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Personalia

Instructor (VO+PS): M. Held.
Email: held@cs.sbg.ac.at.

Base-URL: https://www.cosy.sbg.ac.at/˜held.
Office: Universität Salzburg, FB Informatik, Rm. 1.20,

Jakob-Haringer Str. 2, 5020 Salzburg-Itzling.
Phone number (office): (0662) 8044-6304.
Phone number (secr.): (0662) 8044-6300.
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Formalia

URL of course (VO+PS): Base-URL/teaching/aads/aads.html.

Lecture times (VO): Thursday 800–1110 (with a break of about 20 minutes).

Venue (VO): PLUS, Informatik, T03, Jakob-Haringer Str. 2.

Lecture times (PS): Thursday 1200–1400.

Venue (PS): PLUS, Informatik, T03, Jakob-Haringer Str. 2.

Note — PS is graded according to continuous-assessment
mode!
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Electronic Slides and Online Material

In addition to these slides, you are encouraged to consult the WWW home-page of
this lecture:

https://www.cosy.sbg.ac.at/˜held/teaching/aads/aads.html.

In particular, this WWW page contains up-to-date information on the course, plus links
to online notes, slides and (possibly) sample code.
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UNIVERSITÄT SALZBURG

A Few Words of Warning

I hope that these slides will serve as a practice-minded introduction to various
aspects of advanced algorithms and data structures. I would like to warn you
explicitly not to regard these slides as the sole source of information on the topics
of my course. It may and will happen that I’ll use the lecture for talking about
subtle details that need not be covered in these slides! In particular, the slides
won’t contain all sample calculations, proofs of theorems, demonstrations of
algorithms, or solutions to problems posed during my lecture. That is, by making
these slides available to you I do not intend to encourage you to attend the
lecture on an irregular basis.

See also In Praise of Lectures by T.W. Körner.

A basic knowledge of algorithms, data structures, elementary probability theory,
and discrete mathematics, as taught typically in undergraduate courses, should
suffice to take this course. It is my sincere intention to start at a suitable
hypothetical level of “typical prior undergrad knowledge”. Still, it is obvious that
different educational backgrounds will result in different levels of prior knowledge.
Hence, you might realize that you do already know some items covered in this
course, while you lack a decent understanding of some items which I seem to
presuppose. In such a case I do expect you to refresh or fill in those missing
items on your own!
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UNIVERSITÄT SALZBURG

Acknowledgments

A small portion of these slides is based on notes and slides produced by students and
colleagues — most notably Therese Biedl, Jeff Erickson, Pat Morin’s “Open Data
Structures”, Paolo di Stolfo, Peter Palfrader — on topics related to algorithms and data
structures. I would like to express my thankfulness to all of them for their help. This
revision and extension was carried out by myself, and I am responsible for all errors.

I am also happy to acknowledge that I benefited from material published by colleagues
on diverse topics that are partially covered in this lecture. While some of the material
used for this lecture was originally presented in traditional-style publications (such as
textbooks), some other material has its roots in non-standard publication outlets (such
as online documentations, electronic course notes, or user manuals).

Salzburg, August 2023 Martin Held

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 6/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Legal Fine Print and Disclaimer

To the best of my knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder grants you the
right to download and print the slides for your personal use. Any other use, including
instructional use at non-profit academic institutions and re-distribution in electronic or
printed form of significant portions, beyond the limits of “fair use”, requires the explicit
permission of the copyright holder. All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder and/or his
respective employer be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.
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Recommended Textbooks for Background Reading I

T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein.
Introduction to Algorithms.
MIT Press, 4th edition, April 2022; ISBN 978-0262046305.

J. Kleinberg, É. Tardos.
Algorithm Design.
Pearson, 2013; ISBN 978-1292023946.

S.S. Skiena.
The Algorithm Design Manual.
Springer, 3rd edition, Oct 2020; ISBN 978-3030542559.
https://www.algorist.com/

D.E. Knuth.
The Art of Computer Programming. Vol. 1: Fundamental Algorithms.
Addison-Wesley, 3rd edition, 1997; 978-0201896831.

D.E. Knuth.
The Art of Computer Programming. Vol. 3: Sorting and Searching.
Addison-Wesley, 2nd edition, 1998; 978-0201896855.
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Recommended Textbooks for Background Reading II

J. Erickson.
Algorithms.
June 2019; ISBN 978-1792644832.
https://jeffe.cs.illinois.edu/teaching/algorithms/

P. Brass.
Advanced Data Structures.
Cambridge Univ. Press, 2008; ISBN 978-0521880374.
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P. Morin.
Open Data Structures.
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https://opendsa-server.cs.vt.edu/
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It’s Obvious!?

Problem: EUCLIDEANTRAVELINGSALESMANPROBLEM (ETSP)

Input: A set S of n points in the Euclidean plane.

Output: A cycle of minimum length that starts and ends in one point of S and visits
all points of S.

Natural strategy to solve an instance of ETSP:

1 Pick a point p0 ∈ S.
2 Find its nearest neighbor p′ ∈ S, move to p′, and let p := p′.
3 Continue from p to the nearest unvisited neighbor p′ ∈ S of p, and let

p := p′.
4 Repeat the last step until all points have been visited, and return back to p0.

S
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It’s Obvious!?

The strategy to always pick the shortest missing link can be seen as a greedy
strategy. (More on greedy strategies later during this course.)

It is obvious that this strategy will always solve ETSP, isn’t it?

Well . . .

In the example, the tour computed has length 58, while the optimum tour has
length 46!
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It’s Obvious!?

The strategy to always pick the shortest missing link can be seen as a greedy
strategy. (More on greedy strategies later during this course.)

It is obvious that this strategy will always solve ETSP, isn’t it?

Well . . . The tour computed need not even be close in length to the optimum tour!

In the example, the tour computed has length 58, while the optimum tour has
length 46!

Intuition . . .

. . . is important, but it may not replace formal reasoning. Intuition might misguide, and
algorithm design without formal reasoning does not make sense.
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Will it Terminate?

Caveat

Even seemingly simple algorithms need not be easy to understand and analyze.

1 void Collatz(int n)
2 {
3 while (n>1) {
4 if (ODD(n)) n := 3n + 1;
5 else n := n / 2;
6 }
7 printf("done!\n");
8 return;
9 }

It is not known whether the so-called Collatz 3n + 1 recursion [Collatz 1937] will
terminate for all n ∈ N.

Conjecture: It terminates for all n ∈ N.

Obviously T (2k ) = 1 after k steps for all k ∈ N0.

Experiments have confirmed the Collatz conjecture up to 268 ≈ 2.95 · 1020 . . .
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Notation

Numbers:
The set {1, 2, 3, . . .} of natural numbers is denoted by N, with N0 := N ∪ {0}.
The set {2, 3, 5, 7, 11, 13, . . .} ⊂ N of prime numbers is denoted by P.
The (positive and negative) integers are denoted by Z.
Zn := {0, 1, 2, . . . , n − 1} and Z+

n := {1, 2, . . . , n − 1} for n ∈ N.
The reals are denoted by R; the non-negative reals are denoted by R+

0 , and
the positive reals by R+.

Open or closed intervals I ⊂ R are denoted using square brackets: e.g.,
I1 = [a1, b1] or I2 = [a2, b2[, with a1, a2, b1, b2 ∈ R, where the right-hand “[”
indicates that the value b2 is not included in I2.
The set of all elements a ∈ A with property P(a), for some set A and some
predicate P, is denoted by

{x ∈ A : P(x)} or {x : x ∈ A ∧ P(x)}

or

{x ∈ A | P(x)} or {x | x ∈ A ∧ P(x)}.

Bold capital letters, such as M, are used for matrices.
The set of all (real) m × n matrices is denoted by Mm×n.
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indicates that the value b2 is not included in I2.

The set of all elements a ∈ A with property P(a), for some set A and some
predicate P, is denoted by

{x ∈ A : P(x)} or {x : x ∈ A ∧ P(x)}

or

{x ∈ A | P(x)} or {x | x ∈ A ∧ P(x)}.

Bold capital letters, such as M, are used for matrices.
The set of all (real) m × n matrices is denoted by Mm×n.
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Notation

Points are denoted by letters written in italics: p, q or, occasionally, P,Q. We do
not distinguish between a point and its position vector.

The coordinates of a vector are denoted by using indices (or numbers): e.g.,
v = (vx , vy ) for v ∈ R2, or v = (v1, v2, . . . , vn) for v ∈ Rn.

In order to state v ∈ Rn in vector form we will mix column and row vectors freely
unless a specific form is required, such as for matrix multiplication.

The vector dot product of two vectors v ,w ∈ Rn is denoted by ⟨v ,w⟩. That is,
⟨v ,w⟩ =

∑n
i=1 vi · wi for v ,w ∈ Rn.

The vector cross-product (in R3) is denoted by a cross: v × w .

The length of a vector v is denoted by ∥v∥.

The straight-line segment between the points p and q is denoted by pq.

The supporting line of the points p and q is denoted by ℓ(p, q).

The cardinality of a set A is denoted by |A|.
Quantifiers: The universal quantifier is denoted by ∀, and ∃ denotes the
existential quantifier.
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Terminology

Unfortunately, the terminology used in textbooks and research papers on
algorithms and data structures often lacks a rigorous standardization.

This comment is particularly true for the underlying graph theory!

We will rely on the terminology and conventions used in my course on “Discrete
Mathematics”.

Advice

Please make sure to familiarize yourself with the terminology and conventions used in
“Discrete Mathematics”!
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Logarithms

Definition 1 (Logarithm)

The logarithm of a positive real number x ∈ R+ with respect to a base b, which is a
positive real number not equal to 1, is the unique solution y of the equation by = x . It
is denoted by logb x .

Hence, it is the exponent by which b must be raised to yield x .
Common bases:

ld x := log2 x ln x := loge x with e := lim
n→∞

(
1 +

1
n

)n

≈ 2.71828. . .

Lemma 2

Let x , y , p ∈ R+ and b ∈ R+ \ {1}.

logb(xy) = logb(x) + logb(y) logb

(
x
y

)
= logb(x)− logb(y)

logb

(
xp) = p logb(x) logb

(
p
√

x
)
=

logb(x)
p
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Logarithms

Lemma 3 (Change of base)

Let x ∈ R+ and α, β ∈ R+ \ {1}. Then logα(x) and logβ(x) differ only by a
multiplicative constant:

logα(x) =
1

logβ(α)
· logβ(x)

Convention

In this course, log n will always denote the logarithm of n to the base 2, i.e.,
log n := log2 n.
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Fibonacci Numbers

Definition 4 (Fibonacci numbers)

For all n ∈ N0,

Fn :=

{
n if n ≤ 1,
Fn−1 + Fn−2 if n ≥ 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

Lemma 5

For n ∈ N with n ≥ 2:

Fn =
1√
5
·
(

1 +
√

5
2

)n

− 1√
5
·
(

1 −
√

5
2

)n

≥
(

1 +
√

5
2

)n−2

Lots of interesting mathematical properties. For instance,

lim
n→∞

Fn+1

Fn
= ϕ, where ϕ :=

1 +
√

5
2

= 1.618 . . . is the golden ratio.
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Catalan Numbers

Definition 6 (Catalan numbers)

For n ∈ N0,

C0 := 1 and Cn+1 :=
n∑

i=0

Ci · Cn−i .

n 0 1 2 3 4 5 6 7 8 9 10 11
Cn 1 1 2 5 14 42 132 429 1430 4862 16796 58786

Lemma 7

For n ∈ N0,

Cn =
1

n + 1

n∑
i=0

(
n
i

)2

=
1

n + 1

(
2n
n

)
∈ Θ

(
4n

n1.5

)
.
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Harmonic Numbers

Definition 8 (Harmonic numbers)

For n ∈ N,

Hn := 1 +
1
2
+

1
3
+ · · ·+ 1

n
=

n∑
k=1

1
k
.

Lemma 9

The sequence s : N → R with

sn := Hn − ln n

is monotonically decreasing and convergent. Its limit is the Euler-Mascheroni constant

γ := lim
n→+∞

(Hn − ln n) ≈ 0.5772 . . . ,

and we have

ln n < Hn − γ < ln(n + 1), i.e. Hn ∈ Θ(ln n) = Θ(log n).
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Discrete Probability: Material for Experiments

Basic elementary probability needed . . .

. . . for, e.g., analyzing randomized algorithms and data structures!

Coin:
A coin has two sides: H (for “head”) or T (for “tail”).

Die:
A standard die has six sides which are labelled with the numbers 1,2,3,4,5,
and 6.
Rolling a fair die will result in any of these six numbers being up.

Cards:
A standard 52-card deck of playing cards has 13 hearts (Dt. Herz), 13
diamonds (Dt. Karo), 13 spades (Dt. Pik), and 13 clubs (Dt. Treff).
Hearts and diamonds are red suits (Dt. Farben); spades and clubs are black
suits.
For each suit, there is a 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king, and ace.
Jacks, queens, and kings are so-called “face” cards.
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Discrete Probability

A trial is one instance of an experiment like rolling a fair die, flipping a coin or
pulling a card from decently shuffled deck.

Definition 10 (Sample space, Dt.: Ergebnisraum)

A sample space Ω is a non-empty, finite or countably infinite set. Each element of Ω is
called an outcome (aka elementary event, Dt.: Elementarereignis), and each subset
of Ω is called an event.

Definition 11 (Probability measure, Dt.: Wahrscheinlichkeit(sfunktion))

A probability measure Pr : P(Ω) → R is a mapping from the power set P(Ω) to R with
the following properties:

0 ≤ Pr(A) ≤ 1 for all A ⊆ Ω,∑
ω∈S Pr(ω) = 1.

This implies Pr
(∑

n∈N An
)
=
∑

n∈N Pr(An) for every sequence A1,A2, . . . of
pairwise disjoint sets from P(Ω).
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Discrete Probability Space

Definition 12 (Discrete probability space, Dt.: diskreter
Wahrscheinlichkeitsraum)

A (discrete) probability space is a pair (Ω,Pr) where Ω is a sample space and Pr is a
probability measure on Ω.

The probability of an event A ⊂ Ω is defined as the sum of the probabilities of the
outcomes of A: Pr(A) :=

∑
ω∈A Pr(ω).

Other common ways to denote the probability of A are Pr[A] and P(A) and p(A).
In the language of random experiments we understand Pr(A) for A ⊂ Ω as
follows:

Pr(A) =
number of outcomes favorable to A
total number of possible outcomes

Definition 13 (Uniform probability space)

A probability space (Ω,Pr) is uniform if Ω is finite and if for every ω ∈ Ω

Pr(ω) =
1
|Ω| .
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Discrete Probability

Lemma 14

Complementarity: If A is an event that occurs with probability Pr(A), then 1 − Pr(A)
is the probability that A does not occur.

Sum: If A ∩ B = /0 for two events A,B, i.e., if A,B cannot occur simultaneously, then
the probability Pr(A ∪ B) that either of them occurs is Pr(A) + Pr(B).

Definition 15 (Conditional probability, Dt.: bedingte Wahrscheinlichkeit)

The conditional probability of A given B, denoted by Pr(A | B), is the probability that
the event A occurs given that the event B has occurred:

Pr(A | B) =
Pr(A ∩ B)

Pr(B)
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Discrete Probability

Definition 16 (Independent Events)

If Pr(B) > 0 then event A is independent of event B if and only if

Pr(A | B) = Pr(A).

Caveat

Disjoint events are not independent! If A ∩ B = /0, then knowing that event B
happened means that you know that A cannot happen!

Lemma 17

Two events A,B are independent if and only if either of the following statements is
true:

Pr(A) · Pr(B) = Pr(A ∩ B) Pr(A | B) = Pr(A) Pr(B | A) = Pr(B)

If any one of these statements is true, then all three statements are true.
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Discrete Probability: W.H.P.

Definition 18 (With high probability)

For n ∈ N, an event An occurs with high probability if its probability depends on an
integer n and goes to 1 as n goes to infinity.

Typical example:

Pr(An) =

(
1 − 1

nc

)
for some c ∈ R+.

The term “with high probability” is commonly abbreviated as w.h.p. or WHP.
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Random Variable

Definition 19 (Random variable, Dt.: Zufallsvariable)

A random variable X on a sample space Ω is a function X : Ω → R that maps each
outcome of Ω to a real number. A random variable is discrete if it has a finite or
countably infinite set of distinct possible values; it is continuous otherwise. It is called
an indicator random variable if X (Ω) = {0, 1}.

Misleading terminology!

A random variable is neither “random” nor a “variable”!

The notation

X = a

is a frequently used short-hand notation for denoting the set of outcomes ω ∈ Ω
such that X (ω) = a. Hence, X = a is an event.
Similarly for X ≥ a.

Definition 20 (Independent random variables)

The two random variables X1,X2 : Ω → R are independent if for all x1, x2 the two
events X1 = x1 and X2 = x2 are independent.
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Probability Distribution

Definition 21 (Probability distribution, Dt.: Wahrscheinlichkeitsverteilung)

For a discrete random variable X on a probability space (Ω,Pr), its probability
distribution is the function D : R → R with

D(x) :=

{
Pr(X = x) if x ∈ X (Ω),

0 if x ̸∈ X (Ω).

It is uniform (Dt.: gleichverteilt) for a finite codomain X (Ω) if D(x) = 1/n for all
x ∈ X (Ω), with n := |X (Ω)|.

The sum of all probabilities contained in a probability distribution needs to equal
1, and each individual probability must be between 0 and 1, inclusive.

Definition 22 (Cumulative distribution, Dt.: kumulative
Wahrscheinlichkeitsverteilung)

For a discrete random variable X on a probability space (Ω,Pr), its cumulative
probability distribution is the function

CD : X (Ω) → R with CD(x) := Pr(X ≤ x).
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Expected Value of a Random Variable

Definition 23 (Expected value, Dt.: Erwartungswert)

The expected value, E(X ), of a discrete random variable X on a probability space
(Ω,Pr) is defined as

E(X ) :=
∑
ω∈Ω

X (ω) · Pr(ω),

provided that this series converges absolutely.

That is, the sum must remain finite if all X (ω) were replaced by their absolute
values |X (ω)|.
The expected value of X can be rewritten as E(X ) :=

∑
x∈X(Ω) x · Pr(X = x).

Another commonly used term to denote the expected value of X is µX .
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Expected Value of a Random Variable

Lemma 24 (Linearity of expectation)

Let a, b, c ∈ R and two random variables X ,Y defined over the same probability
space. Then

E[aX + bY + c] = aE[X ] + b E[Y ] + c.

Lemma 25 (Markov’s inequality)

Let X be a non-negative random variable and a ∈ R+. Then the probability that X is at
least as large as a is at most as large as the expectation of X divided by a:

Pr(X ≥ a) ≤ E(X )

a
.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 36/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Asymptotic Notation: Big-O

Definition 26 (Big-O, Dt.: Groß-O)

Let f : N → R+. Then the set O(f ) is defined as

O(f ) :=
{

g : N → R+ | ∃c2 ∈ R+ ∃n0 ∈ N ∀n ≥ n0 g(n) ≤ c2 · f (n)
}
.

n

c2 · f

g

︸ ︷︷ ︸n0

g(n) ≤ c2 · f (n) for all n ≥ n0

Equivalent definition used by some authors:

O(f ) :=

{
g : N → R+ | ∃c2 ∈ R+ ∃n0 ∈ N ∀n ≥ n0

g(n)
f (n)

≤ c2

}
.

Some authors prefer to use the symbol O instead of O.
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Asymptotic Notation: Big-Omega

Definition 27 (Big-Omega, Dt.: Groß-Omega)

Let f : N → R+. Then the set Ω(f ) is defined as

Ω(f ) :=
{

g : N → R+ | ∃c1 ∈ R+ ∃n0 ∈ N ∀n ≥ n0 c1 · f (n) ≤ g(n)
}
.

n

g

︸ ︷︷ ︸n0

c1 · f (n) ≤ g(n) for all n ≥ n0

c1 · f

Equivalently,

Ω(f ) :=

{
g : N → R+ | ∃c1 ∈ R+ ∃n0 ∈ N ∀n ≥ n0 c1 ≤ g(n)

f (n)

}
.
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Asymptotic Notation: Big-Theta

Definition 28 (Big-Theta, Dt.: Groß-Theta)

Let f : N → R+. Then the set Θ(f ) is defined as

Θ(f ) :=
{

g : N → R+ | ∃c1, c2 ∈ R+ ∃n0 ∈ N ∀n ≥ n0

c1 · f (n) ≤ g(n) ≤ c2 · f (n)} .

n

c2 · f

g

︸ ︷︷ ︸n0

c1 · f (n) ≤ g(n) ≤ c2 · f (n) for all n ≥ n0

c1 · f

which is equivalent to c1 ≤ g(n)
f (n) ≤ c2 for all n ≥ n0
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Asymptotic Notation: Small-Oh and Small-Omega

Definition 29 (Small-Oh, Dt.: Klein-O)

Let f : N → R+. Then the set o(f ) is defined as

o (f ) :=
{

g : N → R+ | ∀c ∈ R+ ∃n0 ∈ N ∀n ≥ n0 g(n) ≤ c · f (n)
}
.

Definition 30 (Small-Omega, Dt.: Klein-Omega)

Let f : N → R+. Then the set ω(f ) is defined as

ω (f ) :=
{

g : N → R+ | ∀c ∈ R+ ∃n0 ∈ N ∀n ≥ n0 g(n) ≥ c · f (n)
}
.

We can extend Defs. 26–30 such that N0 rather than N is taken as the domain
(Dt.: Definitionsmenge). We can also replace the codomain (Dt.: Zielbereich) R+

by R+
0 (or even R) provided that all functions are eventually positive.

Warning

The use of the equality operator “=” instead of the set operators “∈” or “⊆” to denote
set membership or a subset relation is a common abuse of notation.
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Soft-Oh

Definition 31 (Soft-Oh)

Let f , g : N → R+. Then g ∈ Õ(f ) if and only if there exists k ∈ N0 such that
g ∈ O(f logk (f )).

Similarly for Ω̃(f ) and Θ̃(f ).
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Master Theorem

Theorem 32

Consider constants n0 ∈ N and a ∈ N, b ∈ R with b > 1, and a function f : N → R+
0 .

Let T : N → R+
0 be an eventually non-decreasing function such that

T (n) = a · T
(n

b

)
+ f (n)

for all n ∈ N with n ≥ n0, where we interpret n
b as either ⌈ n

b ⌉ or ⌊ n
b ⌋.

Then we have

T ∈


Θ(f ) if


f ∈ Ω

(
n(logb a)+ε

)
for some ε ∈ R+,

and if the following regularity condition holds
for some 0 < s < 1 and all sufficiently large n:

a · f (n/b) ≤ s · f (n),
Θ
(
nlogb a log n

)
if f ∈ Θ

(
nlogb a) ,

Θ(nlogb a) if f ∈ O
(

n(logb a)−ε
)

for some ε ∈ R+.

This is a simplified version of the Akra-Bazzi Theorem [Akra&Bazzi (1998)].
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2 Basics of Algorithm Theory
Terminology
Time Complexities and Growth Rates
Model of Computation
Reductions
Proving Lower Bounds
Amortized Analysis
Practical Considerations
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“Problem”

Problem

A problem is the concise (abstract) description of every permissible input and of the
output sought for every (permissible) input.

E.g., we can specify the sorting problem for (real) numbers as follows:

Problem: SORTING

Input: A sequence of n (real) numbers (x1, x2, . . . , xn), for some n ∈ N.

Output: A permutation π ∈ Sn such that xπ(1) ≤ xπ(2) ≤ . . . ≤ xπ(n).

Problem instance

An instance of a problem is one particular (permissible) input.

E.g., sorting the five numbers of the sequence (3, 1, 5, 14, 8) forms one instance
of the SORTING problem.
We have n = 5, and SORTING these numbers requires us to find the permutation

π =

(
1 2 3 4 5
2 1 3 5 4

)
.
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UNIVERSITÄT SALZBURG

“Problem”

Problem

A problem is the concise (abstract) description of every permissible input and of the
output sought for every (permissible) input.

E.g., we can specify the sorting problem for (real) numbers as follows:

Problem: SORTING

Input: A sequence of n (real) numbers (x1, x2, . . . , xn), for some n ∈ N.

Output: A permutation π ∈ Sn such that xπ(1) ≤ xπ(2) ≤ . . . ≤ xπ(n).

Problem instance

An instance of a problem is one particular (permissible) input.

E.g., sorting the five numbers of the sequence (3, 1, 5, 14, 8) forms one instance
of the SORTING problem.
We have n = 5, and SORTING these numbers requires us to find the permutation

π =

(
1 2 3 4 5
2 1 3 5 4

)
.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 46/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

“Problem”

Problem

A problem is the concise (abstract) description of every permissible input and of the
output sought for every (permissible) input.

E.g., we can specify the sorting problem for (real) numbers as follows:

Problem: SORTING

Input: A sequence of n (real) numbers (x1, x2, . . . , xn), for some n ∈ N.

Output: A permutation π ∈ Sn such that xπ(1) ≤ xπ(2) ≤ . . . ≤ xπ(n).

Problem instance

An instance of a problem is one particular (permissible) input.

E.g., sorting the five numbers of the sequence (3, 1, 5, 14, 8) forms one instance
of the SORTING problem.

We have n = 5, and SORTING these numbers requires us to find the permutation

π =

(
1 2 3 4 5
2 1 3 5 4

)
.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 46/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

“Algorithm”

Algorithm

An algorithm is a sequence of self-contained step-by-step instructions for solving a
problem.

The term “algorithm” is generally assumed to stem from the (Latin transliteration)
of the name of a Persian mathematician who was a scholar at the House of
Wisdom at Baghdad during the Abbasid Caliphate: Muh.ammad ibn Mūsā
al-Khwārizmı̄ (ca. 780–850).

An algorithm may be encoded as a procedure, a formula, a recipe, . . .

Attempts to formalize the concept of an algorithm started with work on the
Entscheidungsproblem (posed by Hilbert in 1928). Formalizations include

the theory of recursive functions [Gödel, Herbrand, Kleene (1930–1935)],
lambda calculus [Church (1936)],
Turing machines [Turing (1936–1939)].

See a textbook on theoretical computer science for formal foundations of
“algorithm”.

In this lecture we will presuppose a general understanding of “algorithm” and use
English language, pseudocode or C/C++ as algorithmic notations.
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Decision Problem

Definition 33 (Decision Problem; Dt.: Entscheidungsproblem)

A problem is a decision problem if the output sought for a particular instance of the
problem always is the answer yes or no.

Famous decision problem: Boolean satisfiability (SAT).

Problem: SAT

Input: A propositional formula A.

Decide: Is A satisfiable? I.e., does there exist an assignment of truth values to the
Boolean variables of A such that A evaluates to true?

Note that a solution to SAT does not necessarily require us to know suitable truth
assignments to the Boolean variables.

However, if we are given truth assignments for which A is claimed to evaluate to
true then this claim is easy to verify.

We’ll get back to this issue when talking about NP-completeness . . .
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Decision Problem vs. Computational/Optimization Problems

Often a decision problem is closely related to an underlying
computational/optimization problem.

E.g., “Sort the numbers x1, . . . , xn” versus “Are the numbers x1, . . . , xn sorted?”

Problem: CHROMATICNUMBER

Input: An undirected graph G.

Output: An assignment of colors to the nodes of G such that no neighboring nodes
bear the same color and such that a minimum number of colors is used.

Problem: k -COL

Input: An undirected graph G and a constant k ∈ N with k > 3.

Decide: Do k colors suffice to color the nodes of G such that no neighboring nodes
bear the same color?
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Decision Problem vs. Computational/Optimization Problems

Problem: EUCLIDEANTRAVELINGSALESMANPROBLEM (ETSP)

Input: A set S of n points in the Euclidean plane.

Output: A cycle of minimum length that starts and ends in one point and visits all
points of S.

bad! good!

Problem: EUCLIDEANTRAVELINGSALESMANPROBLEM — DECISION

Input: A set S of n points in the (Euclidean) plane and a constant c ∈ R+.

Decide: Does there exist a cycle that starts and ends in one point and visits all
points of S such that the length of that cycle is less than c?
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2 Basics of Algorithm Theory
Terminology
Time Complexities and Growth Rates

Inverse Ackermann
Log-star
(Poly-)Logarithmic Time
Quasilinear Time
(Quasi-)Polynomial Time
(Double) Exponential Time
Comparison of Growth Rates
The Expression k + ε

Model of Computation
Reductions
Proving Lower Bounds
Amortized Analysis
Practical Considerations
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Inverse Ackermann

Definition 34 (Inverse Ackermann function)

For m, n ∈ N0, the Ackermann function is defined as follows [Péter (1935)]:

A(m, n) :=


n + 1 if m = 0,
A(m − 1, 1) if m > 0 and n = 0,
A(m − 1,A(m, n − 1)) if m > 0 and n > 0.

The inverse Ackermann function is given by

α(n) := min{k ∈ N : A(k , k) ≥ n}.

The Ackermann function grows extremely rapidly. E.g., we have

A(4, 4) ≈ 222216

≈ 222·1019728

.

Hence, the inverse Ackermann function grows extremely slowly; it is at most four
for any input of practical relevance.

But it does grow unboundedly as n grows, and we have 1 ∈ o(α)!

Real-world occurrence of O(α): Combinatorial complexity of lower envelopes.
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Inverse Ackermann and Lower Envelopes

Definition 35 (Lower envelope, Dt.: untere Hüllkurve)

Consider a set of n real-valued functions f1, f2, . . . , fn over the same domain. Their
lower envelope is the function fmin given by the pointwise minimum of f1, f2, . . . , fn:

fmin(x) := min{fi(x) : 1 ≤ i ≤ n}.

x

f (x)
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Inverse Ackermann and Lower Envelopes

The concept of a lower envelope can be extended naturally to a set of partially
defined functions over the same domain.

In particular, it extends to straight-line segments in the plane.

The projection of the lower envelope onto the x-axis gives a sequence of
intervals, and the theory of Davenport-Schinzel sequences implies the following
result [Sharir&Agarwal (1995)]: The lower envelope of n line segments contains
at most Θ(nα(n)) segments and vertices — and this bound is tight!

x

f (x)
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Log-star

Definition 36 (Iterated logarithm)

For x ∈ R+ the iterated logarithm (aka log-star) is defined as follows:

log∗x :=

{
0 if x ≤ 1,
1 + log∗(log x) if x > 1.

E.g., for the binary logarithm, log 65 536 = log 216 = 16 but (since 216 = 2222

)

log∗216 def
= 1 + log∗222 def

= 2 + log∗22 def
= 3 + log∗21 def

= 4 + log∗1 def
= 4.

Log-star grows very slowly. It is at most six for any input of practical relevance:
We have

265536 = 2216
≈ 2 · 1019728, with log∗265536 = 5.

We have α ∈ o(log∗).
Log-star shows up in the complexity bound of Fürer’s algorithm [2007] for
multiplying large integers: If n denotes the total number of bits of the two input
numbers then an optimized version of his algorithm runs in time O(n log n 23 log∗ n)
[Harvey et al. (2014)]. For truly large values of n this is slightly better then the
O(n log n log log n) bound of the Schönhage-Strassen algorithm [1971].
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Logarithmic Growth

Recall Lemma 3:

logα(n) =
1

logβ(α)
· logβ(n) for all α, β ∈ R+ \ {1} and all n ∈ N.

Hence,

Θ(logα n) = Θ(logβ n) for all α, β ∈ R+ \ {1}.

Note that Stirling’s formula asserts

n! ≈
√

2πn
(n

e

)n
, thus, Θ(log n!) = Θ(n log n).

Recall Lemma 9. Since

lim
n→+∞

(Hn − ln n) = γ,

we know that
n∑

k=1

1
k

= Θ(ln n) = Θ(log n).
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Polylogarithmic

Definition 37 (Polylogarithmic)

An algorithm runs in polylogarithmic time if

T ∈ O(logk ) for some constant k ∈ N

holds for its time complexity T .

This is also written as O(poly(log n)).

Often abbreviated as “polylog”.

Polylog times are examples for sublinear times.
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Quasilinear Time

Definition 38 (Quasilinear)

An algorithm runs in quasilinear time if

T ∈ O(n logk n) for some constant k ∈ N

holds for its time complexity T .

This is also written as O(n poly(log n)).

Using soft O-notation, quasilinear time may be written as Õ(n).
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UNIVERSITÄT SALZBURG

Quasilinear Time

Definition 38 (Quasilinear)

An algorithm runs in quasilinear time if

T ∈ O(n logk n) for some constant k ∈ N

holds for its time complexity T .

This is also written as O(n poly(log n)).

Using soft O-notation, quasilinear time may be written as Õ(n).

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 58/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

(Quasi-)Polynomial Time

Definition 39 (Polynomial)

An algorithm runs in polynomial time if

T ∈ O(nk ) for some constant k ∈ N

holds for its time complexity T .

This is also written as O(poly(n)).

Definition 40 (Quasi-polynomial)

An algorithm runs in quasi-polynomial time if

T ∈ 2O(logc n) for some constant c > 1

holds for its time complexity T .

For c := 1 we get a polynomial-time algorithm, and for c < 1 we get a sublinear
algorithm.
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Exponential Time

Definition 41 (Exponential)

An algorithm runs in exponential time if

T ∈ O(2nk
) for some constant k ∈ N

holds for its time complexity T .

This is also written as O(2poly(n)).

Note: Some authors require T ∈ 2O(n).
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Factorial and Double Exponential Time

Definition 42 (Factorial)

An algorithm runs in factorial time if

T ∈ O(n!)

holds for its time complexity T .

We have 2n ∈ o(n!) and n! ∈ o(2n1+c
) for all c > 0.

Definition 43 (Double Exponential)

An algorithm runs in double exponential time if

T ∈ O(22nk

) for some constant k ∈ N

holds for its time complexity T .
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Comparison of Growth Rates

n log n log log n log∗n α(n)

2 1 0 1 1

22 2 1 2 2

222
= 16 4 2 3 3

216 = 65 536 16 4 4 4

264 ≈ 1.8 · 1019 64 6 5 4

222216

22216

2216
7 4

222.
. .

2

︸ ︷︷ ︸
2023

22. .
.2︸ ︷︷ ︸

2022

22. .
.2︸ ︷︷ ︸

2021

2023 4

? 5
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The Expression k + ε

A statement of the form “k + ε for any positive ε ∈ R” means that some claim
holds no matter which positive constant ε ∈ R+ is added to k .

The constant ε may be regarded as arbitrarily small but it will never equal zero.

E.g., suppose that some algorithm runs in 2cn1+1/c time, where c ∈ R+ is a
user-chosen constant:

For c := 2, the complexity term equals 4n3/2, which is in O(n3/2).
For c := 9, the complexity term equals 29n10/9, which is in O(n10/9).
It is easy to see that 1 + 1/c approaches 1 as c approaches infinity.
However, c cannot be set to infinity (or made arbitrarily large) since then the
2c term would dominate the complexity of our algorithm.
Hence, this complexity is best expressed as “O(n1+ε) for any positive ε”.

In a nutshell, O(nk+ε) means that the upper bound is of the form cε · nk · nε, for
any ε ∈ R+, where the constant cε depends on ε. Typically, cε grows
unboundedly as ε goes to zero.
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UNIVERSITÄT SALZBURG

The Expression k + ε

A statement of the form “k + ε for any positive ε ∈ R” means that some claim
holds no matter which positive constant ε ∈ R+ is added to k .

The constant ε may be regarded as arbitrarily small but it will never equal zero.

E.g., suppose that some algorithm runs in 2cn1+1/c time, where c ∈ R+ is a
user-chosen constant:

For c := 2, the complexity term equals 4n3/2, which is in O(n3/2).
For c := 9, the complexity term equals 29n10/9, which is in O(n10/9).
It is easy to see that 1 + 1/c approaches 1 as c approaches infinity.

However, c cannot be set to infinity (or made arbitrarily large) since then the
2c term would dominate the complexity of our algorithm.
Hence, this complexity is best expressed as “O(n1+ε) for any positive ε”.

In a nutshell, O(nk+ε) means that the upper bound is of the form cε · nk · nε, for
any ε ∈ R+, where the constant cε depends on ε. Typically, cε grows
unboundedly as ε goes to zero.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 63/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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2 Basics of Algorithm Theory
Terminology
Time Complexities and Growth Rates
Model of Computation

Complexity and Input Size
Algebraic Computation Tree

Reductions
Proving Lower Bounds
Amortized Analysis
Practical Considerations
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Complexity of an Algorithm

Typical kinds of complexities studied:
time complexity, i.e., a mathematical assessment or estimation of the
running time independent of a particular implementation or platform;
space complexity, i.e., a mathematical assessment or estimation of the
number of memory units consumed by the algorithm;
complexity of the output generated.

Definition 44 (Worst-Case Complexity, Dt.: Komplexität im schlimmsten Fall)

A worst-case complexity of an algorithm is a function f : N → R+ that gives an upper
bound on the number of elementary operations (memory units, . . .) used by an
algorithm with respect to the size of its input, for all inputs of the same size.

Definition 45 (Average-Case Complexity, Dt.: Komplexität im durchschnittl. Fall)

An average-case complexity of an algorithm is a function g : N → R+ that models the
average number of elementary operations (memory units, . . .) used by an algorithm
with respect to the size of its input.

So, what does “size of its input” mean? And what are “elementary operations”?
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UNIVERSITÄT SALZBURG

Complexity of an Algorithm

Typical kinds of complexities studied:
time complexity, i.e., a mathematical assessment or estimation of the
running time independent of a particular implementation or platform;
space complexity, i.e., a mathematical assessment or estimation of the
number of memory units consumed by the algorithm;
complexity of the output generated.

Definition 44 (Worst-Case Complexity, Dt.: Komplexität im schlimmsten Fall)

A worst-case complexity of an algorithm is a function f : N → R+ that gives an upper
bound on the number of elementary operations (memory units, . . .) used by an
algorithm with respect to the size of its input, for all inputs of the same size.

Definition 45 (Average-Case Complexity, Dt.: Komplexität im durchschnittl. Fall)

An average-case complexity of an algorithm is a function g : N → R+ that models the
average number of elementary operations (memory units, . . .) used by an algorithm
with respect to the size of its input.

So, what does “size of its input” mean? And what are “elementary operations”?

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 65/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Input Size

Definition 46 (Input Size, Dt.: Eingabegröße)

The size of the input of an algorithm is a quantity that measures the number of input
items relevant for elementary operations of the algorithm.

For most problems the choice of an appropriate measure of the input size will be
fairly obvious.

E.g., for sorting a typical measure of the input size will be the number of records
to be sorted (if constant memory and comparison time per record may be
assumed).

If we are to check for intersections among line segments then it seems natural to
take the number of line segments as input size.

A graphics rendering application may want to consider the number of triangles to
be rendered as input size.
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Input Size — It Does Matter!

Problem: PRIME

Input: A natural number n with n > 1.

Decide: Is n prime? I.e., can n be divided only by 1 and by itself?

1 boolean IsPrime(int n)
2 {
3 for (j := 2; j <= sqrt(n); j++) {
4 if ( (n mod j) == 0 ) return false;
5 };
6 return true;
7 }

Complexity:
The body of the loop is executed O(

√
n) times.

If the operation (n mod j) can be implemented to run in O(n) time, then this
algorithm solves problem PRIME in O(n

√
n) steps!?
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UNIVERSITÄT SALZBURG

Input Size — It Does Matter!

Problem: PRIME

Input: A natural number n with n > 1.

Decide: Is n prime? I.e., can n be divided only by 1 and by itself?

1 boolean IsPrime(int n)
2 {
3 for (j := 2; j <= sqrt(n); j++) {
4 if ( (n mod j) == 0 ) return false;
5 };
6 return true;
7 }

Complexity:
The body of the loop is executed O(

√
n) times.

If the operation (n mod j) can be implemented to run in O(n) time, then this
algorithm solves problem PRIME in O(n

√
n) steps!?

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 67/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Input Size — It Does Matter!

However: What is the input size? Does the description of a number n really
require O(n) characters?

In the decimal system: SIZE10(1000) = 4.
In the dual system: SIZE2(1000) ≈ 10.

Thus, in the dual system, an input of size k results in O((2k )3/2) many steps
being carried out by our simple algorithm!
Note: The latter bound is exponential in k !
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Model of Computation

We continue with (informal!) definitions that pertain to the complexity analysis of
algorithms.

Definition 47 (Elementary Operation, Dt.: Elementaroperation)

An elementary operation is an operation whose running time is assumed not to
depend on the specific values of its operands.

E.g., the time taken by the comparison of two floating-point numbers is frequently
assumed to be constant.

Still, what constitutes an elementary operation depends on the model of
computation.

Definition 48 (Model of Computation)

A model of computation specifies the elementary operations that may be executed,
together with their respective costs.
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Model of Computation

Purely theoretical point of view: Turing Machine (TM) model.
This is the model to use when talking about theoretical issues like
NP-completeness!

But the TM model is cumbersome to use for analyzing actual complexities and,
thus, is impractical for most “real” applications . . .

Hence several alternative models have been proposed, e.g.:
Random Access Machine (RAM) model,
Word RAM model,
Real RAM model,
Blum-Shub-Smale model,
Algebraic Decision/Computation Tree (ADT/ACT) model.

Warning

While all these models are “good enough from a practical point of view” to shed some
light on the complexity of an algorithm or a problem, they do differ in detail. Different
models of computation are not equally powerful, and complexity results need not
transfer readily from one model to another model.

Consult a textbook on theoretical computer science for details . . .
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Algebraic Computation Tree

Definition 49 (Algebraic computation tree, Dt.: algebr. Berechnungsbaum)

An algebraic computation tree with input (x1, x2, . . . , xn) ∈ Rn solves a decision
problem P if it is a finite rooted tree with at most two children per node and two types
of internal nodes:

Computation: A computation node v has a value fv determined by one of the
following instructions:

fv = fu ◦ fw or fv =
√

fu

where ◦ ∈ {+,−, ·, /} and fu, fw are values associated with ancestors
of v , input variables or arbitrary real constants.

Branch: A branch node v has two children and contains one of the predicates

fu > 0 fu ≥ 0 fu = 0

where fu is a value associated with an ancestor of v or an input
variable.

Every leaf node is associated with Yes and No, depending on the correct answer for
every (x1, x2, . . . , xn) relative to P.
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Membership Set

Of course, we require that no computation node leads to a division by zero or to
taking the square root of a negative number.

Definition 50 (Membership set)

For a decision problem P with input variables x1, x2 . . . , xn ∈ R we define WP as the
set of points in Rn for which the answer to the decision problem is Yes:

WP := {(u1, . . . , un) ∈ Rn : u1, u2 . . . , un yield “Yes” for P}.

The set WP is called the membership set of P.
Also: WP := Rn \ WP .

Thus, WP contains the points in Rn for which the answer is No.

Definition 51

For a decision problem P with input x1, x2 . . . , xn ∈ R and membership set WP we
denote the number of disjoint connected components of WP by #(WP), and the
number of disjoint connected components of WP by #(WP).
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Algebraic Computation Trees and Lower Bounds

Theorem 52

If we exclude all intermediate nodes which correspond to additions, subtractions and
multiplications by constants then we get for the height h of an algebraic computation
tree that solves a decision problem P:

h = Ω(log(#(WP) + #(WP))− n).

Theorem 52 is a consequence of a clever adaption by Steele&Yao [1982] and
Ben-Or [1983] of a classical result in algebraic geometry obtained independently
by Petrovskiı̆&Oleı̆nik [1952], Milnor [1964] and Thom [1965].

For fixed-dimensional input, the real RAM model and the ACT model are
equivalent.
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2 Basics of Algorithm Theory
Terminology
Time Complexities and Growth Rates
Model of Computation
Reductions

Basics
Transfer of Complexity Bounds

Proving Lower Bounds
Amortized Analysis
Practical Considerations
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Reduction of a Problem: Humorous View of Reductions

Difference between a mathematician and an engineer?

One can perform the following experiment to tell the difference between a
mathematician (or theoretical computer scientist) and an engineer:

1 Put an empty kettle in the middle of the kitchen floor and tell your subjects to boil
some water.

The engineer will fill the kettle with water, put it on the (electric) stove, and
turn the electricity on.
The mathematician will proceed similarly.

2 Next, put the kettle already filled with water on the stove, and ask the subjects to
boil the water.

The engineer will turn the electricity on and boil the water.
The mathematician will empty the kettle and put it in the middle of the
kitchen floor — and claim the problem to be solved by having it reduced to a
problem whose solution is already known!
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Reduction of a Problem

Definition 53 (Reduction)

A problem A can be reduced (or transformed) to a problem B if

1 every instance A of A can be converted to an instance B of B,
2 a solution S for B can be computed,

and

3 S can be transformed back into a correct solution for A.

A B
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Definition 53 (Reduction)

A problem A can be reduced (or transformed) to a problem B if
1 every instance A of A can be converted to an instance B of B,
2 a solution S for B can be computed, and
3 S can be transformed back into a correct solution for A.

Definition 54

A problem A is τ -reducible to B, denoted by A ≤τ B, if
1 A can be reduced to B,
2 for any instance A of A, steps 1 and 3 of the reduction can be carried out in at

most τ(|A|) time, where |A| denotes the input size of A.

A BA B

solution S for B

τ (|A|) time

solution for A
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Transfer of Complexity Bounds

Lemma 55 (Upper bound via reduction)

Suppose that A is τ -reducible to B such that the order of the input size is preserved. If
problem B can be solved in O(T ) time, then A can be solved in at most O(T + τ) time.

A BA B

solution S for B

τ (|A|) time

solution for A
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Transfer of Complexity Bounds

Lemma 55 (Upper bound via reduction)

Suppose that A is τ -reducible to B such that the order of the input size is preserved. If
problem B can be solved in O(T ) time, then A can be solved in at most O(T + τ) time.

Lemma 56 (Lower bound via reduction)

Suppose that A is τ -reducible to B such that the order of the input size is preserved.
If problem A is known to require Ω(T ) time, then B requires at least Ω(T − τ) time.

A BA B

solution S for B

τ (|A|) time
Ω(T (|A|))

solution for A
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Transfer of Time Bounds: SORTING and ELEMENTUNIQUENESS

Problem: ELEMENTUNIQUENESS

Input: A set S of n real numbers x1, x2, . . . , xn.

Decide: Are any two numbers of S equal?

Obviously, after sorting x1, x2, . . . , xn we can solve ELEMENTUNIQUENESS in
O(n) time.

Hence, reduction yields the following result:

Lemma 57

ELEMENTUNIQUENESS can be solved in time O(f ) + O(n) if we can sort n
numbers in O(f ) time, for some f : N → R+.

SORTING requires Ω(f ) time if ELEMENTUNIQUENESS requires Ω(f ) time, for
some f : N → R+ with λn.n ∈ o(f ).
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Transfer of Time Bounds: CLOSESTPAIR and ELEMENTUNIQUENESS

Problem: CLOSESTPAIR

Input: A set S of n points in the Euclidean plane.

Output: Those two points of S whose mutual distance is minimum among all pairs of
points of S.

We allow points to coincide but still expect them to be distinguishable by some
additional data associated with each point. E.g., by means of their indices.
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Transfer of Time Bounds: CLOSESTPAIR and ELEMENTUNIQUENESS

Lemma 58
1 ELEMENTUNIQUENESS can be solved in O(f ) + O(n) time if CLOSESTPAIR can

be solved in O(f ) time.

2 CLOSESTPAIR requires Ω(f ) time if ELEMENTUNIQUENESS requires Ω(f ) time
(and if λn.n ∈ o(f )).

Proof :
We reduce ELEMENTUNIQUENESS to CLOSESTPAIR.
Let S′ := {x1, x2, ..., xn} ⊂ R be an instance of ELEMENTUNIQUENESS.
We transform S′ into an instance of CLOSESTPAIR by mapping each real number
xi to the point (xi , 0) ∈ R2. All points of the resulting set S of points lie on the
x-axis.
Obviously, all elements of S′ are unique if and only if the closest pair of S has a
non-zero distance.
It is also obvious that these transformations are carried out in O(n) time.
Hence, we get a lower bound on the time complexity of CLOSESTPAIR and an
upper bound on the time complexity of ELEMENTUNIQUENESS.
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UNIVERSITÄT SALZBURG

Transfer of Time Bounds: CLOSESTPAIR and ELEMENTUNIQUENESS

Lemma 58
1 ELEMENTUNIQUENESS can be solved in O(f ) + O(n) time if CLOSESTPAIR can

be solved in O(f ) time.
2 CLOSESTPAIR requires Ω(f ) time if ELEMENTUNIQUENESS requires Ω(f ) time

(and if λn.n ∈ o(f )).

Proof :
We reduce ELEMENTUNIQUENESS to CLOSESTPAIR.
Let S′ := {x1, x2, ..., xn} ⊂ R be an instance of ELEMENTUNIQUENESS.
We transform S′ into an instance of CLOSESTPAIR by mapping each real number
xi to the point (xi , 0) ∈ R2. All points of the resulting set S of points lie on the
x-axis.
Obviously, all elements of S′ are unique if and only if the closest pair of S has a
non-zero distance.
It is also obvious that these transformations are carried out in O(n) time.
Hence, we get a lower bound on the time complexity of CLOSESTPAIR and an
upper bound on the time complexity of ELEMENTUNIQUENESS.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 80/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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2 CLOSESTPAIR requires Ω(f ) time if ELEMENTUNIQUENESS requires Ω(f ) time

(and if λn.n ∈ o(f )).

Proof :
We reduce ELEMENTUNIQUENESS to CLOSESTPAIR.
Let S′ := {x1, x2, ..., xn} ⊂ R be an instance of ELEMENTUNIQUENESS.
We transform S′ into an instance of CLOSESTPAIR by mapping each real number
xi to the point (xi , 0) ∈ R2. All points of the resulting set S of points lie on the
x-axis.
Obviously, all elements of S′ are unique if and only if the closest pair of S has a
non-zero distance.
It is also obvious that these transformations are carried out in O(n) time.
Hence, we get a lower bound on the time complexity of CLOSESTPAIR and an
upper bound on the time complexity of ELEMENTUNIQUENESS.
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Transfer of Time Bounds: SORTING and CONVEXHULL

Definition 59 (Convex set)

A set X ⊂ R2 is convex if for every pair of points p, q ∈ X also the line segment pq is
contained in X .

convex not convex

p

q

p

q
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Transfer of Time Bounds: SORTING and CONVEXHULL

Lemma 60

CONVEXHULL requires Ω(f ) time if SORTING requires Ω(f ) time, for some f : N → R+

with λn.n ∈ o(f ).

Suppose that the instance of SORTING is the set S′ := {x1, x2, ..., xn} ⊂ R.

We transform S′ into an instance of CONVEXHULL by mapping each real number
xi to the point (xi , xi

2). All points of the resulting set S of points lie on the
parabola y = x2.

One pass along CH(S) will find the smallest element. The sorted numbers can
be obtained by a second pass through this list, at a total extra cost of O(n) time.
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2 Basics of Algorithm Theory
Terminology
Time Complexities and Growth Rates
Model of Computation
Reductions
Proving Lower Bounds

ACT Model for Proving Lower Bounds
Adversary Strategy

Amortized Analysis
Practical Considerations
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Lower Bound for ELEMENTUNIQUENESS

What is a lower bound on the number of comparisons for ELEMENTUNIQUENESS?

We investigate our problem for n := 3:

x1 < x2 < x3 x2 < x3 < x1

x1 < x3 < x2 x3 < x1 < x2

x2 < x1 < x3 x3 < x2 < x1

If and only if one of these inequalities is true, then all numbers are different, and
the answer to our decision problem is No.

We define the subset WP of R3 for which the answer is No:

WP :=
⋃

π∈S3

Wπ

with

Wπ := {(x1, x2, x3) ∈ R3 : xπ(1) < xπ(2) < xπ(3)}.

We get #(WP) = 6 because each permutation π results in its own connected
component (that is disjoint from all other components of WP ).
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Lower Bound for ELEMENTUNIQUENESS

For Rn we have #(WP) = n !:
Let π, σ ∈ Sn with π ̸= σ. For 1 ≤ i, j ≤ n we define

fij(x1, x2, . . . , xn) := xi − xj .

All these functions are continuous and have a constant sign on Wπ and Wσ.
Since π ̸= σ, there exist i ̸= j such that

fij(p) > 0 for all p ∈ Wπ but fij(p) < 0 for all p ∈ Wσ.

By the intermediate value theorem of calculus, any path from a point in Wπ

to a point in Wσ must pass through a point q where fij(q) = 0.
But q ̸∈ WP .
Hence, Wπ and Wσ lie in two different connected components if π ̸= σ.
Since |Sn| = n!, we know that #(WP) ≥ n!.

Based on Theorem 52, we conclude that the height h of an ACT is

h = Ω(log(n!)− n),

i.e., that Ω(log n !) = Ω(n log n) comparisons are necessary (in the worst case)
to solve ELEMENTUNIQUENESS in any ACT for n input numbers.
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UNIVERSITÄT SALZBURG

Lower Bound for ELEMENTUNIQUENESS

Theorem 61

A (comparison-based) solution of ELEMENTUNIQUENESS for n real numbers requires
Ω(n log n) comparisons in the worst case.

Corollary 62

A (comparison-based) SORTING of n real numbers requires Ω(n log n) comparisons.

Comparison-based sorting means that the sorted order is achieved only by using
comparisons among the input elements (relative to a total order on them).

Corollary 63

A solution to CONVEXHULL for n points requires Ω(n log n) time in the ACT model in
the worst case.

Corollary 64

A solution to CLOSESTPAIR for n points requires Ω(n log n) time in the ACT model in
the worst case.
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Adversary Strategy

Can we come up with a “model” of the worst case?

For some problems the answer is “yes”, by employing an adversary strategy.
Two players, A and B, play the following game: A thinks of n distinct real
numbers, and B tries to sort those numbers by comparing pairs of two numbers.
Of course, B does not know (the order of) A’s numbers.
Comparisons: B is allowed to ask questions of the form “Is your third number
greater than your fifth number?”
No cheating! A has to answer truthfully and consistently.
Note, however, that A can replace his originally chosen n numbers by a new
n-tuple of numbers, at any time during the game, provided that the new numbers
are consistent with the answers that A has given so far.
In particular, if this does not contradict answers given so far, then A can re-order
his numbers at any time during the game at his discretion.
What is a lower bound on the number of comparisons that A can force B to
make?
Player A uses an adversary strategy to prove that Ω(n log n) constitutes a lower
bound for the number of comparisons which B has to make in the worst case,
i.e., to the number of steps that it takes B to sort those n numbers.
There are n! different permutations. Thus, player B (sorting algorithm) must
decide among n! different sequences of comparisons to identify the order of the
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Adversary Strategy: Lower Bound for Sorting

We assume that A stores the n numbers in an array a[1, . . . , n], and that B will
sort the numbers by comparing some element a[i] to some other element a[j],
i.e., by asking A whether a[i] < a[j].

Since the adversary A is allowed to pick the input, the adversary A keeps a set S
of permutations that are consistent with the comparisons B has made so far.

The answer of A to a comparison “Is a[i] < a[j]?” is chosen as follows:
Let Y ⊂ S be those permutations that have remained in S and that are also
consistent with a[i] < a[j].
Furthermore, N := S \ Y .
If |Y | ≥ |N| then the adversary A prefers to answer “yes” and then replaces
S by Y .
Otherwise, “no” is answered and S is replaced by N.

This strategy allows A to keep at least half of the permutations after every
comparison of the algorithm B.

Player B cannot declare the order of the numbers to be known (and, thus, the
numbers to be sorted) as long as |S| > 1.

Thus, B needs at least Ω(log(n!)) = Ω(n log n) comparisons, which establishes
the lower bound sought.
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2 Basics of Algorithm Theory
Terminology
Time Complexities and Growth Rates
Model of Computation
Reductions
Proving Lower Bounds
Amortized Analysis

Motivation
Aggregate Method
Accounting Method
Application of Amortized Analysis

Practical Considerations
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Amortized Analysis: Motivation

Amortized analysis is a worst-case analysis of a sequence of different operations
performed on a datastructure or by an algorithm.

It is applied if a costly operation cannot occur for a series of operations in a row.

With traditional worst-case analysis, the resulting bound on the running time of
such a sequence of operations is too pessimistic if the execution of a costly
operation can only happen after many cheap operations have already been
carried out.

The goal of amortized analysis is to obtain a bound on the overall cost of a
sequence of operations or the average cost per operation in the sequence which
is tighter than what can be obtained by separately analyzing each operation in
the sequence.

Introduced in the mid 1970s to early 1980s, and popularized by Tarjan in
“Amortized Computational Complexity” [Tarjan (1985)].

Finance: Amortization refers to paying off a debt by smaller payments
made over time.
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Amortized Analysis: Dynamic Array

A dynamic array is a data structure of variable size that allows to store and
retrieve elements in a random-access mode.

Elements can also be inserted at and deleted from the end of the array.

To be distinguished from a dynamically allocated array, which is an array whose
capacity is fixed at the time when the array is allocated.

Simple realization of a dynamic array: Use a dynamically allocated array of fixed
size and reallocate whenever needed to increase (or decrease) the capacity of
the array.

Size: Number of contiguous elements stored in the dynamic array.
Capacity: Physical size of the underlying fixed-sized array.

Insertion of an element at the end of the array:
Constant-time operation if the size is less than the capacity.
Costly if the dynamic array needs to be resized since this involves allocating
a new underlying array and copying each element from the original array.

How shall we resize the dynamic array?
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Amortized Analysis: Dynamic Array

Suppose that the initial capacity of the array is 1.

Simple strategy: We increase the capacity by one whenever the size of the array
gets larger than its capacity.

In the worst case, a sequence of n array operations consists of only insertions at
the end of the array, at a cost of k for the insertion of the k -th element into an
array of size k − 1.

Hence, we get 1 + 2 + . . .+ n = n(n+1)
2 ∈ O(n2) as total worst-case complexity for

n insert operations, i.e., O(n) per operation.

Can we do better?

1 AddAtEndOfArray(dynamicArray A, element e) {
2 if (A.size == A.capacity) {
3 A.capacity += 1;
4 copy contents of A to new memory location;
5 }
6 A[A.size] = e;
7 A.size += 1;
8 }
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Amortized Analysis: Dynamic Array

To avoid the costs of frequent resizing we expand the array by a constant factor α
whenever we run out of space.

Amortized analysis allows to show that the (amortized) cost per array operation is
reduced to O(1).

Amortized constant cost per operation is achieved for any growth factor α > 1.
C++: std::vector with α := 2 for GCC/Clang, and α := 3

2 for MS VC++.
Java: ArrayList with α := 3

2 .
The best value for the growth factor α is a topic of frequent discussions.

Could also shrink the array if its size falls below some percentage of its capacity.
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Amortized Analysis: Basics

Definition 65 (Amortized cost)

The amortized cost of one operation out of a permissible sequence of n operations,
for some n ∈ N, is the total (worst-case) cost for all operations divided by n.

Amortized analysis
does not depend on a particularly “good” sequence of operations;
considers arbitrary sequences, and, in particular, worst-case sequences;
gives genuine upper bounds: the amortized cost per operation times the
number of operations yields a worst-case bound on the total complexity of
any permissible sequence of those operations;
guarantees the average performance of each operation in the worst case;
does not involve probabilities;
averages over time.

Average-case analysis
averages over the input;
typically depends on assumptions on probability distributions to obtain an
estimated cost per operation.
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Amortized Analysis: Basics

Warning

Even if the amortized cost of one operation is O(1), the worst-case cost of one
particular operation may be substantially greater!

Hence, studying amortized costs might not be good enough when a guaranteed
low worst-case cost per operation is required. (E.g., for real-time or parallel
systems.)
We use dynamic arrays as a simple application to illustrate amortized analysis.
Recall that inserting a new element at the end is the only costly operation; all
other operations (are assumed to) run in O(1) time in the worst case.
Hence, we can focus on sequences of insertions.
Three approaches to amortized analysis:

Aggregate analysis;
Accounting method;
Potential method.

We apply the first two methods to the analysis of dynamic arrays.
Note, though, that these three methods need not be equally suited for the
analysis of some particular problem.
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Amortized Analysis: Aggregate Method for Analyzing Dynamic Arrays

Aggregate analysis determines an upper bound U(n) on the total cost of a
sequence of n operations.
Then the amortized cost per operation is U(n)/n, i.e., all types of operations
performed in the sequence have the same amortized cost.

Suppose that the initial capacity of the array is 1, and that α := 2.
Then the cost ci of the i-th insertion is

ci =

{
i if i − 1 is a power of 2,
1 otherwise.

We get for the cost of n insertions

U(n) =
n∑

i=1

ci =

 n∑
i=1

(i−1) is no power of 2

1

+

 n∑
i=1

(i−1) is power of 2

(
(i − 1) + 1

)
= n +

⌊log n⌋∑
i=0

2i = n + 2⌊log n⌋+1 − 1 ≤ n + 2 · 2log n = n + 2n = 3n.

Hence, the amortized cost per (insertion) operation is U(n)/n = 3n
n ∈ O(1).
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Amortized Analysis: Accounting Method

One of the main shortcomings of aggregate analysis is that different types of
operations are assigned the same amortized cost.

As a natural improvement, one might want to assign different costs to different
operations.

The accounting method (aka banker’s method) assigns charges to each type of
operation.

The amount charged for each type of operation is the amortized cost for that type.

Some operations are overcharged while some other operations are
undercharged.

The balance is kept in a bank account:
Overcharged operations: If the charge is greater than the actual cost, then
money can be saved and a credit accumulates in the bank account.
Undercharged operations: If the charge is less than the actual cost, then
money is taken from the bank count to compensate the excess cost.
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money is taken from the bank count to compensate the excess cost.
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Amortized Analysis: Accounting Method

No debt!

Denote the (real) cost of the i-th operation by ci and the amortized cost (i.e., charge)
by ĉi . Then we require

n∑
i=1

ci ≤
n∑

i=1

ĉi

for every n ∈ N and every permissible sequence of n operations.

If the charging scheme is not entirely trivial then one will have to resort to
induction, loop invariants (or the like) in order to prove that the charging scheme
of the accounting method works.
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Amortized Analysis: Accounting Method for Analyzing Dynamic Arrays

Recall that the cost ci of the i-th insertion at the end of the dynamic array is

ci =

{
i if i − 1 is a power of 2,
1 otherwise,

while all other operations have a cost of 1.

We set the charge ĉi for the i-th operation to 3 if it is an insertion, and to 1
otherwise.

We claim that this charging scheme will result in a bank account that is always
positive.

Since all operations except insertions cost as much as we pay for, insertions are
the only operations that we need to care about.
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Amortized Analysis: Accounting Method

Charging scheme keeps positive account

The bank account is always positive after the insertion of the i-th element, for all i ∈ N.

Proof :
I.B.: For i := 1 there is one element in the array and ĉ1 − c1 = 2 in the bank account.
For i := 2 we have two elements in the array and 2 + 3 − 2 = 3 in the bank account.
I.H.: The bank account is positive after the insertion of the j-th element, for some
arbitrary but fixed i ∈ N with i ≥ 2 and all j ∈ {1, 2, . . . , i}.
I.S.: Since ĉi+1 − ci+1 = 2, the bank account remains positive if the insertion of the
(i + 1)-st element does not require to resize the array.
So suppose that (i + 1)− 1 = 2k for k ∈ N. By the I.H. we know that the bank account
was not negative when we doubled from a capacity of 2k−1 to 2k . After doubling we
inserted 2k−1 new elements into the table of capacity 2k , saving 2 · 2k−1 = 2k . This
credit can be used to move all 2k elements when doubling from 2k to 2k+1, and the
bank account contains at least 3 − 1 = 2 after the insertion of the element with
number i + 1 = 2k + 1.
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UNIVERSITÄT SALZBURG

Amortized Analysis: Accounting Method

Charging scheme keeps positive account

The bank account is always positive after the insertion of the i-th element, for all i ∈ N.

Proof :
I.B.: For i := 1 there is one element in the array and ĉ1 − c1 = 2 in the bank account.
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UNIVERSITÄT SALZBURG

Amortized Analysis: Accounting Method

Charging scheme keeps positive account

The bank account is always positive after the insertion of the i-th element, for all i ∈ N.

Proof :
I.B.: For i := 1 there is one element in the array and ĉ1 − c1 = 2 in the bank account.
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Amortized Analysis of Increments of a Binary Counter

If we need to store a (possibly large) binary counter then it is natural to resort to
an array and let the array element A[i] store the i-th bit of the counter.

The standard way of incrementing the counter is to toggle the lowest-order bit. If
that bit switches to a 0 then we toggle the next higher-order bit, and so forth until
the bit that we toggle switches to a 1 at which point we can stop.

If we have n increment operations on a k -bit counter then the overall complexity
is at most O(k · n). Note that, possibly, k ≫ n.

The result of the i-th increment is the number i (if we started at 0). Hence, after n
increments at most O(log n) bits can have been toggled per increment, yielding a
total of O(n log n) bits that need to be toggled.

Is O(n log n) a tight bound? Can we do even better?
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Is O(n log n) a tight bound? Can we do even better?

1 Increment(binaryArray A) {
2 i = 1;
3 while ((i < A.length) && (A[i] != 0)) {
4 A[i] = 0;
5 ++i;
6 }
7 if (i < A.length) A[i] = 1;
8 }
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Amortized Analysis of Increments of a Binary Counter

Aggregate method: When does the i-th bit need to be toggled?

A[1] is toggled every time, A[2] is toggled every other time, and A[3] is toggled
every fourth time.

In general, bit A[i] is toggled ⌊n/2i−1⌋ many times.

Hence, for a sequence of n increments we get

n∑
i=1

⌊ n
2i−1

⌋
=

n−1∑
i=0

⌊ n
2i

⌋
≤

n−1∑
i=0

n
2i = n

n−1∑
i=0

1
2i ≤ n

∞∑
i=0

1
2i = 2n

as the total amortized cost.

Thus, we get 2 as the amortized cost of one increment.
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every fourth time.

In general, bit A[i] is toggled ⌊n/2i−1⌋ many times.

Hence, for a sequence of n increments we get

n∑
i=1

⌊ n
2i−1

⌋
=

n−1∑
i=0

⌊ n
2i

⌋
≤

n−1∑
i=0

n
2i = n

n−1∑
i=0

1
2i

≤ n
∞∑
i=0

1
2i = 2n

as the total amortized cost.

Thus, we get 2 as the amortized cost of one increment.
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2 Basics of Algorithm Theory
Terminology
Time Complexities and Growth Rates
Model of Computation
Reductions
Proving Lower Bounds
Amortized Analysis
Practical Considerations

Worst-Case Analysis, Average-Case Analysis and Smoothed Analysis
Practical Relevance of Log-Terms
Compile-Time Optimization
Dealing with Floating-Point Computations
Impact of Cache Misses
Algorithm Engineering
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Practical Relevance of Worst-Case and Average-Case Analysis

Worst-case analysis:
Worst-case analysis tends to be far too pessimistic for practical instances of
a problem: A worst-case running time may be induced by pathological
instances that do not resemble real-world instances.
Famous example: Simplex method for solving linear optimization problems.

Average-case analysis:
It gives the expected performance of a random input.
Key problem: What is a good probability distribution for the input??
Simply taking a uniform or Gaussian distribution tends to lead to incorrect
results since it is based on the assertion that practical inputs have some
specific properties with high probability.

Smoothed analysis:
Introduced by Spielman and Teng in 2001.
It models the expected performance of an algorithm under slight random
perturbations of worst-case inputs.
If the smoothed complexity is much lower than the average-case complexity
then we know that the worst case is bound to occur only for few isolated
problem instances.
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Practical Relevance of Log-Terms

Since 220 = 1 048 576 and 230 = 1 073 741 824, in most applications the value of
log n will hardly be significantly greater than 30 for practically relevant input
sizes n.

Hence, shaving off a multiplicative log-factor might constitute an important
accomplishment when seen from a purely theoretical point of view, but its
practical impact is likely to be much more questionable.

In particular, multiplicative constants hidden in the O-terms may easily diminish
the actual difference in speed between, say, an O(n)-algorithm and an
O(n log n)-algorithm.

Run-time experiments

Do not rely purely on experimental analysis to “detect” a log-factor: The difference
between log(1024) = log 210 and log(1 073 741 824) = log 230 is just a multiplicative
factor of three!
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Impact of Compile-Time Optimization

Optimizing compilers try to minimize important characteristics of a program, such
as its CPU-time consumption.

Some problems related to code optimization are NP-complete or even
undecidable.

Hence, several heuristics are employed that transform a program to a (hopefully)
sementically equivalent program.

E.g., an optimizing compiler will attempt to keep frequently used variables in
registers rather than in main memory.

Optimization may also involve the re-ordering of code or loop unrolling.

C/C++: gcc -O2.

No speed-up guaranteed

In general, an optimized code will run faster. But optimization is not guaranteed to
improve performance in all cases! It may even impede performance . . .
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Impact of Compile-Time Optimization: Matrix Multiplication

Definition 66 (Matrix multiplication)

Let A be a matrix of size m × n and B be a matrix of size n × p; that is, the number of
columns of A equals the number of rows of B. Then A · B is the m × p matrix C = [cij ]
whose (i, j)-th element is defined by the formula

cij :=
n∑

k=1

aik bkj = ai1b1j + · · ·+ ainbnj .

Standard way to code matrix multiplication (for square matrices):

1 for (i = 0; i < n; i++) {
2 for (j = 0; j < n; j++) {
3 sum = 0;
4 for (k = 0; k < n; k++) sum += a[i][k] * b[k][j];
5 c[i][j] = sum;
6 }
7 }
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Impact of Compile-Time Optimization: Matrix Multiplication

Sample timings (in milliseconds) for the multiplication of two square matrices
(with random integer elements).

Platform: IntelTM CoreTM i7-6700 CPU @3.40 GHz.

Note that 3606
356 ≈ 2.163 and 85682

3606 ≈ 2.983.

1 for (i = 0; i < n; i++) {
2 for (j = 0; j < n; j++) {
3 sum = 0;
4 for (k = 0; k < n; k++) sum += a[i][k] * b[k][j];
5 c[i][j] = sum;
6 }
7 }

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 108/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Impact of Compile-Time Optimization: Matrix Multiplication

Sample timings (in milliseconds) for the multiplication of two square matrices
(with random integer elements).

Platform: IntelTM CoreTM i7-6700 CPU @3.40 GHz.
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3606 ≈ 2.983.
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Floating-Point Arithmetic and Compilers

Be warned that x87 floating-points unit on x86 processors use 80bit registers and
operators, while “double” variables are stored in 64bit memory cells.

Hence, rounding to a lower precision is necessary whenever a floating-point
variable is transferred from register to memory.
Optimizing compilers analyze code and keep variables within the registers
whenever this makes sense, without storing intermediate results in memory.
As a consequence of this excess precision of the register variables, on my PC,

1000000∑
i=1

0.001 = 1000.0000000000009095 with gcc -O2 -mfpmath=387,

1000000∑
i=1

0.001 = 999.9999999832650701 with gcc -O0 -mfpmath=387.

Newer chips also support the SSE/SSE2 instruction sets, and the default option
-mfpmath=sse avoids this particular problem for x86-64 compilers.

Warning

The result of fp-computations may depend on the compile-time options! Watch out for
-ffast-math optimizations in GCC/Clang!
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Dealing with Floating-Point Computations

Theory tells us that we can approximate the first derivative f ′ of a function f at the
point x0 by evaluating f (x0+h)−f (x0)

h for sufficiently small values of h . . .

Consider f (x) := x3 and x0 := 10:

h := 100 : f ′(10) ≈ 331.0000000

h := 10−2 : f ′(10) ≈ 300.3000999

h := 10−4 : f ′(10) ≈ 300.0030000

h := 10−6 : f ′(10) ≈ 300.0000298

h := 10−8 : f ′(10) ≈ 300.0000219

h := 10−10 : f ′(10) ≈ 300.0002379

h := 10−12 : f ′(10) ≈ 300.1332515

h := 10−14 : f ′(10) ≈ 318.3231456

h := 10−16 : f ′(10) ≈ 0.000000000

h := 10−1 : f ′(10) ≈ 303.0099999

h := 10−3 : f ′(10) ≈ 300.0300009

h := 10−5 : f ′(10) ≈ 300.0002999

h := 10−7 : f ′(10) ≈ 300.0000003

h := 10−9 : f ′(10) ≈ 300.0000106

h := 10−11 : f ′(10) ≈ 299.9854586

h := 10−13 : f ′(10) ≈ 298.9963832

h := 10−15 : f ′(10) ≈ 568.4341886

h := 10−17 : f ′(10) ≈ 0.000000000

The cancellation error increases as the step size, h, decreases. On the other
hand, the truncation error decreases as h decreases.

These two opposing effects result in a minimum error (and “best” step size h) that
is high above the machine precision!
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UNIVERSITÄT SALZBURG

Dealing with Floating-Point Computations

Theory tells us that we can approximate the first derivative f ′ of a function f at the
point x0 by evaluating f (x0+h)−f (x0)

h for sufficiently small values of h . . .

Consider f (x) := x3 and x0 := 10:

h := 100 : f ′(10) ≈ 331.0000000

h := 10−2 : f ′(10) ≈ 300.3000999

h := 10−4 : f ′(10) ≈ 300.0030000

h := 10−6 : f ′(10) ≈ 300.0000298

h := 10−8 : f ′(10) ≈ 300.0000219

h := 10−10 : f ′(10) ≈ 300.0002379

h := 10−12 : f ′(10) ≈ 300.1332515

h := 10−14 : f ′(10) ≈ 318.3231456

h := 10−16 : f ′(10) ≈ 0.000000000

h := 10−1 : f ′(10) ≈ 303.0099999

h := 10−3 : f ′(10) ≈ 300.0300009

h := 10−5 : f ′(10) ≈ 300.0002999

h := 10−7 : f ′(10) ≈ 300.0000003

h := 10−9 : f ′(10) ≈ 300.0000106

h := 10−11 : f ′(10) ≈ 299.9854586

h := 10−13 : f ′(10) ≈ 298.9963832

h := 10−15 : f ′(10) ≈ 568.4341886

h := 10−17 : f ′(10) ≈ 0.000000000

The cancellation error increases as the step size, h, decreases. On the other
hand, the truncation error decreases as h decreases.

These two opposing effects result in a minimum error (and “best” step size h) that
is high above the machine precision!
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Dealing with Floating-Point Computations

This gap between the theory of the reals and floating-point practice has important
and severe consequences for the actual coding practice when implementing
(geometric) algorithms that require floating-point arithmetic:

1 The correctness proof of the mathematical algorithm does not extend to the
program, and the program can fail on seemingly appropriate input data.

2 Local consistency need not imply global consistency.

Numerical analysis . . .

. . . and adequate coding are a must when implementing algorithms that deal with real
numbers. Otherwise, the implementation of an algorithm may turn out to be absolutely
useless in practice, even if the algorithm (and even its implementation) would come
with a rigorous mathematical proof of correctness!
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Impact of Cache Misses

Today’s computers perform arithmetic and logical operations on data stored in
registers.

In addition to main memory, data can also be stored in a Level 1 cache or a
Level 2 cache. (Multi-core machines tend to have also L3 caches.)

In a nutshell:
A cache is a fast but expensive memory which holds the values of standard
memory locations.
If the CPU requests the value of a memory location and if that value is
available in some level of the cache, then the value is fetched from the
cache, at a cost of a few cycles: cache hit.
Otherwise, a block of consecutive memory locations is accessed and
brought into the cache: cache miss.
A cache miss is much costlier than a cache hit!

Since the gap between CPU speed and memory speed gets wider and wider,
good cache management and programs that exhibit good locality become
increasingly more important.
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Impact of Cache Misses: Matrix Multiplication Revisited

C/C++: Elements within the same row of a matrix are stored in consecutive
memory locations, while elements in the same column may be far apart in main
memory.

The standard implementation of matrix multiplication causes the elements of A
and C to be accessed row-wise, while the elements of B are accessed by column.

This will result in a lot of cache misses if B is too large to fit into the (L2) cache.
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This will result in a lot of cache misses if B is too large to fit into the (L2) cache.

1 for (i = 0; i < n; i++) {
2 for (j = 0; j < n; j++) {
3 sum = 0;
4 for (k = 0; k < n; k++) sum += a[i][k] * b[k][j];
5 c[i][j] = sum;
6 }
7 }
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Impact of Cache Misses: Matrix Multiplication Revisited

Rewriting of the standard multiplication algorithm (“ijk-order”).

Re-ordering of the inner loops will cause the matrices B and C to be accessed
row-wise within the inner-most loop, while the indices i, k of the (i, k)-th element
of A remain constant: “ikj-order”.

1 for (i = 0; i < n; i++) {
2 for (j = 0; j < n; j++) c[i][j] = 0;
3 }
4 for (i = 0; i < n; i++) {
5 for (j = 0; j < n; j++) {
6 for (k = 0; k < n; k++) {
7 c[i][j] += a[i][k] * b[k][j];
8 }
9 }

10 }
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Impact of Cache Misses: Matrix Multiplication Revisited

Platform: IntelTM CoreTM i7-6700 CPU @3.40 GHz.

Caches: 256KiB L1, 1MiB L2, 8MiB L3.

CPU-time consumption of ikj-order matrix multiplication divided by the CPU-time
consumption of the standard ijk-order matrix multiplication.

N 100 500 1000 2000 5000
gcc -O0 ikj/ijk 1.596 1.112 1.090 0.911 0.678
gcc -O2 ikj/ijk 0.882 0.805 0.719 0.602 0.389

Cache misses

Avoiding cache misses may result in a substantially faster program!
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Theory and Practice

Algorithms (and corresponding codes) employed by industry need not be the
algorithms taught in an academic course.

That is, there is a gap between theory and practice . . .

Benjamin Brewster (“The Yale Literary Magazine” 1882)

In theory, there is no difference between theory and practice. In practice, there is.

Marie von Ebner-Eschenbach (1893)

Theorie und Praxis sind eins wie Seele und Leib, und wie Seele und Leib liegen sie
großenteils miteinander in Streit.

Jan L.A. van de Snepscheut

The difference between theory and practice is larger in practice than the difference
between theory and practice in theory.
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UNIVERSITÄT SALZBURG

Theory Into Practice

What we have.

What we’d need . . .

Theory Practice

Ayn Rand (Russian-born American writer and philosopher)

Those who say that theory and practice are two unrelated realms are fools in one and
scoundrels in the other.

Folklore -

Theory is when you know everything but nothing works. Practice is when everything
works but no one knows why.

However, we combine theory and practice: Nothing
works and no one knows why.
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UNIVERSITÄT SALZBURG

Algorithm Engineering

Recent observation of one of my MSc. students: A smarter reallocation of a
vector reduced the runtime from 6000 µs to 7000 µs down to 1 µs to 4 µs.

The bottom line is that algorithms may need some tweaking to make them fit
practical needs and to make them run fast for practical problems.

Algorithm engineering . . .

. . . is a cycle of design, analysis, implementation, profiling and experimental
evaluation that attempts to produce more efficient algorithms for practical instances of
problems.

Algorithm engineering . . .

. . . should be standard when designing and implementing an algorithm! Decent
algorithm engineering may pay off more significantly than attempting to implement a
highly complicated algorithm just because its theoretical analysis predicts a better
running time.
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UNIVERSITÄT SALZBURG

3 Algorithmic Paradigms
Incremental Construction
Greedy
Divide and Conquer
Dynamic Programming
Randomization
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3 Algorithmic Paradigms
Incremental Construction

Insertion Sort as Incremental Construction
Convex Hull via Incremental Construction

Greedy
Divide and Conquer
Dynamic Programming
Randomization
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Incremental Construction

Incremental construction

A result R({x1, x2, . . . , xn}) that depends on n input items x1, x2, . . . , xn is computed by
dealing with one item at a time:

For 2 ≤ i ≤ n, we obtain R({x1, x2, . . . , xi}) from
R({x1, x2, . . . , xi−1}) by “inserting” the i-th item xi into R({x1, x2, . . . , xi−1}).

Important invariant of incremental construction

R({x1, x2, . . . , xi}) exhibits all the desired properties of the final result
R({x1, x2, . . . , xn}) restricted to {x1, x2, . . . , xi} as input items: If we would stop
incremental construction after having inserted xi then we would have the correct
solution R({x1, x2, . . . , xi}) for {x1, x2, . . . , xi}.

Once this invariant has been established the overall correctness of an
incremental algorithm is a simple consequence.

The total complexity is given as a sum of the complexities of the individual
“insertions”.

Incremental algorithms are particularly well suited for dealing with “online
problems”, for which data items arrive one after the other. (Of course, only if you
can afford the time taken by the subsequent insertions.)
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UNIVERSITÄT SALZBURG

Incremental Construction: Insertion Sort

Insertion sort is a classical incremental algorithm: We insert the i-th item (of n
items) into the sorted list of the first i − 1 items, thereby transforming it into a
sorted list of the first i items.

1 InsertionSort(array A[], int low, int high)
2 {
3 for (i = low+1; i <= high; ++i) {
4 x = A[i];
5 j = i;
6 while ((j > 1) && (A[j-1] > x)) {
7 A[j] = A[j - 1];
8 --j;
9 }

10 A[j] = x;
11 }
12 }

O(n) for pre-sorted input, O(n2) worst case; efficient for small arrays.
Adaptive (i.e., efficient for substantially sorted input), stable, in-place and online.
Library sort maintains small chunks of unused spaces throughout the array and
runs in O(n log n) time with high probability [Farach-Colton&Mosteiro (2006)].
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Incremental Construction: Convex Hull

Problem: CONVEXHULL

Input: A set S of n points in the Euclidean plane R2.

Output: The convex hull CH(S), i.e., the smallest convex super set of S.

Lemma 67

1 The convex hull of a set S of points in R2 is a convex polygon.
2 Two distinct points p, q ∈ S define an edge of CH(S) if and only if all points of

S \ {p, q} lie on one side of the line through p, q.
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UNIVERSITÄT SALZBURG

Incremental Construction: Convex Hull

Problem: CONVEXHULL

Input: A set S of n points in the Euclidean plane R2.

Output: The convex hull CH(S), i.e., the smallest convex super set of S.

Lemma 67

1 The convex hull of a set S of points in R2 is a convex polygon.
2 Two distinct points p, q ∈ S define an edge of CH(S) if and only if all points of

S \ {p, q} lie on one side of the line through p, q.

p

q

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 123/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Incremental Construction: Convex Hull

1 Sort the points according to their x-coordinates, and re-number accordingly:
S := {p1, p2, . . . , pn}. (Suppose that all x-coordinates are distinct.)

2 Compute CH({p1, p2, p3}).
3 Suppose that CH({p1, p2, . . . , pi−1}) is known. We insert pi .

a Compute the supporting lines of CH({p1, p2, . . . , pi−1}) and pi .
b Split CH({p1, p2, . . . , pi−1}) into two parts at the two vertices of

CH({p1, p2, . . . , pi−1}) where the supporting lines touch.
c Discard that part of CH({p1, p2, . . . , pi−1}) which faces pi .

What is the complexity of this incremental construction scheme?

Recall Corollary 63: The worst-case complexity of CONVEXHULL for n points has
an Ω(n log n) lower bound in the ACT model.
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UNIVERSITÄT SALZBURG

Incremental Construction: Convex Hull

1 Sort the points according to their x-coordinates, and re-number accordingly:
S := {p1, p2, . . . , pn}. (Suppose that all x-coordinates are distinct.)

2 Compute CH({p1, p2, p3}).
3 Suppose that CH({p1, p2, . . . , pi−1}) is known. We insert pi .

a Compute the supporting lines of CH({p1, p2, . . . , pi−1}) and pi .
b Split CH({p1, p2, . . . , pi−1}) into two parts at the two vertices of

CH({p1, p2, . . . , pi−1}) where the supporting lines touch.
c Discard that part of CH({p1, p2, . . . , pi−1}) which faces pi .

What is the complexity of this incremental construction scheme?

Recall Corollary 63: The worst-case complexity of CONVEXHULL for n points has
an Ω(n log n) lower bound in the ACT model.

1

2

3

4

5

6

7

8

9

10

11

12

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 124/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Incremental Construction: Convex Hull

1 Sort the points according to their x-coordinates, and re-number accordingly:
S := {p1, p2, . . . , pn}. (Suppose that all x-coordinates are distinct.)

2 Compute CH({p1, p2, p3}).
3 Suppose that CH({p1, p2, . . . , pi−1}) is known. We insert pi .

a Compute the supporting lines of CH({p1, p2, . . . , pi−1}) and pi .

b Split CH({p1, p2, . . . , pi−1}) into two parts at the two vertices of
CH({p1, p2, . . . , pi−1}) where the supporting lines touch.

c Discard that part of CH({p1, p2, . . . , pi−1}) which faces pi .

What is the complexity of this incremental construction scheme?

Recall Corollary 63: The worst-case complexity of CONVEXHULL for n points has
an Ω(n log n) lower bound in the ACT model.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 124/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Incremental Construction: Convex Hull

Naïve complexity analysis:
The initial sorting takes O(n log n) time.
The construction of CH({p1, p2, p3}) takes O(1) time.

Inserting pi into CH({p1, p2, . . . , pi−1}) will result in discarding one or
more vertices of CH({p1, p2, . . . , pi−1}) and, thus, takes O(i) time.
Hence we get

O(n log n) + O(1) + O(4 + 5 + . . .+ n) = O(n2)

as total time complexity.
Amortized complexity analysis:

Let mi denote the number of vertices that are discarded from
CH({p1, p2, . . . , pi−1}) when pi is inserted.
Then the insertion of pi takes O(mi + 1) time.
Observation: m4 + m5 + . . .mn < n.
Hence, the insertion of pi runs in amortized time O(1), and the total
complexity of the incremental construction algorithm is O(n log n).

Theorem 68

The convex hull of n points in the plane can be computed in worst-case optimal time
O(n log n) by means of incremental construction.
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Hence we get

O(n log n) + O(1) + O(4 + 5 + . . .+ n) = O(n2)

as total time complexity.
Amortized complexity analysis:

Let mi denote the number of vertices that are discarded from
CH({p1, p2, . . . , pi−1}) when pi is inserted.
Then the insertion of pi takes O(mi + 1) time.
Observation: m4 + m5 + . . .mn < n.
Hence, the insertion of pi runs in amortized time O(1),

and the total
complexity of the incremental construction algorithm is O(n log n).

Theorem 68

The convex hull of n points in the plane can be computed in worst-case optimal time
O(n log n) by means of incremental construction.
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3 Algorithmic Paradigms
Incremental Construction
Greedy

Selection Sort as a Greedy Algorithm
Huffman Coding
Interval Scheduling and Partitioning

Divide and Conquer
Dynamic Programming
Randomization
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Greedy Paradigm

A greedy algorithm attempts to solve an optimization problem by repeatedly
making the locally best choice in a hope to arrive at the global optimum.

A greedy algorithm may but need not end up in the optimum. E.g., greedy
solution for ETSP-COMP or cashier’s algorithm for coin changing.

If a greedy algorithm is applicable to a problem then the problem tends to exhibit
the following two properties:
Optimal substructure: The optimum solution to a problem consists of optimum

solutions to its sub-problems.
Greedy choice property: Choices may depend on prior choices, but must not

depend on future choices; no choice is reconsidered.

If a greedy algorithm does indeed produce the optimum solution then it likely is
the algorithm of choice since it tends to be faster than other algorithms (e.g.,
based on dynamic programming).

Success stories: Kruskal’s algorithm and Prim’s algorithm for computing
minimum spanning trees.
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Greedy Paradigm: Selection Sort

Selection sort is a classical greedy algorithm: We sort the array by repeatedly
searching the k -smallest item and moving it forward to make it the k -th item of
the array.

1 SelectionSort(array A[], int low, int high)
2 {
3 for (i = low; i < high; ++i) {
4 int j_min = i;
5 for (j = i+1; j <= high; ++j) {
6 if (A[j] < A[j_min]) j_min = j;
7 }
8 if (j_min != i) Swap(A[i], A[j_min]);
9 }

10 }

Selection sort runs in O(n2) time in both the average and the worst case. Its
running time tends to be inferior to that of insertion sort.

However, it requires only O(n) write operations of array elements while insertion
sort may consume O(n2) write operations.
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Greedy Paradigm: Huffman Coding

Standard encoding schemes of symbols use a fixed number of bits to encode
each symbol.

E.g., ASCII encoding uses seven bits to encode the lowest 128 Unicode
characters, from U+0000 to U+007F.

Decoding an ASCII string is easy: Scan it in chunks of seven bits and look up the
corresponding symbol.

Encodings like ASCII do not take the frequency of occurrence of the indvidual
symbols into account.

One can achieve a (lossless) compression by encoding symbols that occur
more frequently (such as the letters “e” and “a”) with shorter bit strings;
less frequently (such as the letter “q”) with longer bit strings.

Obvious problem for variable-length encodings: If one would assign, say, 1 to “a”
and 11 to “q” then an encoding string that starts with 11 cannot be decoded
unambiguously.
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Greedy Paradigm: Huffman Coding

Definition 69 (Prefix code, Dt.: Präfixcode, präfixfreier Code)

Consider a set Ω of symbols. A prefix code for Ω is a function c that maps every x ∈ Ω
to a binary string, i.e., to a sequence of 0s and 1s, such that c(x) is not a prefix of
c(y) for all x , y ∈ Ω with x ̸= y .

Ω :={a, d , s}
c(a) := 0

c(d) := 10

c(s) := 11

a

d s

0 1

0 1
Hence, 001011
corresponds to “aads”.

A prefix code is also said to have the prefix property.

Real-world examples of prefix codes:
Country dial-in codes used by member countries of the International
Telecommunication Union.
Machine language instructions of most computer architectures.
Country and publisher encoding within ISBNs.
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Greedy Paradigm: Huffman Coding

Lemma 70

Let T be the binary tree that represents the encoding function c. If c is a prefix code
for Ω then only the leaves of T represent symbols of Ω.

Definition 71 (Average number of bits per symbol)

Consider a set Ω of symbols and a frequency function f : Ω → R+. The average
number of bits per symbol of a prefix code c is given by

ANBS(Ω, c, f ) :=
∑
ω∈Ω

f (ω) · |c(ω)|,

where |c(ω)| denotes the number of bits used by c to encode ω.

c(a) := 0

c(d) := 10

c(s) := 11

f (a) := 0.5

f (d) := 0.3

f (s) := 0.2

Then, for Ω := {a, d , s}, ANBS(Ω, c, f ) =
0.5 · 1 + 0.3 · 2 + 0.2 · 2 = 1.5.

Definition 72 (Optimum prefix code)

A prefix code c∗ for Ω is optimum if it minimizes ANBS(Ω, c, f ) for a given frequency f .
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Greedy Paradigm: Huffman Coding

We call a binary tree T full if every non-leaf node of T has two children.

Lemma 73

If a prefix code c∗ is optimum then the binary tree that represents c∗ is a full tree.

Lemma 74

The lowest-frequency symbol of Ω appears at the lowest level of the tree that
represents an optimum prefix code c∗.

Huffman’s greedy template (1952)

1 Create two leaves for the two lowest-frequency symbols s1, s2 ∈ Ω.
2 Recursively build the encoding tree for (Ω ∪ {s12}) \ {s1, s2}, with

f (s12) := f (s1) + f (s2), where s12 is a new symbol that does not occur in Ω.

Theorem 75

Huffman’s greedy algorithm computes an optimum prefix code c∗ for Ω relative to a
given frequency f of the symbols of Ω.
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UNIVERSITÄT SALZBURG

Greedy Paradigm: Huffman Coding

We call a binary tree T full if every non-leaf node of T has two children.

Lemma 73

If a prefix code c∗ is optimum then the binary tree that represents c∗ is a full tree.

Lemma 74

The lowest-frequency symbol of Ω appears at the lowest level of the tree that
represents an optimum prefix code c∗.

Huffman’s greedy template (1952)

1 Create two leaves for the two lowest-frequency symbols s1, s2 ∈ Ω.
2 Recursively build the encoding tree for (Ω ∪ {s12}) \ {s1, s2}, with

f (s12) := f (s1) + f (s2), where s12 is a new symbol that does not occur in Ω.

Theorem 75

Huffman’s greedy algorithm computes an optimum prefix code c∗ for Ω relative to a
given frequency f of the symbols of Ω.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 132/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Greedy Paradigm: Job Scheduling

Problem: JOBSCHEDULING

Input: A set J of n jobs, where job i starts at time si and finishes at time fi .

Output: A maximum subset J ′ of J such that the jobs of J ′ are mutually compatible.

Can we arrange the jobs in some “natural order”, and pick jobs successively
provided that a new job is compatible with the previously picked jobs?

time
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11
12
13
14
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Greedy Paradigm: Job Scheduling

Can we consider the jobs in some “natural order”?
Fewest conflicts: Pick jobs according to smallest number of incompatible jobs.

Shortest job duration: Pick jobs according to ascending order of fi − si .
Earliest start time: Pick jobs according to ascending order of si .
Earliest finish time: Pick jobs according to ascending order of fi .
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Greedy Paradigm: Job Scheduling

Lemma 76

Picking jobs according to earliest finish time allows to compute an optimum solution to
JOBSCHEDULING in O(n log n) time for n jobs.

Proof :

It is obvious that sorting the n jobs in ascending order of fi allows to generate a
solution in O(n log n) time.

W.l.o.g., fi ̸= fj if i ̸= j .

Suppose that an optimum solution has m jobs while a greedy approach picks
k < m jobs i1, i2, . . . , ik .
Let x be the largest-possible number such that i1 = j1, i2 = j2, . . . , ix = jx , over all
optimum solutions j1, j2, . . . , jm. We have x < m.
A compatible job ix+1 exists that finishes earlier than job jx+1, i.e., fix+1 < fjx+1 .
Replacing job jx+1 by job ix+1 in the optimum solution maintains optimality, but
violates maximality of x .
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Greedy Paradigm: Processor Scheduling

Caveat

Seemingly similar problems may require different greedy strategies!

Problem: PROCESSORSCHEDULING

Input: A set J of n jobs, where job i starts at time si and finishes at time fi . Two
jobs i and j are compatible if they do not overlap time-wise.

Output: An assignment of all jobs to a minimum number of processors such that no
two incompatible jobs run on the same processor.

Lemma 77

Assigning jobs
according to earliest
start time allows to
compute an optimum
solution to PROCES-
SORSCHEDULING in
O(n log n) time.
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UNIVERSITÄT SALZBURG

Greedy Paradigm: Processor Scheduling

Caveat

Seemingly similar problems may require different greedy strategies!

Problem: PROCESSORSCHEDULING

Input: A set J of n jobs, where job i starts at time si and finishes at time fi . Two
jobs i and j are compatible if they do not overlap time-wise.

Output: An assignment of all jobs to a minimum number of processors such that no
two incompatible jobs run on the same processor.

time

processor 1
processor 2
processor 3
processor 4
processor 5
processor 6

1
2

3
4
5

6

7
8

9

10

11
12
13
14

Lemma 77

Assigning jobs
according to earliest
start time allows to
compute an optimum
solution to PROCES-
SORSCHEDULING in
O(n log n) time.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 136/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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3 Algorithmic Paradigms
Incremental Construction
Greedy
Divide and Conquer

Basics of Divide and Conquer
Merge Sort as a Divide&Conquer Algorithm
Fast Matrix Multiplication
Closest Pair

Dynamic Programming
Randomization
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Divide&Conquer: Basics

Gaius Julius Caesar (100–44 BCE): “Divide et impera”. However, this maxim
seems to go back to Philip II of Macedon (382–336 BCE).

Basic principle

Let S denote the input set and let n denote the size of S.

If n = 1 then (process S and) return to calling level.

Otherwise:
Partition S into subproblems of size at most f (n).
Solve each of the n/f (n) subproblems recursively.
Combine solutions of these subproblems and return to calling level.

The function f has to satisfy the contraction condition f (n) < n for n > 1.

If partitioning S into subproblems and combining the solutions of these
subproblems runs in linear time then we get the following recurrence relation for
the time complexity T for a suitable a ∈ N:

T (n) =
n

f (n)
· T (f (n)) + a · n
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Divide&Conquer: Basics

Standard analysis yields

T (n) ≤ a · n · f ∗(n)

for f ∗ : N0 → R+
0 with

f ∗(n) :=

{
0 if n ≤ 1,
1 + f ∗(f (n)) if n > 1.

That is,

f ∗(n) = min{k ∈ N0 : f (f (. . . f (n) . . .))︸ ︷︷ ︸
k times

≤ 1}.

Sample results for f ∗ and a constant c ∈ N with c ≥ 2:

f (n) n − 1 n − c n/c
√

n log n

f ∗(n) n − 1 n/c logc n log log n log∗n
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Divide&Conquer: Merge Sort

1 MergeSort(array A[], int low, int high)
2 {
3 int i; /* counter */

4 int middle; /* index of middle element */

5 if (low < high) {
6 middle = (low+high) / 2;
7 MergeSort(A, low, middle);
8 MergeSort(A, middle+1, high);
9 Merge(A, low, middle, high);

10 }
11 }

Always try to divide the job evenly!

Does it matter if you cannot guarantee to split exactly in half? No! It is good
enough to ensure that the size of every sub-problem is at most some constant
fraction of the original problem size. (At least as far as the asymptotic complexity
is concerned.)
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Divide&Conquer: Fast Matrix Multiplication

Recall: If A,B are two square matrices of size n × n, then A · B is the n × n
matrix C = [cij ] whose (i, j)-th element cij is defined by the formula

cij :=
n∑

k=1

aik bkj = ai1b1j + · · ·+ ainbnj .

Standard multiplication of two n × n matrices results in Θ(n3) many arithmetic
operations.

Theorem 78 (Strassen (1969))

Seven multiplications of scalars suffice to compute the multiplication of two 2 × 2
matrices. In general, O(nlog2 7) ≈ O(n2.807...) arithmetic operations suffice for n × n
matrices.

Strassen’s algorithm is more complex and numerically less stable than the
standard naïve algorithm. But it is considerably more efficient for large n, i.e.,
roughly when n > 100, and it is very useful for large matrices over finite fields.

It does not assume multiplication to be commutative and, thus, works over
arbitrary rings.
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UNIVERSITÄT SALZBURG

Divide&Conquer: Fast Matrix Multiplication

Proof of Thm. 78 for n = 2 : For A,B ∈ M2×2, we compute

C = A · B =

(
a11 a12

a21 a22

)
·
(

b11 b12

b21 b22

)

via

p1 := (a12 − a22)(b21 + b22)
p2 := (a11 + a22)(b11 + b22)
p3 := (a11 − a21)(b11 + b12)
p4 := (a11 + a12)b22

p5 := a11(b12 − b22)
p6 := a22(b21 − b11)
p7 := (a21 + a22)b11

and set

c11 := a11b11 + a12b21 = p1 + p2 − p4 + p6

c12 := a11b12 + a12b22 = p4 + p5

c21 := a21b11 + a22b21 = p6 + p7

c22 := a21b12 + a22b22 = p2 − p3 + p5 − p7.

Obviously, this approach results in 7 multiplications and 18 additions/subtractions.
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Divide&Conquer: Fast Matrix Multiplication

Proof of Thm. 78 for n = 2m : For A,B ∈ M2m×2m, we compute C = A · B by resorting
to manipulating block matrices of size m × m: a11 · · · a1n

...
. . .

...
an1 · · · ann

 ·

 b11 · · · b1n
...

. . .
...

bn1 · · · bnn

 =

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
,

where A11,A12,A21,A22,B11,B12,B21,B22 ∈ Mm×m with

A11 =

 a11 · · · a1m
...

. . .
...

am1 · · · amm

, A12 =

 a1,m+1 · · · a1,2m
...

. . .
...

am,m+1 · · · am,2m

,

A21 =

 am+1,1 · · · am+1,m
...

. . .
...

a2m,1 · · · a2m,m

, A22 =

 am+1,m+1 · · · am+1,2m
...

. . .
...

a2m,m+1 · · · a2m,2m

.

Analogously for B11,B12,B21,B22. Then the approach used for multiplying 2 × 2
matrices can be applied, with aij and bij being replaced by Aij and Bij , for 1 ≤ i, j ≤ 2.
That is, we have matrices rather than scalars as operands for addition and
multiplication.
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Divide&Conquer: Fast Matrix Multiplication

Proof of Thm. 78 for n = 2m (cont’d) : Hence, we can compute C = A · B by using
7 multiplications of m × m matrices,
18 additions/subtractions of m × m matrices.

Obviously, one addition of two m × m matrices takes O(m2) time, i.e., O(n2) time.

Let T (n) denote the number of (arithmetic) operations consumed by Strassen’s
algorithm for multiplying two n × n matrices. We get the following recurrence relation
for T :

T (n) = 7 · T
(n

2

)
+ O(n2).

The Master Theorem 32 yields

T ∈ Θ(nlog2 7) ≈ O(n2.807...).
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Divide&Conquer: Fast Matrix Multiplication

Strassen’s algorithm is not the fastest algorithm for multiplying matrices.

Lemma 79 (Coppersmith&Winograd (1990))

O(n2.37547...) arithmetic operations suffice for multiplying two n × n matrices.

Lemma 80 (Stothers (2010, 2013))

O(n2.37369...) arithmetic operations suffice for multiplying two n × n matrices.

Lemma 81 (Williams (2011, 2012), Le Gall (2014), Alman&Williams (2021))

O(n2.37285...) arithmetic operations suffice for multiplying two n × n matrices.

Open problem: What is the true lower bound?
The Coppersmith-Winograd algorithm and the more recent improvements are
used frequently as building blocks in other algorithms to prove complexity
bounds. E.g., the best algorithm for computing the diameter of a graph runs in
O(nω log n) time, where ω is the so-called exponent of matrix multiplication.
Besides Strassen’s algorithm, these algorithms are of no practical value, though,
since the cross-over point for where they would improve on the naïve cubic-time
algorithm is enormous.
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Divide&Conquer: Closest Pair

Problem: CLOSESTPAIR

Input: A set S of n points in the Euclidean plane.

Output: Those two points of S whose mutual distance is minimum among all pairs of
points of S.

Corollary 64: The worst-case complexity of CLOSESTPAIR for n points has an
Ω(n log n) lower bound in the ACT model of computation.

Easy to solve in O(n log n) time if all points lie on the x-axis (or on a line).
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Divide&Conquer: Closest Pair

Problem: CLOSESTPAIR

Input: A set S of n points in the Euclidean plane.

Output: Those two points of S whose mutual distance is minimum among all pairs of
points of S.

Lemma 82

CLOSESTPAIR for n points can be solved in worst-case optimal time O(n log n).
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Divide&Conquer: Closest Pair

Proof of Lemma 82 :
Sort the points according to x-coordinates,

and split at median x-coordinate into
a left sub-set and a right sub-set.
Recursively find the minimum distance in the left sub-set

and in the right sub-set.
Return the points sorted according to y -coordinates.

Consider a strip of width 2δ, where δ := min{δl , δr}.
Slide a window of height 2δ upwards within this strip and compute distances
between those points of the left and the right sub-set which lie within this window.
Merge the y -sorted points of the left and right sub-set.
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Divide&Conquer: Closest Pair

Proof of Lemma 82 (cont’d) : Time complexity:
Sorting according to x-coordinates takes O(n log n) time.

Splitting n vertices at median x-coordinate takes O(n) time.
The distance computations take O(1) time for each position of the sliding window.
Thus, all distance computations carried out during the conquer step run in O(n)
time.
Merging the y -sorted points of the left and right sub-set takes O(n) time.
Hence, for the time complexity T (n) we get

T (n) = 2T
(n

2

)
+ O(n), resulting in T ∈ O(n log n),

and, thus, an overall O(n log n) time bound.

Question: How many points of the
right sub-set can lie within the sliding
window?

Answer: Only a constant number!
(Eight is easy to argue, but one can
prove six.)
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3 Algorithmic Paradigms
Incremental Construction
Greedy
Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Traveling Salesman Problem
Matrix Chain Multiplication

Randomization
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Dynamic Programming

In a nutshell, dynamic programming (DP) is a technique for efficiently
implementing a recursive algorithm by storing results for sub-problems.

It may be applicable if the naïve recursive algorithm would solve the same
sub-problems over and over again. In that case, storing the solution for every
sub-problem in a table to look up instead of re-compute may lead to a more
efficient algorithm.

The word “programming” in the term DP does not refer to classical programming
at all. It was coined by Bellman in 1957.

According to Rust [2006],
Bellman explained that he invented the name “dynamic programming” to hide
the fact that he was doing mathematical research at RAND under a Secretary
of Defense who ‘had a pathological fear and hatred of the term “research”.’
He settled on the term “dynamic programming” because it would be difficult
to give a ‘pejorative meaning’ and because ‘It was something not even a Con-
gressman could object to.’
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Dynamic Programming: Fibonacci Numbers

Recall that the Fibonacci numbers are defined as follows:

Fn :=

{
n if n ≤ 1,
Fn−1 + Fn−2 if n ≥ 2.

Since the Fibonacci numbers are defined recursively, a recursive computation
scheme seems natural . . .
Note that this requires
Fibonacci numbers to
be computed over and
over again.

E.g., Fn−4 is computed
five times, each time
from scratch.

What is the complexity
of this approach?
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UNIVERSITÄT SALZBURG

Dynamic Programming: Fibonacci Numbers

Recall that the Fibonacci numbers are defined as follows:

Fn :=

{
n if n ≤ 1,
Fn−1 + Fn−2 if n ≥ 2.

Since the Fibonacci numbers are defined recursively, a recursive computation
scheme seems natural . . .
Note that this requires
Fibonacci numbers to
be computed over and
over again.

E.g., Fn−4 is computed
five times, each time
from scratch.

What is the complexity
of this approach?

Fn−4 Fn−4 Fn−5 Fn−4 Fn−5 Fn−5 Fn−6

Fn−5Fn−4

Fn−3

Fn−2 Fn−3 Fn−3 Fn−4

Fn−1 Fn−2

Fn

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 152/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Dynamic Programming: Fibonacci Numbers

Recall that the Fibonacci numbers are defined as follows:

Fn :=

{
n if n ≤ 1,
Fn−1 + Fn−2 if n ≥ 2.

Since the Fibonacci numbers are defined recursively, a recursive computation
scheme seems natural . . .
Note that this requires
Fibonacci numbers to
be computed over and
over again.

E.g., Fn−4 is computed
five times, each time
from scratch.

What is the complexity
of this approach?

Fn−4 Fn−4 Fn−5 Fn−4 Fn−5 Fn−5 Fn−6

Fn−5Fn−4

Fn−3

Fn−2 Fn−3 Fn−3 Fn−4

Fn−1 Fn−2

Fn

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 152/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Dynamic Programming: Fibonacci Numbers

If we ignore the cost of adding two (possibly large) integers then we get

C(n) := C(n − 1) + C(n − 2)

as the cost C(n) for computing the n-th Fibonacci number.

This is the same recurrence as for the Fibonacci numbers!

The theory of Fibonacci numbers (Lem. 5) tells us that

Fn =
1√
5
·
(

1 +
√

5
2

)n

− 1√
5
·
(

1 −
√

5
2

)n

.

Hence, we pay an exponential price for computing Fn recursively:

C ∈ O(ϕn), with the golden ratio ϕ :=
1 +

√
5

2
.

The closed-form solution for Fn could be used to compute Fn using only Θ(log n)
many multiplications.

But this would require us to deal with irrational numbers!
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UNIVERSITÄT SALZBURG

Dynamic Programming: Fibonacci Numbers

If we ignore the cost of adding two (possibly large) integers then we get

C(n) := C(n − 1) + C(n − 2)

as the cost C(n) for computing the n-th Fibonacci number.

This is the same recurrence as for the Fibonacci numbers!

The theory of Fibonacci numbers (Lem. 5) tells us that

Fn =
1√
5
·
(

1 +
√

5
2

)n

− 1√
5
·
(

1 −
√

5
2

)n

.

Hence, we pay an exponential price for computing Fn recursively:

C ∈ O(ϕn), with the golden ratio ϕ :=
1 +

√
5

2
.

The closed-form solution for Fn could be used to compute Fn using only Θ(log n)
many multiplications.

But this would require us to deal with irrational numbers!

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 153/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Dynamic Programming: Fibonacci Numbers

A memoized DP approch allows to compute the n-th Fibonacci number in O(n)
steps (if we ignore the time needed to add large integers), using O(n) memory.

A simple bottom-up DP approach based on tabulation suffices to compute the
n-th Fibonacci number also in O(n) steps but with O(1) memory.

Note that it suffices to remember only the two numbers computed most recently.

1 int Fibonacci(int number) /* greater zero */

2 {
3 int n1 = 0;
4 int n2 = 1;
5 int temp, i;
6 for (i = 1; i < number; ++i) {
7 temp = n1 + n2;
8 n1 = n2;
9 n2 = temp;

10 }
11 return n2;
12 }
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UNIVERSITÄT SALZBURG

Dynamic Programming: Fibonacci Numbers

A memoized DP approch allows to compute the n-th Fibonacci number in O(n)
steps (if we ignore the time needed to add large integers), using O(n) memory.

A simple bottom-up DP approach based on tabulation suffices to compute the
n-th Fibonacci number also in O(n) steps but with O(1) memory.

Note that it suffices to remember only the two numbers computed most recently.

1 int Fibonacci(int number) /* greater zero */

2 {
3 int n1 = 0;
4 int n2 = 1;
5 int temp, i;
6 for (i = 1; i < number; ++i) {
7 temp = n1 + n2;
8 n1 = n2;
9 n2 = temp;

10 }
11 return n2;
12 }

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 154/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Dynamic Programming: Traveling Salesman Problem

Problem: TRAVELINGSALESMANPROBLEM (TSP), DT.: RUNDREISEPROBLEM

Input: A weighted and undirected graph G := (V ,E), and a number c ∈ R+.

Decide: Does G contain a Hamiltonian cycle whose total cost is less than c?

Naïve approach:
Fix one node as start-/end-node and evaluate the costs of all (n − 1)! possible
cycles.
This approach takes O(n!) time.

TSP is an NP-complete problem. (See later on.) Hence, there is little hope to
devise an exact solution that runs in polynomial time.

Theorem 83 (Bellman (1962), Held&Karp (1962))

Dynamic programmming allows to solve TSP for a weighted graph with n nodes in
O(n2 · 2n) time, within O(n · 2n) space.
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UNIVERSITÄT SALZBURG

Dynamic Programming: Traveling Salesman Problem

Problem: TRAVELINGSALESMANPROBLEM (TSP), DT.: RUNDREISEPROBLEM

Input: A weighted and undirected graph G := (V ,E), and a number c ∈ R+.

Decide: Does G contain a Hamiltonian cycle whose total cost is less than c?

Naïve approach:
Fix one node as start-/end-node and evaluate the costs of all (n − 1)! possible
cycles.
This approach takes O(n!) time.

TSP is an NP-complete problem. (See later on.) Hence, there is little hope to
devise an exact solution that runs in polynomial time.

Theorem 83 (Bellman (1962), Held&Karp (1962))

Dynamic programmming allows to solve TSP for a weighted graph with n nodes in
O(n2 · 2n) time, within O(n · 2n) space.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 155/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Dynamic Programming: Traveling Salesman Problem

Proof of Theorem 83 :
We number the nodes 1, 2, . . . , n − 1, n, denote the weight of the edge between i
and j by wij , and designate node 1 as start-/end-node of the TSP cycle.

Of course, wij = wji , and wij := ∞ if {i, j} ̸∈ E .
For a subset of nodes S ⊆ {2, 3, . . . , n}, and j ∈ S, let C(S, j) be the length of
the cheapest path starting at 1 and ending at j that visits each node in S exactly
once.
If S = {j} then C(S, j) := d1j .
Now assume that |S| ≥ 2 and let i ∈ S be the second-to-last node on a path from
1 to j within S. Then the minimum cost of that path is given by the cost of the
cheapest path from 1 to i within S \ {j} plus wij .
Hence, C(S, j) is obtained by minimizing over |S| − 1 paths within S:

C(S, j) = min
i∈(S\{j})

(
C(S \ {j}, i) + wij

)
.

Then the final cost of a TSP cycle is given by

min
j∈{2,3,...,n}

C({2, . . . , n}, j) + dj1.

Of course, the subsets S of {2, 3, . . . , n} are processed in order of increasing
cardinality.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 156/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Dynamic Programming: Traveling Salesman Problem

Proof of Theorem 83 (cont’d) :
Space complexity:

There are 2n−1 subsets S of {2, 3, . . . , n}.

For every subset S we have to know (and store) C(S, j) for all j ∈ S.
Hence, if we assume that n is sufficiently small such that S can be encoded by
a bitmask of a constant number of machine words (rather than by |S|-tuples),
then the space complexity is O(n · 2n).

Time complexity:
C(S, j) is computed in linear time from the items computed previously.
Hence, the time complexity is O(n2 · 2n).

The actual TSP cycle can be obtained by storing with every C(S, j) the index of
the second-to-last node i on the cheapest path from 1 to j .
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Time complexity:
C(S, j) is computed in linear time from the items computed previously.
Hence, the time complexity is O(n2 · 2n).

The actual TSP cycle can be obtained by storing with every C(S, j) the index of
the second-to-last node i on the cheapest path from 1 to j .
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UNIVERSITÄT SALZBURG

Dynamic Programming: Traveling Salesman Problem

Proof of Theorem 83 (cont’d) :
Space complexity:

There are 2n−1 subsets S of {2, 3, . . . , n}.
For every subset S we have to know (and store) C(S, j) for all j ∈ S.
Hence, if we assume that n is sufficiently small such that S can be encoded by
a bitmask of a constant number of machine words (rather than by |S|-tuples),
then the space complexity is O(n · 2n).

Time complexity:
C(S, j) is computed in linear time from the items computed previously.
Hence, the time complexity is O(n2 · 2n).

The actual TSP cycle can be obtained by storing with every C(S, j) the index of
the second-to-last node i on the cheapest path from 1 to j .

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 157/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Dynamic Programming

Dynamic programming . . .

. . . may result in an efficient (sub-exponential) algorithm if the following conditions
hold:

A solution can be computed by combining solutions of sub-problems;

A solution of every sub-problem can be computed by combining solutions of
sub-subproblems; etc.

Only a polynomial number of sub-problems occurs in total.

Memoization (top down):
Apply standard recursion, but remember the solution to a previously solved
sub-problem.
Re-use solution whenever a sub-problem is encountered that has already
been solved.

Tabulation (bottom up):
Build a table of solutions for the sub-problems in bottom-up fashion.

Complexity: Roughly, we get the number of sub-problems times the complexity
for solving every sub-problem.
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Dynamic Programming: Matrix Chain Multiplication

The standard method for multiplying a p × q matrix with a q × r matrix requires
p · q · r (scalar) multiplications and p · (q − 1) · r additions, yielding a p × r result
matrix.

Recall that matrix multiplication is associative, but not commutative:

(A · B) · C = A · (B · C) but, in general, A · B ̸= B · A.

Hence, if A is a 100 × 1 matrix, B is a 1 × 100 matrix, and C is a 100 × 1 matrix,
then

(A · B) · C needs (100 · 1 · 100) + (100 · 100 · 1) = 20 000 multiplications.
A · (B · C) needs (1 · 100 · 1) + (100 · 1 · 1) = 200 multiplications!

It is obvious that it may pay off to think about an optimal parenthesization.

Problem: MATRIXCHAINMULTIPLICATION

Input: A sequence of n matrices A1,A2, . . . ,An, where matrix Ai has dimensions
di−1 × di for i ∈ {1, 2, . . . , n}.

Output: An optimal parenthesization such that the standard computation of
A1 · A2 · . . . · An results in the minimum number of multiplications.
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UNIVERSITÄT SALZBURG

Dynamic Programming: Matrix Chain Multiplication

The standard method for multiplying a p × q matrix with a q × r matrix requires
p · q · r (scalar) multiplications and p · (q − 1) · r additions, yielding a p × r result
matrix.

Recall that matrix multiplication is associative, but not commutative:

(A · B) · C = A · (B · C) but, in general, A · B ̸= B · A.

Hence, if A is a 100 × 1 matrix, B is a 1 × 100 matrix, and C is a 100 × 1 matrix,
then

(A · B) · C needs (100 · 1 · 100) + (100 · 100 · 1) = 20 000 multiplications.
A · (B · C) needs (1 · 100 · 1) + (100 · 1 · 1) = 200 multiplications!

It is obvious that it may pay off to think about an optimal parenthesization.

Problem: MATRIXCHAINMULTIPLICATION

Input: A sequence of n matrices A1,A2, . . . ,An, where matrix Ai has dimensions
di−1 × di for i ∈ {1, 2, . . . , n}.

Output: An optimal parenthesization such that the standard computation of
A1 · A2 · . . . · An results in the minimum number of multiplications.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 159/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Dynamic Programming: Matrix Chain Multiplication

We can split the product of matrices into two products by multiplying the first k
matrices, multiplying the second n − k matrices, and then multiplying the two
resulting matrices:

A1 · A2 · . . . · An = (A1 · . . . · Ak ) · (Ak+1 · . . . · An)

Of course, k can be any number out of {1, 2, . . . , n − 1}.

Optimality Observation

If an optimal solution for Ai · . . . · Aj is given by (Ai · . . . · Ak ) · (Ak+1 · . . . · Aj), for
1 ≤ i ≤ k < j ≤ n, then also the parenthesizations of Ai · . . . · Ak and Ak+1 · . . . · Aj

need to be optimal.
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Dynamic Programming: Matrix Chain Multiplication

For 1 ≤ i ≤ j ≤ n, let m[i, j] denote the minimum number of scalar multiplications
needed to compute Ai · . . . · Aj .

Recall that Ai has dimensions di−1 × di . Hence, for i ≤ k < j ,

(Ai · . . . · Ak )︸ ︷︷ ︸
di−1×dk

· (Ak+1 · . . . · Aj)︸ ︷︷ ︸
dk×dj

has dimensions di−1 × dj .

We get the following formula:

m[i, j] =

{
0 if i = j,
mini≤k<j{m[i, k ] + m[k + 1, j] + di−1dk dj} if i < j.

As in the case of the Fibonacci numbers, a naïve evaluation of this recursive
formula would result in re-computing partial solutions over and over again.

We resort to dynamic programming, and tabulate m[i, j] as it becomes known.

In the pseudo code on the next slide, we use s[i, j] to store the optimum value of
k for splitting Ai · . . . · Aj into (Ai · . . . · Ak ) · (Ak+1 · . . . · Aj).

The dimensions of A1,A2, . . . ,An are stored in the array d [].
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Dynamic Programming: Matrix Chain Multiplication

1 void MatrixChainMultiplication(int d[], int s[])
2 {
3 int seq_len, cost;
4 int N = d.length - 1;
5 for (i = 1; i <= N; i++) m[i, i] = 0;
6 for (seq_len = 2; seq_len <= N; ++seq_len) {
7 for (i = 1; i <= N - seq_len + 1; ++i) {
8 j = i + seq_len - 1;
9 m[i, j] = MAX_INT; // " infinity "

10 for (k = i; k <= j - 1; ++k) {
11 cost = m[i, k] + m[k+1, j] +
12 d[i-1] * d[k] * d[j];
13 if (cost < m[i, j]) {
14 m[i, j] = cost; // minimum cost so far

15 s[i, j] = k; // index of best split

16 }
17 }
18 }
19 }
20 }
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Dynamic Programming: Matrix Chain Multiplication

It is an easy exercise to extract the actually best parenthesization from s[]:

1 string GetParenthesization(int i, int j, int s[])
2 {
3 if (i < j) {
4 x = GetParenthesization(i, s[i,j], s);
5 y = GetParenthesization(s[i,j] + 1, j, s);
6 return "(x * y)";
7 }
8 else
9 return "A_" # IntToString(i);

10 }

Hence we get the following result:

Theorem 84

MATRIXCHAINMULTIPLICATION can be solved in O(n3) time and O(n2) space for n
matrices.
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UNIVERSITÄT SALZBURG

Dynamic Programming: Matrix Chain Multiplication

It is an easy exercise to extract the actually best parenthesization from s[]:

1 string GetParenthesization(int i, int j, int s[])
2 {
3 if (i < j) {
4 x = GetParenthesization(i, s[i,j], s);
5 y = GetParenthesization(s[i,j] + 1, j, s);
6 return "(x * y)";
7 }
8 else
9 return "A_" # IntToString(i);

10 }

Hence we get the following result:

Theorem 84

MATRIXCHAINMULTIPLICATION can be solved in O(n3) time and O(n2) space for n
matrices.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 163/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

3 Algorithmic Paradigms
Incremental Construction
Greedy
Divide and Conquer
Dynamic Programming
Randomization

Basics of Randomization
Random Permutation
Randomized QuickSort
Randomized Primality Testing
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Deterministic vs. Randomized Algorithm

Input
Algorithm

Output

Deterministic algorithm:
It will always produce the same
output in repeated runs for a
particular input.
The underlying state machine will
always pass through the same
sequence of states for the same
input.
Differences in running time for the
same input are small and due to
system-dependent reasons.

Randomized algorithm:
It uses a random number at least
once to make a (branching)
decision.
Repeated runs for the same input
may result in different outputs
and/or running times.

Probability of generating incorrect
output.
Efficiency is guaranteed only with
some probability.

Randomization and probabilistic methods play a key role in modern algorithm
theory: Randomized algorithms are often simpler to understand and implement,
while being correct and efficient with high probability.
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Randomization: Random Numbers

“Classical” approaches like the rolling of dice or the flipping of coins cannot be
used by computers.

One alternative is to measure some physical phenomenon that can be expected
to be random. E.g., the seconds of the current wall-clock time can be expected to
yield a random number between 0 and 59.

Most Unix/Linux-like operating systems have /dev/urandom, which allows to
access environmental noise collected from sources like device drivers.

The second alternative is to use an algorithm to generate [sic!] random numbers:
pseudorandom number generator (PRNG).

E.g., arc4random() is available on BSD platforms, and also on GNU/Linux with
libbsd. It is an easy-to-use option for most standard C/C++-applications that is
much better than rand(). The rand48() family is better than rand(), too!

Practical advice

Invest more time into testing since achieving path coverage becomes trickier!

Employ randomization in such a way that the algorithm’s behavior can be made
reproducable — i.e., deterministic! — if required: Debugging might be needed!
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Randomization: Random Numbers in C

The following code generates a pseudorandom integer within the set
{from, . . . , to}.

1 int RandomNumberRange(const int from, const int to)
2 {
3 int rnd, range = to - from + 1;
4 int maxSafeRange = maxRndNumber - (maxRndNumber % range);

6 do {
7 rnd = GetRandomNumber(); // e.g., use arc4random ()

8 } while (rnd >= maxSafeRange);

10 return from + (rnd % range);
11 }

Note that solutions simply resorting to the modulo operator, %, to restrict a
random number to a range of numbers tend to produce skewed results.

The skew in the distribution is made worse if the random number is obtained from
an LCG since LCGs (like rand()) tend to have poor entropy in the lower bits.
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UNIVERSITÄT SALZBURG

Randomization: Random Numbers in C++

1 #include <random>

3 std::random_device rnd_dev;
4 std::mt19937 gen(rnd_dev());

6 int RandomNumberRange(const int from, const int to)
7 {
8 std::uniform_int_distribution<int> distr(from, to);
9 return distr(gen);

10 }

The class std::random_device is a uniformly-distributed integer random
number generator that makes use of a non-deterministic source if it is available.
We use it to seed a Mersenne Twister PRNG based on the Mersenne prime
219937 − 1, which has a period of 219937 − 1.
Then this PRNG is used to generate a 32-bit random number, which is mapped
to the set {from, . . . , to} via a call to std::uniform_int_distribution.
Use rand() instead of std::random_device, together with srand(), for a
seeding of std::mt19937 that yields reproducable results.
The STL also contains a 64-bit implementation: std::mt19937_64.
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Randomization: Monte Carlo vs. Las Vegas

Monte Carlo algorithm:
Is always fast.
Might fail to produce a correct output, with one-sided or two-sided errors.
The probability of an incorrect output is bound based on an error analysis.
Repetitions of Monte Carlo algorithms tend to drive down the failure
probability exponentially.

Las Vegas algorithm:
Always gives a correct output (or reports an error).
Its run-time performance may vary.

Several Las Vegas algorithms can be turned into Monte Carlo algorithms by
setting a time budget and stopping the algorithm once this time budget is
exceeded.
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Random Permutation

Problem: RANDOMPERMUTATION

Input: A sequence S = (s0, s1, . . . , sn−1) of n entities.

Output: A random permutation of these n entities, uniformly at random.

Knuth’s version of the Fisher-Yates shuffle [1938] runs in Θ(n) time, with n := |S|.
After RandomPermutation(S) we have Pr[s = si ] = 1/n for all s ∈ S and all
i ∈ {0, 1, . . . , n − 1}.

Hence RandomPermutation(S) generates each permutation with probability
1/n!, i.e., uniformly at random.
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Randomized QuickSort

We assume that all numbers of the array to be sorted are distinct.

Standard QuickSort:
1 Pick the left-most element p of the

array as the pivot.
2 Rearrange and split the array into

two subarrays LESS and
GREATER by comparing each
element to p.

3 Recurse on LESS and GREATER.

O(n2) worst-case complexity, even
when using median-of-three
partitioning.

One can specify worst-case input!

O(n log n) average-case complexity.

Randomized QuickSort:
1 Pick an element p of the array as

the pivot, uniformly at random.
2 Rearrange and split the array into

two subarrays LESS and
GREATER by comparing each
element to p.

3 Recurse on LESS and GREATER.

O(n log n) expected-time complexity
for all inputs of n numbers.

One can also generate a random
permutation of the input numbers and
then run the standard QuickSort on
that shuffled array.
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Randomized QuickSort

Theorem 85

The expected number of comparisons made by a randomized QuickSort on an array
of n input numbers is at most 2n ln n.

Proof : We define the random variable Xij to be 1 if the algorithm does compare the
i-th smallest element to the j-th smallest element, and 0 otherwise.
Let X denote the total number of comparisons. Since we never compare the same
pair of elements twice, we get

X =
n−1∑
i=1

n∑
j=i+1

Xij ,

and, due to the linearity of the expectation (Lemma 24),

E(X ) =
n−1∑
i=1

n∑
j=i+1

E(Xij).

Consider Xij for 1 ≤ i < j ≤ n. We denote the i-th smallest element in the array by ei

and the j-th smallest element by ej .
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Randomized QuickSort

Proof of Theorem 85 (cont’d) :
1 If we choose a pivot p such that ei < p < ej then ei ends up in LESS and ej ends

up in GREATER, and ei and ej will never be compared.

2 If we choose ei or ej as pivot then we do compare them.
3 If we choose p < ei or p > ej then the decision is deferred, and we will pick a

new pivot in the next recursive step.
At each step, the probability that Xij = 1 under the condition that we will certainly not
compare ei to ej in the future is exactly 2/j−i+1. Hence, the overall probability of Xij = 1
equals 2/j−i+1, too.
Recall Lemma 9 on the Harmonic numbers Hn. We get

E(X ) =
n−1∑
i=1

n∑
j=i+1

E(Xij) =
n−1∑
i=1

2
n∑

j=i+1

1
j − i + 1

=
n−1∑
i=1

2
(

1
2
+

1
3
+ . . .+

1
n − i + 1

)

< 2n
(

1
2
+

1
3
+ . . .+

1
n

)
= 2n · (Hn − 1) ≤ 2n ln n.

Average case versus expected case

Since we average over all permutations (of some particular input!), this O(n log n)
bound is a worst-case expected-time bound and applies even to (mostly) sorted input!
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Randomized Primality Testing

Problem: PRIME

Input: A natural number n with n > 1.

Decide: Is n prime? I.e., can n be divided only by 1 and by itself?

Note that we only care to know whether some number n is prime; we do not seek
a prime factorization of n.
PRIME is a basic building block for many applications. E.g., large primes are
frequently sought in cryptography.
Brute-force methods — e.g., repeated divisions by 2, 3, . . . , ⌊

√
n⌋ — are far too

slow when n is truly large. (Exponential worst-case running time in the size of n.)
PRIME is solvable in polynomial time [Agrawal&Kayal&Saxena (2002)]: Their
algorithm runs in O(log7.5+εn) time, which is polynomial in the size of n. (In 2005,
Pomerance&Lenstra reduced this to O(log6+εn).)
But this is a rather theoretical result . . .
Fortunately, large primes are not particularly rare.
Expectation: One out of ln n random integers of the size of n will be prime!
Randomization yields an efficient, simple and easy-to-implement primality test —
if we accept a small probability of error!
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Randomized Primality Testing: Basic Idea

Witness of compositeness

Find a predicate P and a suitable set S (with, typically, S ⊆ N) such that

p ∈ P ⇒ (∀s ∈ S P(s, p)) .

This is equivalent to

(∃s ∈ S ¬P(s, p)) ⇒ p ̸∈ P.

Suppose that p ̸∈ P and that ¬P(s, p) holds for, say, at least 50% of the elements
s ∈ S.

Then we incorrectly classify a number p as prime
after testing P(s, p) for just one s ∈ S with a probability of at most 1/2;
after testing P(s, p) for just two s ∈ S with a probability of at most 1/4;
after testing P(s, p) for k numbers of S with a probability of at most 1/2k .
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Randomized Primality Testing: Fermat

Lemma 86 (Fermat’s Little Theorem, Dt.: Kleiner Satz von Fermat)

If p ∈ P then ap ≡p a for every a ∈ N.

If a is not a multiple of p then this reduces to ap−1 ≡p 1.

Hence, if an−1 ̸≡n 1 for a given n ∈ N and some a ∈ {2, 3, . . . , n − 1} then n is
composite, i.e., not a prime.

Such an integer a is called a Fermat witness for the compositeness of n.

Otherwise, n is possibly prime — or a is a so-called Fermat liar.

E.g., 2242 mod 243 = 121, implying that 243 is composite. And, indeed 243 = 35.

E.g., 2240 mod 241 = 1, implying that 241 could be prime. And, indeed, 241 is
prime.
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Randomized Primality Testing: Fermat

However, 2560 mod 561 = 1, but 561 = 3 · 11 · 17.

Worse, 4560 mod 561 = 1 and 5560 mod 561 = 1 and 7560 mod 561 = 1 and
8560 mod 561 = 1 and . . .

We have a560 mod 561 = 1 for all a ∈ {2, 3, . . . , 560} for which gcd(561, a) = 1.
The number 561 is the smallest so-called Carmichael number.

Carmichael numbers are rather rare: There are about 2 · 107 Carmichael
numbers between 1 and 1021, i.e., on average one Carmichael number within
5 · 1013 numbers. (But there are infinitely many Carmichael numbers.)

Lemma 87

If n is a composite number that is no Carmichael number then at least half of all
a ∈ {2, 3, . . . , n − 2} are Fermat witnesses.

Theorem 88

If n is a composite number that is no Carmichael number then k rounds of the Fermat
primality test (with k randomly chosen values for a ∈ {2, 3, . . . , n − 2}) will incorrectly
classify n as prime with probability at most 2−k .
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Randomized Primality Testing: Fermat

1 bool IsPrimeFermat(int n, int k)
2 {
3 A = {2,3,...,n-2};
4 for (i = 1; i <= k; ++i) {
5 a = RandomInteger(A);
6 if (gcd(n, a) != 1) return false; /* composite */

7 if ((a^(n-1) % n) != 1) return false; /* composite */

8 A = A \ {a};
9 }

10 return true; /* probably prime */

11 }

IsPrimeFermat is a Monte Carlo algorithm with one-sided error: it will classify
all primes as “prime”, and falsely report a composite number as “prime” with
probability at most 2−k . That is, it is correct with high probability.

Note that the number k of random trials need not be scaled with the size of n in
order to keep the error probability below 2−k .

Still, the Fermat primality test is not considered to be reliable enough on its own
grounds. It is, however, used for a rapid screening of possible candidate primes.
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Randomized Primality Testing: Miller-Rabin

Lemma 89

Let n ∈ N be prime with n > 2, and s, d ∈ N0 such that n − 1 = 2s · d , with d odd.
Then for all a ∈ {2, 3, . . . , n − 2} we have

ad ≡n 1 or a2r ·d ≡n −1 for some r ∈ {0, 1, . . . , s − 1}.

The contrapositive of this lemma yields a test for compositeness:

Lemma 90

Let n ∈ N be odd with n ≥ 5, and s, d ∈ N0 such that n − 1 = 2s · d , with d odd. If
there exists an a ∈ {2, 3, . . . , n − 2} such that

ad ̸≡n 1 and a2r ·d ̸≡n −1 for all r ∈ {0, 1, . . . , s − 1},

then n is composite.

Such an integer a is called an MR-witness of compositeness.
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Randomized Primality Testing: Miller-Rabin

1 bool IsPrimeMillerRabin(int n, int k) /* for odd n > 2 */

2 {
3 s = 0; d = n - 1;
4 while (IsEven(d)) { /* (n -1) = 2^ s*d with odd d */

5 ++s; d /= 2;
6 }
7 A = {2,3,...,n-2};
8 LOOP: for (i = 1; i <= k; ++i) {
9 a = RandomInteger(A); A = A \ {a};

10 x = a^d % n;
11 if ((x == 1) || (x == -1)) do next LOOP;
12 for (j = 1; j < s; ++j) {
13 x = x^2 % n;
14 if (x == 1) return false; /* composite */

15 if (x == -1) do next LOOP;
16 }
17 return false; /* composite */

18 }
19 return true; /* probably prime */

20 }

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 180/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Randomized Primality Testing: Miller-Rabin

Lemma 91

Let n ∈ N be an odd composite number with n ≥ 5. Then the set {2, 3, . . . , n − 2}
contains at most n−3

4 numbers a such that gcd(n, a) = 1 but a is no MR-witness of the
compositeness of n.

Trivially, if gcd(n, a) > 1 then a is always a witness of the compositeness of n.

Theorem 92 (Miller (1976), Rabin (1980))

If n is an odd composite number then the Miller-Rabin primality test with k rounds
(and k randomly chosen values for a ∈ {2, 3, . . . , n − 2}) will incorrectly classify n as
prime with probability at most 4−k .

Hence, 10 rounds of the Miller-Rabin primality test give us a probability of error
that is 4−10 ≈ 10−6, and 20 rounds result in a probability of error that is roughly
10−12. After 30 rounds we are down to roughly 10−18 error probability.
For comparison purposes: Quality hard disks have a probability of about 10−16

for an unrecoverable read error (URE).
Note that this error bound does not depend on the size of n and that it holds also
for Carmichael numbers!
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Randomized Primality Testing: Miller-Rabin

Lemma 93

One round of the Miller-Rabin primality test for input number n takes O(log3 n) time
when using modular exponentiation by repeated squaring.

FFT-based multiplication can bring the time complexity of one round down to
O(log2 n · log(log n) · log(log(log n))).

If the Generalized (aka Extended) Riemann Hypothesis (GRH) — which is a
number-theoretic conjecture that is generally believed to be true — holds then for
every composite number n the set {1, 2, . . . , ⌊2 ln2 n⌋} contains an MR-witness
for n. Hence, if one assumes the Extended Riemann Hypothesis then there is a
deterministic algorithm to test primality in time O(log5 n).

[Jiang&Deng (2014)]: If n is “small” then smaller sets of potential MR-witnesses
are known, with no need to resort to the GRH:

If n < 211 − 1 = 2047: It suffices to test a ∈ {2}.
If n < 264: It suffices to test a ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}.

[Sorenson&Webster (2015)] go even beyond 64-bit results:
If n < 1024: It suffices to test a ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41}.
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4 Order Statistics, Selection and Sorting
Order Statistics and Selection
Linear-Time Sorting
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4 Order Statistics, Selection and Sorting
Order Statistics and Selection

Worst-Case Linear-Time Selection
Expected-Case Linear Time Selection

Linear-Time Sorting
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Linear-Time Selection

Definition 94 (Order statistic, Dt.: Ordnungsstatistik)

Consider a finite (totally-ordered) set S of n distinct elements and a number k , for
k , n ∈ N. An element x ∈ S is the k-th smallest element of S, aka the k-th order
statistic, if |{s ∈ S : s < x}| = k − 1.

If k = ⌈ n
2 ⌉ then the k -th smallest element of S is

also called the median of S.

Problem: SELECTION

Input: A set S of n distinct (real) numbers and a number k , for k , n ∈ N.

Output: The k -th smallest element of S.

If k = 1 or k = n then SELECTION can be solved easily using n − 1 comparisons.

If the numbers of S are arranged in sorted order then the k -th smallest element
can be found in O(n) time. (Or even faster.)

What about general values of k and unsorted numbers?
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Theorem 95 (Blum&Floyd&Pratt&Rivest&Tarjan (1973))

SELECTION among n distinct numbers can be solved in O(n) time, for any n, k ∈ N.
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Linear-Time Selection

Proof of Theorem 95 :

1 Divide the n elements of S into ⌊n/5⌋ groups of 5 elements each and (at most)
one group containing the remaining n mod 5 elements.

2 Sort each group

and compute its median.

Suppose that we want to compute the k -th smallest element of
S := {23, 7, 15, 18, 16, 5, 64, 8, 12, 13, 11, 14, 1, 24, 6, 9, 4, 10, 3, 2, 19, 20, 21, 17},
for k := 7 and n := |S| = 24.
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Linear-Time Selection

Proof of Theorem 95 (cont’d) :
What is the complexity of MedianOfMedians?

We get

m = |SL|+ 1 ≥ 3
⌈

1
2
⌈n/5⌉

⌉
≥ 3

10
n,

and, thus, |SL| ≥
3

10
n − 1.

Hence, |SR | ≤ 7
10 n.

Similarly, |SR | ≥ 3
10 n + O(1) and |SL| ≤ 7

10 n + O(1),

resulting
in the currence relation

T (n) ≤ T
(n

5

)
+ T

(
7n
10

)
+ O(n), which yields T ∈ O(n).

1 246 11 14

237 15 1816

5 648 12 13

2 3 4 9 10

17 19 20 21

SL

SR
s
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Linear-Time Selection

Unfortunately, the constant hidden in the O-term is fairly large: Depending on
details of the actual implementation, this algorithm requires about 50n
comparisons!

Hence, this form of linear-time selection is too slow to be useful in practice.

[Alexandrescu (SEA 2017)]: MedianOfNinthers, which is a refined version of
MedianOfMedians, is a linear-time selection scheme that works decently in
practice.

What about randomization? We could pick an element of S randomly and regard
it as the median of medians . . .
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Expected Linear-Time Selection

1 Pick an element s uniformly at random from S.

2 Partition S relative to s into SL and SR (and {s}) such that all elements of SL are
smaller than s and all elements of SR are greater than s.

3 Let m := |SL ∪ {s}|. If k = m then return s. Otherwise, if k < m then recurse on
SL to find the k -th smallest element, else (if k > m) recurse on SR to find the
(k − m)-th smallest element.

What is the complexity of this randomized algorithm?

Worst case: If s is the smallest or largest element of S then S shrinks by only one
element, and we get O(n2) complexity.
The probability of consistently picking an element of S which currently is the
smallest or largest is

2
n
· 2

n − 1
· 2

n − 2
· . . . · 2

3
· 2

2
=

2n−1

n!
.

Best case: The element s turns out to be the k -th smallest element, with probability
1/n.
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Expected Linear-Time Selection

Expected complexity:
Let T (n) be an upper bound on the expected time to process a set S with n (or
fewer) elements.

Call s lucky if |SL| ≤ 3n/4 and |SR | ≤ 3n/4.
Hence, s is lucky if it lies betwen the 25th and the 75th percentile of S, which
happens with probability 1/2.
This gives us

T (n) ≤ (time to partition) + (maximum expected time for recursion)

≤ n + Pr(s is lucky) · T
(

3n
4

)
+ Pr(s is unlucky) · T (n)

= n +
1
2

T
(

3n
4

)
+

1
2

T (n).

Hence, after subtracting 1
2 T (n) from both sides, we get

T (n) ≤ T
(

3n
4

)
+ 2n, i.e., T (n) ≤ 8n.

Theorem 96

A simple randomized algorithm solves SELECTION in expected linear time.
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Hence, s is lucky if it lies betwen the 25th and the 75th percentile of S, which
happens with probability 1/2.
This gives us

T (n) ≤ (time to partition) + (maximum expected time for recursion)

≤ n + Pr(s is lucky) · T
(

3n
4

)
+ Pr(s is unlucky) · T (n)

= n +
1
2

T
(

3n
4

)
+

1
2

T (n).

Hence, after subtracting 1
2 T (n) from both sides, we get

T (n) ≤ T
(

3n
4

)
+ 2n, i.e., T (n) ≤ 8n.

Theorem 96

A simple randomized algorithm solves SELECTION in expected linear time.
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Expected Linear-Time Selection

Expected complexity:
Let T (n) be an upper bound on the expected time to process a set S with n (or
fewer) elements.
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4 Order Statistics, Selection and Sorting
Order Statistics and Selection
Linear-Time Sorting

Counting Sort
Radix Sort
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UNIVERSITÄT SALZBURG

Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:

1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.
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Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:

1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:

1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.
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UNIVERSITÄT SALZBURG

Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:

1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:

1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

0 0 0 0 1 0
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

0 0 0 1 1 0

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 193/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

0 1 0 1 1 0
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

0 1 0 1 1 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

0 1 0 2 1 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

1 1 0 2 1 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

1 2 0 2 1 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

1 2 0 3 1 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.

2 For all possible keys, do a prefix sum computation on H to compute the
starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

1 2 0 3 2 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

H:

1 2 0 3 2 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

H:

1 2 0 3 2 1

0
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

H:

1 2 0 3 2 1

10
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

H:

1 2 0 3 2 1

30 1
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

H:

1 2 0 3 2 1

3310
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

H:

1 2 0 3 2 1

63310
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Counting Sort

Counting Sort can be used for sorting an array A of n elements whose keys are
integers within the range [0, k − 1], for some n, k ∈ N.

It is stable but not in-place.

It uses indices into an array and, thus, is not a comparison sort.

Basic idea:
1 Compute a histogram H of the number of times each element occurs within A.
2 For all possible keys, do a prefix sum computation on H to compute the

starting index in the output array of the elements which have that key.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

H:

1 2 0 3 2 1

863310
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Counting Sort

Basic idea:

3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

Theorem 97

Counting Sort is a stable sorting algorithm that sorts an array of n elements whose
keys are integers within the range [0, k − 1], for some n, k ∈ N, within O(n + k) time
and space.
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Counting Sort

Basic idea:
3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B: 4

Theorem 97

Counting Sort is a stable sorting algorithm that sorts an array of n elements whose
keys are integers within the range [0, k − 1], for some n, k ∈ N, within O(n + k) time
and space.
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Counting Sort

Basic idea:
3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

873310

B: 4

Theorem 97

Counting Sort is a stable sorting algorithm that sorts an array of n elements whose
keys are integers within the range [0, k − 1], for some n, k ∈ N, within O(n + k) time
and space.
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Counting Sort

Basic idea:
3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

43

873310

B: 4

Theorem 97

Counting Sort is a stable sorting algorithm that sorts an array of n elements whose
keys are integers within the range [0, k − 1], for some n, k ∈ N, within O(n + k) time
and space.
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Counting Sort

Basic idea:
3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

3B: 4B: 43

874310

B: 43

Theorem 97

Counting Sort is a stable sorting algorithm that sorts an array of n elements whose
keys are integers within the range [0, k − 1], for some n, k ∈ N, within O(n + k) time
and space.
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Counting Sort

Basic idea:
3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

431 3B: 4B: 43

874310

B: 43

Theorem 97

Counting Sort is a stable sorting algorithm that sorts an array of n elements whose
keys are integers within the range [0, k − 1], for some n, k ∈ N, within O(n + k) time
and space.
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Counting Sort

Basic idea:
3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

863310

B:

4 3 1 5 3 0 1 3 4A:

H:

i, j : 0 1 2 3 4 5 6 7 8

1

874320

B: 43

Theorem 97

Counting Sort is a stable sorting algorithm that sorts an array of n elements whose
keys are integers within the range [0, k − 1], for some n, k ∈ N, within O(n + k) time
and space.
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Counting Sort

Basic idea:
3 Move each element to its sorted position in the output array B.

4 3 1 5 3 0 1 3 4A:
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i, j : 0 1 2 3 4 5 6 7 8
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i, j : 0 1 2 3 4 5 6 7 8
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874320

B: 43
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Counting Sort

1 CountingSort(array A[], array B[], array H[], int n, int k)
2 {
3 /* calculate histogram */

4 for (i = 0; i < k; ++i) H[i] = 0;
5 for (j = 0; j < n; ++j) H[A[j]] += 1;
6 /* calculate the starting index for each key */

7 total = 0;
8 for (i = 0; i < k; ++i) {
9 oldCount = H[i];

10 H[i] = total;
11 total += oldCount;
12 }
13 /* stable copy to output array */

14 for (j = 0; j < n; ++j) {
15 B[H[A[j]]] = A[j];
16 H[A[j]] += 1;
17 }
18 }
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Radix Sort

Radix Sort can be used for sorting an array A of n elements whose keys are
d-digit (non-negative) integers, for some n, d ∈ N.

It compares keys on a per-digit basis and, thus, is not a comparison sort.

It is stable but not in-place.

Basic idea:

1 Use a stable sorting algorithm to sort the elements relative to the least
significant digit of their keys.

2 Then sort on the second least-significant digit

, and so on.
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UNIVERSITÄT SALZBURG

Radix Sort

Radix Sort can be used for sorting an array A of n elements whose keys are
d-digit (non-negative) integers, for some n, d ∈ N.
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Basic idea:

1 Use a stable sorting algorithm to sort the elements relative to the least
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2 Then sort on the second least-significant digit

, and so on.
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Radix Sort

Radix Sort can be used for sorting an array A of n elements whose keys are
d-digit (non-negative) integers, for some n, d ∈ N.

It compares keys on a per-digit basis and, thus, is not a comparison sort.

It is stable but not in-place.

Basic idea:
1 Use a stable sorting algorithm to sort the elements relative to the least

significant digit of their keys.

2 Then sort on the second least-significant digit

, and so on.

sort by first digit
123 2321 950234 34 923 863

863950 23 234 3492321 123
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Radix Sort

Radix Sort can be used for sorting an array A of n elements whose keys are
d-digit (non-negative) integers, for some n, d ∈ N.

It compares keys on a per-digit basis and, thus, is not a comparison sort.

It is stable but not in-place.

Basic idea:
1 Use a stable sorting algorithm to sort the elements relative to the least

significant digit of their keys.
2 Then sort on the second least-significant digit, and so on.

sort by first digit

sort by second digit

sort by third digit

123 2321 950234 34 923 863

863950 23 234 3492321 123

234123 8639503492321 23

34 92321 23 234123 863 950

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 196/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Radix Sort: Complexity

1 RadixSort(array A[], int n, int d)
2 {
3 /* digit 1 is least significant ,

4 digit d is most significant */

5 for (i = 1; i <= d; ++i) {
6 use stable sort to sort A[] relative to digit i
7 }
8 }

Theorem 98

Radix Sort is a stable sorting algorithm that can be implemented to sort an array of n
elements whose keys are formed by the Cartesian product of d digits, with each digit
out of the range [0, k − 1], within O(d(n + k)) time and O(n + k) space, for
n, d , k ∈ N.

Proof : The correctness can be established by induction. If Counting Sort is used for
sorting according to the i-th digit then O(n + k) time is consumed per digit.

It is obvious that Radix Sort can be employed whenever keys are to be sorted
lexicographically such that each key is formed by the Cartesian product of
“digits”, where each digit belongs to some (ordered) finite set.
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Radix Sort: Discussion

Whether or not Radix Sort is faster than comparison-based sorting algorithms
depends on the assumptions made.

If we regard an integer as a word with w bits then Theorem 98 implies that Radix
Sort runs in O(w · n) time, i.e., in time linear in n if w is assumed to be constant.

However, w can hardly be considered a constant: if all n keys are distinct, then w
has to be at least log n for a RAM to be able to store them in memory, resulting in
a time complexity of Ω(n log n).

The O(n log n) bound on the worst-case time complexity of optimal
comparison-based sorting algorithms holds only if constant time per comparison
can be assumed.

If w cannot be assumed to be constant then this assumption is weak, too:
Comparisons of randomly generated keys take constant time on average
because keys differ on the very first bit in half the cases, and differ on the second
bit in half of the remaining half, etc. However, in a sorting algorithm the keys
cannot be regarded as random as the sort progresses!

Radix Sort can only sort according to a lexicographical ordering, while
comparison-based sorting algorithms are more general. But this tends to be of
little importance in practice.
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5 Priority Queues
Binomial Heaps
Fibonacci Heaps
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5 Priority Queues
Binomial Heaps

Definition: Binomial Tree and Binomial Heap
Operations on Binomial Heaps

Fibonacci Heaps
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Abstract Data Type: Priority Queue

Priority Queue (Dt.: Vorrangwarteschlange)

A priority queue (PQ) is an ADT that arranges data elements according to
per-element keys (“priorities”): In a minimizing (maximizing, resp.) PQ the element
with smallest (largest, resp.) overall key is served first.

Keys need to belong to a totally ordered set.

Standard operations for minimizing PQs:
FindMin: return element with smallest key,
DeleteMin: return and remove element with smallest key from PQ,
Insert: insert a new element,
DecreaseKey: decrease the key of an element,
Remove: remove an element from PQ,
Merge: merge (aka meld) two PQs.

Standard implementation of PQ: binary heap.
FindMin in O(1).
Insert, DeleteMin, Remove and DecreaseKey in O(log n) time if heap has n
elements.
Merge in O(n1 + n2) time for two heaps with n1 and n2 elements.
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Insert, DeleteMin, Remove and DecreaseKey in O(log n) time if heap has n
elements.
Merge in O(n1 + n2) time for two heaps with n1 and n2 elements.
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Binomial Tree

Definition 99 (Binomial tree, Dt.: Binomialbaum)

A binomial tree is a rooted and ordered tree which is defined recursively as follows:

A binomial tree of order 0 consists only of the root node;

For k ∈ N0, a binomial tree of order k + 1 consists of two binomial trees of order
k such that one binomial tree is the left-most subtree of the other.

Lemma 100

For k ∈ N0, a binomial tree of order k
has k subtrees (from left to right) of
orders k − 1, k − 2, . . . , 1, 0.

Proof : By induction on k .

Lemma 101

For k ∈ N0, a binomial tree of order k
has 2k nodes and height k .

Order 0

Lemma 102

For k ∈ N0, a binomial tree of order k
has

(k
d

)
nodes at depth d .
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Binomial Heap

Definition 103 (Binomial heap)

A binomial heap is a collection of binomial trees that satisfy the binomial heap
property:

Each binomial tree is a minimizing heap, i.e., for all nodes v of the binomial tree,
all keys of the children of v are greater than (or at most equal to) the key of v .

For any k ∈ N0, there is at most one binomial tree of order k .

The binomial trees are arranged in a right-to-left sorted sequence according to
their orders, with the tree of smallest order being right-most.

Lemma 104

For n ∈ N0, a binomial heap with a total of n
nodes contains a binomial tree of order k if
and only if the bit that corresponds to 2k in
the binary representation of n is 1.

Proof : Recall Lem. 101, and that the binary
representation of n ∈ N0 is unique.

E.g., 11 = 23 +21 +20 = (1011)2.
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UNIVERSITÄT SALZBURG

Binomial Heap

Definition 103 (Binomial heap)

A binomial heap is a collection of binomial trees that satisfy the binomial heap
property:

Each binomial tree is a minimizing heap, i.e., for all nodes v of the binomial tree,
all keys of the children of v are greater than (or at most equal to) the key of v .

For any k ∈ N0, there is at most one binomial tree of order k .

The binomial trees are arranged in a right-to-left sorted sequence according to
their orders, with the tree of smallest order being right-most.

Lemma 104

For n ∈ N0, a binomial heap with a total of n
nodes contains a binomial tree of order k if
and only if the bit that corresponds to 2k in
the binary representation of n is 1.

Proof : Recall Lem. 101, and that the binary
representation of n ∈ N0 is unique.

1 3 2

5 2 9

37

8

6

6

E.g., 11 = 23 +21 +20 = (1011)2.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 203/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Binomial Heap: Merging in a Special Case

Suppose that we want to merge two binomial heaps in the special case that both
heaps contain only one binomial tree of the same order k . Let B1 and B2 be
these two trees.

We generate one binomial tree B3 of order k + 1 by making B1 the left-most child
of B2 if the key of the root of B2 is less than the key of the root of B1. Otherwise,
B2 becomes the left-most child of B1.

5

8

9

1

3 2

4

7

B1 B2

Recap: How do we add numbers in
binary representation?

E.g., lets add n1 := 5 = (0101)2 and
n2 := 7 = (0111)2. We should get
12 = (1100)2.
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Binomial Heap: Merging in a Special Case

Suppose that we want to merge two binomial heaps in the special case that both
heaps contain only one binomial tree of the same order k . Let B1 and B2 be
these two trees.
We generate one binomial tree B3 of order k + 1 by making B1 the left-most child
of B2 if the key of the root of B2 is less than the key of the root of B1. Otherwise,
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Recap: How do we add numbers in
binary representation?

E.g., lets add n1 := 5 = (0101)2 and
n2 := 7 = (0111)2. We should get
12 = (1100)2.

n1: 0 1 0 1
n2: 0 1 1 1
carry: –
result:
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Binomial Heap: Merging in a Special Case
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Binomial Heap: Merging

Merging Binomial Heaps

We visit the binomial trees of both binomial heaps according to increasing order
k , starting with k := 0.

If both heaps and the carry contain exactly . . .

. . . no binomial tree of order k : Do nothing.

. . . one binomial tree B1 of order k : move B1 to the result.

. . . two binomial trees B1,B2 of order k : Merge B1 and B2 into a tree B of
order k + 1 and move B to the carry.
. . . three binomial trees B1,B2,B3 of order k : Merge B1 and B2 into a tree B
of order k + 1 and move B to the carry; move B3 to the result.

Increment k after processing the binomial trees of order k .
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. . . two binomial trees B1,B2 of order k : Merge B1 and B2 into a tree B of
order k + 1 and move B to the carry.
. . . three binomial trees B1,B2,B3 of order k : Merge B1 and B2 into a tree B
of order k + 1 and move B to the carry; move B3 to the result.

Increment k after processing the binomial trees of order k .
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UNIVERSITÄT SALZBURG

Binomial Heap: Merging

Merging Binomial Heaps

We visit the binomial trees of both binomial heaps according to increasing order
k , starting with k := 0.

If both heaps and the carry contain exactly . . .

. . . no binomial tree of order k : Do nothing.

. . . one binomial tree B1 of order k : move B1 to the result.

. . . two binomial trees B1,B2 of order k : Merge B1 and B2 into a tree B of
order k + 1 and move B to the carry.
. . . three binomial trees B1,B2,B3 of order k : Merge B1 and B2 into a tree B
of order k + 1 and move B to the carry; move B3 to the result.

Increment k after processing the binomial trees of order k .

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 205/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Merging Binomial Heaps

We visit the binomial trees of both binomial heaps according to increasing order
k , starting with k := 0.

If both heaps and the carry contain exactly . . .

. . . no binomial tree of order k : Do nothing.

. . . one binomial tree B1 of order k : move B1 to the result.

. . . two binomial trees B1,B2 of order k : Merge B1 and B2 into a tree B of
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. . . three binomial trees B1,B2,B3 of order k : Merge B1 and B2 into a tree B
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Increment k after processing the binomial trees of order k .

Lemma 105

Merging two binomial heaps with a total of n nodes takes O(log n) time.
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Merging Binomial Heaps

We visit the binomial trees of both binomial heaps according to increasing order
k , starting with k := 0.

If both heaps and the carry contain exactly . . .
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Lemma 105

Merging two binomial heaps with a total of n nodes takes O(log n) time.

Proof : Lemma 104 implies that a binomial heap with i nodes contains at most
⌊log(i)⌋+ 1 binomial trees. Hence, we need to perform O(log n) trivial merges of two
binomial trees of the same order. Each such merge takes O(1) time.
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Binomial Heap: Other Operations

Lemma 106

A new element can be inserted into a binomial heap with a total of n nodes in O(log n)
worst-case and O(1) amortized time.

Proof : We create a new heap that contains only the new element and merge it with
the old heap. The amortized analysis is similar to the one used for incrementing a
binary counter.

Lemma 107

Finding the minimum element in a binomial heap with a total of n nodes takes
O(log n) time.

Proof : It suffices to inspect the roots of all binomial trees of the heap.

By maintaining a pointer to the root with minimum key, this time can be reduced
to O(1). (The pointer can be updated during all operations without increasing the
complexity bounds.)
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UNIVERSITÄT SALZBURG

Binomial Heap: Other Operations

Lemma 108

The minimum element can be deleted from a binomial heap with a total of n nodes in
O(log n) time.

Proof : We find the minimum among the roots of the binomial trees. By removing this
root we split one binomial tree into a sequence of subtrees which in turn are binomial
trees and, thus, form a binomial heap. Now we merge this new binomial heap with the
rest of the original binomial heap. All these steps run in O(log n) time.

Lemma 109

An element can be deleted from from a binomial heap with a total of n nodes in
O(log n) time.

Proof : We first decrease the key of the element to a value smaller than the minimum
key contained in the heap, thus causing it to move upwards to a root, and then delete
that root.
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Binomial Heap: Other Operations

Lemma 110

The key of a known element of a binomial heap with a total of n nodes can be
decreased in O(log n) time.

Proof : After decreasing the key we may need to (repeatedly) exchange the
corresponding node with its parent node if the min-heap property is violated. Since
any binomial tree of the heap has height at most log n, the claim follows.

Note: With the exception of the O(1) bound on the amortized time needed for
one insert, all other time bounds are worst-case bounds!
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Binomial Heap: Other Operations

Lemma 110
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5 Priority Queues
Binomial Heaps
Fibonacci Heaps

Definition
Operations on Fibonacci Heaps
Properties of Fibonacci Heaps
Performance Summary of Priority Queues
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Fibonacci Heaps: Basics

Designed by Fredman and Tarjan in 1986, in an attempt to improve Dijkstra’s
shortest-path algorithm from O((|E |+ |V |) log |V |) to O(|E |+ |V | log |V |).
The name is derived from the fact that the Fibonacci numbers show up in the
complexity analysis of its operations.

Similar to binomial heaps, but less rigid: Fibonacci heaps lazily defer all clean-up
work after an Insert till the next DeleteMin.

Fibonacci Heap

Collection of min heaps.

Maintains pointer to element with minimum key.

Some nodes are “marked”. (Used to keep trees reasonably flat.)
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Fibonacci Heaps: Representation

Heap representation:
Maintain root nodes in doubly-linked circular list.

Store pointer to root node with minimum key.

Node representation: Every node stores:

A pointer to its parent.
A pointer to one of its children.
The number of its children (“order”, “rank”).
Pointers to its left and right siblings.
A binary flag that indicates whether the node is marked (indicated by gray
shading).
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Fibonacci Heaps: Marked Nodes

Marking of nodes:
Unmarked: The node has had no child cut.
Marked: The node has had one child cut.

Basic idea: When a child is cut from a marked parent node, then the parent node
(together with its entire subtree) is cut, too, and moved to the root list.

The marking of nodes ensures that Fibonacci heaps keep roughly the structure of
binomial heaps after the deletion of nodes, thus ensuring the amortized time
bounds.

A root node is always unmarked.
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(together with its entire subtree) is cut, too, and moved to the root list.

The marking of nodes ensures that Fibonacci heaps keep roughly the structure of
binomial heaps after the deletion of nodes, thus ensuring the amortized time
bounds.

A root node is always unmarked.
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Fibonacci Heaps: Basic Operations

Insert a new node:

Create a new node and insert it into the list of root nodes.
Update pointer to (new) minimum root node.

Link two trees with roots r1 and r2:
If r1.key ≥ r2.key then make r1 a child of r2; otherwise, r2 becomes a child of
r1.
Update information on the order of r2 (or r1).

Cut a node v (that is not a root node):
Remove v (and its subtree) from the child list of its parent p and insert it into
the root list.
Update information on the order of p.
Mark p.
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Fibonacci Heaps: Basic Operations

Insert a new node:
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Fibonacci Heaps: Basic Operations
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Fibonacci Heaps: Basic Operations

Insert a new node:
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Update pointer to (new) minimum root node.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.

Move its children as new root nodes into the list of root nodes.
Link trees until no pair of root nodes has the same order.
Update pointer to minimum root.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.

Move its children as new root nodes into the list of root nodes.
Link trees until no pair of root nodes has the same order.
Update pointer to minimum root.

First DeleteMin.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.

Move its children as new root nodes into the list of root nodes.
Link trees until no pair of root nodes has the same order.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.
Move its children as new root nodes into the list of root nodes.

Link trees until no pair of root nodes has the same order.
Update pointer to minimum root.

First DeleteMin. Second DeleteMin.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.
Move its children as new root nodes into the list of root nodes.

Link trees until no pair of root nodes has the same order.
Update pointer to minimum root.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.
Move its children as new root nodes into the list of root nodes.
Link trees until no pair of root nodes has the same order.

Update pointer to minimum root.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.
Move its children as new root nodes into the list of root nodes.
Link trees until no pair of root nodes has the same order.

Update pointer to minimum root.

First DeleteMin. Second DeleteMin.
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Fibonacci Heaps: DeleteMin

DeleteMin:
Delete the root node with the current minimum.
Move its children as new root nodes into the list of root nodes.
Link trees until no pair of root nodes has the same order.
Update pointer to minimum root.

First DeleteMin. Second DeleteMin.
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Fibonacci Heaps: DecreaseKey

DecreaseKey:

If the new key of v is less than the key of the parent p then cut v and move it
(with its subtree) to the root list.
If p is not marked then mark p.
Else, cut p and move to root list, and apply recursively to its parent.
Update pointer to minimum root.

DecreaseKey(9,6).
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Fibonacci Heaps: DecreaseKey

DecreaseKey:
If the new key of v is less than the key of the parent p then cut v and move it
(with its subtree) to the root list.

If p is not marked then mark p.
Else, cut p and move to root list, and apply recursively to its parent.
Update pointer to minimum root.

DecreaseKey(9,6).

2

44 6

54

756

7

9 8

6

344 6

54

75

7

9 8

6

3

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 216/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Fibonacci Heaps: DecreaseKey

DecreaseKey:
If the new key of v is less than the key of the parent p then cut v and move it
(with its subtree) to the root list.
If p is not marked then mark p.

Else, cut p and move to root list, and apply recursively to its parent.
Update pointer to minimum root.

DecreaseKey(9,6).
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UNIVERSITÄT SALZBURG

Fibonacci Heaps: DecreaseKey

DecreaseKey:
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(with its subtree) to the root list.
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Fibonacci Heaps: DecreaseKey

DecreaseKey:
If the new key of v is less than the key of the parent p then cut v and move it
(with its subtree) to the root list.
If p is not marked then mark p.
Else, cut p and move to root list, and apply recursively to its parent.
Update pointer to minimum root.

DecreaseKey(9,6).

44 6

54

75

6

6

2

344 6

54

756

6

2

3

7

8

7

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 216/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Fibonacci Heaps: Properties

Lemma 111

If only Insert and DeleteMin operations are carried out, then a Fibonacci heap is a
binomial heap after every DeleteMin operation.

Sketch of Proof : By induction: Every DeleteMin results in a consolidation phase
during which pairs of trees which have root nodes of the same order are linked.

If no consolidation occurs (since no DeleteMin operation is carried out) then a
Fibonacci heap with n nodes may degenerate to one single tree, or even to an
unsorted linked list (of n root nodes) or an “unary” tree of height n − 1.
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Fibonacci Heaps: Properties

Lemma 112

If a node of a tree in a Fibonacci heap has k children then it is the root of a subtree
with at least Fk+2 nodes.

Corollary 113

Every node of a tree in a Fibonacci heap with a total of n nodes has at most O(log n)
children.

Proof : Let k be the number of children of a node v . By Lem. 112, its subtree has
Fk+2 nodes. Hence,

n ≥ Fk+2
Lem. 5
≥ ϕk , implying k ≤ logϕ n.
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Fibonacci Heaps vs. Binomial Heaps

Theorem 114

When starting from an initially empty heap, any sequence of a Insert, b DeleteMin and
c DecreaseKey operations takes O(a + b log n + c) worst-case time, where n is the
maximum heap size.

Hence, from a theoretical point of view, a Fibonacci heap is better than a binomial
heap when b is smaller than c by a non-constant factor.

A Fibonacci heap is also better than a binomial heap when frequent merging of
heaps is required.

However, the worst-case time for one DeleteMin or DecreaseKey operation is
linear, which makes Fibonacci heaps less suitable for applications which cannot
tolerate excessive running times for one individual operation. (E.g., real-time
systems.)

There is some controversy about Fibonacci heaps: While some researchers
strongly advocate their use, others report Fibonacci heaps to be slow in practice,
due to hidden constants in the O-terms.
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UNIVERSITÄT SALZBURG

Performance Summary of Priority Queues

Performance Summary for Priority Queues with n Elements

Operation Linked List Binary Heap Binomial Heap Fibonacci Heap
Insert O(1) O(log n) O(1)⋆ O(1)

FindMin O(n) O(1) O(log n)⋆⋆⋆ O(1)
DeleteMin O(n) O(log n) O(log n) O(log n)⋆⋆

DecreaseKey O(1) O(log n) O(log n) O(1)⋆⋆

Merge O(1) O(n) O(log n) O(1)

⋆: amortized complexity; worst-case complexity is O(log n).
⋆⋆: amortized complexity; worst-case complexity is O(n).
⋆⋆⋆: can be brought down to O(1) with little extra effort.

Note: Attempts to get Insert, DeleteMin and DecreaseKey all down to O(1) are
doomed to fail. (At least as long as we allow only key comparisons.)
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6 Randomized Data Structures for Searching
Basics
Randomizing Binary Search Trees
Treaps
Skip Lists
Hashing
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6 Randomized Data Structures for Searching
Basics

Dictionary
Set
Searching
Balanced Binary Search Trees

Randomizing Binary Search Trees
Treaps
Skip Lists
Hashing

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 222/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Abstract Data Type: Dictionary

Dictionary (Dt.: Wörterbuch)

A dictionary is a collection ADT that focuses on data storage and retrieval; i.e., it is a
searchable structure.

Data is a key-value pair (KVP), a so-called item: (k , v).

Standard operations:
Insert item (k , v) into structure,
Retrieve data from structure, i.e., check whether it has an item with a given
key k and return the pair (k , v),
Delete item from structure.

In addition, a reassign replaces the value in one of the (k , v) pairs in the
structure. Also: Predecessor, successor, join . . .

Multiple entries with the same key may or may not be allowed. Unless stated
otherwise, we assume all keys to be distinct.

Related terms and synonyms: Key-value database, associative array, map.

Since the values of the key-value pairs of a dictionary are there only for a
piggyback ride, we simply omit the values in the figures and pseudo codes.
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Abstract Data Type: Set

Set (Dt.: Menge)

A set is a collection ADT that allows to store data items and focuses on efficient
membership tests.

Data items:
A data item is a key or key-value pair with trivial value.
The order of the data items does not matter (or is undefined),
Duplicate data items are not permitted.

Standard operations:
Insert item into structure,
Delete item from structure,
Test membership, i.e., check whether it has an item with a given key k .

Core set-theoretic operations for two sets S,T :
Union: Compute the union of S and T ,
Intersection: Compute the intersection of S and T ,
Difference: Compute the difference of S and T ,
Subset: Check whether S is a subset of T .

If duplicate items are allowed: multiset or bag.
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Complexity of Searching

Theorem 115

Comparison-based searching among n elements requires Ω(log n) comparisons in
the worst case.

Proof : Assume that we want to search for the item that has key k among the items
a1, a2, . . . , an. A decision tree T for solving this problem must contain at least n + 1
leaves:

One leaf for each ai , if k is the key of ai .
One additional leaf for “not found”.

Hence, the height of T is at least log(n + 1) ∈ Ω(log n).

We want O(log n) running time for dictionary operations, where n is the number
of items in the dictionary.

Worst case? Average case? Amortized? Special keys?

Huge number of results known! We can barely scratch the surface . . .
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Balanced Binary Search Trees

Definition 116 (Height, Dt.: Höhe)

The height of a rooted tree T is the maximum depth of nodes of T , with (by
convention) the root of T being at depth 0.

Definition 117 (Balanced tree, Dt.: balanzierter Baum)

A binary tree is (height-)balanced if it either has no proper subtrees or if
1 it has two proper subtrees and the heights of both subtrees differ by not more

than 1, or if
2 it has exactly one proper subtree of height 0,

and if
3 all proper subtrees are height-balanced.

Theorem 118

If T is a balanced binary tree with n nodes and height h then h ∈ Θ(log n).

If T remains balanced after insertions/deletions then it is called self-balancing.
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UNIVERSITÄT SALZBURG

Balanced Binary Search Trees: Node Trees and Leaf Trees

1 3 6 8

4 9

2 7

5

Node trees became the standard BST tree covered by textbooks because, in
most textbooks, the distinction between a value and its key is not made: the key
is the value.

In real applications, the space needed for the actual data associated with a key
often is substantially larger than the key itself.

In such a case the convenience of having only degree-two inner nodes and
having all values stored at leaves may well offset the costs of the space
consumed by storing additional inner nodes.
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UNIVERSITÄT SALZBURG

Balanced Binary Search Trees: Node Trees and Leaf Trees

1

1

2 3 4 5 6

7 8

1 3 5

7 9

8

2 6

4

3 6 8

4 9

2 7

5

Node trees became the standard BST tree covered by textbooks because, in
most textbooks, the distinction between a value and its key is not made: the key
is the value.

In real applications, the space needed for the actual data associated with a key
often is substantially larger than the key itself.

In such a case the convenience of having only degree-two inner nodes and
having all values stored at leaves may well offset the costs of the space
consumed by storing additional inner nodes.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 227/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Balanced Binary Search Trees: AVL Trees and Friends

[Adelson-Vel’skii&Landis (1962)]: First self-balancing binary search tree (BST).

Rotations to re-balance the tree after insertion or deletion.

Insertion, searching and deletion all take O(log n) time in both the average case
and the worst case, where n is the number of nodes in the tree.

AVL insertions require O(1) rotations, while deletions require O(log n) rotations
in the worst case. (But also O(1) on average.)

Height is at most 1
log ϕ

log n ≈ 1.440 log n ≈ 2.077 ln n, with ϕ := 1+
√

5
2 ≈ 1.618.

Red-black trees: Have a larger height of at most 2 log n, but tend to use fewer
rotations. Since AVL trees are more rigidly balanced than red-black trees, they
tend to have slower insertion and deletion but faster search.
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Balanced Binary Search Trees: AVL Trees and Friends

Insertion of 8 into sample AVL tree.
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Balanced Binary Search Trees: AVL Trees and Friends

Insertion of 8 into sample AVL tree. Rotation to re-balance.
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Insertion of 8 into sample AVL tree. Rotation to re-balance.
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Can we relax the balancing schemes?

Do we need the overhead caused by balancing BSTs? What could be modified?
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6 Randomized Data Structures for Searching
Basics
Randomizing Binary Search Trees

Randomly Built Binary Search Trees
Randomized Binary Search Trees

Treaps
Skip Lists
Hashing
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Randomly Built Binary Search Trees

Random BST

A randomly built binary search tree with n nodes is a binary search tree built by
inserting n items/keys in random order.

Of course, this is equivalent to computing a random permutation of the items —
where every permutation is equally likely! — and then inserting the items in that
order.

This is different from assuming that every binary search tree is equally likely to
occur: Different permutations may result in the same tree!

It depends on the application whether randomness can be assumed. Otherwise,
the resulting tree could be highly skewed.

What is this good for?

Well, if you insert 10 numbers in random order then the resulting tree will
degenerate to a list with probability 2/10! ≈ 5.511 · 10−7.

The more nodes, the less likely the tree is degenerate: It is non-degenerate with
high probability.
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UNIVERSITÄT SALZBURG

Randomly Built Binary Search Trees

Random BST

A randomly built binary search tree with n nodes is a binary search tree built by
inserting n items/keys in random order.

Of course, this is equivalent to computing a random permutation of the items —
where every permutation is equally likely! — and then inserting the items in that
order.

This is different from assuming that every binary search tree is equally likely to
occur: Different permutations may result in the same tree!

It depends on the application whether randomness can be assumed. Otherwise,
the resulting tree could be highly skewed.

What is this good for?

Well, if you insert 10 numbers in random order then the resulting tree will
degenerate to a list with probability 2/10! ≈ 5.511 · 10−7.

The more nodes, the less likely the tree is degenerate: It is non-degenerate with
high probability.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 231/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Randomly Built Binary Search Trees

Lemma 119

The expected time to randomly build a binary search tree with n nodes is O(n log n).

Hence, one can also sort in expected O(n log n) time by constructing a randomly
built binary search tree and then applying an inorder traversal.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 232/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Randomly Built Binary Search Trees

Lemma 119

The expected time to randomly build a binary search tree with n nodes is O(n log n).

Sketch of Proof : During the construction of a randomly built BST we perform the
same comparisons as a randomized QuickSort, but in a different order. Hence,
Theorem 85 is applicable and we also get an O(n log n) expected-time bound.

Hence, one can also sort in expected O(n log n) time by constructing a randomly
built binary search tree and then applying an inorder traversal.
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built binary search tree and then applying an inorder traversal.
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Hence, one can also sort in expected O(n log n) time by constructing a randomly
built binary search tree and then applying an inorder traversal.
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Hence, one can also sort in expected O(n log n) time by constructing a randomly
built binary search tree and then applying an inorder traversal.
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Hence, one can also sort in expected O(n log n) time by constructing a randomly
built binary search tree and then applying an inorder traversal.
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Hence, one can also sort in expected O(n log n) time by constructing a randomly
built binary search tree and then applying an inorder traversal.
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Hence, one can also sort in expected O(n log n) time by constructing a randomly
built binary search tree and then applying an inorder traversal.
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Hence, one can also sort in expected O(n log n) time by constructing a randomly
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Randomly Built Binary Search Trees: Node Depth

Lemma 120

The average node depth of a randomly built binary search tree is O(log n).

Proof : The depth of a node equals the number of comparisons made during the BST
construction. Since all permutations of the keys are equally likely, the average node
depth dn is given by

dn =
1
n
E

[
n∑

i=1

(# comparisons for node i)

]
=

1
n

O(n log n) = O(log n).

Even if the average depth of a node is Θ(log n), the height of its tree can still be
ω(log n).

Theorem 121 (Reed (2003))

A randomly built binary search tree with n nodes has an expected height of α ln n,
where α := 4.311. . . is the unique solution within [2,∞) of the equation α ln(2e/α) = 1.

Little is known if insertions and deletions are allowed. Deletions destroy
randomness [Knott (1975)]; experiments suggest O(

√
n) height.
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Randomized Binary Search Trees

[Martínez&Roura (1998)]: Randomized Binary Search Tree

A binary search tree T with n nodes is a randomized binary search tree (RBST) if
either n = 0 or if, for n > 0,

1 both its left subtree L and right subtree R are independent randomized binary
search trees,

2 Pr(L has i nodes) = 1
n for all 0 ≤ i ≤ n − 1.

The randomization implies that every item has the same probability of 1/n to be at
the root of the tree.

In an implementation: Pick a random integer k with 0 ≤ k ≤ n, where n is the
current number of nodes of T . If k = n then insert at the root of T ; otherwise
insert recursively into the proper subtree of T .

Theorem 122

The expected height of a randomized binary search tree with n nodes is O(log n).
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Randomized Binary Search Trees: Rotations

Simple left and right rotations are carried out in order to maintain the property of
being a BST.

A rotation decreases the depth of one node and increases the depth of another
node by one.

Rotations can be performed in O(1) time because they involve only simple
pointer manipulations.

A B

Cw

u

CB

A u

w

left rotation

right rotation
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Randomized Binary Search Trees: Sample Insertion at Root

1 Insert new key 6 into sample RBST: As in a standard BST, let key 6 trickle down
to appropriate leaf.

2 Move new leaf node that stores 6 upwards, thereby performing left and right
rotations:

20
8 28

3 10
5

7

25 30
1
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1 Insert new key 6 into sample RBST: As in a standard BST, let key 6 trickle down
to appropriate leaf.

2 Move new leaf node that stores 6 upwards, thereby performing left and right
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Randomized Binary Search Trees: Rotations

1 rotateRight(node u, bst T)
2 {
3 node w = u.lft;
4 w.parent = u.parent;
5 if (u != T.root) {
6 if (u.parent.lft == u) u.parent.lft = w;
7 else u.parent.rgt = w;
8 }
9 u.lft = w.rgt;

10 if (u.lft != NIL) u.lft.parent = u;
11 u.parent = w;
12 w.rgt = u;
13 if (u == T.root) T.root = w;

15 return;
16 }
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Randomized Binary Search Trees: Rotations

1 rotateLeft(node w, bst T)
2 {
3 node u = w.rgt;
4 u.parent = w.parent;
5 if (w != T.root) {
6 if (w.parent.lft == w) w.parent.lft = u;
7 else w.parent.rgt = u;
8 }
9 w.rgt = u.lft;

10 if (w.rgt != nil) w.rgt.parent = w;
11 w.parent = u;
12 u.lft = w;
13 if (w == T.root) T.root = u;

15 return;
16 }
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Randomized Binary Search Trees: Insertion

1 randomizedInsert(key x, bst T)
2 {
3 pick a random number, k, between 0 and T.size, inclusive;
4 if (k == T.size) {
5 insertAtRoot(x, T);
6 }
7 else {
8 if (x < T.key) T.lft = randomizedInsert(x, T.lft);
9 else T.rgt = randomizedInsert(x, T.rgt);

10 }
11 }

13 insertAtRoot(key x, bst T)
14 {
15 use standard BST algorithm to insert x as a leaf in T;

17 perform left/right rotations to move the node containing x
18 all the way up to the root of T;
19 }
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Randomized Binary Search Trees: Deletion

We make use of a join operation for two RBSTs L and R, where all keys in L are
assumed to be less than all keys in R:

Let nL be the size of L, and nR be the size of R.
Use root of L as root of the union tree with probability nL/nL+nR , and
recursively join right subtree of L with R.
Use root of R as root of the union tree with probability nR/nL+nR , and
recursively join L with left subtree of R.

Deletion:
Search and delete the node that contains the key sought.
Use join operation to join the two subtrees of that node.

Lemma 123

Tree is still random after deletion.

Theorem 124

The expected height of a randomized binary search tree with n nodes is O(log n).
Search, insertion, deletion and join all run in O(log n) expected time.
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UNIVERSITÄT SALZBURG

Randomized Binary Search Trees: Deletion

We make use of a join operation for two RBSTs L and R, where all keys in L are
assumed to be less than all keys in R:

Let nL be the size of L, and nR be the size of R.
Use root of L as root of the union tree with probability nL/nL+nR , and
recursively join right subtree of L with R.
Use root of R as root of the union tree with probability nR/nL+nR , and
recursively join L with left subtree of R.

Deletion:
Search and delete the node that contains the key sought.
Use join operation to join the two subtrees of that node.

Lemma 123

Tree is still random after deletion.

Theorem 124

The expected height of a randomized binary search tree with n nodes is O(log n).
Search, insertion, deletion and join all run in O(log n) expected time.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 240/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Randomized Binary Search Trees: Deletion

1 randomizedJoin(bst L, bst R)
2 {
3 pick a random number, k, between 1 and (L.size + R.size);
4 if (k <= L.size) {
5 T = L;
6 T.rgt = randomizedJoin(L.rgt, R);
7 }
8 else {
9 T = R;

10 T.lft = randomizedJoin(L, R.lft);
11 }
12 }

14 delete(key x, bst T)
15 {
16 search node N such that N.key equals x;
17 randomizedJoin(N.lft, N.rgt);
18 remove(N);
19 }
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6 Randomized Data Structures for Searching
Basics
Randomizing Binary Search Trees
Treaps

Definition
Operations
Random Priorities and Analysis

Skip Lists
Hashing
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Treaps

Treap [Vuillemin (1980)]

A treap is a binary tree in which every node stores a priority in addition to the
key-value pair

such that

it is a binary search tree on the keys,

it is a max-heap on the priorities, where greater number means higher priority.

All keys and priorities are assumed to be distinct.
Rediscovered and used as RBSTs by Aragon&Seidel (1989).

Lemma 125

The structure of a treap is completely determined by the search keys and priorities of
its nodes.

Sketch of Proof : We use induction. The base case is the treap with at most one
node. Since a treap is a heap, the node with highest priority must be at its root. Since
a treap is a BST, all nodes in its left subtree need to have keys less than the key of the
root, and all nodes in its right subtree need to have keys greater than the key of the
root. Since subtrees are treaps themselves, their structure is completely determined
by the inductive hypothesis.
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Treaps: Construction

In the figures we use letters for the search keys and integers for the priorities.

The proof of Lemma 125 suggests a way to construct a treap for a given set of
key-(value-)priority triples:

{(H,8), (O,4), (I,6), (T ,7), (G,3), (R,5), (A,1), (M,10), (L,2)}
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UNIVERSITÄT SALZBURG

Treaps: Construction

In the figures we use letters for the search keys and integers for the priorities.

The proof of Lemma 125 suggests a way to construct a treap for a given set of
key-(value-)priority triples:

H
8

M
10

{(G,3), (A,1)} {(I,6), (L,2)} {(O,4), (T ,7), (R,5)}

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 244/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Treaps: Construction

In the figures we use letters for the search keys and integers for the priorities.

The proof of Lemma 125 suggests a way to construct a treap for a given set of
key-(value-)priority triples:

T
7

A
1

G
3

H
8

I
6

L
2

O
4

R
5

M
10

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 244/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Treaps: Alternate Characterization

Alternate characterization of treaps, with proof by induction:
1 Sort nodes by priority.
2 Insert one node at a time into BST according to key.

Yet another geometric
characterization:

1 Regard key-priority pairs as
coordinates in R2.

2 Recursively split (portions of)
the plane by inserting
T-shaped boundaries.
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Treaps: Operations

Search:
Since a treap is a BST, we can apply the algorithm for searching in a BST.

Insertion:
We use the algorithm for insertion into a BST, thus creating a node z.
In order to repair the heap structure, we use rotations to “bubble” z upwards
as long as z has a greater priority than its parent.

Deletion:
Search the node z sought.
Use rotations to push z downwards until it becomes a leaf, thereby moving its
higher-priority child upwards. (Inverse rotations as for insertion!)

Split: Split treap T into two treaps T1,T2 such that all keys of T1 are less than some
given key x and all keys of T2 are greater than x .

Insert a dummy node with key x and priority +∞ into T .
This node will become the root of the new treap, and its subtrees form the two
treaps T1,T2 sought.

Lemma 126

The cost of each of these operations is proportional to the height of the treap.
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Treaps: Sample Insertion

Insertion of item with key S and priority 9:
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Treaps: Sample Insertion

Insertion of item with key S and priority 9: Create new leaf node at appropriate
place.
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Treaps: Sample Insertion

Insertion of item with key S and priority 9: Create new leaf node at appropriate
place. Left rotation to bubble up.
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Treaps: Sample Insertion

Insertion of item with key S and priority 9: Create new leaf node at appropriate
place. Left rotation to bubble up. Right rotation to bubble up.
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Treaps: Sample Deletion

Deletion of node with key S:
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Treaps: Sample Deletion

Deletion of node with key S: Left rotation to push node down.
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Treaps: Sample Deletion

Deletion of node with key S: Left rotation to push node down. Right rotation to
push down.
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Treaps: Sample Deletion

Deletion of node with key S: Left rotation to push node down. Right rotation to
push down. Deletion of node.

T
7

A
1

G
3

H
8

I
6

L
2

O
4

R
5

M
10

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 248/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Treaps: Operations

1 bubbleUp(node z, treap T)
2 {
3 while ((z.parent != NIL) && (z.parent.p > z.p)) {
4 node u = z.parent;
5 if (z.parent.rgt == z) rotateLeft(z.parent, T);
6 else rotateRight(z.parent, T);
7 z = u;
8 }
9 if (z.parent == NIL) T.root = z;

11 return;
12 }
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Treaps: Randomization

Randomized Treap

A randomized treap is a treap in which the priorities are independently and uniformly
distributed continuous random variables.

Typically, the term “treap” has come to mean almost exclusively “randomized
treap”, and it is common to drop the word “randomized”.
When inserting a new key-value pair we generate a random real number
between, e.g., 0 and 1, and use that number as the priority of the new node.
By using reals as priorities we ensure that the probability of two nodes having
equal priority is zero. In practice, choosing a random integer from a large range
or a random floating-point number is good enough.
Since the priorities are independent, each node is equally likely to have the
largest priority and, thus, to be at the root of the treap.
Hence, a (randomized) treap is a randomized binary search tree! Lemma 126
implies the following main result. (A formal proof is very similar to RBSTs.)

Theorem 127

The expected height of a treap with n nodes is O(log n). Search, insertion, deletion
and split all run in O(log n) expected time. The expected number of rotations done
during an insertion/deletion is only O(1).
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A randomized treap is a treap in which the priorities are independently and uniformly
distributed continuous random variables.

Typically, the term “treap” has come to mean almost exclusively “randomized
treap”, and it is common to drop the word “randomized”.
When inserting a new key-value pair we generate a random real number
between, e.g., 0 and 1, and use that number as the priority of the new node.
By using reals as priorities we ensure that the probability of two nodes having
equal priority is zero. In practice, choosing a random integer from a large range
or a random floating-point number is good enough.

Since the priorities are independent, each node is equally likely to have the
largest priority and, thus, to be at the root of the treap.
Hence, a (randomized) treap is a randomized binary search tree! Lemma 126
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6 Randomized Data Structures for Searching
Basics
Randomizing Binary Search Trees
Treaps
Skip Lists

Perfect Skip Lists
Probabilistic Skip Lists
Analysis
Implementational Issues

Hashing
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Sorted Linked List

Pros

Truly simple dynamic data structure that is easy to implement.

No need for an a-priory estimate of the number of elements to be stored.

Easy to insert or delete in O(1) time if position is known.

Cons

Difficult to get to the middle of the list; binary search does not work.

Search in o(n) expected time is difficult even if all elements are distinct.

Searching a sorted listed requires Ω(n) time if multiple elements may have the
same key.

Goal: Combine the appealing simplicity of sorted lists with a good expected-time
behavior!
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Perfect Skip Lists

Idea: Add a second list L1 containing only every second item. Then we need at
most

⌈ 1
2 n
⌉

comparisons on L1 and, with proper links into the first list L0, one
additional comparison on L0 to carry out a search.

If k nested lists are used: At most
⌈ 1

2k−1 n
⌉

comparisons on the k -th list Lk−1, plus
one additional comparison in each of the lists L0, L1, . . . , Lk−2.

This will get us O(log n) search time for k := O(log n).

Header and sentinel nodes are in every level.

Nodes are of variable size: Contain between 1 and O(log n) pointers.

The number of pointers does not change after an insertion; can use array to store
the pointers.

3 7 15 18 30 45 47 50 64 66 70L0
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Perfect Skip Lists: Search

To search for an item given a query key, we start on the list at the top level.

In the current list we move towards the sentinel until the key of the next item will
be greater than the query key.

Then we go down and repeat the procedure, until we are in the bottom list L0.

In the bottom list L0 we either find the item queried, or no such item exists.

When searching for k :
If k = next .k : done!
If k > next .k : go right. Stop at sentinel.
If k < next .k : go down one level from Li to Li−1. Stop at L0.

O(log n) levels, and will visit at most 2 nodes per level: O(log n) search time.

3 7 15 18 30 45 47 50 64 66−∞ +∞70L0

L1

L2

L3

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 254/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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L2
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Perfect Skip Lists: Search

The following sample code for a search in a skip list assumes the existence of a
sentinel key that is guaranteed to be greater than any search key.

1 searchSkipList(key x, skiplist T)
2 {
3 Node u = T.header;
4 int h = T.height;
5 while (h >= 0) {
6 while (u.next[h].key < x) /* assumes sentinel */

7 u = u.next[h];
8 --h;
9 }

11 return u;
12 }
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Skip Lists

Maintaining perfect skip lists after insertions and deletions may require
re-arranging the entire structure . . .

Goal: Design a hierarchical structure of singly-linked lists such that we can
expect about 1/2 the items at the next higher level.

[Pugh (1989)]: Probabilistic skip lists refine the idea of using a linked hierarchy of
sublists by dropping the constraint that lists jump a number of items that equals a
power of two.

Skip lists achieve expected O(log n) complexity for search, insert and delete
operations.

Skip lists are “better trees”, but remain about as easy to implement as standard
sorted linked lists.

“Skip lists are a probabilistic data structure that seem likely to supplant bal-
anced trees as the implementation method of choice for many applications.
Skip list algorithms have the same asymptotic expected time bounds as bal-
anced trees and are simpler, faster and use less space.” [Pugh (1989)]

Actual timings for the same sequence of operations may vary depending on the
random choices made by the data structure.
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Skip Lists: Insertion and Removal

Allow for some imbalance. Still, the expected behavior (over the random choices)
shall remain the same as with perfect skip lists.

Insertion:
Insert item into full list L0, i.e., at the lowest level 0.
Promote it to the next higher level with (independent) probability p.

Common choices for p are 1/2 and 1/4.

Choice of p allows a trade-off between space complexity and query speed.

We focus on p = 1/2: Then the highest level of a newly inserted item can be
determined by repeatedly flipping a coin until the coin comes up heads.

Level structure of a skip list is independent of the keys inserted. The expectation
is over the random coin flips. Hence, there are no “bad” key sequences that
might cause a skip list to degenerate.

Deletion: Search and then remove item from structure.

With some very small probability, the skip list will just be a linked list, or the skip
list will have every node at every level.

Note: Parallel insertions or deletions are relatively easy to support!
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Skip Lists: Analysis

The height of a skip list is the number of its levels, with the bottom-most list L0 at
level 0.

Lemma 128

The expected number of times a fair coin is tossed up to and including the first time
the coin comes up heads is 2.

Proof : Let T denote this random variable and define an indicator random variable Ii
as Ii := 1 if the coin ends up being tossed i or more times, and Ii := 0 otherwise. We
have

E(Ii) = Pr(Ii = 1) =
1

2i−1 and T =
∞∑
i=1

Ii .

This gives

E(T ) = E(
∞∑
i=1

Ii) =
∞∑
i=1

E(Ii) =
∞∑
i=1

1
2i−1 =

∞∑
i=0

1
2i = 2.

Hence, the expected number of levels for a newly inserted item is 2!
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Skip Lists: Analysis

Lemma 129

Suppose that we use constant-size nodes, with one node per level if an item is stored
in that level. Then the expected number of nodes in a skip list storing n items is 2n if
we disregard header and sentinel nodes.

Proof : The probability of an item to be included in list Li is 1/2i . Therefore the
expected number of nodes in Li is n/2i and we get

∞∑
i=0

n
2i = n

∞∑
i=0

1
2i = 2n

as the total expected number of nodes.

Hence, linear storage can be expected to suffice for storing a skip list.
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Skip Lists: Analysis

Lemma 130

The expected height of a skip list storing n items is at most log n + 2.

Lemma 131

The expected length of a search path in a skip list storing n items is 2 log n + 2.

Theorem 132

A skip list storing n items has expected size O(n) and supports search, insertion and
deletion in expected time O(log n).
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Skip Lists: Indexable Lists

We can count the number of edges in a search path, in order to gain access to
the j-th item stored in the skip list:

length of edge in L0 is 1,
length of edge in Li is the sum of the lengths of the edges in Li−1 below it.

To get to the j-th node we
go right if the sum of the edge lengths so far plus the length of the next edge
is less than j ,
go down otherwise.

This makes it easy to get the j-th item in the sorted list in O(log n) time, and to
set/modify its value. Within the limits imposed by the fact the sequence has to
remain sorted, we can even modify its key.
Faster get/set than linked list; faster add/delete than array-based list.
Sample application: Computation of so-called running median on a stream of
data.

3 7 15 18 30 45 47 50 64 66−∞ +∞70L0

L1

L2

L3
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4 4 4
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UNIVERSITÄT SALZBURG

Skip Lists: Indexable Lists

We can count the number of edges in a search path, in order to gain access to
the j-th item stored in the skip list:

length of edge in L0 is 1,
length of edge in Li is the sum of the lengths of the edges in Li−1 below it.

To get to the j-th node we
go right if the sum of the edge lengths so far plus the length of the next edge
is less than j ,
go down otherwise.

This makes it easy to get the j-th item in the sorted list in O(log n) time, and to
set/modify its value. Within the limits imposed by the fact the sequence has to
remain sorted, we can even modify its key.
Faster get/set than linked list; faster add/delete than array-based list.

Sample application: Computation of so-called running median on a stream of
data.

3 7 15 18 30 45 47 50 64 66−∞ +∞70L0

L1

L2

L3

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2

8
4 4 4

4

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 261/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Skip Lists: Implementational Issues

Insertion: To insert item k with key x we
pick a height h for k by flipping coins,
create a node for k with space for h next pointers,
follow the search path for x downwards: if i ≤ h then we insert k into Li by
straightforward splitting and splicing.

Deletion: To delete item k with key x we
follow the search path for x downwards: when the node containing k is
immediately to the right then we splice out that node.
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Skip Lists: Implementational Issues

1 insertProbabilisticSkipList(key x, skiplist T)
2 {
3 Node u = T.header;
4 int h = T.height;
5 int hx = result of coin flips;
6 Node v = CreateNode(x, hx);
7 while (h >= 0) {
8 while (u.next[h].key < x) /* assumes sentinel */

9 u = u.next[h];
10 if (h <= hx) {
11 v.next[h] = u.next[h];
12 u.next[h] = v;
13 }
14 --h;
15 }
16 ++T.counter_of_nodes;
17 return v;
18 }
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Skip Lists: Implementational Issues

1 deleteProbabilisticSkipList(key x, skiplist T)
2 {
3 Node u = T.header;
4 int h = T.height;
5 boolean removed = false;
6 Node v = CreateNode(x, hx);
7 while (h >= 0) {
8 while (u.next[h].key < x) /* assumes sentinel */

9 u = u.next[h];
10 if (u.next[h].key == x) {
11 removed = true;
12 u.prev[h].next[h] = u.next[h]; /* can avoid prev */

13 }
14 --h;
15 }
16 if (removed) --T.counter_of_nodes;
17 return removed;
18 }
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6 Randomized Data Structures for Searching
Basics
Randomizing Binary Search Trees
Treaps
Skip Lists
Hashing

Basics of Hashing
Separate Chaining
Hash Functions
Universal Hashing
Perfect Hashing
Cuckoo Hashing
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Direct Addressing

Can we realize a data structure for maintaining dynamic sets that supports insert,
retrieve and delete operations in O(1) time?

Suppose that every key-value pair has a key drawn from the universe
U := {0, 1, . . . , n − 1}, for some n ∈ N. (I.e., U = Zn.)

In order to represent a dynamic set S of KVPs we could use a direct-address
table of size n, denoted by T [0, 1, . . . , n − 1]:

If S contains the
key-value pair (k , v) then
we store a pointer to v in
T [k ], and NIL otherwise.
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If S contains the
key-value pair (k , v) then
we store a pointer to v in
T [k ], and NIL otherwise.
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Direct Addressing

Direct Addressing: The standard dictionary operations insert, retrieve and delete
are trivial to implement, provided that all key-value pairs have distinct keys.

Each operation runs in O(1) time.

Obvious drawbacks:
If |U| is large then it may be impractical or even impossible to store a table of
size |U|.
If |S| ≪ |U|, then allocating a table of size |U| is a waste of memory.
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Can we trade O(1)
worst-case complexity for
O(1) average-case
complexity and reduce
the memory requirement
to Θ(|S|)?
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Basics of Hashing

Hash function, Dt.: Streuwertfunktion

A hash function, h : U → Zm, maps a key k of the universe U to the slot (aka bucket)
h(k) of the hash table T [0, 1, . . . ,m − 1], for m ∈ N.

We say that k hashes to h(k), and h(k) is the hash value of k .

Pick appropriate m and use hash function that can be evaluated in constant time.
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Basics of Hashing

Hashing

A hash function, h : U → Zm, maps a key k of the universe U to the slot (aka bucket)
h(k) of the hash table T [0, 1, . . . ,m − 1], for m ∈ N.

If m < |S| then the pigeonhole principle implies that at least two keys will hash to
the same slot, for any hash function h. Could happen also for m ≥ |S|!

Such a situation is called a collision, which we need to resolve.
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Standard methods for
resolving collisions:

Chaining: Use a list for
T [h(k)].

Open addressing: Allow
alternate slots instead of
h(k). Lazy deletion;
insertion is Θ(1) only on
average.
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Resolving Collisions: Separate Chaining

Chaining: Rather than letting h(k) point to a single memory cell that stores v , we
let it point to a list which contains all KVPs whose keys hash to the same slot.

Dt.: Hashing mit Verkettung.
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UNIVERSITÄT SALZBURG

Resolving Collisions: Separate Chaining

Chaining: Rather than letting h(k) point to a single memory cell that stores v , we
let it point to a list which contains all KVPs whose keys hash to the same slot.

Dt.: Hashing mit Verkettung.

2 5
8

1

3

46

7

0

U

S

h

1
2
3
4
5

0 8 v8

5 v5

T

2 v2 4 v4

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 270/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Resolving Collisions: Separate Chaining

Chaining: Rather than letting h(k) point to a single memory cell that stores v , we
let it point to a list which contains all KVPs whose keys hash to the same slot.

Then insertion maintains its O(1) worst-case complexity (if we may assume that
the KVP to be inserted is not yet present in the hash table).

The complexity of retrieving a KVP depends on the (maximum) length of a list.

Worst-case complexity of retrieval: Θ(n) if n KVPs have been stored in the table
in a single list.

An actual deletion of a KVP (upon its prior location) can be done in O(1) time (if
doubly-linked lists are used).

Denote the length of the list referenced by T [i] by ni . We have

n0 + n1 + · · ·+ nm−1 = n.

Can we say anything on E(ni) and, thus, on the expected complexity of a search?
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UNIVERSITÄT SALZBURG

Resolving Collisions: Separate Chaining

Definition 133 (Load factor)

Let a hash table T store n KVPs in a total of m slots. The load factor α of T is defined
as

α :=
n
m
.

Uniform hashing

A key k is equally likely to hash into any of the m slots, independently of where any
other key has hashed to.

Hence, with uniform hashing we have

Pr
(
h(k) = i

)
=

1
m

for all i ∈ {0, 1, . . . ,m − 1} and all k ∈ U,

and

E(ni) =
n−1∑
j=0

1 · Pr
(
h(kj) = i

)
=

n−1∑
j=0

1
m

=
n
m

= α.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 272/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Resolving Collisions: Separate Chaining

Lemma 134

If uniform hashing is used and collisions are resolved by chaining then an
unsuccessful search runs in expected time Θ(1 + α).

Proof : Any new key k is equally likely to hash to any of the m slots. The expected
time to search unsuccessfully for k in the list of T [h(k)] is the time needed to search
the list to its end, which has expected length α.

The situation for a successful search is slightly different because each list is not
equally likely to be searched: If all stored KVPs are assumed to be equally likely
to be retrieved then the probability that a list is searched is proportional to the
number of KVPs which it contains.
Still, one can prove that a successful search can be expected to involve
1 + α

2 − α
2n items.

Theorem 135

If uniform hashing is used and collisions are resolved by chaining then any search
runs in expected time Θ(1 + α).

Obvious goal: Ensure that α = O(1). E.g., ensure α ≤ 2.
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UNIVERSITÄT SALZBURG

Resolving Collisions: Separate Chaining

Lemma 134

If uniform hashing is used and collisions are resolved by chaining then an
unsuccessful search runs in expected time Θ(1 + α).

Proof : Any new key k is equally likely to hash to any of the m slots. The expected
time to search unsuccessfully for k in the list of T [h(k)] is the time needed to search
the list to its end, which has expected length α.

The situation for a successful search is slightly different because each list is not
equally likely to be searched: If all stored KVPs are assumed to be equally likely
to be retrieved then the probability that a list is searched is proportional to the
number of KVPs which it contains.
Still, one can prove that a successful search can be expected to involve
1 + α

2 − α
2n items.

Theorem 135

If uniform hashing is used and collisions are resolved by chaining then any search
runs in expected time Θ(1 + α).

Obvious goal: Ensure that α = O(1). E.g., ensure α ≤ 2.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 273/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Re-Hashing

Assume that repeated insertions caused the load factor α to get too big.

Then it is common to double m, thus getting a new m⋆ ≈ 2m as new size of the
hash table, implying a new load factor α⋆ ≈ 1

2α:

Find a new hash function h⋆ : U → Zm⋆ .
Re-hash: Insert each KVP from old hash table into new hash table.

Same as for dynamic arrays, this adds O(m⋆ + n) time to one particular insertion,
but happens rarely: It adds O(1) amortized time to insertion.

Re-hashing ensures that α ∈ O(1).

Theorem 136

If uniform hashing — with re-hashing as outlined above — is used and collisions are
resolved by chaining then insertion, retrieval and deletion run in expected amortized
time O(1).

But worst-case time is Θ(n) for a hash table with n KVPs!
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UNIVERSITÄT SALZBURG

Re-Hashing

Assume that repeated insertions caused the load factor α to get too big.

Then it is common to double m, thus getting a new m⋆ ≈ 2m as new size of the
hash table, implying a new load factor α⋆ ≈ 1

2α:
Find a new hash function h⋆ : U → Zm⋆ .
Re-hash: Insert each KVP from old hash table into new hash table.

Same as for dynamic arrays, this adds O(m⋆ + n) time to one particular insertion,
but happens rarely: It adds O(1) amortized time to insertion.

Re-hashing ensures that α ∈ O(1).

Theorem 136

If uniform hashing — with re-hashing as outlined above — is used and collisions are
resolved by chaining then insertion, retrieval and deletion run in expected amortized
time O(1).

But worst-case time is Θ(n) for a hash table with n KVPs!

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 274/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Choosing a “Good” Hash Function

The analysis of hashing based on separate chaining relies on the assumption
that the hash function satisfies the condition of uniform hashing.

If the keys are random real numbers distributed independently and uniformly in
the range [0, 1[ then

h(k) := ⌊k · m⌋

satisfies the condition of uniform hashing.

However, in general this assumption is difficult to support in practice:
We will rarely know the probability distribution from which the keys are
drawn.
Worse, the keys might not be drawn independently.

Hence, heuristics are employed that tend to work well in practice.
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UNIVERSITÄT SALZBURG

Choosing a “Good” Hash Function: Modular Hashing

Modular hashing

h(k) := k mod m.

Aka: Division method.

We need to choose m carefully!

If m is a power of 2, say m := 2p, then h(k) would amount to the p lowest-order
bits of k .

This is a very poor choice for h unless we were guaranteed that all low-order p-bit
patterns of the keys are equally likely.

Similarly, if m := 2p − 1 and k is a character string interpreted in radix 2p, then
permuting the characters of k would not result in a different hash value: We have

a · (2p)i + b · (2p)j ≡m a · (1)i + b · (1)j = a + b ≡m a · (2p)j + b · (2p)i .

Prime numbers not too close to a power of 2 (or power of 10) work well in
practice as a choice for m.
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Choosing a “Good” Hash Function: Multiplication Method

Multiplication method

Let x ∈ R with 0 < x < 1. Then

h(k) := ⌊m · (x · k mod 1)⌋,

where x · k mod 1 := x · k − ⌊x · k⌋, i.e., x · k mod 1 is the fractional part of x · k .

This is a generalization of modular hashing: If x := 1
m then

h(k) =
⌊

m
((

1
m

· k
)

mod 1
)⌋

=

⌊
m
(k mod m)

m

⌋
= k mod m.

[Knuth, TAoCP Vol. 3 (1973)]: Supposedly x :=
√

5−1
2 works well (“Fibonacci

hash”).

The multiplication method tends to yield hashes with decent “randomness” for the
same reason why linear congruential generators work.

The choice of m is not so critical, and there seems to be some disagreement on
what is best.
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UNIVERSITÄT SALZBURG

Choosing a “Good” Hash Function: Multiplication Method

Multiplication method

Let x ∈ R with 0 < x < 1. Then

h(k) := ⌊m · (x · k mod 1)⌋,

where x · k mod 1 := x · k − ⌊x · k⌋, i.e., x · k mod 1 is the fractional part of x · k .

This is a generalization of modular hashing: If x := 1
m then

h(k) =
⌊

m
((

1
m

· k
)

mod 1
)⌋

=

⌊
m
(k mod m)

m

⌋
= k mod m.

[Knuth, TAoCP Vol. 3 (1973)]: Supposedly x :=
√

5−1
2 works well (“Fibonacci

hash”).

The multiplication method tends to yield hashes with decent “randomness” for the
same reason why linear congruential generators work.

The choice of m is not so critical, and there seems to be some disagreement on
what is best.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 277/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Universal Hashing

For some fixed hash function, a malicious adversary can always choose n keys
which all hash to the same slot, yielding an average retrieval time of Θ(n).

Universal hashing, Dt.: Universelles Hashing

The hash function is chosen randomly (from a diligently designed class of hash
functions) in a way which is independent of the keys that will be stored.

Pro: As for randomized quicksort, randomization guarantees that no sequence of
inputs/operations will always result in a worst-case performance.
Con: Universal hashing may (and, likely, will) behave differently for each
execution, even when supplied with the same sequence of inputs/operations.

Definition 137 (Universal collection of hash functions)

Let m ∈ N and H be a finite collection of hash functions that map a universe U of keys
to {0, 1, . . . ,m − 1}. This collection of hash functions is universal if

|{h ∈ H : h(k) = h(i)}| ≤ |H|
m

for each pair of distinct keys k , i ∈ U.
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UNIVERSITÄT SALZBURG

Universal Hashing

For some fixed hash function, a malicious adversary can always choose n keys
which all hash to the same slot, yielding an average retrieval time of Θ(n).

Universal hashing, Dt.: Universelles Hashing

The hash function is chosen randomly (from a diligently designed class of hash
functions) in a way which is independent of the keys that will be stored.

Pro: As for randomized quicksort, randomization guarantees that no sequence of
inputs/operations will always result in a worst-case performance.
Con: Universal hashing may (and, likely, will) behave differently for each
execution, even when supplied with the same sequence of inputs/operations.

Definition 137 (Universal collection of hash functions)

Let m ∈ N and H be a finite collection of hash functions that map a universe U of keys
to {0, 1, . . . ,m − 1}. This collection of hash functions is universal if

|{h ∈ H : h(k) = h(i)}| ≤ |H|
m

for each pair of distinct keys k , i ∈ U.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 278/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Universal Hashing

Lemma 138

Let m ∈ N and H be a universal collection of hash functions. Consider a pair of
distinct keys k , i ∈ U and pick a hash function h randomly from H. Then

Pr(h(k) = h(i)) ≤ 1
m
.

Proof : There are at most |H|
m hash functions with h(k) = h(i), out of a total of |H|

hash functions.

Hence, the probability of a collision is exactly the same as when choosing h(k)
and h(i) randomly and independently from Zm.

We will now analyze the expected complexity of universal hashing that uses
separate chaining to resolve collisions.

Note: The expectations will be over the choice of the hash function! No
assumption is made about the distribution of the keys.
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UNIVERSITÄT SALZBURG

Universal Hashing

Lemma 138

Let m ∈ N and H be a universal collection of hash functions. Consider a pair of
distinct keys k , i ∈ U and pick a hash function h randomly from H. Then

Pr(h(k) = h(i)) ≤ 1
m
.

Proof : There are at most |H|
m hash functions with h(k) = h(i), out of a total of |H|

hash functions.

Hence, the probability of a collision is exactly the same as when choosing h(k)
and h(i) randomly and independently from Zm.

We will now analyze the expected complexity of universal hashing that uses
separate chaining to resolve collisions.

Note: The expectations will be over the choice of the hash function! No
assumption is made about the distribution of the keys.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 279/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Universal Hashing

Theorem 139

Let m ∈ N and H be a universal collection of hash functions. Pick a hash function h
randomly from H and suppose that it has been used to hash n keys into a hash table
T of size m, with separate chaining used to resolve collisions.

If the key k is not in T then

E(nh(k)) ≤ α.

If the key k is in T then

E(nh(k)) ≤ 1 + α.
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Universal Hashing

Theorem 140

Let T be an initially empty hash table with m slots, with separate chaining used to
resolve collisions. If universal hashing is used then any sequence of N insert, retrieve
and delete operations that contains O(m) insert operations runs in Θ(N) expected
time.

Proof : Since we have O(m) inserts among a total of N operations, we get n = O(m)
and, thus, α = O(1). Then Theorem 139 tells us that one search runs in expected
time O(1). Same for one insert or one delete (once position is known).
By linearity of expectation, the expected time of the entire sequence is O(N) and,
thus, also Θ(N).
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Universal Hashing

Let p ∈ P be a prime number large enough such that U ⊆ Zp and such that
p > m.

Definition 141

For a ∈ Z+
p and b ∈ Zp, we define the hash function ha,b,p,m : Zp → Zm as follows:

ha,b,p,m(k) := ((a · k + b) mod p) mod m.

Then

Hp,m := {ha,b,p,m : a ∈ Z+
p , b ∈ Zp}.

We have |Hp,m| = (p − 1) · p.

Theorem 142 (Carter&Wegman (1979))

The class Hp,m is a universal collection of hash functions.
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UNIVERSITÄT SALZBURG

Universal Hashing

Let p ∈ P be a prime number large enough such that U ⊆ Zp and such that
p > m.

Definition 141

For a ∈ Z+
p and b ∈ Zp, we define the hash function ha,b,p,m : Zp → Zm as follows:

ha,b,p,m(k) := ((a · k + b) mod p) mod m.

Then

Hp,m := {ha,b,p,m : a ∈ Z+
p , b ∈ Zp}.

We have |Hp,m| = (p − 1) · p.

Theorem 142 (Carter&Wegman (1979))

The class Hp,m is a universal collection of hash functions.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 282/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Choosing a “Good” Hash Function: Strings as Keys

Most hash functions assume that all keys belong to N0.

Standard way to map a character string s to an integer: Interpret the string as an
integer expressed in a suitable radix notation.

E.g., since p ∼ 112, t ∼ 116 and r ∼ 114 in the 7-bit ASCII code, we can regard
the string s := ptr as the triple (112, 116, 114).

Expressed as a radix-R integer, with radix R := 128 (or radix R := 256), we get
the mapping

f (s) = 1282 · 112 + 128 · 116 + 114 = 1849970.

Now use f (s) as argument for the hash function.

Note: f (s) can be truly huge! Hence, apply modulo computations early and do
not compute the powers of the radix explicitly.

f (s) = 128 · (128 · 112 + 116) + 114 = 1849970.
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Choosing a “Good” Hash Function: Strings as Keys

1 int StringModularHash(string S, // string in ASCII

2 int R, // radix

3 int M) // modulus

4 {
5 N = S.length - 1;
6 int h = S[N]; // modular hash of S

7 for (i = N-1; i >= 0; --i) {
8 h *= R;
9 h += S[i];

10 h = h mod M;
11 }

13 return h;
14 }
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UNIVERSITÄT SALZBURG

Perfect Hashing

Static set of keys: Assume that the set of keys does not change once stored in
the hash table. (E.g., consider the set of reserved words for a programming
language, or the names of streets of a map uploaded to a navigation system.)

Goal: Improve the excellent average-case performance of (universal) hashing to
an excellent worst-case performance.

Perfect Hashing [Fredman&Komlós&Szemerédi (1984)]

Perfect hashing is a two-level hash scheme, with universal hashing at each level. The
secondary hashing is injective, thus guaranteeing Θ(1) search time for a set of keys
known a priori.

Let p ∈ P be a prime number large enough such that U ⊆ Zp and p > m.

We hash n keys of U into m slots of T using universal hashing with open
chaining. This primary hash function belongs to Hp,m and is of the form

ha,b,p,m(k) := ((a · k + b) mod p) mod m,

with a ∈ Z+
p and b ∈ Zp.
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Perfect Hashing

Lemma 143

If we store n keys in a hash table of size m := n2 by using a hash function randomly
chosen from a universal collection of hash functions, then we get collisions with a
probability of less than 1

2 .

Hence, after trying a few randomly chosen hash functions, we will have found a
hash function that does not yield collisions with very high probability: The
probability that we have found a hash function without collisions after trying i
hash functions is at least 1 − 1

2i .

Let Y be the random variable that represents the number of hash functions that
need to be tried until no collision occurs. We have

E(Y ) =
∞∑
i=1

1 · Pr(Y ≥ i) ≤
∞∑
i=1

1
2i−1 =

∞∑
i=0

1
2i = 2.

Hence, we can expect that two random tries of hash functions suffice.

Still, it is obvious that a hash table of size n2 is excessively large . . ..
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Perfect Hashing

Still, it is obvious that a hash table of size n2 is excessively large.

For the primary hash table we use m := n, resulting in O(n) memory being
consumed by the primary hash table.

We apply this idea in a second round of hashing: The nj keys hashed to a slot j of
T are re-hashed by a secondary hash function into a secondary hash table Sj of
size mj := n2

j , using a hash function hj chosen from Hp,mj .

Of course, besides ensuring that no collisions occur in Sj , the overall space
complexity shall remain linear.

Lemma 144

We store n keys in the primary hash table T of size m := n, using a hash function
randomly chosen from a universal collection of hash functions. Let nj be the number
of keys hashed into slot j , and let mj := n2

j be the size of the secondary hash table Sj .
Then the expected amount of memory consumed by all secondary hash tables is less
than 2n.
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UNIVERSITÄT SALZBURG

Perfect Hashing

Still, it is obvious that a hash table of size n2 is excessively large.

For the primary hash table we use m := n, resulting in O(n) memory being
consumed by the primary hash table.

We apply this idea in a second round of hashing: The nj keys hashed to a slot j of
T are re-hashed by a secondary hash function into a secondary hash table Sj of
size mj := n2

j , using a hash function hj chosen from Hp,mj .

Of course, besides ensuring that no collisions occur in Sj , the overall space
complexity shall remain linear.

Lemma 144

We store n keys in the primary hash table T of size m := n, using a hash function
randomly chosen from a universal collection of hash functions. Let nj be the number
of keys hashed into slot j , and let mj := n2

j be the size of the secondary hash table Sj .
Then the expected amount of memory consumed by all secondary hash tables is less
than 2n.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 287/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Perfect Hashing

Theorem 145

Perfect hashing allows to store a fixed set of n keys in expected O(n) time and space
in a two-level hash table such that search queries can be answered in worst-case
O(1) time.

Dynamic perfect hashing: The hash function is updated whenever the set of keys
changes. Allowing updates makes the situation quite messy, though . . .

So, can we get something similarly good as perfect hashing but still allow
updates?
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Cuckoo Hashing

Cuckoo Hashing [Pagh&Rodler (2001)]

Cuckoo hashing is a variant of open addressing that uses two hash functions h1, h2

such that any key k is always either at slot h1(k) or at h2(k).

Hence, search and delete operations are trivial and run in O(1) worst-case time.

The two hash functions may address the same hash table or two different tables.

Theorem 146

Cuckoo hashing guarantees worst-case O(1) search and delete times. If the load
factor is kept less than 1

2 then an insert runs in expected O(1) time.

The bound on the expected time of insertion is rather tricky to prove. We sketch
only how insertions work.

Experiments suggest that cuckoo hashing is much faster than chaining for small
hash tables, and slightly worse than perfect hashing. But it is dynamic!

Variation: Use three or more hash functions to allow to increase the load factor.
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such that any key k is always either at slot h1(k) or at h2(k).

Hence, search and delete operations are trivial and run in O(1) worst-case time.

The two hash functions may address the same hash table or two different tables.

Theorem 146

Cuckoo hashing guarantees worst-case O(1) search and delete times. If the load
factor is kept less than 1

2 then an insert runs in expected O(1) time.

The bound on the expected time of insertion is rather tricky to prove. We sketch
only how insertions work.

Experiments suggest that cuckoo hashing is much faster than chaining for small
hash tables, and slightly worse than perfect hashing. But it is dynamic!

Variation: Use three or more hash functions to allow to increase the load factor.
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UNIVERSITÄT SALZBURG

Cuckoo Hashing

Cuckoo Hashing [Pagh&Rodler (2001)]

Cuckoo hashing is a variant of open addressing that uses two hash functions h1, h2

such that any key k is always either at slot h1(k) or at h2(k).

Hence, search and delete operations are trivial and run in O(1) worst-case time.

The two hash functions may address the same hash table or two different tables.

Theorem 146

Cuckoo hashing guarantees worst-case O(1) search and delete times. If the load
factor is kept less than 1

2 then an insert runs in expected O(1) time.

The bound on the expected time of insertion is rather tricky to prove. We sketch
only how insertions work.

Experiments suggest that cuckoo hashing is much faster than chaining for small
hash tables, and slightly worse than perfect hashing. But it is dynamic!

Variation: Use three or more hash functions to allow to increase the load factor.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 289/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Cuckoo Hashing: Insertion

If T [h1(k)] is empty, then insert k at T [h1(k)].

Else, if T [h2(k)] is empty then insert at T [h2(k)].

If both T [h1(k)] and T [h2(k)] are full then
1 “kick the key k1 stored at T [h1(k)] out of the nest”,
2 store k at T [h1(k)],
3 store k1 at T [h2(k1)]; if T [h2(k1)] is occupied by k2 then “kick k2 out of the

nest”, alternating between h1 and h2, etc.

To prevent a loop (or large number of iterations) we break after some number i
(that is logarithmic in m) of iterations and re-build the hash table with larger m.

0 1 2 3 4 5 6 7 8 9 10 11 12
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UNIVERSITÄT SALZBURG

7 Data Structures for Geometric Queries
Geometric Searching
kd-Tree
Range Tree
Quadtree
Geometric Hashing
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Introduction to Geometric Searching

Point-Inclusion Query: In which “object” or “cell” (of, e.g., a map) does a query point
lie?

Range Searching:
Report Query: Which points are within a query object (rectangle, circle)?
Count Query: Only the number of points within an object matters.

Another way to distinguish geometric searching queries:

Single-Shot Query: Only one query per data set.

Repetitive-Mode Query: Many queries per data set; preprocessing may make
sense.

The complexity of a query is determined relative to four cost measures:
query time,
preprocessing time,
memory consumption,
update time (in the case of dynamic data sets).
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Range Searching: Report Query

Problem: RANGESEARCHREPORT

Input: A set S of n points in Rk and a query (hyper-)rectangle R.

Report: Those m points of S which are within R.

General position assumed: No two points of S have the same coordinate value in
any dimension. (There are workarounds . . .)
Case k = 1: Then the rectangle R is an interval.

As preprocessing we sort the points and store them in an array. This needs
O(n log n) time.
A query is solved by a binary search which needs O(log n + m) time, where
m is the (output-sensitive) number of points returned.

Note, however, that an array-based solution is static and does not support
insertions or deletions of points.
Case k ≥ 2:

There is no obvious way to generalize a solution based on sorting to k ≥ 2
dimensions: The query time may be O(n) even if no points of S lie within R.
Still, the goal is to “extend” binary search to higher dimensions, ideally
allowing dynamic updates.
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Note, however, that an array-based solution is static and does not support
insertions or deletions of points.
Case k ≥ 2:

There is no obvious way to generalize a solution based on sorting to k ≥ 2
dimensions: The query time may be O(n) even if no points of S lie within R.
Still, the goal is to “extend” binary search to higher dimensions, ideally
allowing dynamic updates.
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7 Data Structures for Geometric Queries
Geometric Searching
kd-Tree
Range Tree
Quadtree
Geometric Hashing
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Range Searching: kd-Tree

For points p1, . . . , pn in R2 we build a kd-tree (“k -dimensional (binary search)
tree”) as preprocessing:

We start by finding the median pm of the points with respect to their
x-coordinates. (W.l.o.g.: “general position assumed!”)
The point pm becomes the root of the tree; it is labeled “vertical”.
We divide the plane by a vertical straight line through pm into two half-planes.

p1
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p8
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p9 p11

p10
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Range Searching: kd-Tree

For points p1, . . . , pn in R2 we build a kd-tree as the preprocessing:
Within each half-plane we find the medians with respect to the y -coordinates
of the respective points.
These two points are called “horizontal” nodes and become the left and the
right child of the root.

The recursive subdivision, alternating between x- and y -coordinates,
continues until all points form nodes of the tree.
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Range Search: kd-Tree Traversal

Suppose that a query rectangle R := [x1, x2]× [y1, y2] is given for
x1, x2, y1, y2 ∈ R with x1 ≤ x2 and y1 ≤ y2.
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Complexity of Range Searching Based on a kd-Tree

Theorem 147

Range searching based on a kd-tree in two dimensions needs O(n log n)
preprocessing time, with O(n) space complexity. A query can be carried out in
O(

√
n + m) time, where m is the number of nodes reported.

Sketch of Proof : We focus on the query complexity. Fix one supporting line ℓ of the
query rectangle. W.l.o.g., ℓ is vertical. Let Qx(n) be the maximum number of nodes of
the kd-tree which are discriminated relative to ℓ if the root of the kd-tree is split
according to x-coordinate. Similarly for Qy (n). We get for ℓ being vertical:

Qx(n) = 1 + Qy
(n

2

)
and Qy (n) = 1 + 2Qx

(n
2

)
.

Induction allows to show

Qx(n) = 2 + 2Qx
(n

4

)
.

The Master Theorem 32 tells us that Qx ∈ O(
√

n) and, thus, also Qy ∈ O(
√

n). (One
could also prove directly Qx(n) ≤ 3

√
n − 2.) Hence, O(

√
n) nodes are discriminated

relative to the four supporting lines of the query rectangle.
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UNIVERSITÄT SALZBURG

Complexity of Range Searching Based on a kd-Tree

Theorem 147

Range searching based on a kd-tree in two dimensions needs O(n log n)
preprocessing time, with O(n) space complexity. A query can be carried out in
O(

√
n + m) time, where m is the number of nodes reported.

Sketch of Proof : We focus on the query complexity. Fix one supporting line ℓ of the
query rectangle. W.l.o.g., ℓ is vertical.

Let Qx(n) be the maximum number of nodes of
the kd-tree which are discriminated relative to ℓ if the root of the kd-tree is split
according to x-coordinate. Similarly for Qy (n). We get for ℓ being vertical:

Qx(n) = 1 + Qy
(n

2

)
and Qy (n) = 1 + 2Qx

(n
2

)
.

Induction allows to show

Qx(n) = 2 + 2Qx
(n

4

)
.

The Master Theorem 32 tells us that Qx ∈ O(
√

n) and, thus, also Qy ∈ O(
√

n). (One
could also prove directly Qx(n) ≤ 3

√
n − 2.) Hence, O(

√
n) nodes are discriminated

relative to the four supporting lines of the query rectangle.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 299/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Complexity of Range Searching Based on a kd-Tree

Theorem 147

Range searching based on a kd-tree in two dimensions needs O(n log n)
preprocessing time, with O(n) space complexity. A query can be carried out in
O(

√
n + m) time, where m is the number of nodes reported.

Sketch of Proof : We focus on the query complexity. Fix one supporting line ℓ of the
query rectangle. W.l.o.g., ℓ is vertical. Let Qx(n) be the maximum number of nodes of
the kd-tree which are discriminated relative to ℓ if the root of the kd-tree is split
according to x-coordinate. Similarly for Qy (n). We get for ℓ being vertical:

Qx(n) = 1 + Qy
(n

2

)
and Qy (n) = 1 + 2Qx

(n
2

)
.

Induction allows to show

Qx(n) = 2 + 2Qx
(n

4

)
.

The Master Theorem 32 tells us that Qx ∈ O(
√

n) and, thus, also Qy ∈ O(
√

n). (One
could also prove directly Qx(n) ≤ 3

√
n − 2.) Hence, O(

√
n) nodes are discriminated

relative to the four supporting lines of the query rectangle.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 299/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Complexity of Range Searching Based on a kd-Tree

The complexity of building a kd-tree does not change if no linear-time algorithm
for median finding is used but pre-sorting is carried out. (Actually, it makes the
implementation simpler.)

For a range search in Rk we split the space alternatingly by straight lines (k = 2),
planes (k = 3), or hyper-planes (for k ≥ 4).

Theorem 148

For a fixed dimension k ≥ 2, range searching in Rk based on a kd-tree needs
O(n log n) preprocessing time, with O(n) space complexity. A query can be carried
out in O(n1−1/k + m) time, where m is the number of nodes reported.

Note the curse of dimensionality for large values of k !

But kd-trees are a very versatile tool in low dimensions!
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Range Tree in One Dimension

We revisit range searching in one dimension:

Rather than sorting and storing the numbers in an array, we store them in a
(balanced) binary search tree.
We use a leaf tree as BST: Every node has either zero or two children and
only the leaves contain the data; every inner node stores the largest value of
its left subtree.

Such a BST on n items can be constructed in O(n log n).

x1

x2
x3

x4
x5

x6
x7

x8
x9

x10
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Range Tree in One Dimension

For a query interval [x ′, x ′′]

, we locate x ′ and x ′′ in the BST.

Consider the “split node” v where the two paths to x ′ and x ′′ diverge.

If the value stored in a node v ′ on the search path from v to the node located by
x ′ is less than or equal to x ′ then report all leaves in the right subtree of v ′.

Similarly for left subtrees in the right search path after v .

We get O(m + log n) as query time, where m is the number of items reported.

Updates are possible in O(log n) time per update.
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UNIVERSITÄT SALZBURG

Range Tree in One Dimension

For a query interval [x ′, x ′′], we locate x ′ and x ′′ in the BST.

Consider the “split node” v where the two paths to x ′ and x ′′ diverge.

If the value stored in a node v ′ on the search path from v to the node located by
x ′ is less than or equal to x ′ then report all leaves in the right subtree of v ′.

Similarly for left subtrees in the right search path after v .

We get O(m + log n) as query time, where m is the number of items reported.

Updates are possible in O(log n) time per update.

x1

x2
x3

x4
x5

x6
x7

x8
x9

x10

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10

x1 x3

x5 x7

x9x6

x2 x8

x4

v

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 303/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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x ′ is less than or equal to x ′ then report all leaves in the right subtree of v ′.
Similarly for left subtrees in the right search path after v .

We get O(m + log n) as query time, where m is the number of items reported.

Updates are possible in O(log n) time per update.
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Range Tree in Two Dimensions

Construct a one-dimensional range tree Tx relative to the
x-coordinates of the points.

For every inner node u of Tx , construct a range tree T u
y

relative to y -coordinates of the points associated with the
leaves of the subtree of Tx rooted at u.

The full two-dimensional range tree can be constructed
in O(n log2 n) time in total.
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Range Tree in Two Dimensions Refined

It is easy to to construct a BST of x1, x2, . . . , xn in O(n) time if x1 < x2 < . . . < xn.

Hence, in two dimensions we can proceed as follows:

1 Sort the n points according to (1) their x-coordinates and (2) their
y -coordinates.

2 Renumber the points according to their x-order: p1, p2, . . . , pn.
3 Make a root node v of a tree Tx for p⌊n/2⌋ and attach the range tree T v

y

(relative to y -coordinates) of p1, p2, . . . , pn to it.
4 Recursively generate two-dimensional range trees for p1, p2, . . . , p⌊n/2⌋ and

p⌊n/2⌋+1, . . . , pn, and make them the left subtree and right subtree of Tx at v .

We get O(n log n) for the construction of a range tree in two dimensions.

This implies an O(n log n) bound on the memory consumption. (And, indeed,
every leave of Tx shows up in O(log n) range trees relative to the y -coordinate.)

Lemma 149 (Bentley (1979))

Range queries among n points of R2 can be answered in O(m + log2 n) time. The
construction of the range tree takes O(n log n) time and space.
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Range Tree in Two Dimensions: Query

For a query rectangle R

, perform a query relative to
x-coordinates in Tx .

Containment in R is trivial to check for all nodes on the
search paths.

For the root w of a right (left, resp.) subtree of a node on
the search path, we perform a secondary search in T w

y .

This allows to identify the nodes within R as a union of
disjoint sets of nodes.
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Range Tree in Higher Dimensions

Theorem 150 (Bentley (1979))

For any fixed dimension k ≥ 2, range queries among n points of Rk can be answered
in O(m + logk n) time. The generation of the range tree takes O(n logk−1 n) time and
space.

Sketch of Proof : Generate a range tree for the first two dimensions in O(n log n) time
and space, and recursively generate O(log n) range trees for (k − 2)-dimensional
space.

Theorem 151 (Chazelle (1990))

The space complexity of a range tree in k ≥ 2 dimensions can be reduced to

O
(

n
(

log n
log log n

)k−1
)

, and a query can be answered in O(m + logk−1 n) time.

Range trees are an example for multi-layer search trees: multiple
one-dimensional trees are layered to answer multi-dimensional range queries.
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UNIVERSITÄT SALZBURG

Range Tree in Higher Dimensions

Theorem 150 (Bentley (1979))

For any fixed dimension k ≥ 2, range queries among n points of Rk can be answered
in O(m + logk n) time. The generation of the range tree takes O(n logk−1 n) time and
space.

Sketch of Proof : Generate a range tree for the first two dimensions in O(n log n) time
and space, and recursively generate O(log n) range trees for (k − 2)-dimensional
space.

Theorem 151 (Chazelle (1990))

The space complexity of a range tree in k ≥ 2 dimensions can be reduced to

O
(

n
(

log n
log log n

)k−1
)

, and a query can be answered in O(m + logk−1 n) time.

Range trees are an example for multi-layer search trees: multiple
one-dimensional trees are layered to answer multi-dimensional range queries.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 307/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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7 Data Structures for Geometric Queries
Geometric Searching
kd-Tree
Range Tree
Quadtree
Geometric Hashing
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Quadtree

Consider a bounding box of the points p1, . . . , pn in R2.

We subdivide the (rectangular) workspace recursively into four sub-rectangles
(“cells”) by bisecting it in both x and y .

The recursion stops when either a cell contains at most one point or a maximum
depth — i.e., minimum cell size — is reached.

p1

p9

p2 p3

p7

p4

p5

p8

p6
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UNIVERSITÄT SALZBURG

Quadtree

Consider a bounding box of the points p1, . . . , pn in R2. E.g., pick m1,m2 ∈ N0

and transfer the points such that they fit into the workspace [0, 2m1 ]× [0, 2m2 ].

We subdivide the (rectangular) workspace recursively into four sub-rectangles
(“cells”) by bisecting it in both x and y .

The recursion stops when either a cell contains at most one point or a maximum
depth — i.e., minimum cell size — is reached.

p1

p9

p2 p3

p7

p4

p5

p8

p6

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 309/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Quadtree

Range queries in such a (point or point-region) quadtree are very similar to
queries in a kd-tree.

Insertion and deletion of points are supported easily.

Quadtrees (Dt.: Quaternärbaum) are simple and easy to implement and tend to
be quite efficient in practice.

However, even just three points can result in a quadtree of huge height!

Higher dimensions: In Rd we split into 2d hyper-rectangles. When d = 3: octree.

Rarely used for d > 3 and impractical for large d .
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Quadtree

Range queries in such a (point or point-region) quadtree are very similar to
queries in a kd-tree.

Insertion and deletion of points are supported easily.

Quadtrees (Dt.: Quaternärbaum) are simple and easy to implement and tend to
be quite efficient in practice.

However, even just three points can result in a quadtree of huge height!

Higher dimensions: In Rd we split into 2d hyper-rectangles. When d = 3: octree.

Rarely used for d > 3 and impractical for large d .

Theorem 152

Consider a quadtree on the distinct points
p1, p2, . . . , pn such that every cell is either
empty or contains at most one point. Then
its height is in O(log∆), where

∆ :=
max1≤i<j≤n d(pi , pj)

min1≤i<j≤n d(pi , pj)
.
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Quadtree

Quadtrees and octrees are widely used for representing a shape approximately:
region quadtree and region octree.
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7 Data Structures for Geometric Queries
Geometric Searching
kd-Tree
Range Tree
Quadtree
Geometric Hashing
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Nearest Neighbor Search

Problem: NEARESTNEIGHBORSEARCH

Input: A set S of n points in the Euclidean plane.

Output: The point of S which is closest to a query point q, for a given point q.

We do already know that the worst-case complexity of
NEARESTNEIGHBORSEARCH for n points has an Ω(log n) lower bound.

Easy to solve in O(n) time per query.

A worst-case optimum O(log n) query is possible, after O(n log n) preprocessing,
based on tools of computational geometry.
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UNIVERSITÄT SALZBURG

Nearest Neighbor Search

Problem: NEARESTNEIGHBORSEARCH

Input: A set S of n points in the Euclidean plane.

Output: The point of S which is closest to a query point q, for a given point q.

We do already know that the worst-case complexity of
NEARESTNEIGHBORSEARCH for n points has an Ω(log n) lower bound.

Easy to solve in O(n) time per query.

A worst-case optimum O(log n) query is possible, after O(n log n) preprocessing,
based on tools of computational geometry.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 313/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Geometric Hashing: Regular Rectangular Grid

Let S := {p1, p2, . . . , pn}.

The bounding box of S (or of a larger region that contains S) is partitioned into
rectangular cells of uniform size by means of a regular grid.

For every cell c, all points of S that lie in c are stored in a list associated with c.

That is, the cells of the grid become the slots of the standard hash table, and the
hash function assigns a point p ∈ S to c if and only if p lies within c.

We can cover the entire plane by extending boundary cells to infinity.
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UNIVERSITÄT SALZBURG

Geometric Hashing: Regular Rectangular Grid

Let S := {p1, p2, . . . , pn}.

The bounding box of S (or of a larger region that contains S) is partitioned into
rectangular cells of uniform size by means of a regular grid.

For every cell c, all points of S that lie in c are stored in a list associated with c.

That is, the cells of the grid become the slots of the standard hash table, and the
hash function assigns a point p ∈ S to c if and only if p lies within c.

We can cover the entire plane by extending boundary cells to infinity.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 314/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Geometric Hashing and Nearest Neighbor Search

Determine the cell c in which the query point q lies.

By searching in c (and possibly in its neighboring cells, if c is empty), we find a
first candidate for the nearest neighbor.

Let δ be the distance from q to this point.

We continue searching in c and in those cells around c which are intersected by
a disk D with radius δ centered at q.

Whenever a point of S is found that is closer to q than δ, we reduce δ
appropriately.

The search stops once no unsearched cell exists that is intersected by the disk D.
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UNIVERSITÄT SALZBURG

Geometric Hashing and Nearest Neighbor Search

Determine the cell c in which the query point q lies.

By searching in c (and possibly in its neighboring cells, if c is empty), we find a
first candidate for the nearest neighbor.

Let δ be the distance from q to this point.

We continue searching in c and in those cells around c which are intersected by
a disk D with radius δ centered at q.

Whenever a point of S is found that is closer to q than δ, we reduce δ
appropriately.

The search stops once no unsearched cell exists that is intersected by the disk D.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 315/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Geometric Hashing: Grid Resolution

What is a suitable resolution of the grid?

There is no universally valid answer. In
any case, the grid should not use more than O(n) memory!

Personal experience

Grids of the form (w ·
√

n)× (h ·
√

n) seem to work nicely, with w · h = c for some
constant c.

The parameters w , h are chosen to adapt the resolution of the grid to the aspect
ratio of the bounding box of the points.

By experiment: 1 ≤ c ≤ 2.

This basic scheme can be tuned considerably:
Switch to multi-level hashing or to kd-trees if a small sample of the points
indicates that the points are distributed highly non-uniformly.
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Geometric Hashing and Range Searching

Geometric hashing can also be used to answer (generalized) range queries quite
efficiently.

E.g., one may need to report those points of S that lie within a query triangle.

Then it suffices to check those points of S which are stored in cells overlapped by
(the bounding box of) the triangle.
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8 Hard Problems and Approximation Algorithms
Intractability
P and NP
NP-Hard and NP-Complete
Proving NP-Completeness
Approximation Algorithms
Problems of Unknown Complexity
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Tractable vs. Intractable Problems

Definition 153 (Polynomially solvable, Dt.: in polynomialer Zeit lösbar)

A problem P is solvable in polynomial time if there exists a polynomial p such that a
solution for every instance of P can be obtained in time O(p), where the size of the
instance/input forms the argument of the polynomial.

Note: O(n), O(n log2 n), O(21000n3√n) and O(n1000) all are polynomial bounds.

A polynomial-time algorithm need not be practical: Even an O(n2) algorithm
might already be impractical on realistic sizes of problems!

Motivation for distinguishing between polynomial and non-polynomial problems:
If a problem is not solvable in polynomial time then there is absolutely no
hope for an efficient (exact) solution for all large inputs. Such problems are
considered intractable.
Polynomials have a nice closure property under standard operations: If p
and q are polynomials then p ⊙ q is a polynomial for most “standard”
operations ⊙.
If a problem of size n is solvable in time f (n) on one model of computation
then it is also solvable in time f (p(n)) on another model of computation, for
virtually all “natural” models of computation and suitable polynomials p.
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Sample Non-Polynomial Problem: Towers of Hanoi

Tower-of-Hanoi Problem (TOH): Given three pegs (labeled I,II,III) and a stack of n
disks arranged on Peg I from largest at the bottom to smallest at the top,

we are
to move all disks to Peg II such that only one disk is moved at a time and such
that no larger disk ever is placed on a smaller disk.
Attributed to Édouard Lucas [1883]. Supposedly based on an Indian legend
about Brahmin priests moving 64 disks in the Great Temple of Benares; once
they are finished, life on Earth will end.
Goal: Find an algorithm that uses the minimum number of moves.

I II III

One can prove: A (straightforward) recursive algorithm needs 2n − 1 moves.
One can also prove: Every(!) algorithm that solves ToH needs at least 2n − 1
moves.
Thus, the solution achieved by the recursive algorithm is optimal as far as the
number of moves is concerned: No polynomial-time solution exists!
[Buneman&Levy (1980)]: There exists a simple iterative solution that avoids an
exponential-sized stack!
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UNIVERSITÄT SALZBURG

Sample Non-Polynomial Problem: Towers of Hanoi

Tower-of-Hanoi Problem (TOH): Given three pegs (labeled I,II,III) and a stack of n
disks arranged on Peg I from largest at the bottom to smallest at the top, we are
to move all disks to Peg II such that only one disk is moved at a time and such
that no larger disk ever is placed on a smaller disk.
Attributed to Édouard Lucas [1883]. Supposedly based on an Indian legend
about Brahmin priests moving 64 disks in the Great Temple of Benares; once
they are finished, life on Earth will end.

Goal: Find an algorithm that uses the minimum number of moves.

I II IIII II III

One can prove: A (straightforward) recursive algorithm needs 2n − 1 moves.
One can also prove: Every(!) algorithm that solves ToH needs at least 2n − 1
moves.
Thus, the solution achieved by the recursive algorithm is optimal as far as the
number of moves is concerned: No polynomial-time solution exists!
[Buneman&Levy (1980)]: There exists a simple iterative solution that avoids an
exponential-sized stack!

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 321/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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8 Hard Problems and Approximation Algorithms
Intractability
P and NP

Problem Classes P and NP
Polynomial Reducibility

NP-Hard and NP-Complete
Proving NP-Completeness
Approximation Algorithms
Problems of Unknown Complexity
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P and NP

Definition 154 (Problem Class P)

The problem class P is the class of all decision problems that are solveable in
polynomial time by a deterministic algorithm.

Intuitively, the class NP is the class of those decision problems for which one
can verify on a deterministic computer in polynomial time whether or not an
alleged solution (“certificate”) is indeed a correct solution that allows the
algorithm to answer “yes”.

For instance, while it appears difficult to assign colors to nodes of a graph such
that the minimum amount of colors is used, it is easy to check (in polynomial
time) whether a suggested assignment of colors yields a proper coloring.
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UNIVERSITÄT SALZBURG

P and NP

Definition 154 (Problem Class P)

The problem class P is the class of all decision problems that are solveable in
polynomial time by a deterministic algorithm.

Intuitively, the class NP is the class of those decision problems for which one
can verify on a deterministic computer in polynomial time whether or not an
alleged solution (“certificate”) is indeed a correct solution that allows the
algorithm to answer “yes”.

For instance, while it appears difficult to assign colors to nodes of a graph such
that the minimum amount of colors is used, it is easy to check (in polynomial
time) whether a suggested assignment of colors yields a proper coloring.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 323/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

P and NP

Often, NP is informally described as the class of decision problems that can be
solved by a non-deterministic algorithm in polynomial time.

Roughly, a non-deterministic algorithm consists of a “guessing” phase and a
“verifying phase”.

1 Guessing: An arbitrary string s of characters is generated.
2 Verifying: A deterministic algorithm takes the input and the string s. It may

use or ignore s during its computation. Eventually, it returns the correct
answer “yes” or “no”, or it may get in an infinite loop and never halt.

The time consumed by a non-deterministic algorithm is the time needed to write
s plus the time consumed by the deterministic verifying phase.

Definition 155 (Non-deterministic Polynomial-time Solution)

A non-deterministic algorithm solves a decision problem P in polynomial time if there
is a fixed polynomial p such that for every instance x of P for which the answer is “yes”
there is at least one execution of the algorithm that returns “yes” in at most p(|x |) time.
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P and NP

Definition 156 (Problem Class NP)

The problem class NP is the class of all decision problems that are solveable in
polynomial time by a non-deterministic algorithm.

NP . . .

. . . is not a short-hand for “not polynomial”!

Note that being in NP does not imply for a problem that we can easily find a
certificate s for an instance if the answer is “yes”. But there has to exist a
polynomial-time algorithm to check the validity of a proposed certificate s.

Lemma 157

We have P ⊆ NP.

Sketch of Proof : Let P ∈ P. All we need to do is to apply a deterministic algorithm
that solves P in polynomial time and let it ignore any non-determinism.
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Polynomial Reducibility

Definition 158 (Polynomially Reducible, Dt.: polynomial reduzierbar)

A decision problem P is polynomially reducible (or simply reducible) to a decision
problem Q, denoted by P ≤p Q, if there exists a reduction from P to Q that runs in
polynomial time.

This definition can easily be extended to cover reductions from a decision
problem P to an arbitrary problem Q by requesting that the output generated by
an instance of Q allows to decide in polynomial time whether the answer for the
original instance of P is “yes” or “no”.

Such an extension allows a reduction from a combinatorial decision problem to a
combinatorial optimization problem.

Lemma 159

For two decision problems P,Q, if P ≤p Q and Q ∈ P then P ∈ P.

Proof : Let x be an instance of P. We apply a polynomial reduction and map x in time
p(|x |) to an instance t(x) of Q. Since Q ∈ P, a solution to t(x) can be obtained in time
q(p(|x |)), where q(|α|) denotes the time needed for solving an instance α of Q.
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Polynomial Reducibility: P-Complete

Definition 160 (P-complete, Dt.: P-vollständig)

A problem P ∈ P is P-complete if Q ≤p P for every Q ∈ P.

P-complete problems are widely assumed to be inherently sequential, i.e., very
difficult to parallelize in any reasonable way.
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8 Hard Problems and Approximation Algorithms
Intractability
P and NP
NP-Hard and NP-Complete

NP-Completeness and SAT
NP-Complete Problems
P versus NP

Proving NP-Completeness
Approximation Algorithms
Problems of Unknown Complexity
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NP-Hardness and NP-Completeness

Definition 161 (NP-hard, Dt.: NP-schwer)

A problem Q is NP-hard if every problem P ∈ NP is polynomially reducible to Q.

Note that NP-hard does not mean “NP and hard”! Rather, it means “at least as
hard as any problem in NP”.

Definition 162 (NP-complete, Dt.: NP-vollständig)

A problem Q is NP-complete if it is in NP and if it is NP-hard. The class of
NP-complete problems is denoted by NPC.

Hence, an optimization problem might be NP-hard, but only decision problems
can be NP-complete.

Lemma 163

We have NPC ⊆ NP and NPC ⊂ NP-hard.
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NP-Hardness and NP-Completeness

Theorem 164 (Cook (1971))

The satisfiability problem of propositional logic, SAT, is NP-complete.

Dt.: Erfüllbarkeitsproblem der Aussagenlogik.

Which other problems are NP-complete?

[Karp (1972)]: He established the NP-completeness of 21 combinatorial and
graph-theoretical computational problems.

See Garey and Johnson, "Computers and Intractability: A Guide to the Theory of
NP-Completeness". (This used to be the bible of NP-completeness.)

In the meantime, a few thousand problems are known to be NP-complete . . .

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 330/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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A List of NP-Complete Problems

Problem: SAT-CNF

Input: A propositional formula A which is in conjunctive normal form.

Decide: Is A satisfiable?

Problem: 3-SAT-CNF

Input: A propositional formula A which is in conjunctive normal form such that
every clause consists of exactly (or at most) three literals.

Decide: Is A satisfiable?

Problem: SUBSETSUM, DT.: TEILSUMMENPROBLEM

Input: A set S of n natural numbers and a number m ∈ N.

Decide: Does a subset of the numbers of S add up to exactly m?

Problem: BINPACKING, DT.: BEHÄLTERPROBLEM

Input: A set S of n objects with sizes s1, s2, . . . , sn ∈ Q, where 0 < si ≤ 1, and a
number k ∈ N.

Decide: Do the objects fit into k bins of unit capacity?

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 331/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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A List of NP-Complete Problems

Note

It is common not to make an explicit distinction between a decision problem, as listed,
and its optimization variant (if it exists): For the optimization problem we drop “and a
number k ” and replace “decide” by “maximize k ” or “minimize k ”. (We will also be
liberal in using the same name both for a decision problem and for its optimization
variant . . .)

Problem: KNAPSACK (KNAP), DT.: RUCKSACKPROBLEM

Input: A knapsack of capacity c ∈ N and n objects with sizes s1, s2, . . . , sn and
“profits” p1, p2, . . . , pn. In addition, we are given a number k ∈ N.

Decide: Is there a subset of the objects that fits into the knapsack and achieves a
total profit of at least k?

Problem: SETCOVER (SC), DT.: MENGENÜBERDECKUNGSPROBLEM

Input: A set S and a family S := {S1,S2, . . . ,Sm} of m subsets of S, for m ∈ N,
and a natural number k ∈ N.

Decide: Do there exist at most k subsets Si1 ,Si2 , . . . ,Sik ∈ S such that
S = Si1 ∪ Si2 ∪ . . . ∪ Sik ?
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UNIVERSITÄT SALZBURG

A List of NP-Complete Problems

Problem: HAMILTONIANCYCLE (HC)

Input: An undirected graph G.

Decide: Does G contain a Hamiltonian cycle?

Problem: HAMILTONIANPATH (HP)

Input: An undirected graph G.

Decide: Does G contain a Hamiltonian path?

Problem: TRAVELINGSALESMANPROBLEM (TSP), DT.: RUNDREISEPROBLEM

Input: A weighted and undirected graph G, and a number c ∈ R+.

Decide: Does G contain a Hamiltonian cycle whose total cost is less than c?

Problem: MINIMUMSTEINERTREE (MST), DT.: STEINERBAUMPROBLEM

Input: A weighted and undirected graph G = (V ,E), a set of required nodes
(“terminals”) T ⊂ V , and a number c ∈ R+.

Decide: Does there exist a connected subgraph (V ′,E ′) of G such that T ⊆ V ′ and
the sum of the costs of the edges of E ′ is less than c?
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A List of NP-Complete Problems

Problem: VERTEXCOVER (VC), DT.: KNOTENÜBERDECKUNGSPROBLEM

Input: An undirected graph G = (V ,E) and a number k ∈ N.

Decide: Does there exist a vertex cover that has k vertices? (A subset C ⊆ V of the
vertices of a graph G forms a vertex cover of G if every edge of E is incident
upon at least one vertex of C.)

Problem: CLIQUE (CLIQ), DT.: CLIQUENPROBLEM

Input: An undirected graph G = (V ,E) and a number k ∈ N.

Decide: Does G have a clique of size k? (A subset Q ⊆ V of the vertices of a graph
G forms a clique of G if every pair of distinct vertices of Q is linked by an
edge of E .)
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A List of NP-Complete Problems

Problem: INDEPENDENTSET (IS), DT.: STABILITÄTSPROBLEM

Input: An undirected graph G = (V ,E) and a number k ∈ N.

Decide: Does G have an independent set of size k? (A subset I ⊆ V of the vertices
of a graph G forms an independent set if no pair of vertices of I is connected
by an edge of E .)

Vertex Cover Clique

C

C

Q

Q Q

Q

C

Problem: k -COLORING (k -COL), DT.: k -FÄRBBARKEIT

Input: An undirected graph G = (V ,E), and an integer k ∈ N.

Decide: Does G admit a coloring that uses at most k colors? (An assignment of
colors to all vertices of V is called a (vertex) coloring if adjacent vertices are
assigned different colors.)
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A List of NP-Complete Problems: Minimum Convex Decomposition

Problem: MINIMUMCONVEXDECOMPOSITION (MCD)

Input: A set S of n points in the plane.

Output: A planar straight-line graph with vertex set S, with each point in S having
positive degree, that partitions CH(S) into the smallest possible number of
convex faces.

[Grelier (2020)]: MCD is NP-hard.
[Knauer&Spillner (2006)]: If no three points of S are collinear then a
3-approximation for MCD can be computed in O(n log n) time; a
30/11-approximation can be computed in O(n2) time.
[Eder et al. (2020)]: Engineering-based heuristics seem to achieve
close-to-optimum solutions.
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A List of NP-Complete Problems: ETSP?

Recall that TSP is NP-complete.

Intuitively, ETSP ought to be NP-complete, too.

Indeed, the NP-completeness of ETSP is claimed in several publications . . .

However, this claim is wrong! (The title of [Papadimitriou (1977)], “The Euclidean
travelling salesman problem is NP-complete”, is misleading!)

ETSP, and several other optimization problems involving Euclidean distance, are
not known to be in NP due to a “technical twist”: For ETSP, the length of a tour
on n points (with integer/rational coordinates) is a sum of n square roots.
Comparing this sum to a number c may require very high precision, and no
polynomial-time algorithm is known for solving this problem.

Open problem

Can the sum of n square roots of integers be compared to another integer in
polynomial time?

ETSP is NP-hard . . .

. . . but not known to be in NP.
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Open problem

Can the sum of n square roots of integers be compared to another integer in
polynomial time?

ETSP is NP-hard . . .

. . . but not known to be in NP.
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A List of NP-Complete Problems in CS

Theorem 165

The following decision problems are NP-complete:

SAT-CNF,

3-SAT-CNF,

SUBSETSUM,

BINPACKING,

KNAPSACK,

SETCOVER,

HAMILTONIANCYCLE,

HAMILTONIANPATH,

TSP,

MINIMUMSTEINERTREE,

VERTEXCOVER,

CLIQUE,

INDEPENDENTSET,

k -COL.
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A List of NP-Complete Problems in the Sciences

NP-completeness is not just a concern to theoreticians!

Rather, many fundamental problems in the sciences have been shown to be
NP-complete (or NP-hard).

The following list was taken from “The status of the P versus NP problem”
[Fortnow, CACM (2009)]:

Finding a DNA sequence that best fits a collection of fragments of the
sequence [Gusfield (1997)].
Finding a ground state in the Ising model of phase transitions [Cipra (2000)].
Finding Nash Equilibriums with specific properties in a number of
environments [Conitzer (2008)].
Finding optimal protein threading procedures [Lathrop (1994)].
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UNIVERSITÄT SALZBURG

A List of NP-Complete Problems in the Sciences

NP-completeness is not just a concern to theoreticians!

Rather, many fundamental problems in the sciences have been shown to be
NP-complete (or NP-hard).

The following list was taken from “The status of the P versus NP problem”
[Fortnow, CACM (2009)]:

Finding a DNA sequence that best fits a collection of fragments of the
sequence [Gusfield (1997)].
Finding a ground state in the Ising model of phase transitions [Cipra (2000)].
Finding Nash Equilibriums with specific properties in a number of
environments [Conitzer (2008)].
Finding optimal protein threading procedures [Lathrop (1994)].

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 339/405

https://dx.doi.org/10.1145/1562164.1562186


Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

P ≠ NP?

Theorem 166

If some NP-complete problem is in P then P = NP.

Proof : If an NP-complete problem P is in P, then all problems of NP can be
reduced in polynomial time to P and, thus, also solved in polynomial time.

Exponential Time Hypothesis [Impagliazzo&Paturi (1999, 2001)] . . .

. . . postulates that 3-SAT (and several other NP-complete problems) cannot be
solved deterministically in subexponential time.

The exponential time hypothesis implies P ̸= NP.

But ETH is stronger than assuming P ̸= NP!

Want to become rich and famous? In 2000, the Clay Mathematics Institute (CMI)
at Cambridge, Massachusetts (USA), named seven Millennium Prize Problems
and designated a $7 million prize fund for the solution of these problems, with
$1 million allocated to each problem. And the P = NP question is one of them!
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What NP-Completeness Does Not Imply

While all known NP-complete problems are indeed tremendously difficult to
solve, solving an NP-complete problem does not “necessarily” require
exponential time: Otherwise, ETH would be true and we would have P ̸= NP!

NP-completeness does not imply that absolutely all (or even just most)
instances of a problem are difficult. E.g., powerful SAT-solvers are known.

NP-complete problems are not the “most difficult” problems: They have a
running time that is “only” exponential . . .

[Presburger (1929)] introduced a first-order theory of the natural numbers with
addition and equality, but without multiplication. Its axioms include some form of
induction. For every sentence in Presburger arithmetic one can decide, i.e.,
determine algorithmically, whether it follows from the axioms of Presburger
arithmetic.

[Fischer&Rabin (1974):] The decision algorithm for Presburger arithmetic for a
sentence of length n has a worst-case running time of at least 22c·n

, for some
constant c > 0.

Algorithms with double exponential (worst-case) time also comprise the currently
best known algorithms for computing a Gröbner basis and for quantifier
elimination on real closed fields.
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UNIVERSITÄT SALZBURG

What NP-Completeness Does Not Imply

While all known NP-complete problems are indeed tremendously difficult to
solve, solving an NP-complete problem does not “necessarily” require
exponential time: Otherwise, ETH would be true and we would have P ̸= NP!

NP-completeness does not imply that absolutely all (or even just most)
instances of a problem are difficult. E.g., powerful SAT-solvers are known.

NP-complete problems are not the “most difficult” problems: They have a
running time that is “only” exponential . . .

[Presburger (1929)] introduced a first-order theory of the natural numbers with
addition and equality, but without multiplication. Its axioms include some form of
induction. For every sentence in Presburger arithmetic one can decide, i.e.,
determine algorithmically, whether it follows from the axioms of Presburger
arithmetic.

[Fischer&Rabin (1974):] The decision algorithm for Presburger arithmetic for a
sentence of length n has a worst-case running time of at least 22c·n

, for some
constant c > 0.

Algorithms with double exponential (worst-case) time also comprise the currently
best known algorithms for computing a Gröbner basis and for quantifier
elimination on real closed fields.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 341/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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8 Hard Problems and Approximation Algorithms
Intractability
P and NP
NP-Hard and NP-Complete
Proving NP-Completeness

Basics
NP-Completeness of 4-COL
NP-Completeness of 3-COL
NP-Completeness of Hamiltonian Triangulation

Approximation Algorithms
Problems of Unknown Complexity
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Proving NP-Completeness of a Problem

Theorem 167

If P ≤p Q and P is NP-complete and Q ∈ NP then Q also is NP-complete.

Proof : Let R be in NP. We reduce an instance x of R to an instance t1(x) of P, and
reduce t1(x) to an instance t2(t1(x)) of Q. This reduction runs in polynomial time.
Hence, every problem that is in NP can be reduced polynomially to Q.

Steps to prove a problem Q to be NP-complete

1 Show that Q ∈ NP.
2 Pick a problem P that is known to be NP-complete.
3 Construct (or prove the existence of) a polynomial reduction from P to Q.

NP-completeness proofs tend to make extensive use of “gadgets”. The (fairly
creative) process of designing such gadgets is sometimes called “gadgeteering.”

Trevisan et al. (2000)

A gadget is a finite combinatorial structure which translates a given constraint of one
(optimization) problem into a set of constraints of a second (optimization) problem.
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UNIVERSITÄT SALZBURG

Proving NP-Completeness of a Problem

Theorem 167

If P ≤p Q and P is NP-complete and Q ∈ NP then Q also is NP-complete.

Proof : Let R be in NP. We reduce an instance x of R to an instance t1(x) of P, and
reduce t1(x) to an instance t2(t1(x)) of Q. This reduction runs in polynomial time.
Hence, every problem that is in NP can be reduced polynomially to Q.

Steps to prove a problem Q to be NP-complete

1 Show that Q ∈ NP.
2 Pick a problem P that is known to be NP-complete.
3 Construct (or prove the existence of) a polynomial reduction from P to Q.

NP-completeness proofs tend to make extensive use of “gadgets”. The (fairly
creative) process of designing such gadgets is sometimes called “gadgeteering.”

Trevisan et al. (2000)

A gadget is a finite combinatorial structure which translates a given constraint of one
(optimization) problem into a set of constraints of a second (optimization) problem.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 343/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Sample NP-Completeness Proof: 4-COL

Lemma 168

If 3-COL is NP-complete then 4-COL is NP-complete.

Proof :
Suppose that 3-COL is NP-complete. We show that 3-COL ≤p 4-COL. (Clearly,
4-COL is in NP.)
Consider a graph G = (V ,E). We transform G into a graph G′ = (V ′,E ′) by
adding a vertex v ̸∈ V to V . Also, we add edges from v to all nodes of V . That is,

V ′ := V ∪ {v}, and
E ′ := E ∪ {uv : u ∈ V}.

This transformation can be carried out in time polynomial in the number of nodes
and edges of G.
Since v consumes one color which cannot be used for any other node of G′, the
graph G is 3-colorable exactly if G′ is 4-colorable.

Corollary 169

If k -COL is NP-complete for some k ∈ N then (k + 1)-COL is NP-complete.
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adding a vertex v ̸∈ V to V . Also, we add edges from v to all nodes of V .

That is,
V ′ := V ∪ {v}, and
E ′ := E ∪ {uv : u ∈ V}.

This transformation can be carried out in time polynomial in the number of nodes
and edges of G.
Since v consumes one color which cannot be used for any other node of G′, the
graph G is 3-colorable exactly if G′ is 4-colorable.

Corollary 169

If k -COL is NP-complete for some k ∈ N then (k + 1)-COL is NP-complete.
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Sample NP-Completeness Proof: 3-COL

Theorem 170

3-COL is NP-complete.

Proof :
Clearly, 3-COL is in NP. We prove 3-SAT-CNF ≤p 3-COL. Given a 3-CNF
expression e, where every clause consists of exactly three literals, we show how
to construct a graph G in polynomial time such that e is satisfiable if and only if G
can be colored with three colors.
Let k denote the number of clauses of e. The n variables appearing in e are
denoted by v1, v2, . . . , vn.
Hence, e contains at least one of the two literals vi and v̄i , for all i ∈ {1, 2, . . . , n}.
We build an appropriate graph G that contains 2n + 6k + 3 nodes and
3n + 12k + 3 edges. This graph consists of

a graph representation of the variables, denoted by GV ,
a graph representation of all clauses, GC , and of
appropriate edges to link GV and GC together.
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Sample NP-Completeness Proof: 3-COL

Proof of Thm. 170 (cont’d) :
Construction of GV (to represent the variables):

Three special nodes — denoted by C (for “control”), T (for “true”), and F (for
“false”) — are linked into a triangle, the so-called control triangle.

For each variable v we create two nodes — the “literal nodes” v and v̄ —
and link them with the node C and with each other to form a triangle.
This gives 2n + 3 nodes and 3n + 3 edges constructed so far for GV .

T F

C
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UNIVERSITÄT SALZBURG

Sample NP-Completeness Proof: 3-COL

Proof of Thm. 170 (cont’d) :
Clearly, three colors are necessary and sufficient to color GV .

Due to the use of the control node C, the variable nodes vi and v̄i have to use the
same colors as the nodes T and F .
If the colors of vi and T match, then the colors of v̄i and F have to match, too.
Intuitively, think of assigning the variable vi the value true if its node is colored
with the same color as T . Similarly, coloring vi with the same color as F can be
interpreted as assigning the value false to vi , thus, assigning the value true to v̄i .

T F

C

v1 v̄1 v2 v̄2 v3 v̄3 vn v̄n
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Sample NP-Completeness Proof: 3-COL

Proof of Thm. 170 (cont’d) :
Construction of GC (to represent the clauses):

We use a clause gadget as depicted below, with one gadget per clause.
Each clause gadget is linked to five other nodes of GV :

1 It is linked to the nodes C and T of the control triangle, and
2 to three literal nodes corresponding to the literals that appear in the specific

clause represented by the clause gadget.

The graph GC is formed by k copies of this gadget, with one gadget per
clause, resulting in a total of 6k additional nodes and 12k additional edges.

to Literal 1

to Literal 2

to T

to C

to Literal 3
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Sample NP-Completeness Proof: 3-COL

Proof of Thm. 170 (cont’d) :
The final graph G consists of GV plus GC , i.e., of 2n + 6k + 3 nodes and
3n + 12k + 3 edges. Clearly, G can be constructed in time polynomial in the
number of variables and clauses of e.

Let a, b, c be the literal nodes that are pointed at by the three edges of a clause
gadget marked by “to Literal . . .”.
Since a, b, c are linked to C, the only colors feasible for a, b, c are the two colors
used for T and F .
A simple enumeration of all possible color assignments to a, b, c shows that a
clause gadget can be colored with three colors if and only if at least one of a, b, c
is colored with the same color as T .

to Literal 1

to Literal 2

to T

to C

to Literal 3
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Sample NP-Completeness Proof: 3-COL

Proof of Thm. 170 (cont’d) :
We conclude that G can be colored with three colors exactly if there exists a
consistent color assignment to all literal nodes such that at least one literal node
of each clause is colored with the same color as T .

Thus, the Boolean expression e is satisfiable if and only if G can be colored with
three colors.

to Literal 1

to Literal 2

to T

to C

to Literal 3
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Proof of Thm. 170 (cont’d) :
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Sample NP-Completeness Proof: Hamiltonian Triangulation

Definition 171 (Hamiltonian triangulation)

A triangulation (of points or of polygonal figures) is Hamiltonian if its dual graph
admits a Hamiltonian cycle.

Theorem 172 (Arkin et al. (1996))

Testing whether a given simple polygon has a Hamiltonian triangulation can be done
in O(|E |) time, where |E | is the number of visibility graph edges in the polygon.

Theorem 173 (Arkin et al. (1996))

Given a simple polygon with (simple polygonal) holes, it is NP-complete to determine
whether there exists a Hamiltonian triangulation of its interior.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 351/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Sample NP-Completeness Proof: Hamiltonian Triangulation

Definition 171 (Hamiltonian triangulation)

A triangulation (of points or of polygonal figures) is Hamiltonian if its dual graph
admits a Hamiltonian cycle.
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Sample NP-Completeness Proof: Hamiltonian Triangulation

Proof of Thm. 173 :
We prove this theorem by reducing the known NP-complete problem of
determining whether a planar cubic graph is Hamiltonian to it. (Obviously,
deciding whether such a triangulation exists is in NP.)

Given a straight-line plane drawing of a planar cubic graph G,

we construct a
polygon with holes, where the holes correspond to the bounded faces of G:

Each arc of G is mapped to a narrow “V”-shaped tunnel.
Thus, a node abc of G corresponds to three node-vertices a, b, c of the
polygonal area.
Each arc of G introduces two arc-vertices, g, h, of the polygonal area.
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polygon with holes, where the holes correspond to the bounded faces of G:

Each arc of G is mapped to a narrow “V”-shaped tunnel.

Thus, a node abc of G corresponds to three node-vertices a, b, c of the
polygonal area.
Each arc of G introduces two arc-vertices, g, h, of the polygonal area.
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Sample NP-Completeness Proof: Hamiltonian Triangulation

Proof of Thm. 173 (cont’d) :
We can construct the “V”-shaped tunnels such that the following properties hold:

The resulting polygons are simple and bound a polygonal area P with k
holes if G contained k bounded faces.

A node-vertex is visible by another node vertex exactly if both correspond to
the same node of G.
Every arc-vertex sees exactly its corresponding arc-vertex and the
corresponding six node-vertices.
Pairs of arc-vertices form forced diagonals contained in every triangulation.

This construction can be carried out in polynomial time.
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Sample NP-Completeness Proof: Hamiltonian Triangulation

Proof of Thm. 173 (cont’d) :
Suppose that G admits a Hamiltonian cycle.

One can show that there exists a triangulation of P that is Hamiltonian.
Now suppose that P has a triangulation that is Hamiltonian.
One can show that G contains a Hamiltonian cycle.
Recall that every triangulation contains the forced diagonals defined by the
arc-vertices, which can be crossed by a Hamiltonian cycle at most once.
Hence, the arcs of G that correspond to forced diagonals that the cycle crosses
once in the triangulation of P form a Hamiltonian cycle in G.
Summarizing, G contains a Hamiltonian cycle if and only if P admits a
Hamiltonian triangulation.

a
b

c

d

e
f

g

h

abc
def

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 354/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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8 Hard Problems and Approximation Algorithms
Intractability
P and NP
NP-Hard and NP-Complete
Proving NP-Completeness
Approximation Algorithms

Basics
Approximation of SETCOVER
Approximation of VERTEXCOVER
Approximation of ETSP

Problems of Unknown Complexity
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Dealing with NP-Hard Problems

Many combinatorial optimization problems could be solved by a brute-force
enumeration of all possibilities.

E.g., we could solve ETSP for n cities by enumerating all (n − 1)! possible tours.

According to legend, the power of exponential growth was already known by the
Brahmin Sissa ibn Dahir (ca. 300-400 AD): As a reward for the invention of the
game of chess (or its Indian predecessor Chaturanga) he asked his king,
Shihram, to place one grain of rice in the first square of a chessboard, two in the
second, four in the third, and so on, doubling the amount of rice up to the 64-th
square. Needless to say, the king could not fulfill Sissa’s request . . .

In short terms: An algorithm whose running time is 2n or worse is all but useless
for most practical applications!!

Unfortunately, while proving a problem to be NP-hard/complete might constitute
quite an achievement, it tends to shed little light on how to solve it.

So, what shall we do next?

In the sequel, we will study algorithms that provide an approximation of the
solution sought.

But we will not just dive into heuristics: Our approximations will come with some
guarantee of how far off they may be from the true solutions!
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Constant-Factor Approximation

Definition 174 (Approximation with guaranteed quality)

For an instance I of an optimization problem, let APX (I) > 0 denote the numerical
quantity achieved by an algorithm A that solves it approximately, and let OPT (I) > 0
denote the true optimum. Let p : N → R+. Then the approximation A has quality p if

max

{
APX (I)
OPT (I)

,
OPT (I)
APX (I)

}
≤ p(n)

holds for all input instances I of size n.

Of course, p(n) ≥ 1 for all n ∈ N.

Note: OPT is unknown!

If we want to argue that some approximation algorithm has a particular guaranteed
quality then we need to do so without knowing OPT !

Definition 175 (Constant-factor approximation)

An approximation algorithm with quality p : N → R+ is a constant-factor approximation
with approximation factor c ∈ R+ if p(n) ≤ c holds for all (sufficiently large) n ∈ N.
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Polynomial-Time Approximation Scheme

Definition 176 (Polynomial-time approximation scheme (PTAS))

A polynomial-time approximation scheme (PTAS) for an optimization problem is an
algorithm which takes as additional input a parameter ε ∈ R+ and generates a
(1 + ε)-approximation for every instance of the optimization problem such that its
running time is a polynomial in n for problem instances of size n, for every fixed value
of ε.

Dt.: Polynomialzeitapproximationsschema.

Common to PTAS algorithms is the fact that O(1/ε) is allowed to appear as
exponent of n or log n.

We may even see complexity terms of the form O(n⌈1/ε⌉!).

A variant that is more useful in practice is a fully polynomial-time approximation
scheme (FPTAS), for which we demand the time to be polynomial in both n
and 1/ε.

Quasi-polynomial-time approximation scheme (QPTAS): We get a complexity of
O(npolylog n) for every fixed ε ∈ R+.
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Approximate SETCOVER

Theorem 177

Consider a set S with n elements and a family S := {S1,S2, . . . ,Sm} of m subsets of
S, with

⋃
1≤i≤m Si = S.

Then the following algorithm achieves an (ln n)-approximation:
Repeat until all elements of S are covered:

Pick the set Si with the largest number of uncovered elements.

Proof : Since it is obvious that the greedy algorithm achieves a cover, we focus on the
approximation factor. Suppose that k sets of S suffice to cover S.
Let ni be the number of elements of S not yet covered after the i-th iteration of the
algorithm, with n0 := n.
Since k sets suffice to cover also these remaining elements, one set (not yet picked
by the algorithm) must exist in S that contains at least ni/k of them. This implies

ni+1 ≤ ni −
ni

k
= ni

(
1 − 1

k

)
≤ . . . ≤ n0

(
1 − 1

k

)i+1

.

The standard inequality 1 − x < e−x , for all x ∈ R \ {0}, implies

ni ≤ n0

(
1 − 1

k

)i

< n0(e
−1/k)i = n · e−i/k .

Since n · e− ln n = 1, we get ni < 1 (and no uncovered elements) for i := k ln n.
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Approximate SETCOVER

[Slavík (1997)]: Tighter analysis yields ln n − ln ln n +Θ(1) as approximation
factor.

[Lund&Yannakakis (1994), Feige (1998), Moshkovitz (2015)]: If P ̸= NP then it
is impossible to devise a polynomial-time approximation algorithm for SETCOVER
with approximation ratio (1 − α) ln n, for any constant α > 0.
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Approximate VERTEXCOVER

VERTEXCOVER can be seen as a special case of SETCOVER and, thus, has an
(ln n)-approximation by a simple greedy algorithm: Repeatedly delete the vertex
of highest degree (and all incident edges).

Suppose that we want to re-organize fire fighting and establish fire stations within
some or all villages of a set of villages V := {v1, v2, . . . , vn}

such that the driving
distance between each village of V and its closest fire station is at most 15 km.

Hence, the greedy algorithm yields eight fire stations

while seven stations would
also suffice.
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UNIVERSITÄT SALZBURG

Approximate VERTEXCOVER

VERTEXCOVER can be seen as a special case of SETCOVER and, thus, has an
(ln n)-approximation by a simple greedy algorithm: Repeatedly delete the vertex
of highest degree (and all incident edges).

Suppose that we want to re-organize fire fighting and establish fire stations within
some or all villages of a set of villages V := {v1, v2, . . . , vn} such that the driving
distance between each village of V and its closest fire station is at most 15 km.

v1

v2

v3

v4

v5 v9

v6

v7

v8

v10

v11

v1

v2

v3

v4

v5 v9

v6

v7

v8

v10

v11

v1

v2

v3

v4

v5 v9

v6

v7

v8

v10

v11

Hence, the greedy algorithm yields eight fire stations while seven stations would
also suffice.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 361/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Approximate VERTEXCOVER: Matching

Definition 178 (Matching, Dt.: Paarung)

A matching in a simple graph G = (V ,E) is a subset E ′ of E such that no two
edges of E ′ are incident upon the same vertex of V .

A maximal matching is a matching that does not allow to add an additional edge.

A maximum matching is a matching with the largest-possible number of edges.

A perfect matching is a matching that leaves no vertex unmatched.

Of course, a perfect matching can only exist if G has an even number of nodes.

If G is weighted then we seek matchings that minimize the sum of the edge
weights.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 362/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Approximate VERTEXCOVER: Matching

Definition 178 (Matching, Dt.: Paarung)

A matching in a simple graph G = (V ,E) is a subset E ′ of E such that no two
edges of E ′ are incident upon the same vertex of V .

A maximal matching is a matching that does not allow to add an additional edge.

A maximum matching is a matching with the largest-possible number of edges.

A perfect matching is a matching that leaves no vertex unmatched.

Of course, a perfect matching can only exist if G has an even number of nodes.

If G is weighted then we seek matchings that minimize the sum of the edge
weights.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 362/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Approximate VERTEXCOVER

Theorem 179

The vertices of all edges of a maximal matching of G yield a vertex cover with at most
twice the number of vertices than optimum.

Proof : Let kmax be the number of edges of a maximum matching M of G. Since every
edge of M requires one vertex to cover it, any vertex cover of G contains at least kmax

vertices.

On the other hand, we obtain a vertex cover by taking both end-points of every edge
of any maximal matching of G.

Such a matching has k edges, with k ≤ kmax . Hence,
any maximal matching of G yields a vertex cover of G with at most 2kmax vertices.

The sample graph has a minimum vertex cover with six vertices.
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Approximate ETSP

Lemma 180 (Doubling-the-EMST heuristic)

In O(n log n) time one can achieve an approximation of ETSP for n cities with
approximation factor 2.

Lemma 181 (Christofides (1976))

In O(n3) time one can achieve an approximation of ETSP for n cities with
approximation factor 3/2.

Theorem 182 (Arora (1996), Mitchell (1996), Rao&Smith (1998))

There exists a polynomial-time approximation scheme for solving ETSP with
approximation factor (1 + ε) in time nO(1/ε).
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Approximate TSP

Metric TSP

The doubling-the-EMST approach works for any complete weighted graph G = (V ,E)
if the weights of the edges of G satisfy the triangle inequality:

c(u, v) ≤ c(u,w) + c(w , v) for all u, v ,w ∈ V ,

where c(x , y) denotes the weight of the edge (x , y).

The TSP problem becomes much harder to approximate if we deal with settings
that do not satisfy the triangle inequality! For several settings we do not have
polynomial-time approximations or cannot go beyond some approximation factor,
unless P = NP.

Theorem 183

Let p : N → N be a polynomial-time computable function. Unless P = NP there is no
polynomial-time algorithm that outputs a solution of cost at most p(n) · OPT (I) for
every TSP instance I of size n.
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Let p : N → N be a polynomial-time computable function. Unless P = NP there is no
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Let p : N → N be a polynomial-time computable function. Unless P = NP there is no
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Approximate ETSP: Doubling-the-EMST Heuristic

Sketch of Proof of Lem. 180 :

1 Compute the Euclidean minimum spanning tree T (S) of S.
2 Select an arbitrary node v of T (S) as root.
3 Compute a (pre-order-like) traversal of T (S) rooted at v to obtain a tour C(S).
4 By-pass points already visited, thus shortening C(S).
5 Apply 2-opt moves (at additional computational cost).

Time complexity: O(n log n) for computing the EMST T (S).
Factor of approximation: c = 2 (even without Step 5).
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Approximate ETSP: Christofides’ Heuristic

Sketch of Proof of Lem. 181 :

1 Compute the Euclidean minimum spanning tree T (S) of S.
2 Get a minimum Euclidean matching M on the vertices of odd degree in T (S).
3 Compute an Eulerian tour C on T ∪M.
4 By-pass points already visited, thus shortening C.
5 Apply 2-opt moves (at additional computational cost).

Time complexity: O(n3) for computing M [Edmonds (1965), Gabow (1972)].
Factor of approximation: c = 3

2 (even without Step 5).
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8 Hard Problems and Approximation Algorithms
Intractability
P and NP
NP-Hard and NP-Complete
Proving NP-Completeness
Approximation Algorithms
Problems of Unknown Complexity

NP-Intermediate Problems
3SUM-Hard Problems
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Problems of Unknown Complexity

There are problems which are in NP but which are not known to be in P or to be
NP-complete.

Theorem 184 (Ladner (1975))

If P ̸= NP then there exist problems in NP that are neither in P nor NP-complete.
These problems are called NP-intermediate.

Very few problems are of unknown complexity.

Problem: GRAPHISOMORPHISM

Input: Two (directed) graphs G1 and G2.

Decide: Is G1 isomorphic to G2?

No polynomial-time algorithm is known for the graph isomorphism problem, but
the problem is also not known to be NP-complete.

In the end of 2015, Babai announced a deterministic algorithm that runs in time
2O(logc n) time for some positive constant c, i.e., in quasi-polynomial time.

[Helfgott (2017)]: Claims that c := 3 is fine.
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Problems of Unknown Complexity

Problem: INTEGERFACTORIZATION

Input: Two numbers n, k ∈ N.

Decide: Does n have a factor less than (or greater than) some input k?

Problem: DISCRETELOGARITHMPROBLEM (DLP)

Input: Three numbers a, b, k ∈ N.

Decide: Does the equation ax = b have a solution x over some (finite) group that is
less than or greater than some input k .

[Shor (1997)]: DLP can be solved on a hypothetical quantum computer in
polynomial time.

Problem: MINIMUMCIRCUITSIZEPROBLEM (MCSP)

Input: A truth table of an unknown propositional formula and a number k ∈ N.

Decide: Does there exist a propositional formula of size k that represents the truth
table given?
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UNIVERSITÄT SALZBURG

3SUM-Hard Problems

Problem: 3SUM

Input: A set S ⊂ Z of n integers.

Decide: Does S contain three elements a, b, c ∈ S such that a + b + c = 0?

3SUM was introduced by Gajentaan and Overmars (in a computational geometry
paper) in 1995.

One can solve 3SUM in O(n2) time by means of a clever sorting-based strategy.

Definition 185 (3SUM-Hard)

A problem P is called 3SUM-hard if 3SUM can be reduced to P in subquadratic time.

Several seemingly unrelated problems are known to be 3SUM-hard.

[Grønlund&Pettie (2014):] 3SUM can be solved in O
(

n2/
(

log n
log log n

)2/3
)

time!

Still, no O(n2−ε) solution is known for 3SUM, for any ε ∈ R+.
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9 Linear and Integer Linear Programming
Basics of Linear Programming
Solving a Linear Program
Integer Linear Programming
Applications in CS
Geometric and Practical Applications
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Linear Program

Problem: LINEARPROGRAM (LP, DT.: LINEARE OPTIMIERUNG)

Input: Vectors b ∈ Rn and c ∈ Rd , and a matrix A ∈ Mn×d , for d , n ∈ N.

Output: A solution vector x ∈ Rd such that

Ax ≤ b and ⟨c, x⟩ = max{⟨c, y⟩ : y ∈ Rd ∧ Ay ≤ b}.

Short-hand alternate formulations:
Maximize ⟨c, x⟩ subject to Ax ≤ b.
Maximize cT x subject to Ax ≤ b.

We can use “minimize” instead of “maximize”, and “≥” or “=” instead of “≤”.

Sample linear program:

maximize: x1 +2x2

subject to: x2 ≤ 4
x2 ≥ 1

5x1 −4x2 ≤ 34
x1 + x2 ≥ 4

3x1 + x2 ≤ 25

A =


0 1
0 −1
5 −4
−1 −1
3 1


cT = (1, 2) xT = (x1, x2)

bT = (4,−1, 34,−4, 25)
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Linear Program: Sample Problem

A company produces two types of paint: exterior and interior paint.

It makes a profit of ¤ 3000(x1 + 2x2) if it produces x1 tons of exterior paint and x2

tons of interior paint.
The set-up makes it necessary to produce at least 1 ton and at most 4 tons of
interior paint per production cycle.
For production reasons, the combined output has to be at least 4 tons of paint.
One ton of exterior paint consumes 3 liters of a special liquid, while one ton of
interior paint requires only 1 liter of that liquid, with 25 liters being available for
one production cycle.
Marketing considerations dictate 5x1 − 4x2 ≤ 34.

Sample linear program:

maximize: x1 +2x2

subject to: x2 ≤ 4
x2 ≥ 1

5x1 −4x2 ≤ 34
x1 + x2 ≥ 4

3x1 + x2 ≤ 25

Various real-world applications, ranging
from business and economics to
manufacturing and engineering. E.g.:

stock and asset management,
transport and energy optimization,
routing,
scheduling and assignment planning,
(network) flow optimization.
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Linear Program: Geometric Interpretation

50

5

x1

x2

Sample linear program:

maximize: x1 +2x2

subject to: x2 ≤ 4
x2 ≥ 1

5x1 −4x2 ≤ 34
x1 + x2 ≥ 4

3x1 + x2 ≤ 25

Algorithm for solving LP for d = 2
manually:

1 Graph all constraints as half-planes,
thus obtaining the feasible region.

2 Graph the objective function as a
“movable” line.

3 Find extreme point of feasible region
in direction of objective function.
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x1 + 2x2 = 5

Sample linear program:

maximize: x1 +2x2

subject to: x2 ≤ 4
x2 ≥ 1

5x1 −4x2 ≤ 34
x1 + x2 ≥ 4

3x1 + x2 ≤ 25

Algorithm for solving LP for d = 2
manually:

1 Graph all constraints as half-planes,
thus obtaining the feasible region.

2 Graph the objective function as a
“movable” line.

3 Find extreme point of feasible region
in direction of objective function.
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Linear Program: Geometric Interpretation

50

5

x1

x2

x1 + 2x2 = 15

Sample linear program:

maximize: x1 +2x2

subject to: x2 ≤ 4
x2 ≥ 1

5x1 −4x2 ≤ 34
x1 + x2 ≥ 4

3x1 + x2 ≤ 25

Algorithm for solving LP for d = 2
manually:

1 Graph all constraints as half-planes,
thus obtaining the feasible region.

2 Graph the objective function as a
“movable” line.

3 Find extreme point of feasible region
in direction of objective function.
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UNIVERSITÄT SALZBURG

Linear Program: Basic Properties

Every constraint models a half-plane (for d = 2) or a half-space (for d ≥ 3).

The feasibility region is given by the intersection of these regions.

Hence, the feasibility region is a convex set: It can be
empty,
unbounded,
bounded.

The objective function models a line (for d = 2) or a (hyper-)plane (for d ≥ 3).

If the feasibility region is bounded then an optimum solution is assumed in a
vertex of the feasibility region.

Even an unbounded feasibility region may result in a unique optimum solution.
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UNIVERSITÄT SALZBURG

Linear Program: Basic Properties

Every constraint models a half-plane (for d = 2) or a half-space (for d ≥ 3).

The feasibility region is given by the intersection of these regions.

Hence, the feasibility region is a convex set: It can be
empty,
unbounded,
bounded.

The objective function models a line (for d = 2) or a (hyper-)plane (for d ≥ 3).

If the feasibility region is bounded then an optimum solution is assumed in a
vertex of the feasibility region.

Even an unbounded feasibility region may result in a unique optimum solution.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 377/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Linear Program: Basic Properties

Every constraint models a half-plane (for d = 2) or a half-space (for d ≥ 3).

The feasibility region is given by the intersection of these regions.

Hence, the feasibility region is a convex set: It can be
empty,
unbounded,
bounded.

The objective function models a line (for d = 2) or a (hyper-)plane (for d ≥ 3).

If the feasibility region is bounded then an optimum solution is assumed in a
vertex of the feasibility region.

Even an unbounded feasibility region may result in a unique optimum solution.

Linear programming . . .

. . . has nothing to do with programming in today’s meaning of the word “programming”.
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Every constraint models a half-plane (for d = 2) or a half-space (for d ≥ 3).
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Hence, the feasibility region is a convex set: It can be
empty,
unbounded,
bounded.

The objective function models a line (for d = 2) or a (hyper-)plane (for d ≥ 3).

If the feasibility region is bounded then an optimum solution is assumed in a
vertex of the feasibility region.

Even an unbounded feasibility region may result in a unique optimum solution.

Linear programming . . .

. . . has nothing to do with programming in today’s meaning of the word “programming”.

Negative variables

Some authors and some LP codes demand non-negative variables. In such a case
xi ∈ R can be modeled as xi = x ′

i − x ′′
i with x ′

i , x
′′
i ∈ R+

0 .
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9 Linear and Integer Linear Programming
Basics of Linear Programming
Solving a Linear Program

LP Solvers
Computing the Feasibility Region
Deterministic LP Solution in Constant Dimensions

Integer Linear Programming
Applications in CS
Geometric and Practical Applications
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Linear Program: How to Solve It

Simplex algorithm by Dantzig (1947).
Matrix manipulation based on Gaussian elimination.
Exponential worst-case complexity — see Klee-Minty cube in Rd — but fast in
practice.
It remains an open question whether there is a variation of the simplex
algorithm that runs in time polynomial in only n and d .

Ellipsoid algorithm by Khachiyan (1979).
First (weakly) polynomial-time algorithm for LP.
No practical relevance.

Interior-point method by Karmarkar (1984).
Runs in (weakly) polynomial time, too; quite efficient in practice.
Several more recent IPM variants.

Ready-to-use software: Fierce competition between IPM and simplex methods has
led to extremely fast LP solvers:

GLPK (GNU Linear Programming Kit)
CPLEX (IBM ILOG CPLEX Optimization Studio)
MINOS
GUROBI
Mathematica, Maple, AMPL, . . .
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Computation of Feasibility Region

Theorem 186

Randomized incremental construction allows to compute the intersection of n
half-planes in R2 in O(n) expected time.

Corollary 187

A (bounded) LP in R2 with n constraints can be solved in O(n) expected time.

Theorem 188 (Preparata&Muller (1979))

The intersection of n half-spaces in R3 can be computed (deterministically) in
O(n log n) time.

A RIC scheme applies in Rd , too, but one needs to solve a (d − 1)-dimensional
LP to handle the update.

This results in an expected time that is of the form O(d!n + exp(d)).

[Clarkson (1995)]: O(d2n + exp(d)), combined with [Kalai (1992)] and
[Matoušek&Sharir&Welzl (1996)]: O(d2n + exp(

√
d log d)).
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Megiddo’s Linear-Time Linear Programming

Consider an LP for d = 2, i.e., in R2 with two variables x and y , and n constraints.

Let R denote the feasibility region.

Let U be the set of “upper” constraints that bound R from above, and let L be the
set of “lower” constraints that bound R from below.

The basic idea is to compute the intersection of a line x = x̄ with R in linear time,
for some x̄ ∈ R, and to decide whether x ′ = x̄ or x ′ < x̄ or x ′ > x̄ .

Each such decision allows to
transform the LP into an equivalent
LP, with the same optimum but only
75% of the original constraints.

Thus, the number of constraints is
reduced from n to 3/4n, (3/4)2n, . . .

An LP with a constant number of
constraints is solved by brute force.

R
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Megiddo’s Linear-Time Linear Programming

Lemma 189

One can decide in O(n) time whether the line x = x̄ intersects R, for every x̄ ∈ R.

Proof : Intersect x = x̄ with all lines of L, and let max denote the y -coordinate of the
highest intersection with all lines of L. Similar for min as the y -coordinate of the
lowest intersection with U .

If max ≤ min then R is not empty and x = x̄ intersects R.

If max > min then x = x̄
does not intersect R, or R is empty.

R

U

L

x = x̄
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Megiddo’s Linear-Time Linear Programming

Lemma 190

1 If the line x = x̄ intersects R, then one can decide in O(n) time whether x ′ = x̄ or
x ′ < x̄ or x ′ > x̄ .

2 If the line x = x̄ does not intersect R, then one can decide in O(n) time whether
a potentially non-empty R has to lie to the left or to the right of x = x̄ . If this
decision is not possible then R is guaranteed to be empty.

Sketch of Proof : This can be decided by inspecting the inclinations of the constraints
of L and U that determine min and max .
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Megiddo’s Linear-Time Linear Programming

Lemma 191

Let x̄ be the x-coordinate of an intersection point of two constraints ℓ1, ℓ2 of U . If
x̄ ̸= x ′ then we can drop either ℓ1 or ℓ2 from U and derive U ′ from U , with U ′ ⊂ U ,
such that the optimum solution of the LP remains unchanged. This process can be
carried out in linear time.

Same for an intersection between two constraints of L.

Sketch of Proof : Suppose that x = x̄ intersects R and that x̄ ̸= x ′. By Lem. 190, we
can decide in O(n) time whether x ′ > x̄ or x ′ < x̄ .

W.l.o.g., x ′ > x̄ .

If ℓ1 runs above ℓ2 for all x > x̄ then we can drop ℓ1. Otherwise we
can drop ℓ2.

Same for an intersection between two constraints of L.

R

U

L

x = x̄ `1

`2
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Megiddo’s Linear-Time Linear Programming

Theorem 192 (Megiddo (1983,1984))

A linear program with n constraints and d variables can be solved in O(n) time when
d is fixed.

Worst-case optimal but slow in practice due to large constant 22d
hidden in the

O-term. For d := 2, 3 another (slow) linear-time solution is due to [Dyer (1984)].

[Seidel (1991)]: Simple randomized LP algorithm with expected time O(d! · n).
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Megiddo’s Linear-Time Linear Programming

Theorem 192 (Megiddo (1983,1984))

A linear program with n constraints and d variables can be solved in O(n) time when
d is fixed.

Sketch of Proof for d := 2 :

1 Partition the nU constraints of U (arbitrarily) into ⌊nU/2⌋ pairs. Same for the nL

constraints of L. (Of course, nU + nL = n.)
2 Compute ⌊nU/2⌋+ ⌊nL/2⌋ intersection points among these pairs.
3 Choose the intersection point (x̄ , y) whose x-coordinate x̄ is the median of all

x-coordinates of the intersection points.
4 Use Lem. 191 to discard roughly one quarter of the constraints and recurse on

the remaining roughly 3n
4 constraints.

5 Solve the LP by brute-force means for a constant number of constraints.

Let T (n) denote the worst-case time to solve an LP with n constraints.
We get T (n) = T

( 3n
4

)
+ O(n), and the Master Theorem 32 implies T ∈ O(n).

Worst-case optimal but slow in practice due to large constant 22d
hidden in the

O-term. For d := 2, 3 another (slow) linear-time solution is due to [Dyer (1984)].

[Seidel (1991)]: Simple randomized LP algorithm with expected time O(d! · n).
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UNIVERSITÄT SALZBURG

Megiddo’s Linear-Time Linear Programming

Theorem 192 (Megiddo (1983,1984))

A linear program with n constraints and d variables can be solved in O(n) time when
d is fixed.

Sketch of Proof for d := 2 :
1 Partition the nU constraints of U (arbitrarily) into ⌊nU/2⌋ pairs. Same for the nL

constraints of L. (Of course, nU + nL = n.)
2 Compute ⌊nU/2⌋+ ⌊nL/2⌋ intersection points among these pairs.
3 Choose the intersection point (x̄ , y) whose x-coordinate x̄ is the median of all

x-coordinates of the intersection points.
4 Use Lem. 191 to discard roughly one quarter of the constraints and recurse on

the remaining roughly 3n
4 constraints.

5 Solve the LP by brute-force means for a constant number of constraints.

Let T (n) denote the worst-case time to solve an LP with n constraints.
We get T (n) = T

( 3n
4

)
+ O(n), and the Master Theorem 32 implies T ∈ O(n).

Worst-case optimal but slow in practice due to large constant 22d
hidden in the

O-term. For d := 2, 3 another (slow) linear-time solution is due to [Dyer (1984)].

[Seidel (1991)]: Simple randomized LP algorithm with expected time O(d! · n).

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 385/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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9 Linear and Integer Linear Programming
Basics of Linear Programming
Solving a Linear Program
Integer Linear Programming
Applications in CS
Geometric and Practical Applications
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Integer Linear Program

Definition 193

An integer linear program (ILP) in d variables x1, x2, . . . , xd ∈ R is a linear program
with the additional constraint “xi is integer” for some or all i ∈ {1, 2, . . . , d}.

Solving an ILP: LP relaxation [Agmon (1954)]
Drop the integer constraints and solve corresponding LP, using the same
objective function and all other constraints. E.g., xi ∈ {0, 1} becomes xi ∈ R
with 0 ≤ xi ≤ 1.
If we are lucky then the LP is “naturally integer” and will return an integer
solution.
Otherwise:

Try to establish an integrality gap; i.e., analyze how much rounding
increased the cost.
Apply branch&bound (aka tree search) or branch&cut.
. . .

Note: Rounding a real LP solution to an integer solution may yield a solution that
is not feasible or far away from the true optimum!
Basic practical problem: Even if the LP is solved efficiently, the subsequent
transformation of the solution to make it fit the underlying ILP may be costly — it
may consume exponential time!
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Integer Linear Program

Standard applications of ILP

The variables represent quantities for which fractions are meaningless, such as
the number of workers or the number of busses.

The variables represent decisions and, thus, should only take on the binary
values 0 or 1.

Theorem 194

Integer linear programming is NP-hard.

Sketch of Proof : If we could solve ILP in polynomial time then several NP-hard
problems could be solved in polynomial time. E.g., KNAP ≤p ILP.

One can also prove that the decision version of ILP belongs to the class NP.
(But this requires some delicate arguments that a polynomial number of digits
suffice.)

In particular, the special case of 0-1 integer linear programming, in which all
variables are binary, and only the restrictions must be satisfied, is one of Karp’s
original 21 NP-complete problems [Karp (1972)].
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9 Linear and Integer Linear Programming
Basics of Linear Programming
Solving a Linear Program
Integer Linear Programming
Applications in CS

Circuit Evaluation
Knapsack
3-SAT-CNF
Independent Set
Maximum Matching
k -Coloring

Geometric and Practical Applications
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Circuit Value Problem

Definition 195 (Boolean circuit, Dt.: Schaltkreis)

A Boolean circuit with n inputs and m outputs, for m, n ∈ N, is a DAG of gates of the
following types:

Input gates: The n input gates have in-degree zero; their value is true or false.

Logic gates: The NOT gates have in-degree 1, while AND, OR, NAND, and NOR gates
have in-degree 2. All gates follow the laws of Boolean logic. No gate has
out-degree zero.

Output gates: Exactly m gates are output gates connected to output nodes.

in1 in2 in3

Problem: CIRCUITVALUEPROBLEM (CVP)

Input: A Boolean circuit with n inputs and m
outputs, for m, n ∈ N.

Output: The output of the Boolean circuit for a
given input.

The BOOLEANFORMULAVALUEPROBLEM is the
special case of CVP when the circuit is a tree.
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Circuit Value Problem as LP

Theorem 196

CVP is P-complete.

Theorem 197

(The decision version of) LP is P-complete.

Sketch of Proof : One can reduce CVP to LP by creating a variable xg for each gate
g, with the basic constraints 0 ≤ xg ≤ 1.
In addition we introduce the following constraints for the individual gates. E.g.:
Input gate g: xg = 1 for true and xg = 0 for false.
NOT gate g with g ≡ ¬a: xg = 1 − xa.
AND gate g with g ≡ a ∧ b: xg ≤ xa and xg ≤ xb and xg ≥ xa + xb − 1.
OR gate g with g ≡ a ∨ b: xg ≥ xa and xg ≥ xb and xg ≤ xa + xb.
Easy to see: These constraints force all the gate variables to assume the correct
values — 0 for false and 1 for true — and we can read off the circuit values at the
variables of the output gates. (No need to maximize or minimize anything.)
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UNIVERSITÄT SALZBURG

Circuit Value Problem as LP

Theorem 196

CVP is P-complete.

Theorem 197

(The decision version of) LP is P-complete.

Sketch of Proof : One can reduce CVP to LP by creating a variable xg for each gate
g, with the basic constraints 0 ≤ xg ≤ 1.
In addition we introduce the following constraints for the individual gates. E.g.:
Input gate g: xg = 1 for true and xg = 0 for false.
NOT gate g with g ≡ ¬a: xg = 1 − xa.
AND gate g with g ≡ a ∧ b: xg ≤ xa and xg ≤ xb and xg ≥ xa + xb − 1.
OR gate g with g ≡ a ∨ b: xg ≥ xa and xg ≥ xb and xg ≤ xa + xb.
Easy to see: These constraints force all the gate variables to assume the correct
values — 0 for false and 1 for true — and we can read off the circuit values at the
variables of the output gates. (No need to maximize or minimize anything.)

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 391/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Knapsack as ILP

Problem: KNAPSACK (KNAP)

Input: A knapsack of capacity c ∈ N and n items with sizes s1, s2, . . . , sn and
“profits” p1, p2, . . . , pn.

Output: A subset I of (the index set of) the objects that fits into the knapsack and
maximizes the profit

∑
i∈I pi .

Solution as ILP: We use indicator variables xi ∈ {0, 1} for all i ∈ {1, 2, . . . , n},
with xi = 1 meaning that item i is to be put into the knapsack.
maximize:

∑n
i=1 pi · xi

subject to:
∑n

i=1 si · xi ≤ c
xi ∈ Z for all i ∈ {1, 2, . . . , d}
xi ≥ 0 for all i ∈ {1, 2, . . . , d}
xi ≤ 1 for all i ∈ {1, 2, . . . , d}
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3-SAT-CNF as ILP

Problem: 3-SAT-CNF

Input: A propositional formula A which is in conjunctive normal form such that
every clause consists of exactly (or at most) three literals

Decide: Is A satisfiable?

Solution as ILP: Let z1, z2, , . . . , zn be the Boolean variables. We use indicator
variables xi ∈ {0, 1} for all i ∈ {1, 2, . . . , n}, with xi = 1 if and only if zi is true.

Modeling of the clauses as constraints (for 1 ≤ i < j < k ≤ n):

zi ∨ zj ∨ zk ⇐⇒ xi + xj + xk ≥ 1

z̄i ∨ zj ∨ z̄k ⇐⇒ (1 − xi) + xj +(1 − xk ) ≥ 1

z̄i ∨ z̄j ∨ z̄k ⇐⇒ (1 − xi) + (1 − xj)+ (1 − xk ) ≥ 1
...

Objective function: As for many decision problems, we do not have a genuine
objective function — we are only interested in finding a feasible solution. We can,
however, maximize 1. Or maximize x1 + x2 + . . .+ xn.
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INDEPENDENTSET as ILP

Problem: INDEPENDENTSET (IS)

Input: An undirected graph G = (V ,E).

Output: A maximum independent set I ⊆ V . (A subset I of V forms an independent
set of G if no pair of vertices of I is connected by an edge of G.)

Solution as ILP: We use indicator variables xv ∈ {0, 1} for all v ∈ V , with xv = 1
meaning that node v is in I.
maximize:

∑
v∈V xv

subject to: xv + xw ≤ 1 for all (v ,w) ∈ E
xv ≥ 0 for all v ∈ V
xv ≤ 1 for all v ∈ V
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MAXIMUMMATCHING as ILP

Problem: MAXIMUMMATCHING

Input: An undirected graph G = (V ,E).

Output: A maximum set of edges I ⊆ E such that no two edges of I share the same
node of V .

Solution as ILP: We use indicator variables xe ∈ {0, 1} for all e ∈ E , with xe = 1
meaning that edge e is in I.
maximize:

∑
e∈E xe

subject to:
∑

e incident to v xe ≤ 1 for all v ∈ V
xe ≥ 0 for all e ∈ E
xe ≤ 1 for all e ∈ E

LP relaxation always gives an integer solution if G is bipartite!
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k -COLORING as ILP

Problem: k -COLORING (k -COL)

Input: An undirected graph G = (V ,E), and an integer k ∈ N.

Decide: Does G admit a coloring that uses at most k colors? (An assignment of
colors to all vertices of G is called a (vertex) coloring if adjacent vertices are
assigned different colors.)

Solution as ILP: We use indicator variables xv,i ∈ {0, 1} for all v ∈ V and all
colors i ∈ {1, 2, . . . , k}, with xv,i = 1 meaning that color i is assigned to node v .

Constraints:
maximize: 1
subject to:

∑k
i=1 xv,i = 1 for all v ∈ V

xv,i + xw,i ≤ 1 for all (v ,w) ∈ E and all i ∈ {1, 2, . . . , k}
xv,i ≤ 1 for all v ∈ V and all i ∈ {1, 2, . . . , k}
xv,i ≥ 0 for all v ∈ V and all i ∈ {1, 2, . . . , k}

One can also apply ILP to solve COLORING.
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9 Linear and Integer Linear Programming
Basics of Linear Programming
Solving a Linear Program
Integer Linear Programming
Applications in CS
Geometric and Practical Applications

Kernel of a Star-Shaped Polygon
Red-Blue Separation
Removal from Mold
Test for Roundness
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Kernel of a Star-Shaped Polygon

Definition 198 (Star-shaped polygon, Dt.: sternförmiges Polygon)

A polygonal region P (in the plane) is star-shaped if there exists a point p ∈ P such
that for every point q ∈ P the line segment pq lies entirely within P.

The set of all
points p with this property is called the kernel (Dt.: Kern, Nucleus) of P.

Hence, P is star-shaped if p can “see” every
point on the boundary of P.

Every convex polygonal region is star-shaped.

Lemma 199

The kernel of P is not empty, and P is star-shaped,
if and only if the intersection of the “interior”
half-planes induced by all oriented edges of the
boundary polygon of P is not empty.

Formulating the problem as an LP allows to test in linear time whether P is
star-shaped. Furthermore, in linear time we can determine a suitable point p if
the kernel of P is not empty.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 398/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Red-Blue Separation

Problem: REDBLUESEPARATION

Input: A set R of red points and a set B of blue points.

Output: A line ℓ such that all the red points are on one side of ℓ and all the blue
points are on the other side, if it exists.

All possible lines ℓ have the equation a · x + b · y = c, for unknown a, b, c ∈ R.

If c ̸= 0 then a · x + b · y = 1 with a, b ∈ R. Otherwise a · x + b · y = 0.

Resulting LP, with c := 0 or c := 1:

maximize: 1
subject to: a · xi +b · yi ≤ c for all (xi , yi) ∈ R

a · xi +b · yi ≥ c for all (xi , yi) ∈ B

Hence, REDBLUESEPARATION can be solved in time O(|R|+ |B|).
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Removal from Mold

Casting (Dt.: Gießen)

A mold is a 3D shape that forms a hollow cavity.

Liquid metal is poured into the mold (Dt.: Gussform, Kokille), and one uses
gravity (or pressure) to fill the mold.

Once the metal has solidified, the object cast is removed.

Permanent mold casting employs reusable molds, which requires the object to be
removable from the mold without destroying the mold (or the object).

Obvious problem: Not all objects are
removable from the mold.

Can we decide efficiently whether an object
can be manufactured by casting and, if so,
can we find a suitable orientation of the
mold and a removal direction?

We assume that the object to be cast is
formed by a polyhedron, i.e., that it is
bounded by planar facets.
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UNIVERSITÄT SALZBURG

Removal from Mold

Casting (Dt.: Gießen)

A mold is a 3D shape that forms a hollow cavity.

Liquid metal is poured into the mold (Dt.: Gussform, Kokille), and one uses
gravity (or pressure) to fill the mold.

Once the metal has solidified, the object cast is removed.

Permanent mold casting employs reusable molds, which requires the object to be
removable from the mold without destroying the mold (or the object).

Obvious problem: Not all objects are
removable from the mold.

Can we decide efficiently whether an object
can be manufactured by casting and, if so,
can we find a suitable orientation of the
mold and a removal direction?

We assume that the object to be cast is
formed by a polyhedron, i.e., that it is
bounded by planar facets.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 400/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Removal from Mold

Problem: MOLDREMOVAL

Input: A polyhedral object P, with designated (horizontal) top facet, and its
corresponding mold.

Output: A direction vector d ∈ R3, if it exists, such that P can be translated to infinity
in direction d without intersecting the mold.

A facet of P is called ordinary facet if it is not the top facet of P.

Lemma 200

The polyhedron P can be removed from its mold by a translation in direction d if and
only if d forms an angle of at least 90◦ with the outward normals of all ordinary facets
of P.

Lemma 201

The direction vector d := (dx , dy , dz) forms an angle of at least 90◦ with an outward
normal vector v := (vx , vy , vz) if and only if

⟨d , v⟩ := dx · vx + dy · vy + dz · vz ≤ 0.
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UNIVERSITÄT SALZBURG

Removal from Mold

Problem: MOLDREMOVAL

Input: A polyhedral object P, with designated (horizontal) top facet, and its
corresponding mold.

Output: A direction vector d ∈ R3, if it exists, such that P can be translated to infinity
in direction d without intersecting the mold.

A facet of P is called ordinary facet if it is not the top facet of P.

Lemma 200

The polyhedron P can be removed from its mold by a translation in direction d if and
only if d forms an angle of at least 90◦ with the outward normals of all ordinary facets
of P.

Lemma 201

The direction vector d := (dx , dy , dz) forms an angle of at least 90◦ with an outward
normal vector v := (vx , vy , vz) if and only if

⟨d , v⟩ := dx · vx + dy · vy + dz · vz ≤ 0.

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 401/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Removal from Mold

Lemma 202

MOLDREMOVAL can be solved in O(n) time for a polyhedron P with n ordinary facets.

Proof : Since the direction vector d must have a non-zero z-coordinate, we can write
d as (dx , dy , 1).
Let vi := (v i

x , v i
y , v i

z) be the outward normal vector of the i-th ordinary facet of P, for
i ∈ {1, 2, . . . , n}. Then we get the following simple LP:

minimize: dx + dy (or simply 1)
subject to: v1

x · dx + v1
y · dy + v1

z ≤ 0
v2

x · dx + v2
y · dy + v2

z ≤ 0
...

vn
x · dx + vn

y · dy + vn
z ≤ 0

A removal direction d for separating the polyhedron from its mold exists if and only if
this LP is feasible, which can be solved in O(n) time.
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Test for Roundness

A circular annulus (in R2) is the region between two concentric circles.

It is
determined by a center c := (cx , cy ) and two radii, r and R, with 0 ≤ r ≤ R.

Problem: MINIMUMAREAANNULUS

Input: A set S of points in R2.

Output: A minimum-area circular annulus that contains all points of S.

MINIMUMAREAANNULUS can be used to check
the “roundness” of a 2D shape by determining the
cocircularity of points probed on the shape.

Hence, we seek to solve the following optimization
problem:

minimize: π(R2 − r 2)
subject to: r ≤ ∥c − p∥ ≤ R for all p ∈ S

This does not look like a linear problem, does it?
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Output: A minimum-area circular annulus that contains all points of S.

MINIMUMAREAANNULUS can be used to check
the “roundness” of a 2D shape by determining the
cocircularity of points probed on the shape.

Hence, we seek to solve the following optimization
problem:

minimize: π(R2 − r 2)
subject to: r ≤ ∥c − p∥ ≤ R for all p ∈ S

This does not look like a linear problem, does it?

r R
c
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Test for Roundness as LP

We introduce two new variables u, v ∈ R and a new constraint:

u := r 2 − ∥c∥2 and v := R2 − ∥c∥2 and v ≥ u

This transforms the objective function into π(v − u), or simply into v − u.

We can re-write the constraints as r 2 ≤ ∥c − p∥2 ≤ R2.

Since ∥c − p∥2 = ∥c∥2 − 2⟨c, p⟩+ ∥p∥2 for all p ∈ S, we have

r 2 ≤ ∥c − p∥2 ⇐⇒ r 2 ≤ ∥c∥2 − 2⟨c, p⟩+ ∥p∥2 ⇐⇒ u + 2⟨c, p⟩ ≤ ∥p∥2.

Similarly,

∥c − p∥2 ≤ R2 ⇐⇒ v + 2⟨c, p⟩ ≥ ∥p∥2.

This transforms the objective function and the constraints into a linear program in
u, v , cx , cy , with the new constraint v ≥ u.

We can use r 2 = u + ∥c∥2 and R2 = v + ∥c∥2 to reconstruct r and R.

It cannot happen that r 2 turns out to be negative in an optimum solution: Since
we only demand r 2 ≤ ∥c − p∥2 for all p ∈ S, we could definitely push r 2 to at
least 0 by increasing u, while also making the objective v − u smaller!
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UNIVERSITÄT SALZBURG

Test for Roundness as LP

We introduce two new variables u, v ∈ R and a new constraint:

u := r 2 − ∥c∥2 and v := R2 − ∥c∥2 and v ≥ u

This transforms the objective function into π(v − u), or simply into v − u.

We can re-write the constraints as r 2 ≤ ∥c − p∥2 ≤ R2.

Since ∥c − p∥2 = ∥c∥2 − 2⟨c, p⟩+ ∥p∥2 for all p ∈ S, we have

r 2 ≤ ∥c − p∥2 ⇐⇒ r 2 ≤ ∥c∥2 − 2⟨c, p⟩+ ∥p∥2 ⇐⇒ u + 2⟨c, p⟩ ≤ ∥p∥2.

Similarly,

∥c − p∥2 ≤ R2 ⇐⇒ v + 2⟨c, p⟩ ≥ ∥p∥2.

This transforms the objective function and the constraints into a linear program in
u, v , cx , cy , with the new constraint v ≥ u.

We can use r 2 = u + ∥c∥2 and R2 = v + ∥c∥2 to reconstruct r and R.

It cannot happen that r 2 turns out to be negative in an optimum solution: Since
we only demand r 2 ≤ ∥c − p∥2 for all p ∈ S, we could definitely push r 2 to at
least 0 by increasing u, while also making the objective v − u smaller!

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 404/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Test for Roundness as LP

We introduce two new variables u, v ∈ R and a new constraint:

u := r 2 − ∥c∥2 and v := R2 − ∥c∥2 and v ≥ u

This transforms the objective function into π(v − u), or simply into v − u.

We can re-write the constraints as r 2 ≤ ∥c − p∥2 ≤ R2.

Since ∥c − p∥2 = ∥c∥2 − 2⟨c, p⟩+ ∥p∥2 for all p ∈ S

, we have

r 2 ≤ ∥c − p∥2 ⇐⇒ r 2 ≤ ∥c∥2 − 2⟨c, p⟩+ ∥p∥2 ⇐⇒ u + 2⟨c, p⟩ ≤ ∥p∥2.

Similarly,

∥c − p∥2 ≤ R2 ⇐⇒ v + 2⟨c, p⟩ ≥ ∥p∥2.

This transforms the objective function and the constraints into a linear program in
u, v , cx , cy , with the new constraint v ≥ u.

We can use r 2 = u + ∥c∥2 and R2 = v + ∥c∥2 to reconstruct r and R.

It cannot happen that r 2 turns out to be negative in an optimum solution: Since
we only demand r 2 ≤ ∥c − p∥2 for all p ∈ S, we could definitely push r 2 to at
least 0 by increasing u, while also making the objective v − u smaller!

© M. Held (Univ. Salzburg) Advanced Algorithms and Data Structures (WS 2023/24) 404/405



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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The End!

I hope that you enjoyed this course, and I wish you all the best for your future studies.

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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