Fast Deterministic Fully Dynamic Distance Approximation

Sebastian Forster

Meeting on Algorithmic Challenges of Big Data 2022

University of Salzburg

Joint work with:

Yasamin Nazari

Static Approach

Dynamic Environments

Dynamic Distance Maintenance

Input graph G

Algorithm

Distance Matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 2 & 2 \\
1 & 2 & 2 & 0 & 1 \\
1 & 2 & 2 & 1 & 0
\end{array}\right)
$$

Dynamic Distance Maintenance

Input graph G

Algorithm
Distance Matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 2 & 2 \\
1 & 2 & 2 & 0 & 1 \\
1 & 2 & 2 & 1 & 0
\end{array}\right)
$$

Adversary inserts and deletes edges

Dynamic Distance Maintenance

Input graph G

Distance Matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 2 & 2 \\
1 & 2 & 2 & 0 & 1 \\
1 & 2 & 2 & 1 & 0
\end{array}\right)
$$

Adversary inserts and deletes edges

Dynamic Distance Maintenance

Input graph G
Distance Matrix

Adversary inserts and deletes edges

Algorithm updates distance matrix

Dynamic Distance Maintenance

Input graph G
Distance Matrix

Adversary inserts and deletes edges

Algorithm updates distance matrix

State of the Art

Amortized update time $\tilde{O}\left(n^{2}\right)$ [Demetrescu, Italiano '03]

Subquadratic Update Time: State of the Art

- Update-query time trade-offs:
- exact: [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '18]
- (1+ +)-approximation: [v.d. Brand, Nanongkai '18]

Subquadratic Update Time: State of the Art

- Update-query time trade-offs:
- exact: [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '18]
- (1+ +)-approximation: [v.d. Brand, Nanongkai '18]
- Partial information (single source, single pair):
- exact: [Sankowski '05]
- (1 $+\epsilon$)-approximation: [v.d. Brand, Nanongkai '18]
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21]

Subquadratic Update Time: State of the Art

- Update-query time trade-offs:
- exact: [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '18]
- $(1+\epsilon)$-approximation: [v.d. Brand, Nanongkai '18]
- Partial information (single source, single pair):
- exact: [Sankowski '05]
- $(1+\epsilon)$-approximation: [v.d. Brand, Nanongkai '18] [Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21]
- Large multiplicative stretch:
- Dynamic spanners: [Ausiello, Franciosa, Italiano '05] [Elkin '07] [Baswana, Khurana, Sarkar '12], [Bodwin, K '16] [Bernstein, F, Henzinger '19] [Bernstein, v.d. Brand, Gutenberg, Nanongkai, Saranurak, Sidford, Sun '22]
- Dynamic distance oracles: [Abraham, Chechik, Talwar '14] [F, Goranci, Henzinger '21]

Towards Dynamic Algorithms without Caveats

"Gold standard":

- Fully dynamic
- Worst-case update time
- Deterministic

- Meet an update-time barrier

Towards Dynamic Algorithms without Caveats

"Gold standard":

- Fully dynamic
- Worst-case update time
- Deterministic

- Meet an update-time barrier

List of problems with such algorithms is small

Towards Dynamic Algorithms without Caveats

"Gold standard":

- Fully dynamic
- Worst-case update time
- Deterministic

- Meet an update-time barrier

List of problems with such algorithms is small

Contribution

We add to this list: $(1+\epsilon)$-approximate distance approximation in unweighted, undirected graphs [van den Brand, F, Nazari arXiv '21]

Our Results

Distance approximation in unweighted, undirected graphs:

Approx.	Type	Update Time
$1+\epsilon$	single pair	$O\left(n^{1.407}\right)$
$1+\epsilon$	single source	$O\left(n^{1.529}\right)$
$1+\epsilon$	k sources	$O\left(n^{1.529}+k n^{1+o(1)}\right)$
$1+\epsilon$	all pairs	$O\left(n^{2+o(1)}\right)$

Our Results

Distance approximation in unweighted, undirected graphs:

Approx.	Type	Update Time
$1+\epsilon$	single pair	$O\left(n^{1.407}\right)$
$1+\epsilon$	single source	$O\left(n^{1.529}\right)$
$1+\epsilon$	k sources	$O\left(n^{1.529}+k n^{1+o(1)}\right)$
$1+\epsilon$	all pairs	$O\left(n^{2+o(1)}\right)$

- Improvement from randomized to deterministic (and smaller update time in case of single pair)

Our Results

Distance approximation in unweighted, undirected graphs:

Approx.	Type	Update Time
$1+\epsilon$	single pair	$O\left(n^{1.407}\right)$
$1+\epsilon$	single source	$O\left(n^{1.529}\right)$
$1+\epsilon$	k sources	$O\left(n^{1.529}+k n^{1+o(1)}\right)$
$1+\epsilon$	all pairs	$O\left(n^{2+o(1)}\right)$

- Improvement from randomized to deterministic (and smaller update time in case of single pair)
- Update times match (conditional) lower bounds [van den Brand, Nanongkai, Saranurak '19]

Further Results

Randomized Algorithms

- Exact single-pair distance: $O\left(n^{1.704}\right)$ (Improves upon $O\left(n^{1.724}\right)$ [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])

Further Results

Randomized Algorithms

- Exact single-pair distance: $O\left(n^{1.704}\right)$ (Improves upon $O\left(n^{1.724}\right)$ [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])
- "Nearly" $\left(\frac{3}{2}+\epsilon\right)$-approximation of diameter: $O\left(n^{1.596}\right)$ (Improves upon $O\left(n^{1.779}\right)$ [v.d. Brand, Nanongkai '19]

Further Results

Randomized Algorithms

- Exact single-pair distance: $O\left(n^{1.704}\right)$ (Improves upon $O\left(n^{1.724}\right)$ [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])
- "Nearly" $\left(\frac{3}{2}+\epsilon\right)$-approximation of diameter: $O\left(n^{1.596}\right)$ (Improves upon $O\left(n^{1.779}\right)$ [v.d. Brand, Nanongkai '19]
- Update/query trade-off for $(1+\epsilon)$-approximate distance: $O\left(n^{1.788}\right)$ update time / $O\left(n^{0.45}\right)$ query time (Improves upon $O\left(n^{1.862}\right) / O\left(n^{0.45}\right)$ [v.d. Brand, Nanongkai '19]

Further Results

Randomized Algorithms

- Exact single-pair distance: $O\left(n^{1.704}\right)$ (Improves upon $O\left(n^{1.724}\right)$ [Sankowski '05] [v.d. Brand, Nanongkai, Saranurak '19])
- "Nearly" $\left(\frac{3}{2}+\epsilon\right)$-approximation of diameter: $O\left(n^{1.596}\right)$ (Improves upon $O\left(n^{1.779}\right)$ [v.d. Brand, Nanongkai '19]
- Update/query trade-off for $(1+\epsilon)$-approximate distance: $O\left(n^{1.788}\right)$ update time / $O\left(n^{0.45}\right)$ query time (Improves upon $O\left(n^{1.862}\right) / O\left(n^{0.45}\right)$ [v.d. Brand, Nanongkai '19]

Warm Up

Randomized fully dynamic $(1+\epsilon)$-approximate single-source distances with worst-case update time $O\left(n^{1.529}\right)$.

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1 / \epsilon)$-bounded distances to all nodes from hitting set nodes and source node s

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1 / \epsilon)$-bounded distances to all nodes from hitting set nodes and source node s
- Additionally, after each update:
- Obtain $\Theta(1 / \epsilon)$-bounded distances $\hat{d}_{G}(\cdot, \cdot)$
- Compute $(1+\epsilon, 2)$-emulator H of size $\tilde{O}\left(n^{1.5}\right)$

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1 / \epsilon)$-bounded distances to all nodes from hitting set nodes and source node s
- Additionally, after each update:
- Obtain $\Theta(1 / \epsilon)$-bounded distances $\hat{d}_{G}(\cdot, \cdot)$
- Compute $(1+\epsilon, 2)$-emulator H of size $\tilde{O}\left(n^{1.5}\right)$
- Compute (exact) single-source distances on H
- Return $\min \left(\hat{d}_{G}(s, v), d_{H}(s, v)\right)$ for every node v

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1 / \epsilon)$-bounded distances to all nodes from hitting set nodes and source node s
- Additionally, after each update:
- Obtain $\Theta(1 / \epsilon)$-bounded distances $\hat{d}_{G}(\cdot, \cdot)$
- Compute $(1+\epsilon, 2)$-emulator H of size $\tilde{O}\left(n^{1.5}\right)$
- Compute (exact) single-source distances on H
- Return $\min \left(\hat{d}_{G}(s, v), d_{H}(s, v)\right)$ for every node v

Related Work

Randomized algorithm for maintaining $\left(1+\epsilon, n^{o(1)}\right)$-spanner of size $n^{1+o(1)}$ with update time $O\left(n^{1.529}\right)$ [Bergamaschi et al. '21]

Hitting Set

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $>d:=\sqrt{n}$ has at least one node of S in its neighborhood.

Hitting Set

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $>d:=\sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Hitting Set

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $>d:=\sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Hitting Set

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $>d:=\sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Hitting Set

Hitting Set

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $>d:=\sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Adversarial model

Only works against an oblivious adversary

Emulator Construction

Definition

A $(1+\epsilon, \beta)$-emulator of $G=(V, E)$ is a graph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq(1+\epsilon) \cdot \operatorname{dist}_{G}(u, v)+\beta
$$

for all pairs of nodes $u, v \in V$.

Emulator Construction

Definition

A $(1+\epsilon, \beta)$-emulator of $G=(V, E)$ is a graph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq(1+\epsilon) \cdot \operatorname{dist}_{G}(u, v)+\beta
$$

for all pairs of nodes $u, v \in V$.
Emulator H has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq\lceil 6 / \epsilon\rceil$
similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Emulator Construction

Definition

A $(1+\epsilon, \beta)$-emulator of $G=(V, E)$ is a graph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq(1+\epsilon) \cdot \operatorname{dist}_{G}(u, v)+\beta
$$

for all pairs of nodes $u, v \in V$.
Emulator H has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq\lceil 6 / \epsilon\rceil$
similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]
Lemma
H is $a\left(1+\frac{\epsilon}{2}, 2\right)$-emulator of size $\tilde{O}\left(n^{1.5}\right)$

Emulator Construction

Definition

A $(1+\epsilon, \beta)$-emulator of $G=(V, E)$ is a graph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq(1+\epsilon) \cdot \operatorname{dist}_{G}(u, v)+\beta
$$

for all pairs of nodes $u, v \in V$.
Emulator H has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq\lceil 6 / \epsilon\rceil$
similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Lemma

$$
H \text { is a }\left(1+\frac{\epsilon}{2}, 2\right) \text {-emulator of size } \tilde{O}\left(n^{1.5}\right)
$$

\rightarrow single-source distance on H in time $\tilde{O}\left(n^{1.5}\right)$

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

- Case 1: Segment contains no high-degree node

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

- Case 1: Segment contains no high-degree node

- Case 2: Segment contains high-degree node

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

- Case 1: Segment contains no high-degree node

- Case 2: Segment contains high-degree node

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

- Case 1: Segment contains no high-degree node

- Case 2: Segment contains high-degree node

\rightarrow Detour of additive surplus 2

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

- Case 1: Segment contains no high-degree node

- Case 2: Segment contains high-degree node

\rightarrow Detour of additive surplus 2
- If segment has length $[6 / \epsilon\rceil$, then multiplicative error of $\leq \frac{[6 / \epsilon]+2}{[6 / \epsilon]} \leq \frac{6 / \epsilon+3}{6 / \epsilon}=1+\frac{\epsilon}{2}$

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

- Case 1: Segment contains no high-degree node

- Case 2: Segment contains high-degree node

\rightarrow Detour of additive surplus 2
- If segment has length $[6 / \epsilon\rceil$, then multiplicative error of $\leq \frac{[6 / \epsilon]+2}{[6 / \epsilon]} \leq \frac{6 / \epsilon+3}{6 / \epsilon}=1+\frac{\epsilon}{2}$
- If segment has length $<\lceil 6 / \epsilon\rceil$, then additive error of 2

Approximation Guarantee

Subdivide any shortest path into segments of length $\lceil 6 / \epsilon\rceil$ (with potentially one segment of smaller length)

- Case 1: Segment contains no high-degree node

- Case 2: Segment contains high-degree node

\rightarrow Detour of additive surplus 2
- If segment has length $[6 / \epsilon]$, then multiplicative error of $\leq \frac{[6 / \epsilon]+2}{[6 / \epsilon]} \leq \frac{6 / \epsilon+3}{6 / \epsilon}=1+\frac{\epsilon}{2}$
- If segment has length $<\lceil 6 / \epsilon\rceil$, then additive error of 2

Overall: multiplicative error of $1+\frac{\epsilon}{2}$, additive error of 2

Algebraic Data Structure

Theorem ([Sankowski '05])
Given any $0 \leq \mu \leq 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ with update time $\tilde{O}\left(\left(n^{\omega(1, \mu, 1)-\mu}+n^{1+\mu}+|A| \cdot|B|\right) \cdot h\right)$.

Algebraic Data Structure

Theorem ([Sankowski '05])
Given any $0 \leq \mu \leq 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ with update time $\tilde{O}\left(\left(n^{\omega(1, \mu, 1)-\mu}+n^{1+\mu}+|A| \cdot|B|\right) \cdot h\right)$.

- $O\left(n^{\omega(1, \mu, 1)}\right)$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix

Algebraic Data Structure

Theorem ([Sankowski '05])
Given any $0 \leq \mu \leq 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ with update time $\tilde{O}\left(\left(n^{\omega(1, \mu, 1)-\mu}+n^{1+\mu}+|A| \cdot|B|\right) \cdot h\right)$.

- $O\left(n^{\omega(1, \mu, 1)}\right)$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu=0.528 \ldots$, update time is $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h\right)$

Algebraic Data Structure

Theorem ([Sankowski '05])
Given any $0 \leq \mu \leq 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ with update time $\tilde{O}\left(\left(n^{\omega(1, \mu, 1)-\mu}+n^{1+\mu}+|A| \cdot|B|\right) \cdot h\right)$.

- $O\left(n^{\omega(1, \mu, 1)}\right)$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu=0.528 \ldots$, update time is $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h\right)$
- With $A=S \cup\{s\}, B=V$ (where $|S|=\tilde{O}(\sqrt{n}))$, and $h=O(1 / \epsilon)$: update time $O\left(n^{1.529} / \epsilon\right)$

Algebraic Data Structure

Theorem ([Sankowski '05])
Given any $0 \leq \mu \leq 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ with update time $\tilde{O}\left(\left(n^{\omega(1, \mu, 1)-\mu}+n^{1+\mu}+|A| \cdot|B|\right) \cdot h\right)$.

- $O\left(n^{\omega(1, \mu, 1)}\right)$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu=0.528 \ldots$, update time is $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h\right)$
- With $A=S \cup\{s\}, B=V$ (where $|S|=\tilde{O}(\sqrt{n}))$, and $h=O(1 / \epsilon)$: update time $O\left(n^{1.529} / \epsilon\right)$

Approximation Guarantee:

- If $d_{G}(s, v) \leq\lceil 6 / \epsilon\rceil$: distance from algebraic data structure

Algebraic Data Structure

Theorem ([Sankowski '05])
Given any $0 \leq \mu \leq 1$ and any sets $A, B \subseteq V$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ with update time $\tilde{O}\left(\left(n^{\omega(1, \mu, 1)-\mu}+n^{1+\mu}+|A| \cdot|B|\right) \cdot h\right)$.

- $O\left(n^{\omega(1, \mu, 1)}\right)$ denotes time needed for multiplying an $n \times n^{\mu}$ matrix with an $n^{\mu} \times n$ matrix
- With $\mu=0.528 \ldots$, update time is $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h\right)$
- With $A=S \cup\{s\}, B=V$ (where $|S|=\tilde{O}(\sqrt{n})$), and $h=O(1 / \epsilon)$: update time $O\left(n^{1.529} / \epsilon\right)$

Approximation Guarantee:

- If $d_{G}(s, v) \leq\lceil 6 / \epsilon\rceil$: distance from algebraic data structure
- If $d_{G}(s, v)>\lceil 6 / \epsilon\rceil$, then approximation from H becomes

$$
\left(1+\frac{\epsilon}{2}\right) d_{G}(s, v)+2 \leq\left(1+\frac{\epsilon}{2}\right) d_{G}(s, v)+\frac{\epsilon}{3} d_{G}(s, v) \leq(1+\epsilon) d_{G}(s, v)
$$

Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for very small distances

Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for very small distances
2. Hitting set for neighborhoods can be maintained with a lazy approach giving low recourse

Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for very small distances
2. Hitting set for neighborhoods can be maintained with a lazy approach giving low recourse
3. Algebraic data structure can be extended to slowly changing set of nodes

Dynamic Hitting Set

Our approach:

- Static recomputation: Time $O(n d)$

Greedy algorithm: $O(\log n)$-approximation

Dynamic Hitting Set

Our approach:

- Static recomputation: Time $O(n d)$

Greedy algorithm: $O(\log n)$-approximation

- Hitting set needs to be fixed after each update

Dynamic Hitting Set

Our approach:

- Static recomputation: Time $O(n d)$

Greedy algorithm: $O(\log n)$-approximation

- Hitting set needs to be fixed after each update
- Each update affects at most two neighborhoods!
- Hitting set grows by ≤ 2 nodes with each update
\rightarrow size $\tilde{O}(n / d+k)$ after k updates; can set $k=n / d$

Dynamic Hitting Set

Our approach:

- Static recomputation: Time $O(n d)$

Greedy algorithm: $O(\log n)$-approximation

- Hitting set needs to be fixed after each update
- Each update affects at most two neighborhoods!
- Hitting set grows by ≤ 2 nodes with each update
$\rightarrow \operatorname{size} \tilde{O}(n / d+k)$ after k updates; can set $k=n / d$
- Simple amortized algorithm: Update time $\frac{O(n d)}{k}=O\left(d^{2}\right)=\tilde{O}(n)$
- Can make worst-case with standard technique

Dynamic Hitting Set

Our approach:

- Static recomputation: Time $O(n d)$

Greedy algorithm: $O(\log n)$-approximation

- Hitting set needs to be fixed after each update
- Each update affects at most two neighborhoods!
- Hitting set grows by ≤ 2 nodes with each update
$\rightarrow \operatorname{size} \tilde{O}(n / d+k)$ after k updates; can set $k=n / d$
- Simple amortized algorithm: Update time $\frac{O(n d)}{k}=O\left(d^{2}\right)=\tilde{O}(n)$
- Can make worst-case with standard technique

Dynamic Set Cover:

- Well studied problem [Gupta, Krishnaswamy, Panigrahi '17] [Abboud,

Addanki, Grandoni, Panigrahi, Saha '19] [Bhattacharya, Henzinger, Nanongkai '19]
[Bhattacharya, Henzinger, Nanongkai, Wu '21]

- Off-the shelf algorithms not applicable in our setting

Deterministic Path Counting

Interpretation of algebraic data structures:

- Maintain $M_{i, j}[k]$: number of paths from i to j of length exactly k

Deterministic Path Counting

Interpretation of algebraic data structures:

- Maintain $M_{i, j}[k]$: number of paths from i to j of length exactly k
- Entries might be as large as $\Theta\left(n^{k}\right)$
\rightarrow Field operation takes time $O\left(k \log n^{k}\right)=O\left(k^{2} \log n\right)$
- Significant overhead!

Deterministic Path Counting

Interpretation of algebraic data structures:

- Maintain $M_{i, j}[k]$: number of paths from i to j of length exactly k
- Entries might be as large as $\Theta\left(n^{k}\right)$
\rightarrow Field operation takes time $O\left(k \log n^{k}\right)=O\left(k^{2} \log n\right)$
- Significant overhead!

Randomized approach:

- Actually interested in smallest k for which $A_{i, j}[k] \neq 0$
- Less time per operation with computation modulo random prime, Schwartz-Zippel lemma

Deterministic Path Counting

Interpretation of algebraic data structures:

- Maintain $M_{i, j}[k]$: number of paths from i to j of length exactly k
- Entries might be as large as $\Theta\left(n^{k}\right)$
\rightarrow Field operation takes time $O\left(k \log n^{k}\right)=O\left(k^{2} \log n\right)$
- Significant overhead!

Randomized approach:

- Actually interested in smallest k for which $A_{i, j}[k] \neq 0$
- Less time per operation with computation modulo random prime, Schwartz-Zippel lemma

Observation: For $k=O(1 / \epsilon)$ we can live with overhead of $O\left(k^{2} \log n\right)=\tilde{O}\left(1 / \epsilon^{2}\right)$

Novel Algebraic Bounded-Distance Data Structure

Theorem

Given any $0 \leq v \leq \mu \leq 1$ and any sets $A, B \subseteq V$ s.t. $|A|,|B| \leq n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ under edge updates and set updates with update time $\tilde{O}\left(\left(n^{\omega(1,1, \mu)-\mu}+n^{\omega(1, \mu, v)-v}+n^{\mu+v}+|A| \cdot|B|\right) \cdot h^{2}\right)$.

Novel Algebraic Bounded-Distance Data Structure

Theorem

Given any $0 \leq v \leq \mu \leq 1$ and any sets $A, B \subseteq V$ s.t. $|A|,|B| \leq n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ under edge updates and set updates with update time $\tilde{O}\left(\left(n^{\omega(1,1, \mu)-\mu}+n^{\omega(1, \mu, v)-v}+n^{\mu+v}+|A| \cdot|B|\right) \cdot h^{2}\right)$.

Two regimes:

- $\tilde{O}\left(\left(n^{1.407}+|A| \cdot|B|\right) \cdot h^{2}\right)$ for $|A|,|B| \leq n^{0.55}$
- $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h^{2}\right)$

Novel Algebraic Bounded-Distance Data Structure

Theorem

Given any $0 \leq v \leq \mu \leq 1$ and any sets $A, B \subseteq V$ s.t. $|A|,|B| \leq n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ under edge updates and set updates with update time $\tilde{O}\left(\left(n^{\omega(1,1, \mu)-\mu}+n^{\omega(1, \mu, v)-v}+n^{\mu+v}+|A| \cdot|B|\right) \cdot h^{2}\right)$.

Two regimes:

- $\tilde{O}\left(\left(n^{1.407}+|A| \cdot|B|\right) \cdot h^{2}\right)$ for $|A|,|B| \leq n^{0.55}$
- $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h^{2}\right)$

Idea:

- (Vanilla) algebraic approach based on periodic recomputations

Novel Algebraic Bounded-Distance Data Structure

Theorem

Given any $0 \leq v \leq \mu \leq 1$ and any sets $A, B \subseteq V$ s.t. $|A|,|B| \leq n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ under edge updates and set updates with update time $\tilde{O}\left(\left(n^{\omega(1,1, \mu)-\mu}+n^{\omega(1, \mu, v)-v}+n^{\mu+v}+|A| \cdot|B|\right) \cdot h^{2}\right)$.

Two regimes:

- $\tilde{O}\left(\left(n^{1.407}+|A| \cdot|B|\right) \cdot h^{2}\right)$ for $|A|,|B| \leq n^{0.55}$
- $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h^{2}\right)$

Idea:

- (Vanilla) algebraic approach based on periodic recomputations
\rightarrow Extension to set/row updates somewhat natural
\rightarrow Essential case: Sets A and B fixed in advance

Novel Algebraic Bounded-Distance Data Structure

Theorem

Given any $0 \leq v \leq \mu \leq 1$ and any sets $A, B \subseteq V$ s.t. $|A|,|B| \leq n^{\mu}$, there is a randomized data structure for maintaining the $A \times B$ distances up to $\leq h$ under edge updates and set updates with update time $\tilde{O}\left(\left(n^{\omega(1,1, \mu)-\mu}+n^{\omega(1, \mu, v)-v}+n^{\mu+v}+|A| \cdot|B|\right) \cdot h^{2}\right)$.

Two regimes:

- $\tilde{O}\left(\left(n^{1.407}+|A| \cdot|B|\right) \cdot h^{2}\right)$ for $|A|,|B| \leq n^{0.55}$
- $\tilde{O}\left(\left(n^{1.529}+|A| \cdot|B|\right) \cdot h^{2}\right)$

Idea:

- (Vanilla) algebraic approach based on periodic recomputations \rightarrow Extension to set/row updates somewhat natural
\rightarrow Essential case: Sets A and B fixed in advance
- We extend approach of [v.d. Brand, Nanongkai, Saranurak '19] to optimize for case of large query set

Challenges

- "Path-reporting" for algebraic approaches [Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21] [Karczmarz, Mukherjee, Sankowski '22]
- Extend emulator-based approximation approach to weighted graphs

Challenges

- "Path-reporting" for algebraic approaches [Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams, Wein '21] [Karczmarz, Mukherjee, Sankowski '22]
- Extend emulator-based approximation approach to weighted graphs
- More dynamic algorithms without caveats

