\\ \title{

Time-Space Trade-offs in
 \title{ \section*{Time-Space Trade-offs in Population Protocols}

 Population Protocols}}

Alexander Nemetz-Fiedler

2017

 .-

 ? U ,

Overview

- What are population protocols?
- What is leader election?
-What is the majority problem?
- Overview of the Paper
- Lower Bound for majority and leader election
- New algorithms for majority and leader election
- Lottery Election (detailed)
- Split-Join Majority (overview)

Population Protocols

- Set of $n \geq 2$ agents
- Each executing deterministic state machine
- State from a finite set Λ_{n}, might depend on n
- Transition function $\delta_{n}: \Lambda_{n} \times \Lambda_{n} \rightarrow \Lambda_{n} \times \Lambda_{n}$
- Output function $\gamma_{n}: \Lambda_{n} \rightarrow 0$
- Pairs of agents are chosen uniformly at random
- Each agent updates state according to transition function δ_{n}
- Result can be checked with output function

Leader Election

- All agents start in the same initial state
- Output set O is $\{$ Win, Lose $\}$
- Goal: One agent has Output Win, the rest has Lose

Majority Problem

- Two initial states A_{n}, B_{n}
- Output set is $\left\{\right.$ Win $_{a}$, Win $\left._{b}\right\}$
- Goal: Output of every agent should correspond to majority of initial state
- If A_{n}, B_{n} are split 50/50, output is arbitrary

The Paper

- Title: Time-Space Trade-Offs in Population Protocols (2017)
- Authors:
- Alistarh (ETH Zürich)
- Aspnes (Yale)
- Eisenstat (Google)
- Gelashvili (MIT)
- Rivest (MIT)
- Trade-off between number of states and running time
- New and improved algorithms for majority and leader election

The Paper

Problem	Type	Expected Time Bound	Number of States	Reference
Exact Majority	Algorithm	$O(n \log n)$	4	[DV12,MNRS14]
	Algorithm	$O\left(\log ^{2} n\right)$	$\Theta(n)$	[AGV15]
	Lower Bound	$\Omega(n)$	≤ 4	[AGV15]
	Lower Bound	$\Omega(\log n)$	any	[AGV15]
Leader Election	Algorithm	$O\left(\log ^{3} n\right)$	$O\left(\log ^{3} n\right)$	[AG15]
	Lower Bound	$\Omega(n)$	$O(1)$	[DS15]
Exact Majority	Lower Bound	$\Omega(n / \operatorname{polylog} n)$	$<1 / 2 \log \log n$	This paper
Leader Election		$O\left(\log ^{3} n\right)$	$O\left(\log ^{2} n\right)$	This paper
Exact Majority	Algorithm	$O\left(\log ^{5.3} n \log \log n\right)$	$O\left(\log ^{2} n\right)$	This paper
Leader Election	Algorithm			

Figure 1: Summary of results and relation to previous work.

Overview

- What are population protecols?
- What is leader election?
- What is the majority problem?
- Overview of the Paper
- Lower Bound for majority and leader election
- New algorithms for majority and leader election
- Lottery Election (detailed)
- Split-Join Majority (overview)

Lower Bound (idea)

- Two-Step argument
- First: Hypothetical algorithm converges faster than allowed by the lower bound, set of low count states can be "erased"
- Second: Engineer examples to contradict the correctness of that algorithm
- Leader Election: Remaining low count states are set of all potential leaders
- Majority: Remaining low count states could sway the outcome of majority

Lower Bound (Leader)

COROLLARY 3.1. Any monotonic population protocol with $\left|\Lambda_{n}\right| \leq 1 / 2 \log \log n$ states for all sufficiently large number of agents n that stably elects at least one and at most $\ell(n)$ leaders, must take $\Omega\left(\frac{n}{\left.\left.\left.144\right|^{\left|\Lambda_{n}\right|} \cdot\right|_{n}\right|^{6} \cdot \ell(n)^{2}}\right)$ expected parallel time to convergence.

- Monotonic: Number of states cannot decrease with increasing node count

Lower Bound (Majority)

COROLLARY 3.2. Any monotonic population protocol with $\left|\Lambda_{n}\right| \leq 1 / 2 \log \log n$ states for all sufficiently large number of agents n that stably computes correct majority decision for initial configurations with majority advantage ϵ, must take $\Omega\left(\frac{n}{36^{\left|\Lambda_{n}\right|} \cdot\left|\Lambda_{n}\right|^{6} \cdot \max \left(2^{\left|\Lambda_{n}\right|}, \epsilon n\right)^{2}}\right)$ expected parallel time to convergence.

- Monotonic: Number of states cannot decrease with increasing node count

Overview

- What-are pepulation protecols?
- What is leader election?
- What is the majority problem?
- Overview of the Paper
-Lower Bound for majority and leader election
- New algorithms for majority and leader election
- Lottery Election (detailed)
- Split-Join Majority (overview)

Synthetic Coin Flips

- Problem: We need a random coin parameter in our state, but states are deterministic (e.g. no randomness)
- Solution: Synthetic Coin Flips
- When x and y interact, they flip their own values
- E.g. value' $=1$ - value
- Reminder: Interactions are chosen uniformly at random
- Randomness is extracted from the scheduler
- They prove that w.h.p. the distribution quickly becomes uniform
- Important: Happens independently from the algorithm

Lottery Election

- All nodes start in the same state, comprised of parameters:
- coin $=\{0,1\}$ (initially 0)
- mode $=$ \{seeding, lottery, tournament, minion\} (initially seeding)
- payoff, level, counter, phase, ones
- 4 Modes:
- Seeding Mode, Lottery Mode, Tournament Mode, Minion Mode
- Fix a parameter $m \geq(10 \log n)^{2}$
- Protocol will use $O(m)$ states per node

Lottery Election - Seeding Mode

- Used to mix the coin parameter close to uniform random
- payoff,level = 0
- counter = 4
- In the first four interactions, decrease counter (and flip coin)
- When counter reaches 0 , move on to Lottery Mode

Lottery Election - Lottery Mode

- Used to generate payoff values
- Higher values are less likely, finding a leader becomes easier
- Increment payoff when partner has coin $=1$
- When partner has coin $=0$ or payoff $=\sqrt{m}$, move on to Tournament Mode

Lottery Election - Tournament Mode

- Forces agents to compete
- Generates additional tie-braking random values (level)
- Initialize level = 0
- level is incremented if agent consecutively sees $\Theta(\log p a y o f f)$ coins set to 1
- This is implemented using phase and ones
- Level is capped at $\frac{\sqrt{m}}{\log m}$

Lottery Election - Tournament Mode

- When 2 agents x and y meet, compare:
- x.payoff and y.payoff
- If payoff equal: compare x. level and y. level
- If level equal: compare x.coin and y. coin
- The smaller valued agent goes into minion mode
- It adopts level and payoff of opponent

Lottery Election - Minion Mode

- Keeps record of the maximum (payoff, level) pair ever seen
- Propagates leaders with high payoff
- Helps eliminate other contenders
- Important: coin value not used as tie-breaker

Lottery Election - Complexity

- coin, counter, modes, ones are in 0(1)
- payoff is limited to $0(\sqrt{m})$
- level is limited to $0\left(\frac{\sqrt{m}}{\log m}\right)$
- phase is limited to $0(\log m)$ since:
- $\Theta(\log$ payoff $)=\Theta(\log \sqrt{m})=\Theta\left(\frac{1}{2} \log m\right)=\Theta(\log m)$
- State size: $O(1) \times O(\sqrt{m}) \times O\left(\frac{\sqrt{m}}{\log m}\right) \times O(\log m)=O(m)$
- m was set to $(10 \log n)^{2}$ so state size is $O\left(\log ^{2} n\right)$
- They also prove that it takes $0\left(\log { }^{5.3} n \log \log n\right)$ parallel time

Overview

- What are population protecols?
- What is leader election?
- What is the majority problem?
- Overview of the Paper
- Lower Bound for majority and leader election
- New algorithms for majority and leader election
- Lottery Election (detailed)
- Split-Join Majority (overview)

Split-Join Majority

- State: A is positive, B is negative
- To limit state space:
- State is $\langle x, y\rangle$ where $x, y \in\left\{0,1,2,2^{2}, \ldots, 2^{[\log n]}\right\}$
- $\operatorname{value}(\langle x, y\rangle)=x-y$, so x is "positive" and y is "negative"
- Opinion A starts as $\left\langle 2^{[\log n]}, 0\right\rangle$
- Opinion B starts as $\left\langle 0,2^{[\log n\rceil}\right\rangle$
- Strong states: non-zero
- Weak states: $\langle 0,0\rangle^{+}$or $\langle 0,0\rangle^{-}$

Split-Join Majority - Transition Rules

- When two agents interact, operations cancel, join, split are carried out

cancel

Split-Join Majority - Correctness/Complexity

- Since all operations preserve the sum
- And the initial sum is leaning to one side
- It is impossible for all agents to sway to the "wrong" side
- The Authors prove that the algorithm is guaranteed to converge in $O\left(\log ^{3} n\right)$ parallel time in expectation and w.h.p.

－

