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Definitions

Definition (DFS traversal)

Let G = (V, E) be an undirecied connected graph with |V| = n and
|E| = m. A DFS traversal from any node r € V produces a rooted
spanning tree, called DFS tree, with root r.
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Definitions

Definition (DFS traversal)

Let G = (V, E) be an undirecied connected graph with |V| = n and
|E| = m. A DFS traversal from any node r € V produces a rooted
spanning tree, called DFS tree, with root r.

Given any rooted spanning tree of G, non-tree edges can be classified
in two categories:
m Back edge
(u,v) € E: uis an ancestor of v in the tree, or vice versa.
m Cross edge
(u,v) € E: (u,v) is not a back edge.

Definition (DFS tree)

A rooted spanning tree is a DFS tree where any non-tree edges are
back edges.
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Dynamic environments

Real-world graph applications may deal with changing graphs.

Definition (Graph update)

A graph update is either the insertion or deletion of vertices or edges.

Tim Ungerhofer Dynamic DFS in undirected graphs 5th December 2019 3/36



Dynamic environments

Real-world graph applications may deal with changing graphs.

Definition (Graph update)
A graph update is either the insertion or deletion of vertices or edges.

Classification of dynamic graph algorithms:

m Partially dynamic

Incremental (insertions)
Decremental (deletions)

m Fully dynamic (both)
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What problem is solved?
Algorithmic Graph Problem (dynamic setting)

Given an online sequence of updates, efficiently update an existing
solution after each update.
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What problem is solved?

Algorithmic Graph Problem (dynamic setting)

Given an online sequence of updates, efficiently update an existing
solution after each update.

Specifically:

Solution updates must be faster than the best static algorithm for the
problem.
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What problem is solved?

Algorithmic Graph Problem (dynamic setting)

Given an online sequence of updates, efficiently update an existing
solution after each update.

Specifically:

Solution updates must be faster than the best static algorithm for the
problem.

Problem statement

Given an undirected G, and a set of updates U, maintain a DFS tree
efficiently in any dynamic environment.
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Challenges in dynamic DFS
Reif ['85] showed that the ordered DFS tree problem is P-Complete.
This seemed to imply that the computation of any DFS tree is inherently

sequential.

Reif ['87] and later, Miltersen et al ['94] showed that P-Completeness of
a problem also implies hardness of the problem in the dynamic setting.
This means that maintaining an ordered DFS tree is among the hardest
problems in P.

Although only for the ordered class of DFS trees, these results stifled
research into all dynamic DFS problems.
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Existing results for maintaining a
dynamic DFS tree

Incremental algorithm in a DAG O(mn), Franciosa, Gambosi, and
Nanni['97].

Decremental algorithm in a DAG O(mnlogn), Baswana and Choudhary
['15].

Incremental algoritm in undirected Graph O(n?), Baswana and Khan
[14].
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Existing results for maintaining a
dynamic DFS tree

Incremental algorithm in a DAG O(mn), Franciosa, Gambosi, and
Nanni['97].

Decremental algorithm in a DAG O(mnlogn), Baswana and Choudhary
[15].

Incremental algoritm in undirected Graph O(n?), Baswana and Khan
[14].

Partially dynamic environments, none achive o(m) update time. The
O(m) barrier persists and the general DFS is still as hard as the ordered
DFS problem in the dynamic environment.
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Questions and Answers

Does there exist any nontrivial fully dynamic algorithm for
maintaining a DFS tree?
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Questions and Answers
Does there exist any nontrivial fully dynamic algorithm for
maintaining a DFS tree?

Is it possible to achieve worst case o(m) update time for
maintaining a DFS tree in a dynamic environment?
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Questions and Answers
Does there exist any nontrivial fully dynamic algorithm for
maintaining a DFS tree?

Is it possible to achieve worst case o(m) update time for
maintaining a DFS tree in a dynamic environment?

For undirected graphs, both questions can be answered in the
affirmative.

Tim Ungerhofer Dynamic DFS in undirected graphs 5th December 2019



Questions and Answers

Does there exist any nontrivial fully dynamic algorithm for
maintaining a DFS tree?
Is it possible to achieve worst case o(m) update time for
maintaining a DFS tree in a dynamic environment?
For undirected graphs, both questions can be answered in the
affirmative.
The result handles both edge and vertex updates (which are considered
harder), making it widely applicable for many dynamic graph problems.
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Main Idea

Throughout this presentation, let U be the set of generalized updates
(insertions/deletions of vertices/edges).

Let G + U denote the undirected Graph G after performing updates U.
Let T be a DFS tree of G.
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Main Idea

Throughout this presentation, let U be the set of generalized updates
(insertions/deletions of vertices/edges).

Let G + U denote the undirected Graph G after performing updates U.
Let T be a DFS tree of G.

To compute a DFS tree of G + U, the main idea is to reuse T to
preprocess G to build a data structure D.
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Preprocessing G

First, add a dummy vertex r to G and connect it to all elements of V.
The algorithm starts with any arbitrary DFS tree rooted at r, which is

maintained throughout all updates.

Each subtree rooted at any child of r is a DFS tree of a connected
component of G + U.
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Preliminaries
Notation used throughout this presentation:
m T(x): The subtree of T rooted at vertex x.
m path(x, y): the path from vertex x to vertex y.
m par(x): the parent of vertex x.
m Tx: The DFS tree rooted at r.
m LCA(x, y): the least common ancestor of x and y
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Preliminaries
Notation used throughout this presentation:
m T(x): The subtree of T rooted at vertex x.
m path(x, y): the path from vertex x to vertex y.
m par(x): the parent of vertex x.
m Tx: The DFS tree rooted at r.
m LCA(x, y): the least common ancestor of x and y

Unless stated otherwise, path always refers to an ancestor-descendant
path.

Definition (Ancestor-descendant path)

A path pin a DFS tree T is said to be an ancestor-descendant path if
its endpoints have an ancestor-descendant relationship in T.
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Preliminaries
The data structure D supports the following operations:

Query(w, x, y): among all the edges from w that are incident on
path(x, y) in G + U, return the edge that is incident nearest to x on
path(x, y).

Query(T(w), x, y): among all the edges from T (w) that are incident
on path(x, y) in G + U, return an edge that is incident nearest to x
on path(x, y).
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Leveraging DFS traversal flexibility

During DFS traversal at any vertex v € V, any unvisited neighbor of v

may be visited next.
This flexibility, the original DFS tree T and the components property of a

DFS traversal are used to efficiently compute the DFS tree for G + U.
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Leveraging DFS traversal flexibility

During DFS traversal at any vertex v € V, any unvisited neighbor of v
may be visited next.

This flexibility, the original DFS tree T and the components property of a
DFS traversal are used to efficiently compute the DFS tree for G + U.

Lemma (Components property)

Let T« be the partially grown DFS tree and v be the vertex currently
being visited. Let C be any connected component in the subgraph
induced by the unvisited vertices. Suppose two edges e and e/ from
C are incident, respectively, on v and some ancestor (not necessarily
proper) w of vin Tx.

Then it is sufficient to consider only e during the rest of the DFS
traversal; i.e., e/ need not be scanned.
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Components property of DFS traversal




Components property of DFS traversal

To highlight the importance of the components property and to motivate
the use of the data structure D, consider handling a single update, the

failure of an edge e.
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Handling a single update: Edge failure
Consider this example of the edge (b, f) failing.

During DFS traversal at b, the unvisited T(f) is a single connected
component.
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Handling a single update: Edge failure

Now, assume that the following edges exist in G:

By the components property, we only need to process the edge closest
to b, (k, b). The DFS traversal thus enters T(f) at k, turning k into the
new root of this subtree.

Rebuilding the DFS tree after edge failure thus reduces to finding the
lowest edge from T(f) to path(b, r).
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Rerooting a DFS tree

Procedure Reroot(T'(rg),r’): Reroots the subtree T'(rg) of T to be rooted
at the vertex 1’ € T'(ry).

1 foreach (a,b) on path(rg,r’) do /* a = par(b) in original tree T(ry).
*/

2 | par(a) < b;

3 foreach child ¢ of b not on path(ro,r") do

4 (u,v) < Query(T(c),ro,b) 3 /* where u € path(rg,r’) and
veT(c). */

5 if (u,v) is nonnull then

6 Reroot(T'(c),v);

7 par(v) + u;

8 end

9 end

10 end

Tim Ungerhofer Dynamic DFS in undirected graphs 5th December 2019 17 /36



Result of Reroot(T(f), k)
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Reroot run time analysis

The total time required is proportional to the number of edges
processed by the procedure.

These edges include tree edges and added edges.

The number of tree edges is bounded by O(|T/|), T/ being the original
subtree.

The number of added edges is also bounded by | T7|.

This results in the total runtime of O(|T/| «+ query) where query is the
time taken by the data structure to answer each query.
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Reducing all edge updates to reroot

Deletion of an edge (u, v):
In case (u, v) is a back edge in T , simply delete it from the graph.
Otherwise, let u = par(v) in T. The algorithm finds the lowest edge
(ur, vr) on the path(u, r) from T(v), where v/ € T(v). The subtree
T(v) is then rerooted at its new root v/ and appended to u/ using
(ut, v1) in the final tree Tx.

Insertion of an edge (u,v):
In case (u, v) is a back edge, simply insert it in the graph.
Otherwise, let w be the LCA of uand vin T and v/ be the child of
w such that v € T(vr). The subtree T(vr) is then rerooted at its
new root v and appended at u using (u, v) in the final tree Tx.
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Data structure D

Recall

For any three vertices w, x, y € T with path(x, y), D must answer the
queries:

Query(w, x, y): among all the edges from w that are incident on
path(x, y) in G + U, return the edge that is incident nearest to x on
path(x, y).

Query(T(w), x, y): among all the edges from T (w) that are incident
on path(x, y) in G + U, return an edge that is incident nearest to x
on path(x, y).
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Data structure D

D is built using two techniques called heavy-light composition and
suitable augmentation of a binary tree (segment tree) as follows:

Perform a preorder traversal of tree T with the following restriction:
Upon visiting a vertex v € T , the child of v that is visited first is the
one storing the largest subtree.

Let L be the list of vertices ordered by this traversal.
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Data structure D

D is built using two techniques called heavy-light composition and
suitable augmentation of a binary tree (segment tree) as follows:

Perform a preorder traversal of tree T with the following restriction:
Upon visiting a vertex v € T , the child of v that is visited first is the
one storing the largest subtree.

Let L be the list of vertices ordered by this traversal.

This produces L = [x, z, W, s, t, ¥, U, V]

Tim Ungerhofer Dynamic DFS in undirected graphs 5th December 2019 22/36



Data structure D

Build a segment tree Tg whose leaf nodes from left to right
represent the vertices in L.
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Data structure D

Build a segment tree Tg whose leaf nodes from left to right
represent the vertices in L.

Augment each node z € Tg with a binary search tree Bin(z),
storing all edges (u, v) € E where u is a leaf node in the subtree
rooted at z in Tg. These edges are sorted according to the position
of the second endpoint in L
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Data structure D

(@.5) || (zw) || (w,9) || (s.0) | [ ()|

(z,0) || (w,t)

L=[x,z,w,s,1t,Yy,u,V]
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Data structure D properties

m For Query(T(w), x,y), the subtree T(w) is presentin L as an
interval of subtrees. This interval can be expressed as a union of
O(logn) disjoint subtrees in Tg.

m The path(x, y) can be divided into O(logn) subpaths.

m To find the edge closest to path(x, y), a single predecessor or
successor query on Bin(z) suffices. This query can be answered in
O(logn).
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Data structure D properties

m For Query(T(w), x, y), the subtree T(w) is presentin L as an
interval of subtrees. This interval can be expressed as a union of
O(logn) disjoint subtrees in Tp.

m The path(x, y) can be divided into O(logn) subpaths.

m To find the edge closest to path(x, y), a single predecessor or
successor query on Bin(z) suffices. This query can be answered in
O(logn).

Therefore, queries can be answered by D in O(log®n).

D requires O(mlogn) space, as each edge is stored at O(/logn) levels in
Ts.
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Data structure D properties

m For Query(T(w), x, y), the subtree T(w) is presentin L as an
interval of subtrees. This interval can be expressed as a union of
O(logn) disjoint subtrees in Tp.

m The path(x, y) can be divided into O(logn) subpaths.

m To find the edge closest to path(x, y), a single predecessor or
successor query on Bin(z) suffices. This query can be answered in
O(logn).

Therefore, queries can be answered by D in O(log®n).
D requires O(mlogn) space, as each edge is stored at O(/logn) levels in

Tg.Tg can be built in linear time and Bin(z) can be built in time linear in
the number of edges in Bin(z) for each node z.
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Data structure D properties

m For Query(T(w), x, y), the subtree T(w) is presentin L as an
interval of subtrees. This interval can be expressed as a union of
O(logn) disjoint subtrees in Tp.

m The path(x, y) can be divided into O(logn) subpaths.

m To find the edge closest to path(x, y), a single predecessor or
successor query on Bin(z) suffices. This query can be answered in
O(logn).

Therefore, queries can be answered by D in O(log®n).

D requires O(mlogn) space, as each edge is stored at O(/logn) levels in
Tg.Tg can be built in linear time and Bin(z) can be built in time linear in
the number of edges in Bin(z) for each node z.

This results in the total build time of O(mlogn) for D.
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Data structure D properties

m For Query(T(w), x, y), the subtree T(w) is presentin L as an
interval of subtrees. This interval can be expressed as a union of
O(logn) disjoint subtrees in Tp.

m The path(x, y) can be divided into O(logn) subpaths.

m To find the edge closest to path(x, y), a single predecessor or
successor query on Bin(z) suffices. This query can be answered in
O(logn).

Therefore, queries can be answered by D in O(log®n).

D requires O(mlogn) space, as each edge is stored at O(/logn) levels in
Tg.Tg can be built in linear time and Bin(z) can be built in time linear in
the number of edges in Bin(z) for each node z.

This results in the total build time of O(mlogn) for D.

Furthermore, this means the runtime of procedure Reroot can now be
finalized to O(| T7|log®n)
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Handling multiple updates

For a single update, the DFS tree can be recomputed in O(n), by
reduction to procedure Reroot.

For multiple updates, however, the same is not true, as Reroot is
dependent on D, which is built from the original tree T. After an update,
e.g. deletion of an edge, D must be rebuilt for the updated tree.
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Handling multiple updates

For a single update, the DFS tree can be recomputed in O(n), by
reduction to procedure Reroot.

For multiple updates, however, the same is not true, as Reroot is
dependent on D, which is built from the original tree T. After an update,
e.g. deletion of an edge, D must be rebuilt for the updated tree.

To avoid the O(mlogn) build time after each update, D will be reused
across multiple updates as follows.
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Handling multiple updates

To handle G+ U, D needs to ensure that all queried paths and subtrees
do not contain failed edges.

For any set U, compute a partitioning of T into a collection of paths P
and subtrees T, where all paths and subtrees are disjoint.
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Disjoint tree partitioning

Procedure

m For every failed vertex v € subtree of 7, add the path from par(v)
to the root of the subtree to P, store the resulting subtrees in 7.

m If v € path of P: Split the path at v, remove the path from P and
add the two resulting paths to P.
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Dynamic DFS

Procedure Static-DFS(G,r): Static algo- Procedure Dynamic-DFS(G,U,r):  Algorithm
rithm to compute a DFS tree of G rooted at for updating the DFS tree 1" rooted at r for the
T graph G + U.
1 Stack S < 0; 1 Stack S < 0; (T,P) « Partition(T,U);
2 Push(r); 2 Push(r);
3 status(r) < visited; 3 status(r) < visited; L(r) < N(r);
4 while S # empty do 4 while S # empty do
5 w < Top(9); 5 w < Top(S); ug < w;
6 if N(w) =0 then Pop(w); 6 if L(w) = () then Pop(w);
7 else 7 else
8 u < First vertex in N(w); s u + First vertex in L(w);
9 Remove u from N(w); 9 Remove u from L(w);
10 if status(u) = unvisited then 10 if status(u) = unvisited then
11 if INFO(u) = tree then
12 | {u1.....u} < DFS-in-Tree(u);
13 else if INFO(u) = path then
14 | {u1....,us} <DFS-in-Path(w);
15 end
16 fori=1 totdo
11 par(u) < w; 17 par(u;) < u;i—y;
12 status(u) « visited; 18 status(u;) < visited;
13 Push(u); 19 Push(u;);
20 end
14 end 21 end
15 end 22 end
16 end 23 end
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Procedures for in-tree and in-path DFS

if status(u) = unvisited then
if INFO(u) = tree then

| {u1,...,us} < DFS-in-Tree(u);
else if INFO(u) = path then

| {u1,...,us} <DFS-in-Path(u);
end
fori=1totdo
par(u;) < ui_1;

status(u;) «— visited,
Push(u;);
end

end

DFS-in-tree(u)

Adds the path from u to the root of its subtree to P, appends resulting
subtrees to 7 and updates L(w) for all vertices w on this path.
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Procedures for in-tree and in-path DFS

if status(u) = unvisited then
if INFO(u) = tree then
| {u1,...,us} < DFS-in-Tree(u);
else if INFO(u) = path then
| {u1,...,us} <DFS-in-Path(u);
end
fori=1totdo
par(u;) < ui_1;
status(u;) «— visited,
Push(u;);
end
end

DFS-in-path(u)
Scans the path from u to the far end of a given path(x, y), let y be the
far end. Replaces path(x, y) with path(u, y) in P, computes L(w) for
all vertices w path(u, y).
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Correctness

Lemma (Adapted components property x)

When a path p is attached to the partially constructed DFS tree Tx
during the algorithm, for every edge (x, y), where x € p and y belongs
to the unvisited graph, the following condition holds:

Either y is added to L(x) or y! is added to L(x/) for some edge (x, y1),
where x! is a descendant (not necessarily proper) of x in p and y! is
connected to y in the unvisited graph.

m Invariant 1:
The sequence of vertices in the stack from bottom to top constitutes
an ancestor-descendant path from r in the DFS tree computed.

m Invariant 2:

For each vertex v that is popped out, all vertices in the set N (v)
have already been visited.
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Extension to a fully dynamic algorithm

Dynamic-DFS can be further extended to include insertions of vertices
and edges and by scheduling the rebuilding of D correctly, the algorithm
can be used to solve problems such as the dynamic subgraph
connectivity problem and the dynamic biconnectivity and dynamic
2-edge connectivity problem with the following run times.
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Results

For dynamic subgraph connectivity:
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Results

For dynamic biconnectivity (x) and dynamic 2-edge connectivity (t):
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Thank you for your attention!
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