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Dynamic Distance Maintenance
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Subquadratic Update Time: State of the Art

• Update-query time trade-offs:
• exact: [Sankowski ’05] [v.d. Brand, Nanongkai, Saranurak ’18]
• (1 + 𝜖)-approximation: [v.d. Brand, Nanongkai ’18]

• Partial information (single source, single pair):
• exact: [Sankowski ’05]
• (1 + 𝜖)-approximation: [v.d. Brand, Nanongkai ’18]
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21]

• Large multiplicative stretch:
• Dynamic spanners: [Ausiello, Franciosa, Italiano ’05] [Elkin ’07]
[Baswana, Khurana, Sarkar ’12], [Bodwin, K ’16] [Bernstein, F,
Henzinger ’19] [Bernstein, v.d. Brand, Gutenberg, Nanongkai,
Saranurak, Sidford, Sun ’22]

• Dynamic distance oracles: [Abraham, Chechik, Talwar ’14] [F,
Goranci, Henzinger ’21]

4



Subquadratic Update Time: State of the Art

• Update-query time trade-offs:
• exact: [Sankowski ’05] [v.d. Brand, Nanongkai, Saranurak ’18]
• (1 + 𝜖)-approximation: [v.d. Brand, Nanongkai ’18]

• Partial information (single source, single pair):
• exact: [Sankowski ’05]
• (1 + 𝜖)-approximation: [v.d. Brand, Nanongkai ’18]
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21]

• Large multiplicative stretch:
• Dynamic spanners: [Ausiello, Franciosa, Italiano ’05] [Elkin ’07]
[Baswana, Khurana, Sarkar ’12], [Bodwin, K ’16] [Bernstein, F,
Henzinger ’19] [Bernstein, v.d. Brand, Gutenberg, Nanongkai,
Saranurak, Sidford, Sun ’22]

• Dynamic distance oracles: [Abraham, Chechik, Talwar ’14] [F,
Goranci, Henzinger ’21]

4



Subquadratic Update Time: State of the Art

• Update-query time trade-offs:
• exact: [Sankowski ’05] [v.d. Brand, Nanongkai, Saranurak ’18]
• (1 + 𝜖)-approximation: [v.d. Brand, Nanongkai ’18]

• Partial information (single source, single pair):
• exact: [Sankowski ’05]
• (1 + 𝜖)-approximation: [v.d. Brand, Nanongkai ’18]
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21]

• Large multiplicative stretch:
• Dynamic spanners: [Ausiello, Franciosa, Italiano ’05] [Elkin ’07]
[Baswana, Khurana, Sarkar ’12], [Bodwin, K ’16] [Bernstein, F,
Henzinger ’19] [Bernstein, v.d. Brand, Gutenberg, Nanongkai,
Saranurak, Sidford, Sun ’22]

• Dynamic distance oracles: [Abraham, Chechik, Talwar ’14] [F,
Goranci, Henzinger ’21]

4



Towards Dynamic Algorithms without Caveats

“Gold standard”:
• Fully dynamic

• Worst-case update time

• Deterministic

• Meet an update-time barrier

List of problems with such algorithms is small

Contribution
We add to this list: (1 + 𝜖)-approximate distance approximation in
unweighted, undirected graphs [van den Brand, F, Nazari arXiv
’21]

5



Towards Dynamic Algorithms without Caveats

“Gold standard”:
• Fully dynamic

• Worst-case update time

• Deterministic

• Meet an update-time barrier

List of problems with such algorithms is small

Contribution
We add to this list: (1 + 𝜖)-approximate distance approximation in
unweighted, undirected graphs [van den Brand, F, Nazari arXiv
’21]

5



Towards Dynamic Algorithms without Caveats

“Gold standard”:
• Fully dynamic

• Worst-case update time

• Deterministic

• Meet an update-time barrier

List of problems with such algorithms is small

Contribution
We add to this list: (1 + 𝜖)-approximate distance approximation in
unweighted, undirected graphs [van den Brand, F, Nazari arXiv
’21]

5



Our Results

Distance approximation in unweighted, undirected graphs:

Approx. Type Update Time

1 + 𝜖 single pair 𝑂(𝑛1.407)
1 + 𝜖 single source 𝑂(𝑛1.529)
1 + 𝜖 𝑘 sources 𝑂(𝑛1.529 + 𝑘𝑛1+𝑜(1))
1 + 𝜖 all pairs 𝑂(𝑛2+𝑜(1))

• Improvement from randomized to deterministic
(and smaller update time in case of single pair)

• Update times match (conditional) lower bounds [van den
Brand, Nanongkai, Saranurak ’19]
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Further Results

Randomized Algorithms

• Exact single-pair distance: 𝑂(𝑛1.704)
(Improves upon 𝑂(𝑛1.724) [Sankowski ’05] [v.d. Brand,
Nanongkai, Saranurak ’19])

• “Nearly” (32 + 𝜖)-approximation of diameter: 𝑂(𝑛1.596)
(Improves upon 𝑂(𝑛1.779) [v.d. Brand, Nanongkai ’19]

• Update/query trade-off for (1 + 𝜖)-approximate distance:
𝑂(𝑛1.788) update time / 𝑂(𝑛0.45) query time
(Improves upon 𝑂(𝑛1.862) / 𝑂(𝑛0.45) [v.d. Brand, Nanongkai ’19]

Warm Up
Randomized fully dynamic (1 + 𝜖)-approximate single-source
distances with worst-case update time 𝑂(𝑛1.529).
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Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

• Maintain hitting set for neighbors of nodes of degree ≥ √𝑛
• Maintain Θ(1/𝜖)-bounded distances to all nodes from hitting
set nodes and source node 𝑠

• Additionally, after each update:
• Obtain Θ(1/𝜖)-bounded distances �̂�𝐺(⋅, ⋅)
• Compute (1 + 𝜖, 2)-emulator 𝐻 of size �̃�(𝑛1.5)
• Compute (exact) single-source distances on 𝐻
• Return min(�̂�𝐺(𝑠, 𝑣), 𝑑𝐻(𝑠, 𝑣)) for every node 𝑣

Related Work

Randomized algorithm for maintaining (1 + 𝜖, 𝑛𝑜(1))-spanner of
size 𝑛1+𝑜(1) with update time 𝑂(𝑛1.529) [Bergamaschi et al. ’21]
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Hitting Set

Hitting Set

We maintain a set of nodes 𝑆 ⊆ 𝑉 of size �̃�(√𝑛) such that every
heavy node of degree > 𝑑 ∶= √𝑛 has at least one node of 𝑆 in its
neighborhood.

Randomized approach: Initially, sample a set of size Θ̃(√𝑛)
uniformly at random [Ullman, Yannakakis ’90]

… … … … … …

Adversarial model
Only works against an oblivious adversary
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Emulator Construction

Definition
A (1 + 𝜖, 𝛽)-emulator of 𝐺 = (𝑉 , 𝐸) is a graph 𝐻 = (𝑉 , 𝐸′) such
that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ (1 + 𝜖) ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) + 𝛽

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

Emulator 𝐻 has two types of edges:

• For every light node of degree ≤ √𝑛: edges to all neighbors
• For every node in hitting set: (weighted) edges to all nodes in
distance ≤ ⌈6/𝜖⌉

similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]

Lemma

𝐻 is a (1 + 𝜖
2 , 2)-emulator of size �̃�(𝑛1.5)

→ single-source distance on 𝐻 in time �̃�(𝑛1.5)

10
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Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

11
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Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 ≤ 𝜇 ≤ 1 and any sets 𝐴, 𝐵 ⊆ 𝑉, there is a randomized
data structure for maintaining the 𝐴 × 𝐵 distances up to ≤ ℎ with
update time �̃�((𝑛𝜔(1,𝜇,1)−𝜇 + 𝑛1+𝜇 + |𝐴| ⋅ |𝐵|) ⋅ ℎ).

• 𝑂(𝑛𝜔(1,𝜇,1)) denotes time needed for multiplying an 𝑛 × 𝑛𝜇

matrix with an 𝑛𝜇 × 𝑛 matrix
• With 𝜇 = 0.528…, update time is �̃�((𝑛1.529 + |𝐴| ⋅ |𝐵|) ⋅ ℎ)
• With 𝐴 = 𝑆 ∪ {𝑠}, 𝐵 = 𝑉 (where |𝑆| = �̃�(√𝑛)), and ℎ = 𝑂(1/𝜖):
update time 𝑂(𝑛1.529/𝜖)

Approximation Guarantee:

• If 𝑑𝐺(𝑠, 𝑣) ≤ ⌈6/𝜖⌉: distance from algebraic data structure
• If 𝑑𝐺(𝑠, 𝑣) > ⌈6/𝜖⌉, then approximation from 𝐻 becomes
(1 + 𝜖

2 )𝑑𝐺(𝑠, 𝑣) + 2 ≤ (1 + 𝜖
2 )𝑑𝐺(𝑠, 𝑣) +

𝜖
3𝑑𝐺(𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺(𝑠, 𝑣)
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Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for
very small distances

2. Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse

3. Algebraic data structure can be extended to slowly changing
set of nodes

13



Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for
very small distances

2. Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse

3. Algebraic data structure can be extended to slowly changing
set of nodes

13



Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for
very small distances

2. Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse

3. Algebraic data structure can be extended to slowly changing
set of nodes

13



Dynamic Hitting Set

Our approach:
• Static recomputation: Time 𝑂(𝑛𝑑)
Greedy algorithm: 𝑂(log 𝑛)-approximation

• Hitting set needs to be fixed after each update
• Each update affects at most two neighborhoods!
• Hitting set grows by ≤ 2 nodes with each update
→ size �̃�(𝑛/𝑑 + 𝑘) after 𝑘 updates; can set 𝑘 = 𝑛/𝑑

• Simple amortized algorithm: Update time 𝑂(𝑛𝑑)
𝑘 = 𝑂(𝑑2) = �̃�(𝑛)

• Can make worst-case with standard technique

Dynamic Set Cover:
• Well studied problem [Gupta, Krishnaswamy, Panigrahi ’17] [Abboud,

Addanki, Grandoni, Panigrahi, Saha ’19] [Bhattacharya, Henzinger, Nanongkai ’19]

[Bhattacharya, Henzinger, Nanongkai, Wu ’21]

• Off-the shelf algorithms not applicable in our setting
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Deterministic Path Counting

Interpretation of algebraic data structures:

• Maintain 𝑀𝑖,𝑗[𝑘]: number of paths from 𝑖 to 𝑗 of length exactly 𝑘

• Entries might be as large as Θ(𝑛𝑘)
→ Field operation takes time 𝑂(𝑘 log 𝑛𝑘) = 𝑂(𝑘2 log 𝑛)

• Significant overhead!

Randomized approach:

• Actually interested in smallest 𝑘 for which 𝐴𝑖,𝑗[𝑘] ≠ 0

• Less time per operation with computation modulo random
prime, Schwartz-Zippel lemma

Observation: For 𝑘 = 𝑂(1/𝜖) we can live with overhead of
𝑂(𝑘2 log 𝑛) = �̃�(1/𝜖2)

15
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Novel Algebraic Bounded-Distance Data Structure

Theorem
Given any 0 ≤ 𝜈 ≤ 𝜇 ≤ 1 and any sets 𝐴, 𝐵 ⊆ 𝑉 s.t. |𝐴|, |𝐵| ≤ 𝑛𝜇, there
is a randomized data structure for maintaining the 𝐴 × 𝐵 distances up
to ≤ ℎ under edge updates and set updates with update time
�̃�((𝑛𝜔(1,1,𝜇)−𝜇 + 𝑛𝜔(1,𝜇,𝜈)−𝜈 + 𝑛𝜇+𝜈 + |𝐴| ⋅ |𝐵|) ⋅ ℎ2).

Two regimes:
• �̃�((𝑛1.407 + |𝐴| ⋅ |𝐵|) ⋅ ℎ2) for |𝐴|, |𝐵| ≤ 𝑛0.55

• �̃�((𝑛1.529 + |𝐴| ⋅ |𝐵|) ⋅ ℎ2)

Idea:
• (Vanilla) algebraic approach based on periodic recomputations
→ Extension to set/row updates somewhat natural
→ Essential case: Sets 𝐴 and 𝐵 fixed in advance

• We extend approach of [v.d. Brand, Nanongkai, Saranurak ’19]
to optimize for case of large query set
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Challenges

• “Path-reporting” for algebraic approaches
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21] [Karczmarz, Mukherjee, Sankowski ’22]

• Extend emulator-based approximation approach to weighted
graphs

• More dynamic algorithms without caveats
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