Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms

Sebastian Forster
University of Salzburg

Joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai Yingchareonthawornchai

Workshop: Recent Trends in Theoretical Computer Science
Edge and Vertex Connectivity

Edge connectivity λ / vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected
Edge and Vertex Connectivity

Edge connectivity λ/**vertex connectivity** κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected

Edge cut:
Edge and Vertex Connectivity

Edge connectivity λ/vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected

Edge cut:

Vertex cut:
Edge and Vertex Connectivity

Edge connectivity λ / vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected

Motivation:
- Fundamental graph-theoretic notion
- Applications: Reliability analysis, community detection
State of the Art and Results

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(n^{2.373} + nk^{2.373})$</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>$\tilde{O}(mn)$</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>$O(mn + \kappa mn^{3/4})$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$O(mn + \kappa^{5/2}m)$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{4/3})$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{2/3}n)$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^2 m)$</td>
<td>no</td>
<td>Our result</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^{3/2} m^{1/2}n + \kappa^3 n)$</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Undirected graphs:

$m \rightarrow n \kappa$ [Nagamochi/Ibaraki ‘92]

State of the art for edge connectivity in directed graphs:

$\tilde{O}(\lambda m)$ [Gabow ‘95]

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]
State of the Art and Results

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(n^{2.373} + nk^{2.373})$</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>$\tilde{O}(mn)$</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>$O(mn + \kappa mn^{3/4})$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$O(mn + \kappa^{5/2}m)$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{4/3})$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{2/3})$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^2 m)$</td>
<td>no</td>
<td>Our result</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^{3/2}m^{1/2}n + \kappa^3n)$</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Undirected graphs: $m \rightarrow nk$ [Nagamochi/Ibaraki ’92]
State of the Art and Results

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(n^{2.373} + nk^{2.373})$</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>$\tilde{O}(mn)$</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>$O(mn + \kappa mn^{3/4})$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$O(mn + \kappa^{5/2} m)$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{4/3})$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{2/3} n)$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^2 m)$</td>
<td>no</td>
<td>Our result</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^{3/2} m^{1/2} n + \kappa^3 n)$</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Undirected graphs: $m \rightarrow nk$ [Nagamochi/Ibaraki ’92]

State of the art for edge connectivity in directed graphs: $\tilde{O}(\lambda m)$ [Gabow ’95]
State of the Art and Results

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(n^{2.373} + nk^{2.373})$</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>$\tilde{O}(mn)$</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>$O(mn + \kappa mn^{3/4})$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$O(mn + \kappa^{5/2}m)$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{4/3})$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa m^{2/3}n)$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^2 m)$</td>
<td>no</td>
<td>Our result</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa^{3/2} m^{1/2}n + \kappa n)$</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Undirected graphs: $m \rightarrow n\kappa$ [Nagamochi/Ibaraki ’92]

State of the art for **edge connectivity** in directed graphs: $\tilde{O}(\lambda m)$ [Gabow ’95]

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]
Algorithm needs to distinguish between graphs that are k-connected and graphs that are ε-far from being k-connected (cannot be made k-connected by changing an ε-fraction of the edges). Want to minimize the number of edge queries to the graph.
Algorithm needs to distinguish between graphs that are k-connected and graphs that are ϵ-far from being k-connected (cannot be made k-connected by changing an ϵ-fraction of the edges). Want to minimize the number of edge queries to the graph.

Graphs of bounded degree d:

<table>
<thead>
<tr>
<th>Problem</th>
<th>State of the art</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td>undirected k-edge conn.</td>
<td>$\tilde{O}\left(\frac{k^3}{\epsilon^{3-\frac{2}{k}}d^{2-\frac{2}{k}}k}\right)$ [Goldreich/Ron ’02]</td>
<td>$\tilde{O}\left(\frac{k}{\epsilon}\right)$</td>
</tr>
<tr>
<td>directed k-edge conn.</td>
<td>$\tilde{O}\left(\left(\frac{ck}{\epsilon d}\right)^k d\right)$ [Yoshida/Ito ’10]</td>
<td>$\tilde{O}\left(\frac{k}{\epsilon}\right)$</td>
</tr>
<tr>
<td>undirected k-vertex conn.</td>
<td>$\tilde{O}\left(\left(\frac{ck}{\epsilon d}\right)^k d\right)$ [Yoshida/Ito ’12]</td>
<td>$\tilde{O}\left(\frac{k}{\epsilon}\right)$</td>
</tr>
<tr>
<td>directed k-vertex conn.</td>
<td>$\tilde{O}\left(\left(\frac{ck}{\epsilon d}\right)^k d\right)$ [Orenstein/Ron ’11]</td>
<td>$\tilde{O}\left(\frac{k}{\epsilon}\right)$</td>
</tr>
</tbody>
</table>
Property Testing Results

Algorithm needs to distinguish between graphs that are \(k \)-connected and graphs that are \(\epsilon \)-far from being \(k \)-connected (cannot be made \(k \)-connected by changing an \(\epsilon \)-fraction of the edges). Want to minimize the number of edge queries to the graph.

Graphs of bounded degree \(d \):

<table>
<thead>
<tr>
<th>Problem</th>
<th>State of the art</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td>undirected (k)-edge conn.</td>
<td>(\tilde{O} \left(\frac{k^3}{\epsilon^3 \frac{2}{k} d^2 \frac{2}{k}} \right)) [Goldreich/Ron ’02]</td>
<td>(\tilde{O} \left(\frac{k}{\epsilon} \right))</td>
</tr>
<tr>
<td>directed (k)-edge conn.</td>
<td>(\tilde{O} \left(\left(\frac{ck}{\epsilon d} \right)^k d \right)) [Yoshida/Ito ’10]</td>
<td>(\tilde{O} \left(\frac{k}{\epsilon} \right))</td>
</tr>
<tr>
<td>undirected (k)-vertex conn.</td>
<td>(\tilde{O} \left(\left(\frac{ck}{\epsilon d} \right)^k d \right)) [Yoshida/Ito ’12]</td>
<td>(\tilde{O} \left(\frac{k}{\epsilon} \right))</td>
</tr>
<tr>
<td>directed (k)-vertex conn.</td>
<td>(\tilde{O} \left(\left(\frac{ck}{\epsilon d} \right)^k d \right)) [Orenstein/Ron ’11]</td>
<td>(\tilde{O} \left(\frac{k}{\epsilon} \right))</td>
</tr>
</tbody>
</table>

Similar improvements for graphs of unbounded degree (w.r.t. avg. degree)
Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)
Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A *k*-out component $U \subseteq V$ has at most k edges going from U to $V \setminus U$.
Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A \textit{k-out component} $U \subseteq V$ has at most k edges going from U to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

1. If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 3k\Delta$ with probability at least $\frac{1}{2}$

2. Otherwise, it might return a k-out-component or \perp
Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A k-out component $U \subseteq V$ has at most k edges going from U to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

1. If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 3k\Delta$ with probability at least $\frac{1}{2}$

2. Otherwise, it might return a k-out-component or \perp

Core problem! Plugging in almost immediately implies our results!
Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A k-out component $U \subseteq V$ has at most k edges going from U to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

1. If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 3k\Delta$ with probability at least $\frac{1}{2}$

2. Otherwise, it might return a k-out-component or \perp

Core problem! Plugging in almost immediately implies our results!

Prior work:

- “Local” version of Karger’s algorithm [Goldreich/Ron ’02]
- Exponential time [Orenstein/Ron ’11] [Chechik et al. ’17]
- Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai ’19]
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge
 - Reverse edges on path from s to t in DFS tree

- Return \bot
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return \bot
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return \perp
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return ⊥
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return \bot
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return \perp
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return \bot
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return \bot
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return ⊥
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex \(s \), target cut size \(\leq k \), target volume \(\leq \Delta \)

Algorithm:

- Repeat \(k + 1 \) times:
 - Perform depth-first-search from \(s \) processing up to \(2k\Delta \) many edges
 - If DFS processes less than \(2k\Delta \) edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let \(t \) be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from \(s \) to \(t \) in DFS tree

- Return \(\bot \)
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:
- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return ⊥
Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k + 1$ times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree

- Return ⊥
Claim 1 [Chechik et al. ’17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.
Claim 1 [Chechik et al. ’17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.

Case 1: $t \notin U$

Case 2: $t \in U$
Claim 1 [Chechik et al. ’17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.

Case 1: $t \notin U$

Odd number of crossings

Case 2: $t \in U$

Even number of crossings
Claim 1 [Chechik et al. ’17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.
- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.

Case 1: $t \notin U$

Odd number of crossings

Case 2: $t \in U$

Even number of crossings
Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 2k\Delta + \ell \leq 3k\Delta$.

Idea:
For component found by DFS, number of out-edges reduces by at most one in each iteration.
Analysis II

Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 2k\Delta + \ell \leq 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration
Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 2k\Delta + \ell \leq 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration.

Claim 3

If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.
Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 2k\Delta + \ell \leq 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration.

Claim 3

If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 2k\Delta + \ell \leq 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3
If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof
- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $\text{vol}(C) \leq \Delta$ and DFS processes $= 2k\Delta$ many edges
Analysis II

Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 2k\Delta + \ell \leq 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3
If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof
- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $\text{vol}(C) \leq \Delta$ and DFS processes $= 2k\Delta$ many edges
- Tail of sampled edge will lie inside of C with probability $\leq \frac{1}{2k}$
Analysis II

Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 2k\Delta + \ell \leq 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3
If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof
- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $\text{vol}(C) \leq \Delta$ and DFS processes $= 2k\Delta$ many edges
- Tail of sampled edge will lie inside of C with probability $\leq \frac{1}{2k}$
- By Union Bound: algorithms fails with probability $\leq \frac{1}{2}$
Conclusion

Extensions:

1. Extension to vertex connectivity
 Standard reduction (directed!) with some minor adjustments

Summary:
Significant progress for fundamental graph problems
Local procedure was pivotal to be/t_ter time/query complexities
Exponential improvement:
from $O\left(2^{O(k)\Delta}\right)$ [Chechik et al. '17] to $O(k^2\Delta)$
at the cost of randomization
Conclusion

Extensions:

1. Extension to vertex connectivity
 Standard reduction (directed!) with some minor adjustments

2. Approximation version
 Sampling only outside of component in a fraction of cases

Summary:

Significant progress for fundamental graph problems
Local procedure was pivotal to be/t_ter time/query complexities
Exponential improvement: from $O(2^{O(k)} \Delta)$ to $O(k^2 \Delta)$ at the cost of randomization
Conclusion

Extensions:

1. Extension to vertex connectivity
 Standard reduction (directed!) with some minor adjustments

2. Approximation version
 Sampling only outside of component in a fraction of cases

3. Can save a factor of k in query complexity
 (Useful for property testing)
Conclusion

Extensions:

1. Extension to vertex connectivity
 Standard reduction (directed!) with some minor adjustments

2. Approximation version
 Sampling only outside of component in a fraction of cases

3. Can save a factor of k in query complexity
 (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems
Conclusion

Extensions:

1. Extension to vertex connectivity
 Standard reduction (directed!) with some minor adjustments

2. Approximation version
 Sampling only outside of component in a fraction of cases

3. Can save a factor of k in query complexity
 (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems
- Local procedure was pivotal to better time/query complexities
Conclusion

Extensions:

1. Extension to vertex connectivity
 Standard reduction (directed!) with some minor adjustments

2. Approximation version
 Sampling only outside of component in a fraction of cases

3. Can save a factor of k in query complexity
 (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems
- Local procedure was pivotal to better time/query complexities

Exponential improvement: from $O(2^{O(k)} \Delta)$ [Chechik et al. ’17] to $O(k^2 \Delta)$ at the cost of randomization
Thank you!