Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms [SODA ’20]

Reading Group Algorithms

Sebastian Forster

joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai Yingchareonthawornchai

Universität Salzburg

18.11.2019
$G = (V, E)$
Definitions

Definition

A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definition

An edge cut F is a subset of edges $F \subseteq E$ that disconnects the graph, i.e., the graph $G' = (V, E \setminus F)$ is not (strongly) connected.

Definition

A vertex cut U is a subset of vertices $U \subseteq V$ that disconnects the graph, i.e., the graph $G' = (V \setminus U, E \setminus (V \times U \cup U \times V))$ is not (strongly) connected.
Definitions

Definition
A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definition
An edge cut F is a subset of edges $F \subseteq E$ that disconnects the graph, i.e., the graph $G' = (V, E \setminus F)$ is not (strongly) connected.
Definitions

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An edge cut F is a subset of edges $F \subseteq E$ that disconnects the graph, i.e., the graph $G' = (V, E \setminus F)$ is not (strongly) connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A vertex cut U is a subset of vertices $U \subseteq V$ that disconnects the graph, i.e., the graph $G' = (V \setminus U, E \setminus (V \times U \cup U \times V))$ is not (strongly) connected.</td>
</tr>
</tbody>
</table>
Cuts and Partitions

Observation
For every edge cut F, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there F is the set of edges from L to R.
Cuts and Partitions

Observation
For every edge cut F, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there F is the set of edges from L to R.

Observation
For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

\text{Attention: Common definitions disagree on corner cases}

Motivation for computing higher connectivity:
Reliability analysis
Community detection
Cuts and Partitions

Observation

For every edge cut F, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there F is the set of edges from L to R.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Definition

The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.
Cuts and Partitions

Observation
For every edge cut F, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there F is the set of edges from L to R.

Observation
For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Attention: Common definitions disagree on corner cases
Cuts and Partitions

Observation
For every edge cut F, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there is F is the set of edges from L to R.

Observation
For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Attention: Common definitions disagree on corner cases

Motivation for computing higher connectivity:
- Reliability analysis
- Community detection
State of the Art

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{O}(n^{2.373} + n\kappa^{2.373}))</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>(\tilde{O}(mn))</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>(O(mn + \kappa m \cdot \min{n^{3/4}, \kappa^{3/2}}))</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>(\tilde{O}(\kappa \cdot \min{m^{4/3}, m^{2/3}n}))</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>(\tilde{O}(\kappa \cdot \min{\kappa m, \kappa^{1/2}m^{1/2}n + \kappa^{2}n}))</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Plan for today:

Theorem

There is an algorithm to compute the edge connectivity \(\lambda \) of a directed graph in time \(O(\lambda^2 m \log n) \) with success probability \(\frac{1}{2} \).

Covers main technique, extension to vertex connectivity is a technicality.

In general:

\(O(\lambda^2 m \log n \log \frac{1}{p}) \) with success probability \(p \).

State of the art for directed edge connectivity:

\(O(\lambda m \log n) \) \[Gabow ’91\]
State of the Art

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(n^{2.373} + nk^{2.373})$</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>$\tilde{O}(mn)$</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>$O(mn + km \cdot \min{n^{3/4}, \kappa^{3/2}})$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa \cdot \min{m^{4/3}, m^{2/3}n})$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa \cdot \min{km, \kappa^{1/2}m^{1/2}n + \kappa^2n})$</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Undirected graphs: $m \rightarrow nk$ [Nagamochi/Ibaraki ’92]
State of the Art

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{O}(n^{2.373} + n\kappa^{2.373}))</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>(\tilde{O}(mn))</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>(O(mn + \kappa m \cdot \min{n^{3/4}, \kappa^{3/2}}))</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>(\tilde{O}(\kappa \cdot \min{m^{4/3}, m^{2/3}n}))</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>(\tilde{O}(\kappa \cdot \min{\kappa m, \kappa^{1/2}m^{1/2}n + \kappa^{2}n}))</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Undirected graphs: \(m \rightarrow n\kappa\) [Nagamochi/Ibaraki ’92]

Plan for today:

Theorem

There is an algorithm to compute the edge connectivity \(\lambda\) of a directed graph in time \(O(\lambda^2 m \log n)\) with success probability \(1/2\).
State of the Art

Vertex connectivity in directed graphs:

<table>
<thead>
<tr>
<th>Running time</th>
<th>Deterministic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{O}(n^{2.373} + nk^{2.373})$</td>
<td>no</td>
<td>[Cheriyan/Reif ’92]</td>
</tr>
<tr>
<td>$\tilde{O}(mn)$</td>
<td>no</td>
<td>[Henzinger et al. ’96]</td>
</tr>
<tr>
<td>$O(mn + \kappa m \cdot \min{n^{3/4}, \kappa^{3/2}})$</td>
<td>yes</td>
<td>[Gabow ’00]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa \cdot \min{m^{4/3}, m^{2/3} n})$</td>
<td>no</td>
<td>[Nanongkai et al. ’19]</td>
</tr>
<tr>
<td>$\tilde{O}(\kappa \cdot \min{\kappa m, \kappa^{1/2} m^{1/2} n + \kappa^2 n})$</td>
<td>no</td>
<td>Our result</td>
</tr>
</tbody>
</table>

Undirected graphs: $m \rightarrow nk$ [Nagamochi/Ibaraki ’92]

Plan for today:

Theorem

There is an algorithm to compute the edge connectivity λ of a directed graph in time $O(\lambda^2 m \log n)$ with success probability 1/2.

- Covers main technique, extension to vertex connectivity is a technicality
- In general: $O(\lambda^2 m \log n \log \frac{1}{p})$ with success probability p
- State of the art for directed edge connectivity: $O(\lambda m \log n)$ [Gabow ’91]
Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.
Review of Naive Algorithm

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An s-t edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The edge connectivity λ is the minimum size of any s-t edge cut among all pairs of vertices s and t.</td>
</tr>
</tbody>
</table>
Definition
An s-t edge cut is a cut with induced partition \((L, R)\) such that \(s \in L\) and \(t \in R\).

Observation
The edge connectivity \(\lambda\) is the minimum size of any s-t edge cut among all pairs of vertices \(s\) and \(t\).

Algorithm:
- For every pair of vertices \(s\) and \(t\) compute the minimum \(s\)-t cut
- Return minimum-size cut among all returned cuts
Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition \((L, R)\) such that \(s \in L\) and \(t \in R\).

Observation
The edge connectivity \(\lambda\) is the minimum size of any s-t edge cut among all pairs of vertices \(s\) and \(t\).

Algorithm:
- For every pair of vertices \(s\) and \(t\) compute the minimum s-t cut
- Return minimum-size cut among all returned cuts

By “max s-t flow = min s-t cut”, the minimum s-t cut can be computed with the Ford-Fulkerson algorithm in time \(O(mn)\).
Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition \((L, R)\) such that \(s \in L\) and \(t \in R\).

Observation
The edge connectivity \(\lambda\) is the minimum size of any s-t edge cut among all pairs of vertices \(s\) and \(t\).

Algorithm:
- For every pair of vertices \(s\) and \(t\) compute the minimum s-t cut
- Return minimum-size cut among all returned cuts

By “max s-t flow = min s-t cut”, the minimum s-t cut can be computed with the Ford-Fulkerson algorithm in time \(O(mn)\).

Running time of algorithm above: \(O(n^3m)\)
Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time $O(km)$ and if $k \geq \lambda$, then the algorithm returns the minimum s-t cut; otherwise it returns \bot.

Algorithm:

For $i = 1$ to $r = \lceil \log n \rceil$

▶ Set $k_i = 2^i$

▶ For every pair of vertices s and t: run the Ford-Fulkerson algorithm with parameters s, t, and k_i

▶ If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts

Running time:

$\sum_{i=1}^{r} O(n^2 k_i m) = O(\lambda n^2 m)$
Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time $O(km)$ and if $k \geq \lambda$, then the algorithm returns the minimum s-t cut; otherwise it returns \perp.

Algorithm:

1. For $i = 1$ to $r = \lceil \log n \rceil$
 - Set $k_i = 2^i$
 - For every pair of vertices s and t: run the Ford-Fulkerson algorithm with parameters s, t, and k_i
 - If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts
Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time $O(km)$ and if $k \geq \lambda$, then the algorithm returns the minimum s-t cut; otherwise it returns ⊥.

Algorithm:
- For $i = 1$ to $r = \lceil \log n \rceil$
 - Set $k_i = 2^i$
 - For every pair of vertices s and t: run the Ford-Fulkerson algorithm with parameters $s, t,$ and k_i
 - If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts

Running time: $\sum_{i=1}^{r} O(n^2 k_i m) = O(\lambda n^2 m)$
Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time $O(km)$ and if $k \geq \lambda$, then the algorithm returns the minimum s-t cut; otherwise it returns ⊥.

Algorithm:

- For $i = 1$ to $r = \lceil \log n \rceil$
 - Set $k_i = 2^i$
 - For every pair of vertices s and t: run the Ford-Fulkerson algorithm with parameters $s, t,$ and k_i
 - If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts

Running time: $\sum_{i=1}^{r} O(n^2 k_i m) = O(\lambda n^2 m)$

Observation

It suffices to design an algorithm that returns a global minimum cut if parameter $k \geq \lambda$.
Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.
Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat balanced.

Definition

The *volume* $\text{vol}(U)$ of a set of vertices U is the sum of the outgoing edges of vertices in U.
Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Definition

The *volume* $\text{vol}(U)$ of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume = interior edges + leaving edges
Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Definition

The *volume* \(\text{vol}(U) \) of a set of vertices \(U \) is the sum of the outgoing edges of vertices in \(U \).

Volume = interior edges + leaving edges

Definition

An edge cut \(F \) is balanced if for its induced partition \((L, R) \) both \(\text{vol}(L) \geq \frac{m}{14k} \) and \(\text{vol}(R) \geq \frac{m}{14k} \).
Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Definition

The *volume* $\text{vol}(U)$ of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume = interior edges + leaving edges

Definition

An edge cut F is balanced if for its induced partition (L, R) both $\text{vol}(L) \geq \frac{m}{14k}$ and $\text{vol}(R) \geq \frac{m}{14k}$.

Lemma

For any edge (u, v) chosen from E uniformly at random, the tail u is contained in L with probability $\frac{\text{vol}(L)}{m} \geq \frac{1}{14k}$ (same with R).
Case 1: Minimum Cut is Balanced [Nanongkai et al. ’19]

Algorithm:

- Repeat $28k$ times:
 - Sample two edges e and f uniformly at random
 - Let s be the tail of e and let t be the tail of f
 - Run Ford-Fulkerson algorithm with parameters s, t, and k

- Return minimum-size cut among all returned cuts
Case 1: Minimum Cut is Balanced [Nanongkai et al. ’19]

Algorithm:
- Repeat $28k$ times:
 - Sample two edges e and f uniformly at random
 - Let s be the tail of e and let t be the tail of f
 - Run Ford-Fulkerson algorithm with parameters s, t, and k
- Return minimum-size cut among all returned cuts

Lemma

If $k \geq \lambda$ and the minimum cut is balanced, then the algorithm above runs in time $O(k^2 m)$ and finds a cut of size λ with probability at least $\frac{1}{2}$.
Case 2: Minimum cut is not Balanced

Assumption: \(\text{vol}(L) < \frac{m}{14k} \) or \(\text{vol}(R) < \frac{m}{14k} \)
Case 2: Minimum cut is not Balanced

Assumption: $\text{vol}(L) < \frac{m}{14k}$ or $\text{vol}(R) < \frac{m}{14k}$

Idea: Detect smaller side of partition time proportional to its volume
Case 2: Minimum cut is not Balanced

Assumption: $\text{vol}(L) < \frac{m}{14k}$ or $\text{vol}(R) < \frac{m}{14k}$

Idea: Detect smaller side of partition time proportional to its volume

Definition

A k-out component $U \subseteq V$ has at most k edges going from U to $V \setminus U$.
Case 2: Minimum cut is not Balanced

Assumption: vol(L) < \frac{m}{14k} or vol(R) < \frac{m}{14k}

Idea: Detect smaller side of partition time proportional to its volume

Definition

A k-out component $U \subseteq V$ has at most k edges going from U to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

1. If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 7k\Delta$ with probability at least $\frac{5}{6}$ (and \perp with probability at most $\frac{1}{6}$).
2. Otherwise, it might return a k-out-component or \perp.

Note: $k^2 \Delta$ may be much smaller than m. Sublinear running time!
Case 2: Minimum cut is not Balanced

Assumption: \(\text{vol}(L) < \frac{m}{14k} \) or \(\text{vol}(R) < \frac{m}{14k} \)

Idea: Detect smaller side of partition time proportional to its volume

Definition

A \(k \)-out component \(U \subseteq V \) has at most \(k \) edges going from \(U \) to \(V \setminus U \).

Lemma

There is a local procedure that, given a seed vertex \(s \), a target cut size \(k \) and a target volume \(\Delta \) runs in time \(O(k^2 \Delta) \), and returns as follows:

1. If \(s \) is contained in an \(\ell \)-out component of volume \(\leq \Delta \) for \(\ell \leq k \), then it returns an \(\ell \)-out component of volume \(\leq 7k\Delta \) with probability at least \(\frac{5}{6} \) (and \(\perp \) with probability at most \(\frac{1}{6} \)).
2. Otherwise, it might return a \(k \)-out-component or \(\perp \)

Note: \(k^2 \Delta \) may be much smaller than \(m \). Sublinear running time!
Case 2: Minimum cut is not Balanced (ctd.)

Assumption: \(\text{vol}(L) < \frac{m}{14k} \) or \(\text{vol}(R) < \frac{m}{14k} \)
Case 2: Minimum cut is not Balanced (ctd.)

Assumption: \(\text{vol}(L) < \frac{m}{14k} \) or \(\text{vol}(R) < \frac{m}{14k} \)

Algorithm:
- For \(i = 1 \) to \(r = \lceil \log \frac{m}{7k} \rceil \)
 - Repeat \(\lceil \frac{m}{2^{i-1}} \rceil \) times
 - Sample an edge \(e \) uniformly at random and let \(s \) be its tail
 - Try to find a \(k \)-out-component using the local procedure with parameters \(s \), \(k \) and \(\Delta_i = 2^i - 1 \)
 - Try to find a \(k \)-in-component using the local procedure on the reverse graph with parameters \(s \), \(k \) and \(\Delta_i = 2^i - 1 \)
- Return the minimum-size cut among all found cuts
Case 2: Minimum cut is not Balanced (ctd.)

Assumption: \(\text{vol}(L) < \frac{m}{14k}\) or \(\text{vol}(R) < \frac{m}{14k}\)

Algorithm:

- For \(i = 1\) to \(r = \lceil \log \frac{m}{7k} \rceil\)
 - Repeat \(\lceil \frac{m}{2^{i-1}} \rceil\) times
 - Sample an edge \(e\) uniformly at random and let \(s\) be its tail
 - Try to find a \(k\)-out-component using the local procedure with parameters \(s, k\) and \(\Delta_i = 2^i - 1\)
 - Try to find a \(k\)-in-component using the local procedure on the reverse graph with parameters \(s, k\) and \(\Delta_i = 2^i - 1\)
- Return the minimum-size cut among all found cuts

Running time: \(\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O(k^2 2^i) = O(k^2 m \log n)\)
Case 2: Minimum cut is not Balanced (ctd.)

Assumption: $\text{vol}(L) < \frac{m}{14k}$ or $\text{vol}(R) < \frac{m}{14k}$

Algorithm:

- For $i = 1$ to $r = \lceil \log \frac{m}{7k} \rceil$
 - Repeat $\lceil \frac{m}{2^{i-1}} \rceil$ times
 - Sample an edge e uniformly at random and let s be its tail
 - Try to find a k-out-component using the local procedure with parameters s, k and $\Delta_i = 2^i - 1$
 - Try to find a k-in-component using the local procedure on the reverse graph with parameters s, k and $\Delta_i = 2^i - 1$
 - Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O(k^2 2^i) = O(k^2 m \log n)$

Lemma

If the minimum cut is not balanced, then the algorithm above returns a proper λ-out-component $L' \subset V$ or a proper λ-out-component $R' \subset V$ (inducing a minimum cut) with probability at least $\frac{1}{2}$.
Case 2: Minimum cut is not Balanced (ctd.)

Assumption: $\text{vol}(L) < \frac{m}{14k}$ or $\text{vol}(R) < \frac{m}{14k}$

Algorithm:

- For $i = 1$ to $r = \lfloor \log \frac{m}{7k} \rfloor$
 - Repeat $\lceil \frac{m}{2^{i-1}} \rceil$ times
 - Sample an edge e uniformly at random and let s be its tail
 - Try to find a k-out-component using the local procedure with parameters s, k and $\Delta_i = 2^i - 1$
 - Try to find a k-in-component using the local procedure on the reverse graph with parameters s, k and $\Delta_i = 2^i - 1$

- Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O(k^2 2^i) = O(k^2 m \log n)$

Lemma

If the minimum cut is not balanced, then the algorithm above returns a proper λ-out-component $L' \subset V$ or a proper λ-out-component $R' \subset V$ (inducing a minimum cut) with probability at least $\frac{1}{2}$.

Note: Parameter choice ensures that $\text{vol}(L') < m$ or $\text{vol}(R') < m$
Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$
Local Procedure

Seed vertex \(s \), target cut size \(\leq k \), target volume \(\leq \Delta \)

Algorithm: (with sampling idea of [Nanongkai et al. ’19])

- Repeat \(k + 1 \) times:
 - Perform a depth-first-search from \(s \) processing up to \(6k\Delta \) many edges
 - If DFS processes less than \(6k\Delta \) edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let \(t \) be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from \(s \) to \(t \)

- Return \(\bot \)
Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm: (with sampling idea of [Nanongkai et al. ’19])

- Repeat $k + 1$ times:
 - Perform a depth-first-search from s processing up to $6k\Delta$ many edges
 - If DFS processes less than $6k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from s to t

- Return ⊥

Running time: $O(k^2 \Delta)$
Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm: (with sampling idea of [Nanongkai et al. ’19])

- Repeat $k + 1$ times:
 - Perform a depth-first-search from s processing up to $6k\Delta$ many edges
 - If DFS processes less than $6k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from s to t

- Return \bot

Running time: $O(k^2\Delta)$

Claim 1

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \in V \setminus U$, then the number of edges from U to $V \setminus U$ is reduced by one by the reversing the edges.
- Otherwise, the number of edges from U to $V \setminus U$ stays the same.
Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm: (with sampling idea of [Nanongkai et al. ’19])

- Repeat $k + 1$ times:
 - Perform a depth-first-search from s processing up to $6k\Delta$ many edges
 - If DFS processes less than $6k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from s to t

- Return \bot

Running time: $O(k^2\Delta)$

Claim 1

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \in V \setminus U$, then the number of edges from U to $V \setminus U$ is reduced by one by the reversing the edges.
- Otherwise, the number of edges from U to $V \setminus U$ stays the same.

Idea: Odd or even number of crossings
Correctness Proof

Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 6k\Delta + \ell \leq 7k\Delta$.

Idea:
For component found by DFS, number of out-edges reduces by at most one in each iteration
Correctness Proof

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 6k\Delta + \ell \leq 7k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration.
Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 6k\Delta + \ell \leq 7k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3
If there is an ℓ-out-component of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{5}{6}$.
Correctness Proof

Claim 2
If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ-out-component with $\text{vol}(U) \leq 6k\Delta + \ell \leq 7k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3
If there is an ℓ-out-component of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{5}{6}$.

Idea: Each sampled t will lie inside of component with probability $\leq \frac{1}{6k}$
Questions?
Summary

- Significant progress for a fundamental graph problem
- Local procedure was pivotal to faster algorithm
 Exponential improvement over $O(2^{O(k)\Delta})$ by [Chechik et al. ’17]
Summary

- Significant progress for a fundamental graph problem
- Local procedure was pivotal to faster algorithm
 Exponential improvement over $O(2^{O(k)} \Delta)$ by [Chechik et al. ’17]
- Local procedure has further implications to property testing algorithms
- Local computation algorithms are a current trend in algorithm design
Thesis Opportunities

Theory:

- Distributed algorithms
- Dynamic algorithms
- Local computation algorithms
Thesis Opportunities

Theory:
- Distributed algorithms
- Dynamic algorithms
- Local computation algorithms

Algorithm Engineering:
- Experimental analysis of cut sparsification algorithms
- Practical algorithm for computing the vertex connectivity
Thank you!