
Brief Announcement: A Note on Hardness of
Diameter Approximation

Karl Bringmann1 Sebastian Krinninger2

1Max Planck Institute for Informatics
Saarland Informatics Campus

2Department of Computer Sciences
University of Salzburg

DISC 2017

1 / 6



Motivation

Situation:
Knowing diameter of a network is of fundamental interest

Unfortunately, computing the diameter is hard

Unfortunately, approximating the diameter is also not easy
Upper: 3/2-approximation in O(

√
n log n + D) rounds [Holzer et al. ’14]

Lower: (3/2 − ε )-approximation in Ω̃(n) rounds [Abboud et al. ’16]

Goal: Fine-grained understanding of hardness of
diameter approximation

Several recent works in CONGEST model and RAM model:
[Frischknecht at al. ’12, Rodi�y/Williams ’13, Chechik et al. ’14, Holzer et al. ’14,
Cairo et al. ’16, Abboud et al. ’16]
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Our Results: CONGEST Model

Theorem
In the CONGEST model, any algorithm distinguishing between graphs of
diameter 2` + q and graphs of diameter 3` + q when ` ≥ 1 and q ≥ 1 requires
Ω̃(n) rounds.

n: #nodes

Theorem ([Abboud et al. ’16])
In the CONGEST model, any algorithm distinguishing between graphs of
diameter 4` + 1 + q and graphs of diameter 6` + q when ` ≥ 1 and q ≥ 1
requires Ω̃(n) rounds.

Le� open: 2` vs 3`?

2 vs. 3 is hard [Frischknecht et al. ’12]
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Our Results: RAM Model

Theorem
In the RAM model, under the Orthogonal Vectors Hypothesis, there is no
algorithm distinguishing between graphs of diameter 2` + q and graphs of
diameter 3` + q, where ` ≥ 1 and q ≥ 0, in time O(m2−δ ) for any constant δ > 0.

m: #edges

Theorem ([Cairo et al. ’16])
In the RAM model, under the Strong Exponential Time Hypothesis, there is no
algorithm distinguishing between graphs of diameter 2` + q and graphs of
diameter 3` + q, where ` ≥ 1 and q ≥ 0, in time O(m2−δ ) for any constant δ > 0.

Strong Exponential Time Hypothesis⇒ Orthogonal Vectors Hypothesis
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Our Approach
Orthogonal Vectors Problem:
Given sets A,B ⊆ {0, 1}d , decide if there are a ∈ A and b ∈ B such that a ⊥ b

n = |A| = |B|, d = c log n

Hypothesis: No n2−εpoly (d )-time algorithm in RAM model

Communication Complexity: Reduce Set Disjointness to OV
(simple reduction, makes connection to Orthogonal Vectors explicit)

CONGEST model: Reduce OV to Diameter
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Take-Home Message

CONGEST model lower bounds:

Set Disjointness Your Problem

RAM model conditional lower bounds:
Set Disjointness is easy in RAM model!

Orthogonal Vectors Your Problem

Suggestion:

Set Disjointness Orthogonal Vectors Your Problem
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