ≥ 0 is given by the convex hull of OAw (p, r) ∪ OAw (q, r). Thus, OAv (pq, r) is
bounded by up to two straight-line segments and up to two circular arcs.
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UNIVERSITÄT SALZBURG

Unweighted and Weighted Offsets of Line Segment

[Held&Huber&Palfrader (2016)]

All supporting lines of segments of OAv (pq, r) meet in a point p′.
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Minkowski Sum and Difference

Let A,B be sets, and a, b denote points of A respectively B.

We define the translation of A by the vector b as

Ab := {a + b : a ∈ A}.

[Hadwiger (1950)]: The Minkowski sum of A and B is defined as

A⊕ B :=
⋃
b∈B

Ab.

[Hadwiger (1950)]: The Minkowski difference of A and B is defined as

A⊖ B :=
⋂
b∈B

A−b.

Note: In general, (A⊕ B)⊖ B ̸= A.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 283/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Minkowski Sum for Offsetting

Let A be a curve, and B be a circular disk centered at the origin. What is A⊕ B?
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Minkowski Sum for Offsetting

Lemma 149

The Minkowski sum A⊕ B of a curve A and a circular disk B (with radius r ) centered
at the origin is the area swept by a disk with radius r whose center is moved along A.
That is, it is the (unweighted) offset area of A for offset distance r .

Lemma 150

The boundary of the Minkowski sum A⊕ B of a curve A and a circular disk B (with
radius r ) centered at the origin is traced out by the center of a disk with radius r that is
“rolled” along A.
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Minkowski Difference for Offsetting

Let A be a polygon, and B be a circular disk centered at the origin. What is
A⊖ B?

Hence, it is the interior offset area of the polygon.

Offsets, i.e., Minkowski sums and differences of an area A with a circular disk B
centered at the origin, are also called buffers (in GIS) and dilation/erosion (in
image processing).
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Buffering in Geographical Information Systems

Sample GIS application: Identify the portion of the territorial waters of Malta that
is within some nautical miles of the baseline (coast) of Malta.

Malta

Gozo
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Computation of Offset Patterns

How can we compute offset patterns reliably and efficiently?

Note: The boundary of an offset may contain circular arcs even if the input is
purely polygonal.

Note: Offsetting may cause topological changes!

How can we compute even just one individual offset?
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Conventional Offsetting

1 First, one computes offset elements for every input element.
2 In order to get one closed loop, trimming arcs are inserted.
3 Next, all self-intersections are determined.
4 Finally, all incorrect loops of the offset are removed.
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UNIVERSITÄT SALZBURG

Voronoi-Based Offsetting

We start with analyzing the positions of the end-points of the offset segments.

This looks familiar!

Indeed, all end-points of offset segments lie on the Voronoi diagram!

A linear-time scan of the Voronoi diagram reveals the end-points of one offset.
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Voronoi-Based Offsetting

t

Theorem 151 (Persson (1978), Held
(1991))

Let S be an admissible set of sites, and
t ∈ R+. If VD(S) is known then all offset
curves of S at offset t can be determined
in O(n) time.

Corollary 152

Let S be an admissible set of sites, and
t ∈ R+. Then all offset curves of S at offset
t can be determined in O(n log n) time.
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Straight-Skeleton Based Mitered Offsetting

Theorem 153 (Palfrader&Held (2014))

Let S a PSLG, and t ∈ R+. If SK(S) is
known then all mitered offset curves of S
at offset t can be determined in O(n) time.
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Comparison of Offsets: Constant-Radius vs. Mitered Offsets

Held&Palfrader (2015)

Computing just one mitered offset via an SK is faster than standard mitered offsetting.

Voronoi diagram and rounded offsets

Linear axis and multi-segment bevels

Straight skeleton and mitered offsets

Straight skeleton and beveled offsets
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UNIVERSITÄT SALZBURG

Sensitivity of Straight Skeleton to Perturbations of the Input

Even a small perturbation of the input may suffice to change the straight skeleton
drastically.

From left to right:
symmetric shape and its straight skeleton and mitered offset,
perturbed shape and its straight skeleton and mitered offset,
perturbed shape and its Voronoi diagram and constant-radius offset.
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Sensitivity of Straight Skeleton to Perturbations of the Input

Even a small perturbation of the input may suffice to change the straight skeleton
and the resulting mitered offsets drastically.

From left to right:
symmetric shape and its straight skeleton and mitered offsets,
perturbed shape and its straight skeleton and mitered offsets,
perturbed shape and its Voronoi diagram and constant-radius offsets.
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Variable-Radius Offsets: Brush Stroke

Uniform pressure

Constant uniform width of the shape.

constant-radius offset

Non-uniform pressure

Varying width of the shape.

variable-radius offset
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Variable-Radius Offsets: Applications

Brush stroke

Standard application in
computer-assisted calligraphy.

Shoe and garment design

Ornamentary stitches need not
run in a perfectly parallel manner.

Scaling a basic shape need not
necessarily be uniform.

Image manipulation

Patent “Retrograde Curve Filtering for
Variable Offset Curves” granted to
Adobe Inc. in April 2014.

Non-uniform pressure

Varying width of the shape.

variable-radius offset
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Variable-Radius Offsets and Variable-Radius Voronoi Diagram

Held&Huber&Palfrader (2015)

Assign non-negative weights to the vertices of a PSLG, and interpolate weights
linearly along segments. Then the variable-radius Voronoi diagram induced by the
resulting weighted distance supports variable-radius offsets.
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Tool Paths for Pocket Machining

Pocket Machining

Pocket: Interior recess that is cut into the surface
of a workpiece.

Tool: Can be regarded as a cylinder that
rotates.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 299/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Tool Paths for Pocket Machining

Geometry of a pocket

2D area,

straight-line segments and circular arcs as boundary
elements,

may contain islands.

Geometry of a tool

circular disk.

The goal is . . .

. . . to compute a “good” tool path.

Similar path planning problems arise in many other applications that require
“coverage” of an area by a disk-shaped object, e.g., layered manufacturing, spray
painting, aerial surveillance.
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Voronoi-Based Generation of Tool Path

Persson (1978), Held (1991)

Family of offset curves forms a tool path.

Tool path computed by means of Voronoi diagram.
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Voronoi-Based Generation of Tool Path

Pros of offset-based machining

Offset curves can be computed easily
(based on Voronoi diagram).

Reasonably short tool path.

Cons of offset-based machining

Sharp corners.

Highly varying material removal rate.

Might require tool retractions.

Not suitable for high-speed machining.

High-speed machining (HSM)

Faster tool movement requires

smooth tool paths,

low variation of material removal rate.
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Voronoi-Based Generation of Smooth Spiral Paths

Held&Spielberger (2009)

Smooth spiral path.

Handle general areas without
islands.

Held&Spielberger (2013)

Optimization of the start point of
the spiral tool path.

Decomposition of "complex"
areas.

Handle areas with islands.

Algorithmic vehicle

Voronoi diagram of area boundary.
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Voronoi-Based Generation of Smooth Multi-Spiral Paths

Held&de Lorenzo (2018)

Simplified approach to computing
a smooth spiral path.

Double spiral that starts and ends
on the boundary.

Double spirals linked to one
multi-spiral path.
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Paths for High-Speed Machining

[Elber&Cohen&Drake (2005)]: “Medial axis transform toward high-speed
machining of pockets” (MATHSM). They use the medial axis of a pocket to
compute clearance disks that form “machining circles”.
The path is an alternating series of “machining circles” and tangential “transition
elements” between pairs of machining circles.
[Held&Pfeiffer (2024)]: MATHSM extended such that the engagement angle is
controlled.
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Maximum Inscribed Circle

Similarly to the computation of a maximum empty circle, scanning the Voronoi
nodes interior to a polygon yields a maximum inscribed circle in O(n) time.
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Finding a Gouge-Free Path

Can we move the disk within the polygon from the blue to the red position?

[Ó’Dúnlaing&Yap (1985)]: Retraction method:
Project red and blue centers onto the Voronoi diagram.
Scan the Voronoi diagram to find a way from blue to red.
Make sure to check the clearance while moving through a bottleneck.

Indeed, this disk can be moved from blue to red!
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Bottlenecks and Locally Inner-Most Points

A linear-time scan of the VD reveals all bottlenecks and locally inner-most points.
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Bottlenecks and Locally Inner-Most Points

To save time, a graph search is performed on the graph of offset-connected
areas.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 309/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Approximation of Polygonal Profiles

Informal problem statement

For a set P of planar (polygonal or curvilinear) profiles

and an approximation threshold given,

compute an approximation such that the approximation threshold is not
exceeded.

Real-world applications: smoothing of tool paths, simplification of contours
derived from scanning, recovery of “linearized” PCB data.
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Approximation: Specifying a Tolerance

Intuitively, for an input profile P ∈ P
we seek a tolerance zone,
T Z(P, dL, dR), of P with left tolerance
dL and right tolerance dR .

−dL
dR

Non-trivial tolerances classified as
symmetric if −dL = dR > 0,
asymmetric if dL < 0 ≤ dR or dL ≤ 0 < dR , and
one-sided if dL < dR < 0 or 0 < dL <r .

asymmetric with dL < 0 < dR one-sided with 0 < dL < dR
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Signed Distance

Definition 154 (Signed distance)

The signed distance, ds(s, p), of a point p ∈ CI(s)
to an oriented straight-line segment or circular arc s of P is given by the standard
(Euclidean) distance of p to s, multiplied by −1 if p is on the left side of the
supporting line or circle of s,

to a vertex s of P we take the standard distance between p and s, and multiply it
by −1 if the ray from s to p is locally on the left side of s1 and s2, where s1 and s2

are the sites of P that share s as a common vertex.

sp s
p

ds(s,p) > 0ds(s,p) > 0
︸ ︷︷ ︸ ds(s,p) > 0

︸ ︷︷ ︸
s1

s2

ps

ds(s,p) < 0
︸ ︷︷ ︸
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UNIVERSITÄT SALZBURG

Tolerance Zone

Definition 155 (Tolerance zone)

The tolerance zone of a site s of P is defined as

T Zsite(s,P, dL, dR) := {p ∈ VR(P, s) : dL < ds (s, p) < dR}.

The tolerance zone of P is defined as the union of all tolerance zones of all sites:

T Z(P, dL, dR) :=
⋃

s∈P

T Zsite(s,P, dL, dR) .

dl

dr

dr
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Problem Statement

Given: Input
Set P of (open or closed) polygonal
profiles that do not intersect
pairwise;
Left approximation tolerance dL and
right approximation tolerance dR ,
with dL < dR .

Compute: Approximation A of P such
that

A consists of Gk curves, for some
k ∈ N,
all curves of A are simple and
pairwise disjoint,
A ⊂ T Z(P, dL, dR),
P ⊂ T Z(A,−dR ,−dL) if requested
by user,
topology of A matches topology of
P.

dR

dL
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Tolerance Zone and Distance Measures

Omitting the second condition P ⊂ T Z(A,−dR ,−dL) makes a difference!

dR

dL
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Tolerance Zone and Distance Measures

Assume −dL = dR > 0. We have

A ⊂ T Z(P,−dR , dR) ∧ P ⊂ T Z(A,−dR , dR) =⇒ H(A,P) ≤ dR ,

where H(A,P) denotes the Hausdorff distance between A and P.

Assume −dL = dR > 0. If each approximation curve A ∈ A is “monotone” relative
to its corresponding input curve P ∈ P, then

A ⊂ T Z(P,−dR , dR) ∧ P ⊂ T Z(A,−dR , dR) =⇒ Fr(A,P) ≤ dR ,

where Fr(A,P) denotes the Fréchet distance between A and P, for each A ∈ A
and corresponding P ∈ P.
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UNIVERSITÄT SALZBURG

VD-Based Computation of the Tolerance Zone

[Held&Heimlich (2008), Held&Kaaser (2014)] use the Voronoi diagram of the
input to compute the boundary of the tolerance zone.

Tolerance zone computation for an input profile:
1 Collect all nodes of Voronoi cells left of the profile.
2 Skip nodes that are further away than dL from the profile.
3 Remove trees within the tolerance zone and add spikes.
4 Repeat this procedure for the right side of the profile w.r.t. dR .

dL

dR
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Offset Spikes

How can we guarantee P ⊂ T Z(A,−dR ,−dL)?

Offset spikes ensure that the directed Hausdorff distance from the input to the
approximation curve does not exceed the user-specified maximum tolerance.

Spikes are formed by portions of the Voronoi diagram; they can be computed in
linear time.

d
dL

d > |dL|
dL
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Results on Voronoi-Based Approximation

Theorem 156 (Held&Heimlich (2008))

Let n denote the number of vertices of a set P of polygonal profiles. Then a G1 biarc
approximation or a polygonal approximation, within an (asymmetric) user-specified
tolerance that preserves the topology of P, can be computed in O(n log n) time.

Theorem 157 (Maier&Pisinger (2013))

Let n denote the number of vertices of one closed polygon P, and assume that a
tolerance zone is given. Then a G1 biarc approximation of P that uses the minimum
number of biarcs (relative to the tolerance zone) can be computed in O(n3) time.

Theorem 158 (Held&Kaaser (2014))

Let n denote the number of vertices of a set P of polygonal profiles. Then a C2

approximation by uniform cubic B-splines within an (asymmetric) user-specified
tolerance that preserves the topology of P can be computed in O(n log n) time.
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Topology-Preserving Watermarking of Vector Graphics

Watermarking techniques for vector graphics dislocate vertices in order to embed
imperceptible, yet detectable, statistical features into the input data.

Obvious problem: One needs to guarantee that the introduction of a watermark
preserves the input topology.
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Topology-Preserving Watermarking of Vector Graphics

[Huber et al. (2014)] compute for each vertex a disk-shaped maximum
perturbation region (MPR), based on the Voronoi diagram of the input.

Perturbing the vertices within their MPRs causes the edges to stay within their
hoses and allows to preserve the input topology.

This scheme can be extended to cover straight-line segments and circular arcs.
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Straight Skeleton: Roof Model

Roof model via lifted wavefronts

We lift a wavefrontWF(P, t) of P for the orthogonal boundary clearance t to
z-coordinate t : We getWF(P, t)× {t}.

Roof model

Alternatively, a point p of the straight skeleton of polygon P, with coordinates (px , py ),
is lifted to a point in 3D with coordinates (px , py , t) if the orthogonal boundary
clearance of p is t .
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Straight Skeleton: Properties of Roof Model

Properties

The roof

R(P) :=
⋃
t≥0

(WF(P, t)× {t})

is a piecewise-linear and continuous surface.

It is monotone relative to the xy -plane.
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Straight Skeleton and Voronoi Diagram: Roof Model

The same lifting approach can also be applied to Voronoi diagrams, thereby
generating a roof for a Voronoi diagram.
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Roofs as Skeletal Structures Lifted to 3D

Footprint. Straight skeleton. Lift to 3D. Roof.
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Complex Roofs for Urban Modeling and Reconstruction

Held&Palfrader (2016)

Additive and multiplicative weights support the automatic generation of realistic
complex roofs based on the footprints of buildings.
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Complex Roofs for Urban Modeling and Reconstruction
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Generalizing the Roof Based on Straight Skeleton

Generalized Roof

We use a (continuous) height “function” f to obtain a scalar field on P, thereby
generalizing the roof R(P) to a surface Tf (P):

Tf (P) :=
⋃
t≥0

(WF(P, t)× {f (t)}).

t

z

t

z
f (t)
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Generalizing the Roof Based on Voronoi Diagram

Generalized Roof

We use a (continuous) height “function” f to obtain a scalar field on P, thereby
generalizing the roof R(P) to a surface Tf (P):

Tf (P) :=
⋃
t≥0

(WF(P, t)× {f (t)}).

t

z

t

z
f (t)
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Straight Skeleton: Properties of Generalized Roofs

Properties

The generalized roof Tf (P) is monotone relative to the xy -plane.

If f is continuous then also Tf (P) is continuous.

A face of Tf (P) is a ruled surface if it is incident to an edge of P, and a surface of
revolution if it is incident to a reflex vertex.
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Complex Chamfers and Fillets

Held&Palfrader (2018)

Such a generalization of the function that “lifts” a Voronoi diagram or (weighted)
straight skeleton to 3D supports the generation of complex chamfers and fillets.

t

z
f (t)

t

z
f (t)
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Voronoi Diagrams in Structural Design

CNN (16-Aug-2011): “Stunning superyacht design inspired by nature’s hidden
patterns”.

[Images courtesy of Hyun-Seok Kim]
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7 Triangulations
Basics
Computing Constrained Triangulations
Triangulations in 3D
Applications of Triangulations
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UNIVERSITÄT SALZBURG

Triangulation

Definition 159 (Triangulation of a point set)

A triangulation of a set S of n points of R2 is a subdivision of the convex hull CH(S)
into triangles such that

1 the set of vertices of the triangles matches S,
2 no pair of triangles intersects except in a common vertex or edge.

Definition 160 (Triangulation of a polygon)

A polygon triangulation is a subdivision of a (simple plane) polygon P into triangles
such that

1 the set of vertices of the triangles matches the vertices of P,
2 no pair of triangles intersects except in a common vertex or edge.

Similarly for points/polyhedra in R3 and a subdivision into tetrahedra.

For d > 3 it is standard to resort to the terms “simplex” and “simplicial complex”
to define triangulations in Rd .
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What is a Good Triangulation?

Let S be a set of n points in R2. Several options to demand additional properties
for a triangulation of S.

Definition 161 (Locally Delaunay)

A triangulation T (S) of S is locally Delaunay if for every pair of adjacent triangles
∆(a, b, c) and ∆(a, c, d) of T (S) the Delaunay triangulation of a, b, c, d includes
these two triangles.

Lemma 162 (Fortune (1992))

A triangulation of S is a Delaunay triangulation of S if and only if it is locally Delaunay.

Lemma 163 (Sibson (1978))

The minimum internal angle of the triangles of DT (S) is maximum over all
triangulations of S.

Lemma 164 (Lambert (1994))

The (arithmetic) mean inradius of the triangles of DT (S) is maximum over all
triangulations of S.
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What is a Good Triangulation?

Definition 165 (Hamiltonian triangulation)

A triangulation of S is a Hamiltonian triangulation if the dual graph of the triangulation
admits a Hamiltonian path.

Lemma 166 (Arkin et alii (1996))

A Hamiltonian triangulation of S can be computed in O(n log n) time.

Definition 167 (Minimum-weight triangulation)

A triangulation of S is a minimum-weight triangulation (MWT) if the sum of the lengths
of the triangulation edges is minimum over all triangulations.

Theorem 168 (Mulzer&Rote (2006))

Computing a minimum-weight triangulation is NP-hard.

Theorem 169 (Remy&Steger (2009))

For any ε > 0, a minimum-weight triangulation can be approximated with
approximation factor 1 + ε in time 2O((log n)c ) for some fixed c ∈ R+.
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Counting Triangulations

No tight bounds are known for the minimum and the maximum number of
(different straight-edge) triangulations that n points in 2D may admit.
For 20 points, the best known minimum is 20 662 980, and the best known
maximum is 918 462 742 512 [Aicholzer et alii (2001–2003)].

Lemma 170 (Goldbach&Euler (1751), Lamé (1838))

If (n + 2) points are in convex position then the number of different triangulations is
given by the n-th Catalan number Cn.

Lemma 171 (Sharir&Sheffer (2009))

Every set of n points in the plane admits at most 30n different triangulations.

Lemma 172 (Aichholzer et alii (2016))

Every set of n points — GPA! — in the plane admits at least Ω(2.631n) triangulations.

Lemma 173 (Dumitrescu et alii (2010))

There exist sets of n points in the plane which admit at least Ω(8.65n) triangulations.
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Triangulations are Related via Edge Flips

Definition 174 (Edge flip, Dt.: Kantenaustausch)

An edge flip is a local operation on a triangulation that replaces one diagonal of a
convex quadrilateral (formed by two neighboring triangles) with the other diagonal.

Lemma 175 (Bern&Eppstein (1992))

O(n2) edge-flipping operations suffice to transform any triangulation of n points (in R2)
into a Delaunay triangulation.
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Triangulations are Related via Edge Flips

Lemma 176 (Lubiw&Pathak (2012))

Minimizing the flip distance between triangulations of point sets is NP-hard.

Lemma 177 (Aichholzer&Mulzer&Pilz (2013))

Minimizing the flip distance between triangulations of a polygon is NP-hard.

Lemma 178 (Pilz (2014))

Minimizing the flip distance between triangulations of point sets is APX-hard; i.e., no
polynomial-time constant factor approximation exists unless P = NP.
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Constrained Triangulation

Definition 179 (Constrained triangulation)

A triangulation T forms a constrained triangulation of an admissible set S of vertices
and line segments in R2 if

1 T is a triangulation of the convex hull of all vertices of S,
2 all line segments of S are edges of T .
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Constrained Delaunay Triangulation

Definition 180 (Constrained Delaunay triangulation)

A triangulation T forms a constrained Delaunay triangulation (CDT) of an admissible
set S of vertices and line segments if

1 T is a constrained triangulation of S, and
2 no triangle ∆ of T contains a vertex of S in its circumcircle that is visible from ∆.
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Conforming Triangulation

Definition 181 (Conforming triangulation)

A triangulation T forms a conforming triangulation of an admissible set S of vertices
and line segments if

1 T is a triangulation of the convex hull of all vertices of S and (possibly) of some
additional Steiner points,

2 all line segments of S are represented by unions of edges of T .
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Computing Constrained Triangulations

Definition 182 (Diagonal)

For vertices p and q of a simple polygon P, the line segment pq forms a diagonal of P
if pq lies completely in the interior of P, except for the vertices p and q.

Lemma 183

Every simple polygon with n ≥ 4 vertices contains a diagonal.

Corollary 184

Every simple polygon with n vertices can be partitioned into n − 2 triangles by
inserting n − 3 appropriate diagonals.

Lemma 185

A regularization procedure can be used to partition a simple polygon with n vertices in
O(n log n) time into a set of monotone polygons.

Corollary 186

A simple polygon with n vertices can be triangulated in O(n log n) time.
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Computing Constrained Triangulations

Theorem 187 (Chazelle (1991))

A simple polygon with n vertices can be triangulated in optimal O(n) time.

Corollary 188 (Chazelle (1991))

In O(n) time we can check whether a polygon is simple.

Theorem 189 (Clarkson&Tarjan&Wyk (1989), Seidel (1991))

A simple polygon with n vertices can be triangulated in expected O(n log∗ n) time by
means of randomization.

Theorem 190 (Amato&Goodrich&Ramos (2001))

A simple polygon with n vertices can be triangulated in expected O(n) time by means
of randomization.

The algorithms by Chazelle and Amato et alii are considered impractical.
The implementation of Seidel’s algorithm by Narkhede&Manocha (1995) is
surprisingly slow.
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Computing Constrained Delaunay Triangulations

Theorem 191 (Chew (1989))

A constrained Delaunay triangulation of an admissible set S of n vertices and
straight-line segments can be computed in optimal O(n log n) time.

Theorem 192 (Chin&Wang (1998))

A constrained Delaunay triangulation of a simple polygon with n vertices can be
computed in optimal O(n) time.

The algorithm by Chin&Wang is far too complicated to be of practical relevance.
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Polygon Triangulation via Ear-Clipping

Definition 193 (Ear)

Three consecutive vertices (u, v ,w) of a simple polygon P form an ear of P if uw
constitutes a diagonal of P.

Lemma 194 (Meisters (1975))

Every simple polygon with four or more vertices has at least two non-overlapping ears.

Simple triangulation algorithm:
Find an ear of P and clip it.
Repeat the ear clipping until only one triangle is left.

An ear-clipping operation transforms an n-gon into an (n − 1)-gon.
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Animation of Ear Clipping

Find an ear, and clip it. Keep clipping ears, until triangulation is finished.
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Polygon Triangulation via Ear-Clipping

Complexity of naïve algorithm: O(n3).
O(n) time to check whether a triple of consecutive vertices forms an ear.
O(n) many checks to find next ear.
O(n) many ears needed.

Observation: The clipping of one ear can change the earity status of at most two
other triples of vertices of P.

Thus, the overall complexity can be reduced to O(n2).

Lemma 195

Ear clipping computes a triangulation of a simple n-gon in O(n2) time.
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Polygon Triangulation via Ear-Clipping

Lemma 196

Three consecutive vertices (u, v ,w) of P form an ear of P if and only if
1 v is a convex vertex,
2 the triangle ∆(u, v ,w) contains no reflex vertex of P, except for u or w if they are

reflex.

Corollary 197

Ear clipping computes a triangulation of a simple n-gon in O(n · r) time, where r is the
number of its reflex vertices.

[Held (2001)]: A triangulation algorithm based on ear-clipping and geometric
hashing can be engineered to run in near-linear time, beating implementations of
theoretically better algorithms on thousands of synthetic and real-world data sets.
−→ “Fast Industrial-Strength Triangulation” (FIST).

[Eder&Held&Palfrader (2018)]: A coarse-grain parallelization of FIST’s
ear-clipping algorithm achieves a speedup of about 2–3 for four threads and
about 3–4 for eight threads. Also parallel edge flipping to obtain a CDT is
possible.
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Caveats for 3D Triangulations: Number of Tetrahedra

Theorem 198

The number of tetrahedra contained in a triangulation of points in R3 may vary.

Theorem 199

A triangulation of n points in R3 can have Θ(n2) many tetrahedra.
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Caveats for 3D Triangulations: Does a Triangulation Exist?

Theorem 200

Not every polyhedron can be triangulated.

Proof : The triangle ∆(D,E ,F ) of
Schönhardt’s polyhedron (Math. Annalen,
1928) is rotated relative to ∆(A,B,C),
causing the three red edges BD, CE and
AF to become reflex.

A

D F

C

B

E

Theorem 201 (Ruppert&Seidel (1992))

It is NP-complete to determine whether a polyhedron requires Steiner points for
triangulation. (And this result holds even for star-shaped polyhedra!)

Theorem 202 (Barequet et al. (1996))

It is NP-complete to determine whether a non-plane polygon in R3 has a
non-intersecting triangulation.
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Caveats for 3D Triangulations: Many Steiner Points Required

Theorem 203 (Chazelle (1984))

There exist polyhedra with n vertices that require Ω(n2) Steiner points.

Theorem 204 (Chazelle&Palios (1990))

Every simple polyhedron with n vertices and r reflex edges can be triangulated using
O(n + r 2) Steiner points and a total of O(n + r 2) tetrahedra.
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Rendering

Graphics hardware is best at handling triangles rather than more general
geometric primitives. Thus, the surfaces of 3D models need to be triangulated.

Euler’s Theorem applies to the faces, edges and vertices of a polyhedron.

Caveat

3D polyhedral models used for graphics purposes tend to exhibit all types of
“problems”!
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Triangulated Irregular Network

Given is a set of sample points on a 3D terrain. How can we model the actual
terrain surface by interpolating those points?

Natural approach:
1 Project the points onto 2D (by discarding their z-coordinate).
2 Compute a triangulation T of the projected points.
3 Lift T back to 3D.

Known to the GIS community as triangulated irregular network (TIN).

x
y

z
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Triangulated Irregular Network

Note: The shape of the terrain depends heavily on the 2D triangulation!
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Visibility Determination Within Triangulated Environments

Which portion of the green polygon is visible from the red point?

We start with an arbitrary triangulation of the polygon.

The triangle that contains the red point is illuminated.

Neighboring triangles are illuminated and new visibility rays generated.

All triangles which are at least partially visible have been traversed.
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Visibility Graph

Definition 205 (Visibility graph, Dt.: Sichtbarkeitsgraph)

The visibility graph inside an n-gon P consists of the vertices of P as nodes which are
connected by edges if the vertices can see each other.

Theorem 206 (Ghosh&Mount (1991))

The full visibility graph inside an n-gon can be computed in time O(|E |+ n log n),
where |E | is the size of the visibility graph.
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Guarding an Art Gallery

Problem: ARTGALLERYPROBLEM

Given: A simple polygon P.

Select: A minimum number of vertices of P such that every point of P can be seen
from at least one of the vertices selected.

Posed by Klee in 1973.

The problem is NP-hard.
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Guarding an Art Gallery

Theorem 207 (Chvátal (1975))

To guard a simple polygon with n vertices, ⌊n/3⌋ guards are always sufficient and
sometimes necessary.

Sketch of Proof by Fisk (1978) : Consider an (arbitrary) triangulation of the polygon.
One can show that the vertices of the triangulation graph are 3-colorable. Of course,
vertices of one color form a valid set of guards. Hence, the color with the fewest
vertices yields a valid set of at most ⌊n/3⌋ guards.
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Minimum Convex Decomposition

Problem: MINIMUMCONVEXDECOMPOSITION

Given: A simple polygon P.

Compute: A minimum number of polygonal convex areas whose vertices match the
vertices of P, whose interiors are disjoint and whose union equals P.

Theorem 208 (Hertel&Mehlhorn (1983))

If a triangulation of P is given then an approximate convex decomposition with at most
four times the minimum number of convex pieces can be obtained in linear time.
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Topology-Preserving Watermarking of Vector Graphics

[Huber et al. (2014)] compute for each vertex a disk-shaped maximum
perturbation region (MPR), based on the radii of the inscribed circles of a
constrained triangulation of the input.

Perturbing the vertices within their MPRs causes the edges to stay within their
hoses and allows to preserve the input topology.

This scheme can be extended to 3D.

vi
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8 Robustness Problems and Real-World Issues
Theory and Practice
Introduction to Robustness Problems
Approaches to Achieving Robustness
Improving the Reliability of Floating-Point Code
Real-World Applications and Experiences
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Theory and Practice

Voronoi diagrams of points and segments and/or arcs are easy to understand,
but notorious for being difficult to implement reliably. No surprise that very few
decent Voronoi codes are known.

The situation is similar for many other algorithms of computational geometry.
That is, there is a gap between theory and practice . . .

Benjamin Brewster (“The Yale Literary Magazine” 1882)

In theory, there is no difference between theory and practice. In practice, there is.

Marie von Ebner-Eschenbach (1893)

Theorie und Praxis sind eins wie Seele und Leib, und wie Seele und Leib liegen sie
großenteils miteinander in Streit.

Jan L.A. van de Snepscheut

The difference between theory and practice is larger in practice than the difference
between theory and practice in theory.
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Theory Into Practice

What we have.

What we’d need . . .

Theory Practice

Ayn Rand (Russian-born American writer and philosopher)

Those who say that theory and practice are two unrelated realms are fools in one and
scoundrels in the other.

Folklore -

Theory is when you know everything but nothing works. Practice is when everything
works but no one knows why. However, we combine theory and practice: Nothing
works and no one knows why.
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Floating-Point Arithmetic

Computers employ floating-point arithmetic to perform real arithmetic.
No matter how many bits are used, floating-point arithmetic represents a number
by a fixed-length binary mantissa and an exponent of fixed size. E.g., according
to the IEEE 754 standard, we have 23 bits for the mantissa and 8 bits for the
exponent in case of 32-bit floats, and 52 bits and 11 bits in case of 64-bit doubles.
Thus, only a finite number of values within a finite sub-interval of R can be
represented accurately; all other values have to be rounded to the closest
number that is representable.
The IEEE 754 standard for floating-point arithmetic knows four different rounding
modes. The first mode is the default; the others are called directed roundings.
Round to Nearest
Round towards 0
Round towards +∞
Round towards −∞

Chuck Allison

Floating-point numbers are not real numbers [. . .]. Real numbers have infinite
precision and are therefore continuous and non-lossy; floating-point numbers have
limited precision, so they are finite, and they resemble “badly behaved” integers,
because they are not evenly spaced throughout their range.
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Floating-Point Errors

There are two sources of error for floating-point computations: input error and
round-off error.
Input error: It arises from reading/assigning a value to a floating-point variable.

It is well-known that 1
3 cannot be represented by a finite sum of powers

of 10.
Similarly, 0.1 cannot be represented by a finite sum of powers of 2!
What do we get if we assign 224 + 1 = 16777217 to a 32-bit float? We
get 16777216!
Integers between 2n and 2n+1 round to a multiple of 2n−23 when
assigned to a float.

Round-off error: It arises from rounding results of floating-point computations
during an algorithm.

E.g.,
√

2 cannot be represented exactly since
√

2 is an irrational
number.

While one can instruct the C command printf to print, say, 57 digits after the
decimal separator, one will “only” get the digits of the closest value that is
representable:

1/3 = 0.333333333333333314829616256247390992939472198486328125000

1/10 = 0.100000000000000005551115123125782702118158340454101562500
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Machine Precision

The round-off error is bounded in terms of the machine precision, ε, which is the
smallest value satisfying

|fp(a ◦ b)− (a ◦ b)| ≤ ε|a ◦ b|

for all floating-point numbers a, b and any of the four operations +,−, ·, / instead
of ◦, for which a ◦ b does not cause an underflow or an overflow.

On IEEE-754 machines, ε = 2−23 ≈ 1.19 · 10−7 for floats, and
ε = 2−52 ≈ 2.22 · 10−16 for doubles.

On some exotic platform, ε can be determined approximately by finding the
smallest positive value x such that 1 + x ̸= 1.

Note: Some compilers promote floats to doubles!
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UNIVERSITÄT SALZBURG

Geometric Predicates

Sorting Convex Hull Delaunay Triangulation

coordinate comparison sidedness test incircle test
x2 − x1 > 0?

∣∣∣∣∣∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣
> 0?

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 x2
1 + y2

1 1
x2 y2 x2

2 + y2
2 1

x3 y3 x2
3 + y2

3 1
x4 y4 x2

4 + y2
4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0?
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Degeneracy

Degeneracies are caused by the special position of two or more geometric
objects. E.g.:

Two line segments that overlap partially rather than being disjoint or
intersecting in a point.
Polygon edges that are parallel.
A Voronoi node of degree greater than three.

Note: Degeneracies may be intentional, and real-world data should be assumed
to be degenerate!

The net result of degeneracies is a vastly increased number of so-called special
cases.
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Degeneracy Versus Numerical Precision

How can we handle the special cases correctly?

How can we even be sure that all special cases have been modeled?

Typically, a degeneracy occurs if a predicate evaluates to zero.

And, typically, predicates are evaluated by floating-point arithmetic.

If a predicate evaluates to a value close to zero . . .

Is it a special case or simply a numerical inaccuracy??

The mere fact that a degeneracy cannot be classified reliably on a floating-point
arithmetic complicates matters significantly.
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Sample Robustness Problem: Failure of Basic Mathematical Implications

Suppose that we are given two line segments ab and cd in the plane such that

cx < ax < bx < dx ay < cy < dy < by .

a

b

c
d

p

It is easy to see that the two line segments intersect, without a or b lying on cd
and without c or d lying on ab. In particular, the line segments cannot overlap.
Hence, the two line segments intersect in a point.

Let p := ab ∩ cd . Are the following inequalities guaranteed to be true?

ax < px < bx ay < py < by cx < px < dx cy < py < dy

Yes in theory, but no on a floating-point arithmetic!
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Sample Robustness Problem: Lack of Global Consistency

Local consistency need not imply global consistency.
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Sample Robustness Problem: Incorrect Orientation Predicate

[Kettner et alii 2006] study the standard determinant-based orientation predicate
on IEEE 754 floating-point arithmetic to check the sidedness of
(px + x · u, py + y · u) relative to two points q, r , for 0 ≤ x , y ≤ 255 and with
u := 2−53:

sign det

 px + x · u py + y · u 1
qx qy 1
rx ry 1


>
=
<

 0 ?

The resulting 256× 256 array of signs (as a function of x , y ) is color-coded: A
yellow (red, blue) pixel indicates collinear (negative, positive, resp.) orientation.
The black line indicates the line through q and r .
Note the sign inversions!

[Image credit: www.mpi-inf.mpg.de/~kettner/proj/NonRobust/]
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Sample Robustness Problem: Incorrect Orientation Predicate

[Kettner et alii 2006]: A yellow (red, blue) pixel indicates collinear (negative,
positive, resp.) orientation.

p :=

(
0.5
0.5

)
q :=

(
12
12

)
r :=

(
24
24

)
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Sample Robustness Problem: Incorrect Orientation Predicate

[Kettner et alii 2006]: A yellow (red, blue) pixel indicates collinear (negative,
positive, resp.) orientation.

p :=

(
0.5
0.5

)
q :=

(
8.8000000000000007
8.8000000000000007

)
r :=

(
12.1
12.1

)
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Approaches to Improving Robustness

Several approaches have been proposed in recent years:
Error analysis.
Exact arithmetic (on integers, rationals, or even algebraic numbers).
Exact geometric computing.
Floating-point filters.
Symbolic perturbation.
Epsilon threshholds and sophisticated tolerancing.

No agreement on the best approach . . .

All methods have shortcomings, typically also limited applicability — or they
suffer from inefficiency!
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Exact Arithmetic

Input is assumed to be exact.

Compute the numerical value of every predicate exactly, based on exact number
types.

Exact computation is possible if all numerical values are algebraic. (This is the
case for most current problems in computational geometry.)

Note: We may no longer assume that each arithmetic operation takes constant
time!

Note: Constructors complicate the situation significantly!
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Exact Number Types

Bigint: Arbitrary-precision integers.
Usually based on Karatsuba’s multiplication algorithm, with
Θ(blog2 3) ≡ Θ(b1.58...) complexity for multiplying b-bit numbers.
See, e.g., GNU’s GMP library http://gmplib.org/.

Bigrational: Quotients of bigints.
Standard rational arithmetic.
It is important to reduce fractions frequently.
Euclid’s algorithm can be used for finding common factors.
See, e.g., GMP’s mpq_t number type.

Algebraic numbers: Roots of polynomials with bigint coefficients.
Complexity of deciding equality grows with the number of operators
allowed.
[Caviness (1967)] proved undecidability of functional equivalence for
moderately complicated terms.

Homogeneous coordinates: Not exactly a number type.
Can often be used to avoid divisions.
It is important to reduce fractions frequently.
Most predicates can be expressed directly in terms of homogeneous
coordinates.
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Exact Geometric Computing

Do we really need exact arithmetic for solving geometric problems?
Not quite! Or, at least, not always! −→ Exact geometric computing (EGC).
Input is assumed to be exact.
Basic idea: Make sure that the sign of every predicate is evaluated correctly.
Error analysis is needed to come up with root bounds: A positive number r forms
a root bound for a predicate p if |p(x)| > r guarantees that the evaluation of p for
x yields the correct sign.
Main problems:

Arbitrary-precision arithmetic is needed.
Tight root bounds are difficult to obtain.
Constructors may cause the bit-length to grow tremendously.

The use of floating-point filters may help to keep the increase in CPU time
consumption a bit more moderate:

Work with floating-point arithmetic and check whether it gives the right
answer.
Resort to extended-precision or exact arithmetic if the answer is incorrect.
Great example: Shewchuk’s fine (and efficient!) CDT code “Triangle”
[Shewchuk (1996)].

Software libraries that provide support for EGC: CORE, CGAL, and Mörig’s
RealAlgebraic data type.
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Symbolic Perturbation

Aka: Simulation of simplicity [Edelsbrunner&Mücke (1990)].
Basic idea: Perturb input such that no degeneracies occur.
Roughly, each coordinate x is replaced by x + f (ε), where ε is unknown but very
small and the perturbation function f is simple, e.g, a polynomial.
Symbolic perturbation transforms the result of a numerical predicate into a
polynomial in ε, whose sign is given by the sign of the first non-zero coefficient.
For several important types of predicates perturbation functions can be chosen
such that all degeneracies are resolved.
Main problems:

Exact arithmetic is required for evaluating the predicates.
Constructors are often disallowed.
Computational or combinatorial complexities may change substantially. E.g.,
the arrangement of n lines that intersect in one common point has Θ(n)
complexity whereas an arrangement of the perturbed lines will have Θ(n2)
complexity.
The output computed does not correspond to the actual input.
Intentional degeneracies in the input are “resolved”, too!
Similar to EGC codes, it is extremely difficult to interface a code based on
SoS with a code based on conventional floating-point arithmetic.
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Epsilon Thresholds

Topological decisions are based on the results of floating-point computations,
which are prone to round-off errors.
Threshold-based comparison:

(a =ε b) :⇐⇒ (|a− b| ≤ ε),

for some positive value of ε.

Caveat!

Threshold-based comparisons are not transitive: a =ε b and b =ε c need not imply
a =ε c.

This gap between theory and practice once again has important and severe
consequences for the actual coding practice when implementing geometric
algorithms:

No guarantee for success!

1 The correctness proof of a mathematical algorithm does not extend to the
program, and the program can fail on seemingly appropriate input data.

2 Local consistency need not imply global consistency.
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Standard Tricks for Achieving Reliable Floating-Point Code

Try to perform all numerical computations relative to the original input data.
All floating-point computations need to be consistent! In particular, make sure
that different calls of the same function with the “same” input will yield exactly the
same output. E.g., when computing 3× 3 determinants, we need

det(p, q, r) = det(q, r , p) = det(r , p, q)

= − det(q, p, r) = − det(p, r , q) = − det(r , q, p).
Do not resort to multiple precision thresholds! At most two thresholds: One to
avoid divisions by zero, and another threshold to catch “nearly zero” numbers.
Epsilon-based comparisons need to be relative to the absolute values of the
numbers to be compared, or the input has to be scaled (by performing shifts!) to
fit into the unit square/cube prior to the actual computation.
Use iterations as back-up for analytical solutions to equations. If at all possible,
use methods that bracket the solution sought!
Algebraically equivalent terms need not be equally reliable on a floating-point
arithmetic. E.g., consider the quadratic equation x2 + px + q = 0 and compare{

x1 := − 1
2 (p +

√
p2 − 4q)

x2 := − 1
2 (p −

√
p2 − 4q)

}
to

{
x1 := − 1

2 (p + sign(p)
√

p2 − 4q)
x2 := q/x1

}
if |q| is small.
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Case Study: Computing Voronoi Bisectors

Algorithm for computing a bisector b between two lines f and g which are not
parallel:

Compute their point of intersection: p.
Compute unit direction vectors u and v of f , g.
Then a parametrization of b is given by p + t · (u + v).

This “natural” approach to computing b becomes completely infeasible if f and g
are nearly parallel. (In that case the computation of p will become very
unreliable!)

f

g

p u

v
b
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Case Study: Computing Voronoi Bisectors

Algorithm for computing a bisector b between two lines f and g which are roughly
parallel:

Compute a line h that is normal on f .
Compute the bisector b1 between h and f , and the bisector b2 between h
and g.
Compute their point of intersection: p.
Compute unit direction vectors u and v of f , g.
Then a parametrization of b is given by p + t · (u + v).

f

g

p

b

u

v

h

Note: All intersections are defined by pairs of lines that are roughly perpendicular.
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Case Study: Collapse Time of Kinetic Triangle

Suppose that all three vertices v1, v2, v3 of a triangle ∆ move along straight-line
paths (modeled as functions of time), and that we are interested in knowing when
the triangle collapses. (That is, when it has zero area.)

v3

∆

v1 v2

How can we determine the time(s) of collapse?
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Case Study: Collapse Time of Kinetic Triangle

Which option is better?
1 Check the signed area of the triangle, e.g., as obtained by means of

determinant computations.
2 Check the signed distance of a kinetic vertex to its opposite edge.

∆ collapses

-1

0

1

2

2.5 3.0 t

Area∆(t)
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Topology-Oriented Computation

First used by Sugihara et alii [1992, 2000].

Basic idea:
1 Define topological criteria that the output has to meet.
2 Use floating-point computations to choose among different geometric

set-ups if two or more set-ups fulfill all topological criteria.

Main problem: For many problems it is difficult to formulate meaningful
topological criteria.

Sample application: When inserting a new site into a Voronoi diagram (during an
incremental construction), the portion of the old Voronoi diagram to be deleted
forms a tree.
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Topology-Oriented Computation

The portion of the Voronoi diagram to be deleted forms a tree.
We start at the closest Voronoi node and scan the Voronoi diagram for nodes to
be deleted, making sure that no cycle occurs.
All Voronoi nodes found by this scan are deleted, and their incident bisectors are
shortened appropriately.
All that remains to be done is to compute the new Voronoi nodes, which form the
corners of the new Voronoi polygon, and to link them in cyclic order.
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Relaxation of Epsilon Thresholds

Common practice: Use epsilon thresholds for comparisons with respect to zero.

The test “x = 0?” is replaced by the test “|x | ≤ ε?”, for some positive value of ε.

Just what is an appropriate value for ε?

Asking the user of a geometric code to choose an appropriate precision
threshold comes close to asking for witch-craft.

To make the situation worse, experience tells me that one fixed precision
threshold will rarely suffice to handle all sorts of different input data.

Alternate approach:
A natural lower bound εmin for a suitable threshold is given by the machine
precision of the machine used.
The user specifies the maximum distance that two points (out of the unit
square) may be apart in order to allow the code to treat them as one point.
This yields an upper bound εmax .
The code varies ε at its own discretion, always attempting to succeed with
the smallest ε possible, i.e., with maximal precision.
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Relaxation of Epsilon Thresholds

Algorithm Typical Computational Unit
1. ε = εmin; (∗ set epsilon to maximum precision ∗)
2. repeat
3. x = ComputeData(ε); (∗ compute some data ∗)
4. success = CheckConditions(x , ε); (∗ check topological/numerical conditions ∗)
5. if ( not success ) then
6. ε = 10 · ε; (∗ relaxation of epsilon threshold ∗)
7. reset data structures appropriately;
8. until ( success OR ε > εmax );
9. ε = εmin; (∗ make sure to reset epsilon ∗)
10. if ( not success ) then
11. illegal = CheckInput(); (∗ check locally for soundness of input ∗)
12. if ( illegal ) then
13. clean data locally; (∗ fix the problem in the input data ∗)
14. restart computation from scratch;
15. else
16. x = DesperateMode(); (∗ time to hope for the best ∗)
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Desperate Mode

What shall we do if computing x would require an invalid operation, e.g., a
division by zero or taking the square root of a negative number?

After all, x may be needed for subsequent computations! E.g., if a new Voronoi
node is to be inserted into the Voronoi diagram then the code may subsequently
need to access the coordinates of this node.

Desperate mode: Replace “correct” or “optimum” by “best possible”.
Do not use any operation which is not defined for all floating-point numbers.
Any violation of a topological condition is “cured” by forcing its validity. E.g.,
a cycle of Voronoi nodes can be broken by inserting a new dummy node on
one of the edges of the cycle.
If numerical data does not fulfill all numerical conditions then accept the data
whichever meets most of them.

Net result: A code that resorts to desperate mode will never get stuck, crash or
loop. (Well, at least in theory . . .)

Whether or not the output still is of practical use despite of desperate mode
depends on the application and the type of problem that caused desperate mode.

Personal experience: Desperate mode works remarkably well for “incremental”
algorithms!
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Desperate Mode and Epsilon Relaxation: Caveats

The relaxation of epsilon thresholds does not come for free: Repeatedly
computing some data will increase the CPU time consumption.

Always attempt to perform a computation as it would be performed normally,
irrelevant of whether or not desperate mode was used once before.

Keep track of how often your code resorts to an actual relaxation: Frequent use
of epsilon relaxation is a hint that the numerical reliability of your code is less
than ideal.

Warning

The availability of such a multi-phase recovery process can easily conceal genuine
algorithmic flaws or bugs!

Important advice

Always test your code with desperate mode being disabled! Robustness without
desperate mode is a must for all tests on your test data!
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Adding an MPFR Backend

GNU’s MPFR library (www.mpfr.org) is a C library for multiple-precision
floating-point computations.

Canonical adaptions:
Precision threshold ε needs to depend on MPFR precision.
[Held&Huber (2013)] use a heuristic formula:

ε := εfp · 2−100·(
√

prec/53−1),

where εfp is the machine precision.

Subtle problem encountered: mpfr_set_default_prec does not change
existing variables.

Global variables are not adjusted.
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Real-World Data

Real-world data often means no quality at all:
raster-to-vector conversions,
data cleaned up manually or “visually”,
data preprocessed by some dubious program of unknown origin,
data comes from “an important customer” or from “God knows where”.

As a consequence:
all sorts of degeneracies,
self-intersections,
tiny gaps in supposedly closed contours.

Advice

Be prepared for troubles — general position must not be assumed!

If the implementation ends up in an invalid algorithmic state . . .

Is it due to

a bug in the implementation,

a genuine numerical problem, or

invalid input data?
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Industrial Requirements

Data size:
Data sizes vary substantially from a few hundred segments/arcs in a
machining application to a few million segments in a GIS application,
or even tens of millions of segments/arcs in the PCB business if arcs
are approximated by segments.

Efficiency requirements:
Efficiency requirements vary substantially from real-time map
generation on a smart phone to minutes of CPU time allowed on
some high-end machine.
In general, linear space complexity and a close-to-linear time
complexity is expected.

Parallelization requirements:
Exactly one inquiry concerning GPU-based codes so far.
Only moderate interest in multi-core computing and multi-threaded
implementations.
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Software for Triangulating Polygons: FIST

[Held (2001)]: FIST triangulates polygons with holes in 2D and 3D,
based on ear-clipping and
multi-level geometric hashing to speed up computation.

Handles
degenerate input,
self-overlapping input,
self-intersecting input,
Steiner points.

No Delaunay triangulation, but
heuristics to generate “decent”
triangles.

Runs in close-to-linear time in
practice.

ANSI C code based on IEEE 754 floating-point arithmetic, with careful
engineering to ensure reliability. Thread-safe.
[Eder&Held&Palfrader (2018)]: Heuristics for coarse-grain parallelization.
Typical applications in industry: Triangulation of (very) large GIS datasets,
triangulation of “planar” faces of 3D models.
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Experimental Results for Triangulations

21 175 polygons with and without holes.

Six arithmetic configurations:
fistFp, fistShew, fistCore, fistMp{53, 212, 1000}

Conclusion:
Shewchuck’s predicates have negligible impact on speed.
fistMp* about 24 times slower than fistFp.
fistCore about 50 times slower than fistFp.

10−8

10−7

10−6

10−5

10−4

103 104 105 106

0.08 to 0.20 · n log n µs
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4 to 10 · n log n µs

Runtime per seconds divided by n log n, for fistFp, fistMp212, fistCore.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 406/418



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Experimental Results for Triangulations

Held&Mann (2011)

Correctness of FIST triangulations with floating-point arithmetic?

Verification code:
Bentley-Ottmann algorithm, implemented with exact mpq_t from GMP.

Scenario 1:
We interprete 0.1 in input files as 1

10 .
4.9% of all results faulty, uniformly across all non-CORE configurations.

Including fistShew.
But: Error only visible at huge zoom factors.

Scenario 2:
We take 0.1 as closest floating-point number using atof().
No errors found!

Conclusion

Non-exactness need not be a practical issue in pure floating-point applications.
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Software for Computing Voronoi Diagrams: CGAL

Segment-Delaunay-Graph implemented within CGAL by [Karavelas (2004)].

Input:
Points and straight-line segments;
Input sites may intersect arbitrarily;
No support for circular arcs.

Incremental construction.

Complexity:
O((n + m) log2 n) expected time,
where n is the number of sites and m is the number of intersections.
O((n + m) log n) in practice.

CPU-time consumption is claimed to be mostly insensitive to the number type
used.
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Software for Computing Voronoi Diagrams: VRONI and ARCVRONI

[Held (2001), Held&Huber (2009)]: VRONI/ARCVRONI computes Voronoi
diagrams

of points, straight-line segments and circular arcs (input “sites”),
based on randomized incremental construction and a topology-oriented
approach.

Also computes
maximum-inscribed circle,
medial axis, and
offset curves.

Complexity:
O(n) space complexity,
where n is the number of
sites.
O(n log n) expected time.

Based on standard IEEE 754
floating-point arithmetic, with
careful engineering, epsilon
relaxation and desperate mode.
Typical applications in industry: generation of tool paths (e.g., for machining or
sintering), generation of buffers in GIS applications.
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UNIVERSITÄT SALZBURG

Experimental Results for Voronoi Diagrams

Codes tested:
CGAL 3.8 (cgvdEx, cgvdFp):

CORE::Expr as predicate kernel.
Segment_Delaunay_graph_filtered_traits_2
template parameter to the underlying segment Delaunay
graph class.
Graphics disabled, input stream-lined, own timing routine
added.
Compiled with g++ -O2.

VRONI 6.0 (vroniFp, vroniMp{53, 212, 1000}:
Also compiled with g++ -O2.

Test platform:
3.33GHz i7 CPU X 980; 24GB RAM; 64bit Ubuntu.
All timings given in CPU microseconds.

Test data:
Synthetic and real-world data; circular arcs approximated by
polygonal chains.
18 787 data sets tested, with 200 ≤ #(segs) ≤ 100 000.
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Experimental Results for Voronoi Diagrams

Conclusion:
vroniFp about 50–60 times faster than vroniMp*.
vroniFp about 20–100 times faster than cgvd*.
cgvdFp only 1.5 times faster than cgvdEx.

Crashed on 937 datasets due to floating-point exception.
On average, cgvdEx is slightly faster than vroniMp*.

cgvdEx timings vary by a factor of 20.
A few cgvdEx results were numerically clearly wrong.
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Experimental Results for Voronoi Diagrams

[Held&Mann (2011)]: Implemented a verifier based on GMP’s mpq_t data type.

Brute-force all-pairs distance computations used.

Hence, verification was limited to small inputs with up to 2 000 segments.

Deviation: Difference in the distances of a node to its defining sites.

Violation: Another site is closer to a node than defining sites.
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Experimental Results for Voronoi Diagrams

Deviation: Difference in the distances of a node to its defining sites.
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Experimental Results for Voronoi Diagrams

Violation: Another site is closer to a node than defining sites.
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Software for Computing Straight Skeletons: SURFER and SURFER2

[Held&Palfrader (2012–2020)]: SURFER, SURFER2
compute straight skeletons of planar straight-line graphs,
simulate the wavefront propagation based on kinetic triangulations.

SURFER also computes mitered
offset curves.

SURFER2 handles weighted
straight skeletons, too.

Complexity:
O(n) space complexity,
where n is the number of
segments.
O(n log n) average time
complexity,
O(n3 log n) worst-case time
complexity.

SURFER is based on standard
IEEE 754 floating-point arithmetic.
SURFER2 is based on exact geometric computing.

© M. Held (Univ. Salzburg) Computational Geometry (WS 2024/25) 415/418
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Experimental Results for Straight Skeletons

Eder&Held&Palfrader (2020)

SURFER2: Based on CGAL’s exact-predicates-exact-constructions algebraic
kernel with square root, which is backed by CORE’s Core::Expr exact number
type.

CGAL 5.0: Based on exact-predicates-inexact-constructions algebraic kernel.

Surfer2
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Experimental Results for Straight Skeletons

Eder&Held&Palfrader (2020)

Multiple events that occur simultaneously have a significant impact on the practical
runtime of SURFER2 if the CORE::Expr number type is used!

That is, using the CORE::Expr number type forces one to abandon the concept
of unit-cost comparisons!

Surfer2
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The End!

I hope that you enjoyed this course, and I wish you all the best for your future studies.

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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