
A Faster Distributed Single-Source Shortest Paths
Algorithm

Sebastian Forster1 Danupon Nanongkai2

1Department of Computer Sciences
University of Salzburg, Austria

Previously known as S. Krinninger

2School of Electrical Engineering and Computer Science (EECS)
KTH Royal Institute of Technology, Sweden

FOCS 2018

1 / 15



2 / 15



Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

(Nearly) optimal solutions known in RAM model

Not fully understood in PRAM model

Not fully understood in CONGEST model

To be fair: non-negative weights also not fully understood in RAM model

3 / 15



Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

(Nearly) optimal solutions known in RAM model

Not fully understood in PRAM model

Not fully understood in CONGEST model

To be fair: non-negative weights also not fully understood in RAM model

3 / 15



Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

(Nearly) optimal solutions known in RAM model

Not fully understood in PRAM model

Not fully understood in CONGEST model

To be fair: non-negative weights also not fully understood in RAM model

3 / 15



Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

(Nearly) optimal solutions known in RAM model

Not fully understood in PRAM model

Not fully understood in CONGEST model

To be fair: non-negative weights also not fully understood in RAM model

3 / 15



Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

(Nearly) optimal solutions known in RAM model

Not fully understood in PRAM model

Not fully understood in CONGEST model

To be fair: non-negative weights also not fully understood in RAM model

3 / 15



Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

(Nearly) optimal solutions known in RAM model

Not fully understood in PRAM model

Not fully understood in CONGEST model

To be fair: non-negative weights also not fully understood in RAM model

3 / 15



CONGEST Model
Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:
Processors with unique IDs modeled as nodes
Synchronous rounds (global clock)
In each round, every node sends (at most) one message to each neighbor
Message size O (logn)
Unlimited internal computation between rounds
Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions
Weights represent costs (not time)

Distributed problem statement:
Initial knowledge: incident edges, source
Terminal knowledge: distance to the source, parent on shortest path tree

4 / 15



CONGEST Model
Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:
Processors with unique IDs modeled as nodes
Synchronous rounds (global clock)
In each round, every node sends (at most) one message to each neighbor
Message size O (logn)
Unlimited internal computation between rounds

Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions
Weights represent costs (not time)

Distributed problem statement:
Initial knowledge: incident edges, source
Terminal knowledge: distance to the source, parent on shortest path tree

4 / 15



CONGEST Model
Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:
Processors with unique IDs modeled as nodes
Synchronous rounds (global clock)
In each round, every node sends (at most) one message to each neighbor
Message size O (logn)
Unlimited internal computation between rounds
Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions
Weights represent costs (not time)

Distributed problem statement:
Initial knowledge: incident edges, source
Terminal knowledge: distance to the source, parent on shortest path tree

4 / 15



CONGEST Model
Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:
Processors with unique IDs modeled as nodes
Synchronous rounds (global clock)
In each round, every node sends (at most) one message to each neighbor
Message size O (logn)
Unlimited internal computation between rounds
Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions
Weights represent costs (not time)

Distributed problem statement:
Initial knowledge: incident edges, source
Terminal knowledge: distance to the source, parent on shortest path tree

4 / 15



Unweighted Graphs: BFS

s

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

1 1

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

1 1

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

1 1

2 2

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

1 1

2 2

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

1 1

2 2

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Unweighted Graphs: BFS

0

1 1

2 2

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs

5 / 15



Comparison Related Work

Lower Bound: Ω̃(
√
n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
O (n) (Bellman-Ford)

Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]

Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]

Õ (
√
nD) Our result

Õ (
√
nD1/4 + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wa�enhofer ’12] [Censor-Hillel et al. ’15]
[Huang/Nanongkai/Saranurak ’17] [Agarwal et al. ’18]
[Agarwal/Ramachandran ’18]

Approximation Algorithms: [Nanongkai ’14] [Holzer and Pinsker ’15]
[Henzinger/K/Nanongkai ’16] [Elkin/Neiman ’16] [Becker et al. ’17]

6 / 15



Comparison Related Work

Lower Bound: Ω̃(
√
n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
O (n) (Bellman-Ford)

Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]

Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]

Õ (
√
nD) Our result

Õ (
√
nD1/4 + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wa�enhofer ’12] [Censor-Hillel et al. ’15]
[Huang/Nanongkai/Saranurak ’17] [Agarwal et al. ’18]
[Agarwal/Ramachandran ’18]

Approximation Algorithms: [Nanongkai ’14] [Holzer and Pinsker ’15]
[Henzinger/K/Nanongkai ’16] [Elkin/Neiman ’16] [Becker et al. ’17]

6 / 15



Comparison Related Work

Lower Bound: Ω̃(
√
n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
O (n) (Bellman-Ford)

Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]

Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]

Õ (
√
nD) Our result

Õ (
√
nD1/4 + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wa�enhofer ’12] [Censor-Hillel et al. ’15]
[Huang/Nanongkai/Saranurak ’17] [Agarwal et al. ’18]
[Agarwal/Ramachandran ’18]

Approximation Algorithms: [Nanongkai ’14] [Holzer and Pinsker ’15]
[Henzinger/K/Nanongkai ’16] [Elkin/Neiman ’16] [Becker et al. ’17]

6 / 15



Comparison Related Work

Lower Bound: Ω̃(
√
n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
O (n) (Bellman-Ford)

Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]

Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]

Õ (
√
nD) Our result

Õ (
√
nD1/4 + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wa�enhofer ’12] [Censor-Hillel et al. ’15]
[Huang/Nanongkai/Saranurak ’17] [Agarwal et al. ’18]
[Agarwal/Ramachandran ’18]

Approximation Algorithms: [Nanongkai ’14] [Holzer and Pinsker ’15]
[Henzinger/K/Nanongkai ’16] [Elkin/Neiman ’16] [Becker et al. ’17]

6 / 15



Comparison Related Work

Lower Bound: Ω̃(
√
n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
O (n) (Bellman-Ford)

Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]

Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]

Õ (
√
nD) Our result

Õ (
√
nD1/4 + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wa�enhofer ’12] [Censor-Hillel et al. ’15]
[Huang/Nanongkai/Saranurak ’17] [Agarwal et al. ’18]
[Agarwal/Ramachandran ’18]

Approximation Algorithms: [Nanongkai ’14] [Holzer and Pinsker ’15]
[Henzinger/K/Nanongkai ’16] [Elkin/Neiman ’16] [Becker et al. ’17]

6 / 15



Comparison Related Work

Lower Bound: Ω̃(
√
n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
O (n) (Bellman-Ford)

Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]

Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]

Õ (
√
nD) Our result

Õ (
√
nD1/4 + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wa�enhofer ’12] [Censor-Hillel et al. ’15]
[Huang/Nanongkai/Saranurak ’17] [Agarwal et al. ’18]
[Agarwal/Ramachandran ’18]

Approximation Algorithms: [Nanongkai ’14] [Holzer and Pinsker ’15]
[Henzinger/K/Nanongkai ’16] [Elkin/Neiman ’16] [Becker et al. ’17]

6 / 15



Comparison Related Work

Lower Bound: Ω̃(
√
n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
O (n) (Bellman-Ford)

Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]

Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]

Õ (
√
nD) Our result

Õ (
√
nD1/4 + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wa�enhofer ’12] [Censor-Hillel et al. ’15]
[Huang/Nanongkai/Saranurak ’17] [Agarwal et al. ’18]
[Agarwal/Ramachandran ’18]

Approximation Algorithms: [Nanongkai ’14] [Holzer and Pinsker ’15]
[Henzinger/K/Nanongkai ’16] [Elkin/Neiman ’16] [Becker et al. ’17]

6 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance

7 / 15



The Scaling Approach
Two scaling techniques [Gabow ’85]:

1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Require: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )

Scaling forces us to solve directed problem

Inherent dependence on log(Wmax) due to maximum distance
7 / 15



Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d̂ (s, ·) such that

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O (log(nWmax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm

Leverage techniques from approximate SSSP

Careful design to satisfy domination constraint

8 / 15



Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d̂ (s, ·) such that

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O (log(nWmax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm

Leverage techniques from approximate SSSP

Careful design to satisfy domination constraint

8 / 15



Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d̂ (s, ·) such that

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O (log(nWmax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm

Leverage techniques from approximate SSSP

Careful design to satisfy domination constraint

8 / 15



Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d̂ (s, ·) such that

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O (log(nWmax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm

Leverage techniques from approximate SSSP

Careful design to satisfy domination constraint

8 / 15



Omi�ed in this talk:

Detailed running time analyis

Dealing with 0-weight edges: Reduce to positive edge weights

Faster approximation algorithm for directed graphs

9 / 15



Omi�ed in this talk:

Detailed running time analyis

Dealing with 0-weight edges: Reduce to positive edge weights

Faster approximation algorithm for directed graphs

9 / 15



Skeleton Graph

s

Sample Õ (n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
1 Reduce to computing SSSP on skeleton graph
2 Add skeleton shortcuts
3 Le� to deal with shortest paths with ≤ h edges

10 / 15



Skeleton Graph

s

Sample Õ (n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
1 Reduce to computing SSSP on skeleton graph
2 Add skeleton shortcuts
3 Le� to deal with shortest paths with ≤ h edges

10 / 15



Skeleton Graph

s

Sample Õ (n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
1 Reduce to computing SSSP on skeleton graph
2 Add skeleton shortcuts
3 Le� to deal with shortest paths with ≤ h edges

10 / 15



Skeleton Graph

s

Sample Õ (n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
1 Reduce to computing SSSP on skeleton graph

2 Add skeleton shortcuts
3 Le� to deal with shortest paths with ≤ h edges

10 / 15



Skeleton Graph

s

Sample Õ (n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
1 Reduce to computing SSSP on skeleton graph
2 Add skeleton shortcuts

3 Le� to deal with shortest paths with ≤ h edges

10 / 15



Skeleton Graph

s

Sample Õ (n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
1 Reduce to computing SSSP on skeleton graph
2 Add skeleton shortcuts
3 Le� to deal with shortest paths with ≤ h edges

10 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes

2 Compute approximate skeleton graph H :
I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton

Compute distH (s,x ) for every skeleton node x
4 Augment original graph G to G ′ by adding skeleton shortcuts

Set wG′ (s,x ) = distH (s,x ) for every skeleton node x
5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v

Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts

Set wG′ (s,x ) = distH (s,x ) for every skeleton node x
5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v

Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v

Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Auxiliary Algorithm
1 Sample Õ (n/h) skeleton nodes
2 Compute approximate skeleton graph H :

I Compute d̃ (x ,y) for every pair of skeleton nodes x ,y s.t.
distG (x ,y) ≤ d̃ (x ,y) ≤ 2 distG (x ,y) [Nanongkai ’14]

I Set wH (x ,y) := 1
2d̃ (x ,y)

3 Solve exact SSSP on skeleton
Compute distH (s,x ) for every skeleton node x

4 Augment original graph G to G ′ by adding skeleton shortcuts
Set wG′ (s,x ) = distH (s,x ) for every skeleton node x

5 Compute h-hop distances in G ′: d̂ (s,v ) := disthG′ (s,v ) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)

11 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )

We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v

h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )

Then domination follows from triangle inequality

s v

h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v

h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v

h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G

Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v
h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges

With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v
h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node

Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v
h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)

Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v
h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap

Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v
h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!

Now: remainder of π has < h edges

12 / 15



Proof of Domination
Need to show: disthG′ (s,v ) ≤ disthG′ (s,u) +wG (u,v )
We show that disthG′ (s,v ) = distG′ (s,v )
Then domination follows from triangle inequality

s v
h/2 edges h/2 edges < h/2 edges

Proof idea:
Shortest path in G ′ has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ′ to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges 12 / 15



How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
1 Dijkstra’s algorithm

Running time: Õ (
√
nD)

2 Recurse

Running time: Õ (
√
nD1/4 + n3/5 + D)

Why is SSSP instance di�erent?

Small size

Computation on skeleton via broadcasting in original network

13 / 15



How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
1 Dijkstra’s algorithm

Running time: Õ (
√
nD)

2 Recurse

Running time: Õ (
√
nD1/4 + n3/5 + D)

Why is SSSP instance di�erent?

Small size

Computation on skeleton via broadcasting in original network

13 / 15



How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
1 Dijkstra’s algorithm

Running time: Õ (
√
nD)

2 Recurse
Running time: Õ (

√
nD1/4 + n3/5 + D)

Why is SSSP instance di�erent?

Small size

Computation on skeleton via broadcasting in original network

13 / 15



How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
1 Dijkstra’s algorithm

Running time: Õ (
√
nD)

2 Recurse
Running time: Õ (

√
nD1/4 + n3/5 + D)

Why is SSSP instance di�erent?

Small size

Computation on skeleton via broadcasting in original network

13 / 15



How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
1 Dijkstra’s algorithm

Running time: Õ (
√
nD)

2 Recurse
Running time: Õ (

√
nD1/4 + n3/5 + D)

Why is SSSP instance di�erent?

Small size

Computation on skeleton via broadcasting in original network

13 / 15



Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

Main di�erence:

Klein and Subramanian treat skeleton edges as a hop set

We solve SSSP on skeleton explicitly

New trade-o� for directed graphs in PRAM model:

Klein and Subramanian: work Õ (m
√
n) and depth Õ (

√
n)

Our approach: work Õ ((n3/h3 +mh +mn/h)) and depth Õ (h)

14 / 15



Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

Main di�erence:

Klein and Subramanian treat skeleton edges as a hop set

We solve SSSP on skeleton explicitly

New trade-o� for directed graphs in PRAM model:

Klein and Subramanian: work Õ (m
√
n) and depth Õ (

√
n)

Our approach: work Õ ((n3/h3 +mh +mn/h)) and depth Õ (h)

14 / 15



Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

Main di�erence:

Klein and Subramanian treat skeleton edges as a hop set

We solve SSSP on skeleton explicitly

New trade-o� for directed graphs in PRAM model:

Klein and Subramanian: work Õ (m
√
n) and depth Õ (

√
n)

Our approach: work Õ ((n3/h3 +mh +mn/h)) and depth Õ (h)

14 / 15



Open Problems

1 Match the single-source reachability barrier for SSSP!

I CONGEST model: Õ (
√
nD1/4 + D) rounds [Gha�ari/Udwani ’15]

(Is this tight??)
I PRAM model:

F Õ (mh + h4/n) work and Õ (n/h) depth [Ullman/Yannakakis ’90]
F Õ (m) work and Õ (n2/3) depth [Fineman ’18]

2 Deterministic algorithms?

Thank you for your a�ention!

slides: h�ps://www.cosy.sbg.ac.at/~forster/

15 / 15



Open Problems

1 Match the single-source reachability barrier for SSSP!
I CONGEST model: Õ (

√
nD1/4 + D) rounds [Gha�ari/Udwani ’15]

(Is this tight??)
I PRAM model:

F Õ (mh + h4/n) work and Õ (n/h) depth [Ullman/Yannakakis ’90]
F Õ (m) work and Õ (n2/3) depth [Fineman ’18]

2 Deterministic algorithms?

Thank you for your a�ention!

slides: h�ps://www.cosy.sbg.ac.at/~forster/

15 / 15



Open Problems

1 Match the single-source reachability barrier for SSSP!
I CONGEST model: Õ (

√
nD1/4 + D) rounds [Gha�ari/Udwani ’15]

(Is this tight??)

I PRAM model:
F Õ (mh + h4/n) work and Õ (n/h) depth [Ullman/Yannakakis ’90]
F Õ (m) work and Õ (n2/3) depth [Fineman ’18]

2 Deterministic algorithms?

Thank you for your a�ention!

slides: h�ps://www.cosy.sbg.ac.at/~forster/

15 / 15



Open Problems

1 Match the single-source reachability barrier for SSSP!
I CONGEST model: Õ (

√
nD1/4 + D) rounds [Gha�ari/Udwani ’15]

(Is this tight??)
I PRAM model:

F Õ (mh + h4/n) work and Õ (n/h) depth [Ullman/Yannakakis ’90]
F Õ (m) work and Õ (n2/3) depth [Fineman ’18]

2 Deterministic algorithms?

Thank you for your a�ention!

slides: h�ps://www.cosy.sbg.ac.at/~forster/

15 / 15



Open Problems

1 Match the single-source reachability barrier for SSSP!
I CONGEST model: Õ (

√
nD1/4 + D) rounds [Gha�ari/Udwani ’15]

(Is this tight??)
I PRAM model:

F Õ (mh + h4/n) work and Õ (n/h) depth [Ullman/Yannakakis ’90]
F Õ (m) work and Õ (n2/3) depth [Fineman ’18]

2 Deterministic algorithms?

Thank you for your a�ention!

slides: h�ps://www.cosy.sbg.ac.at/~forster/

15 / 15



Open Problems

1 Match the single-source reachability barrier for SSSP!
I CONGEST model: Õ (

√
nD1/4 + D) rounds [Gha�ari/Udwani ’15]

(Is this tight??)
I PRAM model:

F Õ (mh + h4/n) work and Õ (n/h) depth [Ullman/Yannakakis ’90]
F Õ (m) work and Õ (n2/3) depth [Fineman ’18]

2 Deterministic algorithms?

Thank you for your a�ention!

slides: h�ps://www.cosy.sbg.ac.at/~forster/

15 / 15


