
Not-As-Fast Cut Sparsification of Weighted Graphs
Reading Group Algorithms Companion Paper

Tijn de Vos

January 27, 2022

Abstract

In this paper, we consider the techniques for computing cut sparsifiers of weighted graphs
using maximum spanning forest packings, as introduced by Forster and de Vos [FdV21]. In
particular, we see how the results change under two simplifications. First, we apply the cut
sparsification framework of Fung et al. [FHHP11] directly to maximum spanning forest indices
to obtain a cut sparsifier of size O(n log(n) log(m/n)/ε2) in O(m log(n)) time. Second, we
retrieve a linear time algorithm when we only consider unweighted graphs.

1 Introduction

The goal of cut sparsification is to compute for a given (weighted) graph G a subgraph H,
with new weights, such that with high probability the value of all cuts is preserved. In this
paper, we study the work of Forster and de Vos [FdV21], who show that the techniques of Fung
et al. [FHHP11] for cut sparsifiaction of unweighted graphs can be applies to weighted graphs
when a new ‘connectivity estimator’ is used. Fung et al. also provide a general framework for
cut sparsification, where a connectivity estimator is a function λ : E → R on the edges that
satisfies certain conditions. Forster and de Vos use a maximum spanning forest (MSF) index
for the connectivity estimator. However, they do not apply it directly to the framework, but in
a more complicated fashion – based on the unweighted sparsification algorithm of Fung et al.

In this paper, we present two simplifications of [FdV21]: we directly use the MSF index
in framework of [FHHP11], and we see how the weighted algorithm simplifies when we only
consider unweighted graphs. The former still improves on the prior work to [FdV21], but is less
strong than [FdV21] itself.

1.1 Review

For convenience, we restate the most important definitions and theorems from [FdV21]. First
of all, we formally define cuts. We define a set of edges C ⊆ E to be cut if there exists a
partition of the vertices V in two non-empty subjets A and B, such that C consists of all edges
with one endpoint in A and the other endpoint in B. The weight of the cut is the sum of the
weights of the edges of the cut: wG(C) =

∑
e∈C wG(e). The minimum cut is defined as the cut

with minimum weight. We say that a (reweighted) subgraph H ⊆ G is a (1 ± ε)-cut sparsifier
for a weighted graph G if for every cut C in H, its weight wH(C) is within a multiplicative
factor of 1± ε of its weight wG(C) in G. A key concept in the realm of cut sparsification is the
connectivity of an edge.

Definition 1.1. Let G = (V,E) be a graph, possibly weighted. We define the connectivity of
an edge e = (u, v) ∈ E to be the minimal weight of any cut separating u and v. We say that e
is k-heavy if it has connectivity at least k. For a cut C, we define the k-projection of C to be
the k-heavy edges of the cut C.

Next, we give the definition of the MSF index as it appears in [FdV21].

1

Definition 1.2. Let G = (V,E) be a weighted graph. We say F = {F1, . . . , FM} is an M -partial
maximum spanning forest packing of G if for all i = 1, . . . ,M , Fi is a maximum spanning forest
in G \

⋃i−1
j=1 Fj. If we have that

⋃M
i=1 Fi = G, then we call F a (complete) maximum spanning

forest packing of G. Moreover, for e ∈ E we denote the MSF index of e (w.r.t. F) by fe, i.e.,
fe is the unique index such that e ∈ Ffe .

Note that we do not demand the Fi ∈ F to be non-empty, as this suits notation best in our
applications. Also note that a (partial) MSF packing is fully determined by the MSF indices.
The next theorem shows the computation time of the MSF index.

Theorem 1.3 (See [FdV21], Theorem 3.1 and Theorem 3.3). Let G = (V,E) be a graph, where
we allow parallel edges but no self-loops, and we suppose m ≤ n2. Suppose we have weights
w : E → {1, . . . , nc} for some c ≥ 0. Then, for any M > 0, there exists an algorithm that
computes an M -partial MSF packing in O(m ·min{α(n) log(M) + c, log(n)}) time.

Here α(·) refers to the functional inverse of Ackermann’s function, for a definition see e.g.
[Tar75].

Next, we review the general framework for cut sparsification as presented in [FHHP19]. Let
G = (V,E) be a graph with integer weights, and let ε ∈ (0, 1), c ≥ 1 be parameters. Given a
parameter γ (possibly depending on n) and an integer-valued parameter λe for each e ∈ E. We
obtain Gε from G by independently compressing each edge e with parameter

pe = min

(
1,

16(c+ 7)γ ln(n)

0.38λeε2

)
.

Compressing an edge e with weight w(e) consists of sampling re from a binomial distribution
with parameters w(e) and pe. If re > 0, we include the edge in Gε with weight re/pe.

In the following we describe a sufficient condition on the parameters γ and λe such that Gε
is a (1± ε)-cut sparsifier for G with probability at least 1− 4/nc. Hereto we partition the edges
according to their value λe:

Λ := blog max
e∈E
{λe}c;

Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1 − 1}.

Let G = {Gi = (V,Ei) : 1 ≤ i ≤ Λ} be a set of integer-weighted subgraphs such that Ri ⊆ Gi.
Moreover suppose that wGi(e) ≥ wG(e) for each e ∈ Ri. For a given set of parameters Π =
{π1, . . . , πΛ} ⊆ RΛ, we define

� Π-connectivity : each edge e ∈ Ri is πi-heavy in Gi;

� γ-overlap: for any cut C,
Λ∑
i=0

e
(C)
i 2i−1

πi
≤ γ · e(C),

where e(C) =
∑
e∈C wG(e) and e

(C)
i =

∑
e∈C∩Ei

wGi(e).

The following theorem shows that compressing with parameters adhering to these conditions
gives a cut sparsifier with high probability.

Theorem 1.4 (See [FHHP19, Theorem 1.14]). Fix the parameters γ and λe for each edge e.
If there exists G satisfying Π-connectivity and γ-overlap for some Π, then Gε is a (1 ± ε)-cut
sparsifier for G, with probability at least 1 − 4/nc, where Gε is obtained by edge compression
using parameters γ and λe’s.

2 Applying the Framework Directly

In this section, we show that using the MFS index directly in the framework of Fung et
al. [FHHP19] also gives us the following result.

2

Theorem 2.1. There exists an algorithm that, given a polynomially weighted graph G = (V,E),
and freely chosen parameter ε > 0, computes a graph Gε, which is a (1± ε)-cut sparsifier for G
with high probability. The algorithm runs in time O(m log(n)) and the number of edges of Gε is
O
(
n log(n)/ε2 log(m/n)

)
.

This is not as sparse as the result of Forster and de Vos [FdV21], but considerably simpler,
both in the algorithm itself and in the analysis.

The algorithm consists of the following two steps

1. Compute MSF indices upto M = n in time O(m log(n)).

2. Apply the sparsification framework (Theorem 1.4) with λe = fe · we.
First, let us consider the size of the sparsifier. We have∑

e

we/λe =
∑
e

1/fe.

This is the biggest when the edges are distributed such that the 1/fe are as large as possible.
Each forest holds at most n edges, dividing all edges over the first m/n forests gives an upper
bound of

n

m/n∑
i=1

1/i ≤ n log(m/n),

which results in expected size O(cn log(n)/ε2 log(m/n)). By the same techniques as presented
in [FdV21], we can show that the same bound holds with high probability.

To show that this is indeed a sparsifier, we are proving a slightly simpler version of Theo-
rem 4.3 in [FdV21].

Let F = T1, T2, . . . be an MSF packing of G. We define Fj = T2j ∪· · ·∪T2j+1−1. We analyze
what happens if for e ∈ Fj we set λ′e = 2j−1w(e). As we have 2j ≤ fe < 2j+1, we obtain
few(e)/4 ≤ 2j−1w(e) ≤ few(e), thus λe/4 ≤ λ′e ≤ λe. Hence this gives the same outcome for
our actual choice of λe, up to constant factors.

The proof is very similar to the proof of Theorem 4.3 in [FdV21], with slight adaptations.
We have to provide a set of subgraphs G and a set of parameters Π such that Π-connectivity

and γ-overlap are satisfied.
To explore the connectivity of edges in Ri := {e ∈ E : 2i ≤ λe ≤ 2i+1−1} we partition these

sets as follows:

Rj,k := {e ∈ Fj : 2k ≤ w(e) ≤ 2k+1 − 1}.

Now we have that Ri is a union of different Rj,k as follows: Ri =
⋃min(bi/2c,Γ)
j=1 Rj,i−j . We will

view these edges in the subgraph:

Ej,k :=

∞⋃
k′=k

2Γ−j+2+Λ−k′Rj,k′ ,

where Γ = blog(n)c, as we have at most n spanning forests.

Lemma 2.2. Each edge e ∈ Rj,k is π := 2Γ+Λ-heavy in (V,Ej,k).

Proof. Fix e ∈ Rj,k. This edge is 2j−1w(e) ≥ 2j+k-heavy in {e ∈ Fj−1 : w(e′) ≥ w(e)}. Hence
e is 2j+k−1-heavy in {e′ ∈ Fj−1 : w(e′) ≥ 2k}. We can rescale this: e is

(
2j+Λ−1

)
-heavy in⋃∞

k′=k 2Λ−k′ · {e′ ∈ Fj−1 : 2k
′ ≤ w(e′) ≤ 2k

′+1 − 1}. By rescaling again we get the result.

Now we take all weight classes together to find the set of subgraphs G for which Π-connectivity
is satisfied.

Corollary 2.3. Each edge in e ∈ Ri is 2Γ+Λ-heavy in Gi = (V,Ei), with Ei :=
⋃min(bi/2c,Γ)
j=1 Ej,i−j.

3

Proof. Note that e ∈ Ri satisfies 2i ≤ 22jw(e) ≤ 2i+1−1 if e ∈ Fj . Hence e ∈ Rj,k with 2j+k =

i. We are only considering edges in Fj with 1 ≤ j ≤ Γ, thus we have Ri =
⋃min(bi/2c,Γ)
j=1 Rj,i−j ,

hence the claim follows directly from Lemma 2.2.

It remains to show that γ-overlap is satisfied.

Lemma 2.4. For any cut C,
Λ∑
i=0

e
(C)
i 2i−1

2Γ+λ
≤ 4 · e(C),

where e(C) =
∑
e∈C wGS

(e) and e
(C)
i =

∑
e∈C∩Ei

wGi
(e).

Proof. This comes down to a technical computation:

Λ∑
i=0

e
(C)
i 2i−1

2Γ+λ
=

Λ∑
i=0

min(bi/2c,Γ)∑
j=1

∞∑
k′=i−j

2Γ−j+2+Λ−k′

2Γ+Λ

∑
e∈C∩Rj,k′

w(e)

=
Γ∑
j=1

Λ∑
i=2j

∞∑
k′=i−j

2−j+i+1−k′
∑

e∈C∩Rj,k′

w(e)

=

Γ∑
j=1

∞∑
k′=0

min(j+k′,Λ)∑
i=2j

2−j+i+1−k′
∑

e∈C∩Rj,k′

w(e),

see Figure 1 for a visual argument of interchanging the sums.

i

j

Γ

Λ2

1

(a)
∑Λ
i=2

∑min(bi/2c,Γ)
j=1 1 =

∑Γ
j=1

∑Λ
i=2j 1

i

k′

Λ2j

(b)
∑Λ
i=2j

∑∞
k′=i−2j 1 =

∑∞
k′=0

∑min(2j+k′,Λ)
i=2j 1

Figure 1: Two visualizations of the area covered by a double sum, taken from [FdV21].

Γ∑
j=1

∞∑
k′=0

min(j+k′,Λ)∑
i=2j

2−j+i+1−k′
∑

e∈C∩Rj,k′

w(e) ≤
Γ∑
j=1

∞∑
k′=0

2−j+j+k
′+2−k′

∑
e∈C∩Rj,k′

w(e)

= 4e(C).

4

Finally, let us consider what happens when we call this algorithm repeatedly. As for example
seen in Theorem 3.2 above, this can lead to a better results. Unfortunately, in this case we can
not get the same sparsity in the same time. The reason hereto is that we have a factor log(m/n)
in the running time, rather than a factor log(m/(n log(n)/ε2)), which is the desired size. This
means that the number of edges does not decrease quickly enough to get the sparser output in
(asymptotically) the same running time. With some extra time we can get to size O(n log(n)/ε2),

namely in time O
((
m+ n log2(n) log log(n)

ε4

)
log(n)

)
. We omit the proof, which is very similar to

Theorem 3.2.
As a final remark, note that using the framework directly, we need to compute MSF indices

up to depth n, where Forster and de Vos only need to go to depth m/n. This is reflected in the
running time.

3 Cut Sparsification for Unweighted Graphs

In this section, we investigate what happens when we apply the algorithm of Forster and de
Vos [FdV21] to unweighted graphs. This means that any forest packing is a maximal spanning
forest packing. Hence we can use the linear time algorithm of Nagamochi and Ibaraki [NI92a,
NI92b] for this step of the algorithm. Note that the full algorithm (see Appendix A) is highly
similar to the algorithm for unweighted graphs of Fung et al. [FHHP19], but not quite the same.
The difference is that Fung et al. use some graph contractions to get a sparser result. We do
not get this sparser result initially, but show that we can repeatedly apply the algorithm to get
the same outcome. The following theorem is the analogue of Theorem 4.1 in [FdV21], but with
a better time complexity since it is restricted to unweighted graphs.

Theorem 3.1. There exists an algorithm that, given an unweighted graph G = (V,E), and
freely chose parameter ε > 0, computes a graph Gε, which is a (1 ± ε)-cut sparsifier for G
with high probability. The algorithm runs in time O(m) and the number of edges of Gε is
O
(
n
(
log(n)/ε2

)
log
(
m/(n log(n)/ε2)

))
.

To be precise, we give an algorithm where the given bounds on both running time and size
of the sparsifier hold with high probability. By a simply halting when the running time exceeds
the bound, and outputting an empty graph if we exceed the size bound, this gives the result
above.

As said, to achieve a better bound on the size of the sparsifier, we repeatedly apply this
theorem to the input graph to obtain the following result.

Theorem 3.2. There exists an algorithm that, given an unweighted graph G = (V,E), and freely
chosen parameter ε > 0, computes a graph Gε, which is a (1± ε)-cut sparsifier for G with high
probability. The algorithm runs in time O(m) and the number of edges of Gε is O

(
n log(n)/ε2

)
.

Proof. We obtain this result by repeatedly applying the algorithm from Theorem 3.1, for a total

of k := log∗
(

m
n log(n)/ε2

)
times. In iteration i, we set εi := ε/2k−i+2 and denote the output of

this iteration by Gi. This means that Gi is a (1 ± ε/2k−i+2)-cut sparsifier for Gi−1. In total,
we see that Gε := Gk is a (1± ε)-cut sparsifier for G since

k∏
i=1

(1 + ε/2k−i+2) ≤ exp

(
k∑
i−1

log(1 + ε/2k−i+2)

)
≤ exp

(
k∑
i−1

ε/2k−i+2

)

≤ exp

ε ∞∑
j=2

2−j

 = exp(ε/2) ≤ 1 + ε,

5

as ε < 1, and

k∏
i=1

(1− ε/2k−i+2) ≥
∞∏
j=0

1− ε/4

2j
≥ (1− ε/8)

∞∏
j=1

1− ε/4

j2

= (1− ε/8)
sin(π

√
ε/2)√

ε/2
≥ (1− ε/8)(1− π2/24ε)

≥ 1− (1/8 + π2/24)ε+
π2

192
ε2 ≥ 1− ε.

Since k = log∗
(

m
n log(n)/ε2

)
= O(log∗(n)), all bounds hold with high probability simultaneously,

and thus the end result holds with high probability.
Now for the size bound, we have that

mi := |E(Gi)| ≤ C ·
(
n log(n)

ε2
4k−i+2 log

(
mi−1

n log(n)/ε2

))
,

for some constant C > 0, where we denote m0 := m. We will show by induction that

mi ≤ C ·
(
n log(n)

ε2
4k−i+2 · 2 log(i)

(
m

n log(n)/ε2

))
,

which means in particular that mk = O
(
n log(n)/ε2

)
. The claim for m1 is immediate. Suppose

it holds for i− 1, then

mi ≤ C ·
(
n log(n)

ε2
4k−i+2 log

(
mi−1

n log(n)/ε2

))
≤ C ·

(
n log(n)

ε2
4k−i+2 log

(
C · 4k−i+3 · 2 log(i−1)

(
m

n log(n)/ε2

)))
= C ·

(
n log(n)

ε2
4k−i+2

(
(k − i) log(4) + log(C · 27) + log(i)

(
m

n log(n)/ε2

)))
≤ C ·

(
n log(n)

ε2
4k−i+2 · 2 log(i)

(
m

n log(n)/ε2

))
,

since

(k − i) log(4) + log(C · 27) =

(
log∗

(
m

n log(n)/ε2

)
− i
)

log(4) + log(C · 27)

= log∗
(

log(i)

(
m

n log(n)/ε2

))
log(4) + log(C · 27)

< log(i)

(
m

n log(n)/ε2

)
,

if m
n log(n)/ε2 > D, for some constant D. This can be assumed to hold, since if m

n log(n)/ε2 ≤ D,

then Theorem 3.1 immediately gives the desired result. The total running time becomes of the
sum of the k iterations:

k∑
i=1

O(mi−1) = O

(
k−1∑
i=1

C ·
(
n log(n)

ε2
4k−i+2 · 2 log(i)

(
m

n log(n)/ε2

)))

= O

(
n log(n)

ε2
4k log

(
m

n log(n)/ε2

))
.

6

We have log∗(x) = O(log log(x)), hence we obtain 4log∗(x) log(x) = O(log2(x)) = O(x). Using
this with x = m

n log(n)/ε2 gives us total running time

k∑
i=1

O(mi−1)

=O

((
m+

n log(n)

ε2
4k log

(
m

n log(n)/ε2

)))
=O(m).

Now, we give the remaining proof.

Proof of Theorem 3.1. The algorithm is given in Appendix A. First off, ifm ≤ 4ρn log
(
m/(n log(n)/ε2)

)
=

O(cn log(n)/ε2 log
(
m/(n log(n)/ε2)

)
), the algorithm does nothing and returns the original graph.

So for this analysis we can assume m > 4ρn log
(
m/(n log(n)/ε2)

)
. We analyze the time com-

plexity of the algorithm in two steps. The first step consists of computing the probabilities pe
for all e ∈ E. The second one is compressing edges, given these probabilities.

The first step contains i iterations of the while loop (lines 10–17). In each iteration we
sample edges from Yi ⊆ Xi with probability 1/2 to form Xi+1. This takes time at most O(|Xi|).
Next, we compute a maximum spanning forest packing of the graph Gi+1 = (V,Xi+1). For an
unweighted graph, a MSF packing is the same as an NI packing. We know that we can compute
an NI packing a graph with n vertices and m0 edges in O(m0) time (see [NI92a, NI92b]). So
this iteration takes at most O(|Xi+1|) time. As noted earlier, we have with high probability

that |Xi| ≤
(

2
3

)i
m. We conclude w.h.p. that the first step takes total time at most

Γ∑
i=0

(O(|Xi|) +O(|Xi+1|)) =

Γ∑
i=0

((
2

3

)i
O(m) +

(
2

3

)i+1

O(m)

)

≤ O(m) · 2
∞∑
i=0

(
2

3

)i
= O(m) · 2 · 3
= O(m).

In the second step, we sample each edge e from the binomial distribution with parameters
ne and pe. As shown in the paper, this can be done with a process that takes T = O(m) time
with high probability. Concluding, the algorithm takes O(m) +O(m) = O(m) time in total for
unweighted-weighted graphs.

References

[FdV21] Sebastian Forster and Tijn de Vos. Faster cut sparsification of weighted graphs.
2021.

[FHHP11] Wai Shing Fung, Ramesh Hariharan, Nicholas J A Harvey, and Debmalya Panigrahi.
A general framework for graph sparsification. In Proc. of the Symposium on Theory
of Computing (STOC), pages 71–80, New York, NY, USA, 2011.

[FHHP19] Wai-Shing Fung, Ramesh Hariharan, Nicholas J A Harvey, and Debmalya Pani-
grahi. A general framework for graph sparsification. SIAM Journal on Computing,
48(4):1196–1223, 2019.

[NI92a] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66,
1992.

7

[NI92b] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a
sparse k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(1-
6):583–596, 1992.

[Tar75] Robert E Tarjan. Efficiency of a good but not linear set union algorithm. Journal
of the ACM, 22(2):215–225, April 1975.

A Unweighted Algorithm

Algorithm 1: Sparsify(V,E,w, ε, c)

Input: An undirected, unweighted graph G = (V,E), with parameters ε ∈ (0, 1), c ≥ 1.
Output: An undirected weighted graph Gε = (V,Eε).

1 Set ρ← (7+c)1352 ln(n)
0.38ε2

.
2 if |E| ≤ 4ρn log

(
m/(n log(n)/ε2)

)
then

3 return Gε = G.
4 end
5 Compute an b2ρc-partial spanning forest packing T1, T2, . . . , Tb2ρc for G.

6 Set i← 0.
7 Set X0 ← E.

8 Set F0 ←
⋃b2ρc
j=1 Tj .

9 Set Y0 ← X0 \ F0.
10 while |Yi| > 2ρn do
11 Sample each edge in Yi with probability 1/2 to construct Xi+1.
12 i← i+ 1.
13 Set ki ← ρ · 2i+1.
14 Compute an ki-partial spanning forest packing T1, T2, . . . , Tki for the graph

Gi := (V,Xi).
15 Set Fi ←

⋃ki
j=1 Tj

16 Set Yi ← Xi \ Fi.
17 end
18 Set Γ← i. // Γ is the number of elapsed iteration in the previous while-loop.
19 Add each edge e ∈ YΓ to Gε with weight 2Γ−1.
20 Add each edge e ∈ F0 to Gε with weight 1.
21 for j = 1, . . . ,Γ do
22 foreach e ∈ Fj do
23 Set pe ← min

(
1, 384

169
1
4j

)
.

24 Generate re from Binom(2j , pe).
25 if re > 0 then
26 Add e to Gε with weight re/pe.
27 end

28 end

29 end
30 return Gε = (V,Eε).

8

	Introduction
	Review

	Applying the Framework Directly
	Cut Sparsification for Unweighted Graphs
	Unweighted Algorithm

