Fast Deterministic Fully Dynamic Distance Approximation

Sebastian Forster

Meeting on Algorithmic Challenges of Big Data 2022

University of Salzburg

Joint work with:

Jan van den Brand

Yasamin Nazari

Dynamic Environments

Adversary inserts and deletes edges

Distance Matrix

(0	1	1	1	1	
	1	0	1	1	1	
	1	1	0	2	2	
	1	2	2	0	1	
	1	2	2	1	0)

Adversary inserts and deletes edges

Adversary inserts and deletes edges

Algorithm updates distance matrix

and deletes edges

Algorithm updates distance matrix

State of the Art

Amortized update time $\tilde{O}(n^2)$ [Demetrescu, Italiano '03]

Subquadratic Update Time: State of the Art

- Update-query time trade-offs:
 - exact: [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '18]
 - $(1 + \epsilon)$ -approximation: [v.d. Brand, Nanongkai '18]

Subquadratic Update Time: State of the Art

- Update-query time trade-offs:
 - exact: [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '18]
 - $(1 + \epsilon)$ -approximation: [v.d. Brand, Nanongkai '18]
- Partial information (single source, single pair):
 - exact: [Sankowski '05]
 - (1 + ε)-approximation: [v.d. Brand, Nanongkai '18]
 [Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21]

Subquadratic Update Time: State of the Art

- Update-query time trade-offs:
 - exact: [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '18]
 - $(1 + \epsilon)$ -approximation: [v.d. Brand, Nanongkai '18]
- Partial information (single source, single pair):
 - exact: [Sankowski '05]
 - (1 + ε)-approximation: [v.d. Brand, Nanongkai '18]
 [Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21]
- Large multiplicative stretch:
 - Dynamic spanners: [Ausiello, Franciosa, Italiano '05] [Elkin '07] [Baswana, Khurana, Sarkar '12], [Bodwin, K '16] [Bernstein, F, Henzinger '19] [Bernstein, v.d. Brand, Gutenberg, Nanongkai, Saranurak, Sidford, Sun '22]
 - Dynamic distance oracles: [Abraham, Chechik, Talwar '14] [F, Goranci, Henzinger '21]

Towards Dynamic Algorithms without Caveats

"Gold standard":

- Fully dynamic
- · Worst-case update time
- Deterministic
- · Meet an update-time barrier

Towards Dynamic Algorithms without Caveats

"Gold standard":

- Fully dynamic
- · Worst-case update time
- Deterministic
- · Meet an update-time barrier

List of problems with such algorithms is small

Towards Dynamic Algorithms without Caveats

"Gold standard":

- Fully dynamic
- · Worst-case update time
- Deterministic
- · Meet an update-time barrier

List of problems with such algorithms is small

Contribution

We add to this list: $(1 + \epsilon)$ -approximate distance approximation in unweighted, undirected graphs [van den Brand, **F**, Nazari arXiv '21]

Distance approximation in unweighted, undirected graphs:

Approx.	Туре	Update Time
$1 + \epsilon$	single pair	$O(n^{1.407})$
$1 + \epsilon$	single source	$O(n^{1.529})$
$1 + \epsilon$	k sources	$O(n^{1.529} + kn^{1+o(1)})$
$1 + \epsilon$	all pairs	$O(n^{2+o(1)})$

Distance approximation in unweighted, undirected graphs:

Approx.	Туре	Update Time	
$1 + \epsilon$	single pair	$O(n^{1.407})$	
$1 + \epsilon$	single source	$O(n^{1.529})$	
$1 + \epsilon$	k sources	$O(n^{1.529} + kn^{1+o(1)})$	
$1 + \epsilon$	all pairs	$O(n^{2+o(1)})$	

• Improvement from randomized to deterministic (and smaller update time in case of single pair)

Distance approximation in unweighted, undirected graphs:

Approx.	Туре	Update Time	
$1 + \epsilon$	single pair	$O(n^{1.407})$	
$1 + \epsilon$	single source	$O(n^{1.529})$	
$1 + \epsilon$	k sources	$O(n^{1.529} + kn^{1+o(1)})$	
$1 + \epsilon$	all pairs	$O(n^{2+o(1)})$	

- Improvement from randomized to deterministic (and smaller update time in case of single pair)
- Update times match (conditional) lower bounds [van den Brand, Nanongkai, Saranurak '19]

Exact single-pair distance: *O*(*n*^{1.704}) (Improves upon *O*(*n*^{1.724}) [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])

- Exact single-pair distance: O(n^{1.704}) (Improves upon O(n^{1.724}) [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])
- "Nearly" $(\frac{3}{2} + \epsilon)$ -approximation of diameter: $O(n^{1.596})$ (Improves upon $O(n^{1.779})$ [v.d. Brand, Nanongkai '19]

- *Exact* single-pair distance: O(n^{1.704}) (Improves upon O(n^{1.724}) [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])
- "Nearly" $(\frac{3}{2} + \epsilon)$ -approximation of diameter: $O(n^{1.596})$ (Improves upon $O(n^{1.779})$ [v.d. Brand, Nanongkai '19]
- Update/query trade-off for $(1 + \epsilon)$ -approximate distance: $O(n^{1.788})$ update time / $O(n^{0.45})$ query time (Improves upon $O(n^{1.862})$ / $O(n^{0.45})$ [v.d. Brand, Nanongkai '19]

- Exact single-pair distance: O(n^{1.704}) (Improves upon O(n^{1.724}) [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])
- "Nearly" $(\frac{3}{2} + \epsilon)$ -approximation of diameter: $O(n^{1.596})$ (Improves upon $O(n^{1.779})$ [v.d. Brand, Nanongkai '19]
- Update/query trade-off for $(1 + \epsilon)$ -approximate distance: $O(n^{1.788})$ update time / $O(n^{0.45})$ query time (Improves upon $O(n^{1.862})$ / $O(n^{0.45})$ [v.d. Brand, Nanongkai '19]

Warm Up

Randomized fully dynamic $(1 + \epsilon)$ -approximate single-source distances with worst-case update time $O(n^{1.529})$.

Idea

Idea

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain Θ(1/ε)-bounded distances to all nodes from hitting set nodes and source node s

Idea

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1/\epsilon)$ -bounded distances to all nodes from hitting set nodes and source node *s*
- Additionally, after each update:
 - Obtain $\Theta(1/\epsilon)$ -bounded distances $\hat{d}_G(\cdot, \cdot)$
 - Compute $(1 + \epsilon, 2)$ -emulator *H* of size $\tilde{O}(n^{1.5})$

Idea

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1/\epsilon)$ -bounded distances to all nodes from hitting set nodes and source node *s*
- Additionally, after each update:
 - Obtain $\Theta(1/\epsilon)$ -bounded distances $\hat{d}_G(\cdot, \cdot)$
 - Compute $(1 + \epsilon, 2)$ -emulator H of size $\tilde{O}(n^{1.5})$
 - Compute (exact) single-source distances on ${\cal H}$
 - Return $\min(\hat{d}_G(s, v), d_H(s, v))$ for every node v

Idea

Maintain sparsifier and recompute from scratch on sparsifier

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1/\epsilon)$ -bounded distances to all nodes from hitting set nodes and source node *s*
- Additionally, after each update:
 - Obtain $\Theta(1/\epsilon)$ -bounded distances $\hat{d}_G(\cdot, \cdot)$
 - Compute $(1 + \epsilon, 2)$ -emulator H of size $\tilde{O}(n^{1.5})$
 - Compute (exact) single-source distances on H
 - Return $\min(\hat{d}_G(s, v), d_H(s, v))$ for every node v

Related Work

Randomized algorithm for maintaining $(1 + \epsilon, n^{o(1)})$ -spanner of size $n^{1+o(1)}$ with update time $O(n^{1.529})$ [Bergamaschi et al. '21]

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> d := \sqrt{n}$ has at least one node of *S* in its neighborhood.

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> d := \sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> d := \sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> d := \sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> d := \sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Adversarial model

Only works against an oblivious adversary

Definition

A $(1 + \epsilon, \beta)$ -**emulator** of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

```
for all pairs of nodes u, v \in V.
```

Definition

A $(1 + \epsilon, \beta)$ -emulator of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

```
for all pairs of nodes u, v \in V.
```

Emulator *H* has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq \lceil 6/\epsilon \rceil$

similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Definition

A $(1 + \epsilon, \beta)$ -emulator of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \le dist_H(u, v) \le (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

for all pairs of nodes $u, v \in V$.

Emulator *H* has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq \lceil 6/\epsilon \rceil$

similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Lemma

H is a
$$(1 + \frac{\epsilon}{2}, 2)$$
-emulator of size $\tilde{O}(n^{1.5})$

Definition

A $(1 + \epsilon, \beta)$ -**emulator** of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

```
for all pairs of nodes u, v \in V.
```

Emulator *H* has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq \lceil 6/\epsilon \rceil$

similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Lemma

H is a
$$(1 + \frac{\epsilon}{2}, 2)$$
-emulator of size $\tilde{O}(n^{1.5})$

 \rightarrow single-source distance on *H* in time $\tilde{O}(n^{1.5})$

• Case 1: Segment contains no high-degree node

• • • • • • •

• Case 1: Segment contains no high-degree node

• • • • • • •

• Case 2: Segment contains high-degree node

• Case 1: Segment contains no high-degree node

• • • • • • •

• Case 2: Segment contains high-degree node

• Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

 \rightarrow Detour of additive surplus 2

• Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

- \rightarrow Detour of additive surplus 2
 - If segment has length $\lceil 6/\epsilon \rceil$, then multiplicative error of $\leq \frac{\lceil 6/\epsilon \rceil + 2}{\lceil 6/\epsilon \rceil} \leq \frac{6/\epsilon + 3}{6/\epsilon} = 1 + \frac{\epsilon}{2}$

• Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

- \rightarrow Detour of additive surplus 2
 - If segment has length $\lceil 6/\epsilon \rceil$, then multiplicative error of $\leq \frac{\lceil 6/\epsilon \rceil + 2}{\lceil 6/\epsilon \rceil} \leq \frac{6/\epsilon + 3}{6/\epsilon} = 1 + \frac{\epsilon}{2}$
 - If segment has length $< [6/\epsilon]$, then additive error of 2

· Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

- \rightarrow Detour of additive surplus 2
 - If segment has length $\lceil 6/\epsilon \rceil$, then multiplicative error of $\leq \frac{\lceil 6/\epsilon \rceil + 2}{\lceil 6/\epsilon \rceil} \leq \frac{6/\epsilon + 3}{6/\epsilon} = 1 + \frac{\epsilon}{2}$
 - If segment has length $< [6/\epsilon]$, then additive error of 2

Overall: multiplicative error of $1 + \frac{\epsilon}{2}$, additive error of 2

Theorem ([Sankowski '05])

Given any $0 \le \mu \le 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ with update time $\tilde{O}((n^{\omega(1,\mu,1)-\mu} + n^{1+\mu} + |A| \cdot |B|) \cdot h)$.

Theorem ([Sankowski '05])

Given any $0 \le \mu \le 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ with update time $\tilde{O}((n^{\omega(1,\mu,1)-\mu} + n^{1+\mu} + |A| \cdot |B|) \cdot h)$.

• $O(n^{\omega(1,\mu,1)})$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix

Theorem ([Sankowski '05])

Given any $0 \le \mu \le 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ with update time $\tilde{O}((n^{\omega(1,\mu,1)-\mu} + n^{1+\mu} + |A| \cdot |B|) \cdot h)$.

- $O(n^{\omega(1,\mu,1)})$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu = 0.528...$, update time is $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h)$

Theorem ([Sankowski '05])

Given any $0 \le \mu \le 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ with update time $\tilde{O}((n^{\omega(1,\mu,1)-\mu} + n^{1+\mu} + |A| \cdot |B|) \cdot h)$.

- $O(n^{\omega(1,\mu,1)})$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu = 0.528 \dots$, update time is $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h)$
- With $A = S \cup \{s\}$, B = V (where $|S| = \tilde{O}(\sqrt{n})$), and $h = O(1/\epsilon)$: update time $O(n^{1.529}/\epsilon)$

Theorem ([Sankowski '05])

Given any $0 \le \mu \le 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ with update time $\tilde{O}((n^{\omega(1,\mu,1)-\mu} + n^{1+\mu} + |A| \cdot |B|) \cdot h)$.

- $O(n^{\omega(1,\mu,1)})$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu = 0.528 \dots$, update time is $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h)$
- With $A = S \cup \{s\}$, B = V (where $|S| = \tilde{O}(\sqrt{n})$), and $h = O(1/\epsilon)$: update time $O(n^{1.529}/\epsilon)$

Approximation Guarantee:

• If $d_G(s, v) \leq \lceil 6/\epsilon \rceil$: distance from algebraic data structure

Theorem ([Sankowski '05])

Given any $0 \le \mu \le 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ with update time $\tilde{O}((n^{\omega(1,\mu,1)-\mu} + n^{1+\mu} + |A| \cdot |B|) \cdot h)$.

- $O(n^{\omega(1,\mu,1)})$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu = 0.528 \dots$, update time is $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h)$
- With $A = S \cup \{s\}$, B = V (where $|S| = \tilde{O}(\sqrt{n})$), and $h = O(1/\epsilon)$: update time $O(n^{1.529}/\epsilon)$

Approximation Guarantee:

- If $d_G(s, v) \leq \lceil 6/\epsilon \rceil$: distance from algebraic data structure
- If $d_G(s, v) > \lceil 6/\epsilon \rceil$, then approximation from *H* becomes $(1 + \frac{\epsilon}{2})d_G(s, v) + 2 \le (1 + \frac{\epsilon}{2})d_G(s, v) + \frac{\epsilon}{3}d_G(s, v) \le (1 + \epsilon)d_G(s, v)$

Three ideas:

1. Randomization not necessary in algebraic data structure for very small distances

Three ideas:

- 1. Randomization not necessary in algebraic data structure for very small distances
- 2. Hitting set for neighborhoods can be maintained with a lazy approach giving low recourse

Three ideas:

- 1. Randomization not necessary in algebraic data structure for very small distances
- 2. Hitting set for neighborhoods can be maintained with a lazy approach giving low recourse
- 3. Algebraic data structure can be extended to slowly changing set of nodes

Our approach:

Static recomputation: Time O(nd)
 Greedy algorithm: O(log n)-approximation

Our approach:

- Static recomputation: Time O(nd)
 Greedy algorithm: O(log n)-approximation
- · Hitting set needs to be fixed after each update

Our approach:

- Static recomputation: Time O(nd)
 Greedy algorithm: O(log n)-approximation
- · Hitting set needs to be fixed after each update
 - Each update affects at most two neighborhoods!
 - Hitting set grows by ≤ 2 nodes with each update
 → size Õ(n/d + k) after k updates; can set k = n/d

Our approach:

- Static recomputation: Time O(nd)
 Greedy algorithm: O(log n)-approximation
- · Hitting set needs to be fixed after each update
 - · Each update affects at most two neighborhoods!
 - Hitting set grows by ≤ 2 nodes with each update
 → size Õ(n/d + k) after k updates; can set k = n/d
- Simple amortized algorithm: Update time $\frac{O(nd)}{k} = O(d^2) = \tilde{O}(n)$
- Can make worst-case with standard technique

Our approach:

- Static recomputation: Time O(nd)
 Greedy algorithm: O(log n)-approximation
- · Hitting set needs to be fixed after each update
 - · Each update affects at most two neighborhoods!
 - Hitting set grows by ≤ 2 nodes with each update
 → size Õ(n/d + k) after k updates; can set k = n/d
- Simple amortized algorithm: Update time $\frac{O(nd)}{k} = O(d^2) = \tilde{O}(n)$
- · Can make worst-case with standard technique

Dynamic Set Cover:

- Well studied problem [Gupta, Krishnaswamy, Panigrahi '17] [Abboud, Addanki, Grandoni, Panigrahi, Saha '19] [Bhattacharya, Henzinger, Nanongkai '19] [Bhattacharya, Henzinger, Nanongkai, Wu '21]
- Off-the shelf algorithms not applicable in our setting

• Maintain $M_{i,j}[k]$: number of paths from *i* to *j* of length exactly k

- Maintain $M_{i,j}[k]$: number of paths from *i* to *j* of length exactly k
- Entries might be as large as $\Theta(n^k)$

→ Field operation takes time $O(k \log n^k) = O(k^2 \log n)$

• Significant overhead!

- Maintain $M_{i,j}[k]$: number of paths from *i* to *j* of length exactly k
- Entries might be as large as $\Theta(n^k)$

→ Field operation takes time $O(k \log n^k) = O(k^2 \log n)$

• Significant overhead!

Randomized approach:

- Actually interested in smallest k for which $A_{i,j}[k] \neq 0$
- Less time per operation with computation modulo random prime, Schwartz-Zippel lemma

- Maintain $M_{i,j}[k]$: number of paths from *i* to *j* of length exactly k
- Entries might be as large as $\Theta(n^k)$

→ Field operation takes time $O(k \log n^k) = O(k^2 \log n)$

• Significant overhead!

Randomized approach:

- Actually interested in smallest k for which $A_{i,j}[k] \neq 0$
- Less time per operation with computation modulo random prime, Schwartz-Zippel lemma

Observation: For $k = O(1/\epsilon)$ we can live with overhead of $O(k^2 \log n) = \tilde{O}(1/\epsilon^2)$

Theorem

Given any $0 \le v \le \mu \le 1$ and any sets $A, B \subseteq V$ s.t. $|A|, |B| \le n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ under edge updates and **set updates** with update time $\tilde{O}((n^{\omega(1,1,\mu)-\mu} + n^{\omega(1,\mu,\nu)-\nu} + n^{\mu+\nu} + |A| \cdot |B|) \cdot h^2).$

Theorem

Given any $0 \le v \le \mu \le 1$ and any sets $A, B \subseteq V$ s.t. $|A|, |B| \le n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ under edge updates and **set updates** with update time $\tilde{O}((n^{\omega(1,1,\mu)-\mu} + n^{\omega(1,\mu,\nu)-\nu} + n^{\mu+\nu} + |A| \cdot |B|) \cdot h^2).$

Two regimes:

- $\tilde{O}((n^{1.407} + |A| \cdot |B|) \cdot h^2)$ for $|A|, |B| \le n^{0.55}$
- $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h^2)$

Theorem

Given any $0 \le v \le \mu \le 1$ and any sets $A, B \subseteq V$ s.t. $|A|, |B| \le n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ under edge updates and **set updates** with update time $\tilde{O}((n^{\omega(1,1,\mu)-\mu} + n^{\omega(1,\mu,\nu)-\nu} + n^{\mu+\nu} + |A| \cdot |B|) \cdot h^2).$

Two regimes:

- $\tilde{O}((n^{1.407} + |A| \cdot |B|) \cdot h^2)$ for $|A|, |B| \le n^{0.55}$
- $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h^2)$

Idea:

• (Vanilla) algebraic approach based on periodic recomputations

Theorem

Given any $0 \le v \le \mu \le 1$ and any sets $A, B \subseteq V$ s.t. $|A|, |B| \le n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ under edge updates and **set updates** with update time $\tilde{O}((n^{\omega(1,1,\mu)-\mu} + n^{\omega(1,\mu,\nu)-\nu} + n^{\mu+\nu} + |A| \cdot |B|) \cdot h^2).$

Two regimes:

- $\tilde{O}((n^{1.407} + |A| \cdot |B|) \cdot h^2)$ for $|A|, |B| \le n^{0.55}$
- $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h^2)$

Idea:

- (Vanilla) algebraic approach based on periodic recomputations
 - \rightarrow Extension to set/row updates somewhat natural
 - \rightarrow Essential case: Sets *A* and *B* fixed in advance

Theorem

Given any $0 \le v \le \mu \le 1$ and any sets $A, B \subseteq V$ s.t. $|A|, |B| \le n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\le h$ under edge updates and **set updates** with update time $\tilde{O}((n^{\omega(1,1,\mu)-\mu} + n^{\omega(1,\mu,\nu)-\nu} + n^{\mu+\nu} + |A| \cdot |B|) \cdot h^2).$

Two regimes:

- $\tilde{O}((n^{1.407} + |A| \cdot |B|) \cdot h^2)$ for $|A|, |B| \le n^{0.55}$
- $\tilde{O}((n^{1.529} + |A| \cdot |B|) \cdot h^2)$

Idea:

- (Vanilla) algebraic approach based on periodic recomputations
 - \rightarrow Extension to set/row updates somewhat natural
 - \rightarrow Essential case: Sets A and B fixed in advance
- We extend approach of [v.d. Brand, Nanongkai, Saranurak '19] to optimize for case of large query set

- "Path-reporting" for algebraic approaches
 [Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21] [Karczmarz, Mukherjee, Sankowski '22]
- Extend emulator-based approximation approach to weighted graphs

- "Path-reporting" for algebraic approaches
 [Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21] [Karczmarz, Mukherjee, Sankowski '22]
- Extend emulator-based approximation approach to weighted graphs
- · More dynamic algorithms without caveats