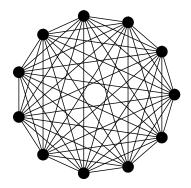
Faster Cut Sparsification of Weighted Graphs Joint work with Sebastian Forster

Tijn de Vos

Department of Computer Science University of Salzburg

December 1, 2021

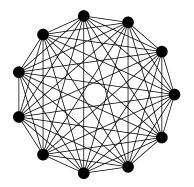
Sparsification

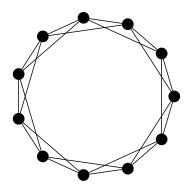


2

イロト イヨト イヨト イヨト

Sparsification

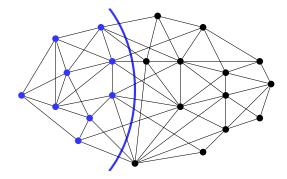




イロト イヨト イヨト イヨト

2

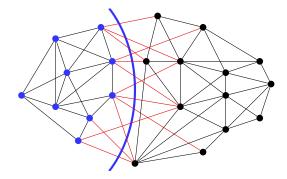
Cuts and Cut Sparsification¹



¹Image based on slides by Sebastian Forster

• • • • • • • •

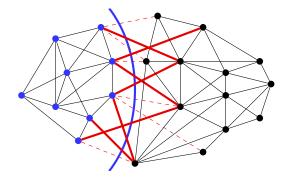
Cuts and Cut Sparsification¹



Weight of cut: $w_G(C)$

¹Image based on slides by Sebastian Forster

Cuts and Cut Sparsification¹



Weight of cut: $w_G(C)$ Weight of sparsified cut $w_H(C)$

 ¹Image based on slides by Sebastian Forster
 Image based on slides by Sebastian Forster

 Tijn de Vos (University of Salzburg)
 Faster Cut Sparsification of Weighted Graphs
 December 1, 2021

3/17

Definition

A (reweighted) subgraph $H \subseteq G$ is a $(1 \pm \epsilon)$ -cut sparsifier for a weighted graph G

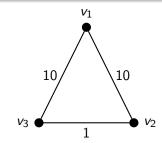
4/17

Definition

$$(1-\epsilon)w_G(C) \leq w_H(C) \leq (1+\epsilon)w_G(C).$$

Definition

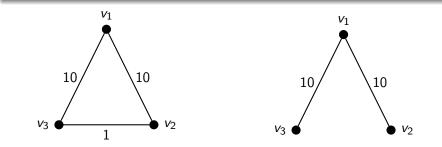
$$(1-\epsilon)w_G(C) \leq w_H(C) \leq (1+\epsilon)w_G(C).$$



Definition

A (reweighted) subgraph $H \subseteq G$ is a $(1 \pm \epsilon)$ -cut sparsifier for a weighted graph G if for every cut C

$$(1-\epsilon)w_G(C) \leq w_H(C) \leq (1+\epsilon)w_G(C).$$



4/17

Definition

A (reweighted) subgraph $H \subseteq G$ is a $(1 \pm \epsilon)$ -cut sparsifier for a weighted graph G if for every cut C

$$(1-\epsilon)w_G(C) \leq w_H(C) \leq (1+\epsilon)w_G(C).$$

• Goal: $|H| = O(n \log n/\epsilon^2)$

Definition

$$(1-\epsilon)w_G(C) \leq w_H(C) \leq (1+\epsilon)w_G(C).$$

- Goal: $|H| = O(n \log n/\epsilon^2)$
- Lower bound: $O(n/\epsilon^2)$ [ACK⁺16]

Definition

$$(1-\epsilon)w_G(C) \leq w_H(C) \leq (1+\epsilon)w_G(C).$$

- Goal: $|H| = O(n \log n/\epsilon^2)$
- Lower bound: $O(n/\epsilon^2)$ [ACK⁺16]
- Algorithm concerning cuts: $T(m, n) \rightarrow T(O(n \log n/\epsilon^2), n)$

Definition

$$(1-\epsilon)w_G(C) \leq w_H(C) \leq (1+\epsilon)w_G(C).$$

- Goal: $|H| = O(n \log n/\epsilon^2)$
- Lower bound: $O(n/\epsilon^2)$ [ACK⁺16]
- Algorithm concerning cuts: $T(m, n) \rightarrow T(O(n \log n/\epsilon^2), n)$
- Want size, time, and above property with high probability: $1 n^{-c}$

• Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.

6/17

- Include edge *e* with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$
- E.g. $p_e = 1/m \implies$ size $\sum_e 1/m = 1$

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$
- E.g. $p_e = 1/m \implies$ size $\sum_e 1/m = 1$
- Cut sparsifier in expectation

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$
- E.g. $p_e = 1/m \implies$ size $\sum_e 1/m = 1$
- Cut sparsifier in expectation
- Want with high probability: $1 n^{-c}$

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v

Image: A math a math

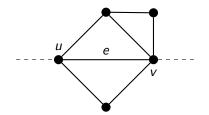
э

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

э

4 A 1

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

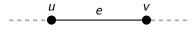


Idea: sample e = (u, v) relative to its *connectivity* c_e : the minimum cut separating u and v

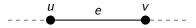
< A IN

8/17

Idea: sample e = (u, v) relative to its *connectivity* c_e : the minimum cut separating u and v

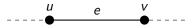


Idea: sample e = (u, v) relative to its *connectivity* c_e : the minimum cut separating u and v



Sample with probability p_e

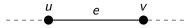
Idea: sample e = (u, v) relative to its *connectivity* c_e : the minimum cut separating u and v



Sample with probability p_e Success with probability $\leq p_e$

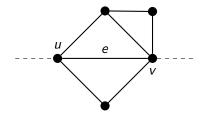
8/17

Idea: sample e = (u, v) relative to its *connectivity* c_e : the minimum cut separating u and v



Sample with probability p_e Success with probability $\leq p_e$ $p_e \geq 1 - n^{-c}$

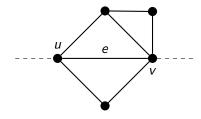
Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v



$\mathsf{Connectivity} \gg 1$

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

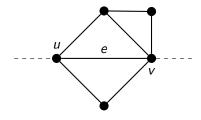
Sample with probability



$$p_e = \min\left\{1, \frac{c \cdot \log n}{c_e}
ight\}$$

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

Sample with probability



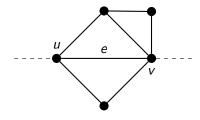
$$p_e = \min\left\{1, \frac{c \cdot \log n}{c_e}\right\}$$

At least c_e edges e' crossing min cut C with $c_{e'} \leq c_e$

9/17

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

Sample with probability

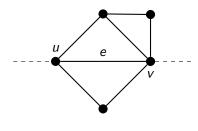


$$p_e = \min\left\{1, \frac{c \cdot \log n}{c_e}\right\}$$

At least c_e edges e' crossing min cut C with $c_{e'} \leq c_e$, hence $p_{e'} \geq p_e$

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

Sample with probability



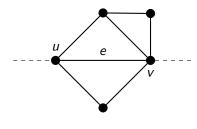
$$p_e = \min\left\{1, \frac{c \cdot \log n}{c_e}\right\}$$

At least c_e edges e' crossing min cut Cwith $c_{e'} \leq c_e$, hence $p_{e'} \geq p_e$ There is an edge crossing C in H with probability at least

$$1-\prod_{e'\in C}\left(1-p_{e'}\right)$$

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

Sample with probability



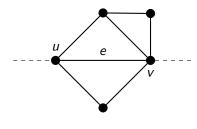
$$p_e = \min\left\{1, \frac{c \cdot \log n}{c_e}\right\}$$

At least c_e edges e' crossing min cut Cwith $c_{e'} \leq c_e$, hence $p_{e'} \geq p_e$ There is an edge crossing C in H with probability at least

$$1 - \prod_{e' \in C} \left(1 - p_{e'}\right) \ge 1 - \left(1 - \frac{c \cdot \log n}{c_e}\right)^{c_e}$$

Idea: sample e = (u, v) relative to *connectivity* c_e of u and v: the minimum cut separating u and v

Sample with probability



$$p_e = \min\left\{1, \frac{c \cdot \log n}{c_e}\right\}$$

At least c_e edges e' crossing min cut Cwith $c_{e'} \leq c_e$, hence $p_{e'} \geq p_e$ There is an edge crossing C in H with probability at least

$$1 - \prod_{e' \in C} (1 - p_{e'}) \ge 1 - \left(1 - \frac{c \cdot \log n}{c_e}\right)^{c_e} \ge 1 - e^{-c \cdot \log n} = 1 - n^{-c}$$

Unweighted:

- Include edge *e* with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_e p_e$

Weighted:

3

< 1 k

Unweighted:

- Include edge *e* with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_e p_e$

Weighted:

• Sample r_e from Binom (w_e, p_e)

Unweighted:

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$

- Sample *r_e* from Binom(*w_e*, *p_e*)
- If $r_e > 0$, include e with: $w_e \leftarrow r_e/p_e$

Unweighted:

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$

Weighted:

- Sample *r_e* from Binom(*w_e*, *p_e*)
- If $r_e > 0$, include e with: $w_e \leftarrow r_e/p_e$
- Size $\sum_{e} w_{e} p_{e}$:

 $\mathbb{P}[r_e > 0] =$

Unweighted:

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$

- Sample *r_e* from Binom(*w_e*, *p_e*)
- If $r_e > 0$, include e with: $w_e \leftarrow r_e/p_e$
- Size $\sum_{e} w_{e} p_{e}$: $\mathbb{P}[r_{e} > 0] = \sum_{k \ge 1} \mathbb{P}[r_{e} = k]$

Unweighted:

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$

- Sample r_e from Binom(w_e, p_e)
- If $r_e > 0$, include e with: $w_e \leftarrow r_e/p_e$
- Size $\sum_{e} w_{e} p_{e}$: $\mathbb{P}[r_{e} > 0] = \sum_{k \ge 1} \mathbb{P}[r_{e} = k] \le \sum_{k \ge 1} k \mathbb{P}[r_{e} = k]$

Unweighted:

- Include edge e with probability p_e , if sampled: $w_e \leftarrow w_e/p_e$.
- Size: $\sum_{e} p_{e}$

- Sample *r_e* from Binom(*w_e*, *p_e*)
- If $r_e > 0$, include e with: $w_e \leftarrow r_e/p_e$

• Size
$$\sum_e w_e p_e$$
:
 $\mathbb{P}[r_e > 0] = \sum_{k \ge 1} \mathbb{P}[r_e = k] \le \sum_{k \ge 1} k \mathbb{P}[r_e = k] = \mathbb{E}[r_e] = w_e p_e$

Sample with $p_e \sim \frac{c\gamma \cdot \log n}{\lambda_e \epsilon^2}$, for some $\lambda_e \leq c_e$

[FHHP11] Edge Connectivity

For graphs with polynomially bounded integer weights.

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs

- (個) - (日) - (日) - (日)

Sample with $p_e \sim \frac{c\gamma \cdot \log n}{\lambda_e \epsilon^2}$, for some $\lambda_e \leq c_e$

[FHHP11] Edge Connectivity [Kar99] Minimum Cut

For graphs with polynomially bounded integer weights.

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs

Sample with
$$p_e \sim rac{c \gamma \cdot \log n}{\lambda_e \epsilon^2}$$
, for some $\lambda_e \leq c_e$

- [FHHP11] Edge Connectivity
 - [Kar99] Minimum Cut
 - [BK96] Strong Connectivity
 - [SS11] Conductance
- [FHHP11] Nagamochi-Ibaraki Indices
 - new Maximum Spanning Forest Indices

For graphs with polynomially bounded integer weights.

Sample with
$$p_e \sim rac{c \gamma \cdot \log n}{\lambda_e \epsilon^2}$$
, for some $\lambda_e \leq c_e$

Edge Connectivity
Minimum Cut
Strong Connectivity
Conductance
NI Indices
MSF Indices

For graphs with polynomially bounded integer weights.

< A IN

э

Sample with
$$p_e \sim rac{c \gamma \cdot \log n}{\lambda_e \epsilon^2}$$
, for some $\lambda_e \leq c_e$

		Size	Time
[FHHP11]	Edge Connectivity		
[Kar99]	Minimum Cut		
[BK96]	Strong Connectivity	$O(n \log n/\epsilon^2)$	$O(m \log^2 n)$
[SS11]	Conductance		
[FHHP11]	NI Indices	$O(n \log^2 n / \epsilon^2)$	O(m)
new	MSF Indices		

For graphs with polynomially bounded integer weights.

3

Sample with
$$p_e \sim rac{c\gamma\cdot\log n}{\lambda_e\epsilon^2}$$
, for some $\lambda_e \leq c_e$

		Size	Time
[FHHP11]	Edge Connectivity		
[Kar99]	Minimum Cut		
[BK96]	Strong Connectivity	$O(n \log n/\epsilon^2)$	$O(m \log^2 n)$
[SS11]	Conductance		
[FHHP11]	NI Indices	$O(n \log^2 n / \epsilon^2)$	O(m)
new	MSF Indices	$O(n \log n / \epsilon^2)$	$O(m\alpha(n)\log(m/n))$

For graphs with polynomially bounded integer weights.

3

Definition

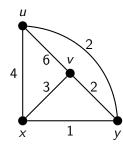
 $\mathcal{F} = \{F_1, \ldots, F_M\}$ is an *M*-partial maximum spanning forest packing of *G* if for all $i = 1, \ldots, M$, F_i is a maximum spanning forest in $G \setminus \bigcup_{i=1}^{i-1} F_j$.

Definition

 $\mathcal{F} = \{F_1, \ldots, F_M\}$ is an *M*-partial maximum spanning forest packing of *G* if for all $i = 1, \ldots, M$, F_i is a maximum spanning forest in $G \setminus \bigcup_{j=1}^{i-1} F_j$. MSF index of *e*, denoted f_e , is the unique index such that $e \in F_{f_e}$.

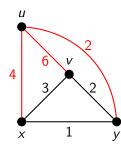
Definition

 $\mathcal{F} = \{F_1, \ldots, F_M\}$ is an *M*-partial maximum spanning forest packing of *G* if for all $i = 1, \ldots, M$, F_i is a maximum spanning forest in $G \setminus \bigcup_{j=1}^{i-1} F_j$. MSF index of *e*, denoted f_e , is the unique index such that $e \in F_{f_e}$.



Definition

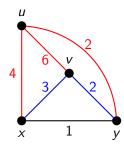
 $\mathcal{F} = \{F_1, \ldots, F_M\}$ is an *M*-partial maximum spanning forest packing of *G* if for all $i = 1, \ldots, M$, F_i is a maximum spanning forest in $G \setminus \bigcup_{j=1}^{i-1} F_j$. MSF index of *e*, denoted f_e , is the unique index such that $e \in F_{f_e}$.



 $f_e = 1$

Definition

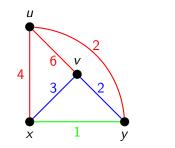
 $\mathcal{F} = \{F_1, \ldots, F_M\}$ is an *M*-partial maximum spanning forest packing of *G* if for all $i = 1, \ldots, M$, F_i is a maximum spanning forest in $G \setminus \bigcup_{j=1}^{i-1} F_j$. MSF index of *e*, denoted f_e , is the unique index such that $e \in F_{f_e}$.



 $f_e = 1$ $f_e = 2$

Definition

 $\mathcal{F} = \{F_1, \ldots, F_M\}$ is an *M*-partial maximum spanning forest packing of *G* if for all $i = 1, \ldots, M$, F_i is a maximum spanning forest in $G \setminus \bigcup_{j=1}^{i-1} F_j$. MSF index of *e*, denoted f_e , is the unique index such that $e \in F_{f_e}$.



$$f_e = 1$$

 $f_e = 2$
 $f_e = 2$

MSF Indices and Connectivity

Claim

The connectivity of e is at least $f_e \cdot w_e$

-47 ▶

э

MSF Indices and Connectivity

Claim

The connectivity of *e* is at least $f_e \cdot w_e$

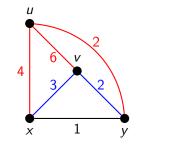
Proof. Denote e = (u, v). For $i = 1, ..., f_e$, there is a path in F_i from u to v with each edge of weight at least w_e .

MSF Indices and Connectivity

Claim

The connectivity of e is at least $f_e \cdot w_e$

Proof. Denote e = (u, v). For $i = 1, ..., f_e$, there is a path in F_i from u to v with each edge of weight at least w_e .



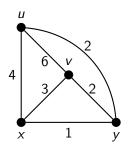
$$f_e = 1$$

 $f_e = 2$
 $f_e = 3$

• Peeling off M forests is too slow: takes O(Mm) time

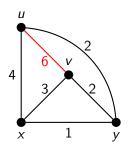
- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest



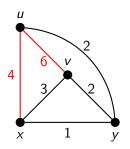
Sorted edges: uv, ux, xv, uy, vy, xy

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest



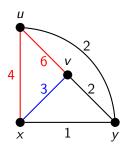
Sorted edges: <u>uv</u>, ux, xv, uy, vy, xy

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest



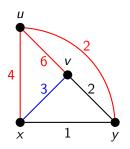
Sorted edges: <u>uv</u>, <u>ux</u>, <u>xv</u>, <u>uy</u>, <u>vy</u>, <u>xy</u>

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest



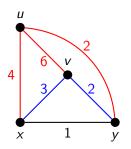
Sorted edges: <u>uv</u>, <u>ux</u>, <u>xv</u>, <u>uy</u>, <u>vy</u>, <u>xy</u>

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest



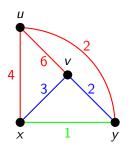
Sorted edges: <u>uv</u>, <u>ux</u>, <u>xv</u>, <u>uy</u>, vy, xy

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest



Sorted edges:
 uv, ux, xv, uy, vy, xy

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest



Sorted edges: <u>uv</u>, <u>ux</u>, <u>xv</u>, <u>uy</u>, <u>vy</u>, <u>xy</u>

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest
- Takes time $O(m\alpha(n) \log M)$

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest
- Takes time $O(m\alpha(n) \log M)$
 - Radix sort in O(m) time

- Peeling off M forests is too slow: takes O(Mm) time
- Instead:
 - Sort edges according to weight
 - Put each edge in first available forest
- Takes time $O(m\alpha(n) \log M)$
 - Radix sort in O(m) time
 - * Pay log M for binary search for first available forest
 - * Pay $\alpha(n)$ for maintaining Union-Find data structures

Compute MSF indices up to M = n in time O(mα(n) log n). Sample with p_e ~ cγ·log n / f_e·w_ec².

²Companion report Tijn de Vos (University of Salzburg)

Compute MSF indices upto M = n in time O(mα(n) log n).
 Sample with p_e ~ cγ·log n/f_e·w_eε².
 Results in size

$$\sum_{e} w_{e} p_{e} = \frac{c \cdot \log n}{\epsilon^{2}} \sum_{e} 1/f_{e}$$

²Companion report

Compute MSF indices upto M = n in time O(mα(n) log n).
 Sample with p_e ~ cγ·log n/f_e·w_eε².
 Results in size

$$\sum_{e} w_{e} p_{e} = \frac{c \cdot \log n}{\epsilon^{2}} \sum_{e} 1/f_{e} \le \frac{cn \log n}{\epsilon^{2}} \sum_{i=1}^{m/n} 1/i$$

²Companion report

Compute MSF indices upto M = n in time O(mα(n) log n).
 Sample with p_e ~ cγ·log n / f_e·w_eε².
 Results in size

$$\sum_{e} w_{e} p_{e} = \frac{c \cdot \log n}{\epsilon^{2}} \sum_{e} 1/f_{e} \le \frac{cn \log n}{\epsilon^{2}} \sum_{i=1}^{m/n} 1/i \le \frac{cn \cdot \log n}{\epsilon^{2}} \log(m/n)$$

²Companion report Tijn de Vos (University of Salzburg)

Naive Sparsification²

Compute MSF indices upto M = n in time O(mα(n) log n).
 Sample with p_e ~ cγ·log n/f_e·w_eε².
 Results in size

$$\sum_{e} w_{e} p_{e} = \frac{c \cdot \log n}{\epsilon^{2}} \sum_{e} 1/f_{e} \le \frac{cn \log n}{\epsilon^{2}} \sum_{i=1}^{m/n} 1/i \le \frac{cn \cdot \log n}{\epsilon^{2}} \log(m/n)$$

Goal is time $O(m\alpha(n)\log(m/n))$ and size $O(n\log n/\epsilon^2)$.

²Companion report

 $\ \, \bullet \ \, \bullet \ \, \bullet \ \, \Theta(\log n/\epsilon^2)$

³Based on [FHHP11] for unweighted graphs

- $\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$
- 2 Compute ρ -partial MSF packing, add those edges to F_0

³Based on [FHHP11] for unweighted graphs

- $\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$
- 2 Compute ρ -partial MSF packing, add those edges to F_0
- For i = 0 to i_{end} :

³Based on [FHHP11] for unweighted graphs

- $\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$
- 2 Compute ρ -partial MSF packing, add those edges to F_0
- For i = 0 to i_{end} :
 - $\bullet Sample remaining edges with probability 1/2$

³Based on [FHHP11] for unweighted graphs

- $\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$
- 2 Compute ρ -partial MSF packing, add those edges to F_0
- For i = 0 to i_{end} :
 - $\bullet Sample remaining edges with probability 1/2$
 - 2 If sampled $w_e \leftarrow 2w_e$

•
$$\rho \leftarrow \Theta(\log n/\epsilon^2)$$

2 Compute ρ -partial MSF packing, add those edges to F_0

• For i = 0 to i_{end} :

- $\bullet Sample remaining edges with probability 1/2$
- **2** If sampled $w_e \leftarrow 2w_e$

$$k_i \leftarrow \rho \cdot 2^{i+}$$

- $\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$
- 2 Compute ρ -partial MSF packing, add those edges to F_0
- For i = 0 to i_{end} :
 - $\bullet Sample remaining edges with probability 1/2$
 - 2 If sampled $w_e \leftarrow 2w_e$
 - $k_i \leftarrow \rho \cdot 2^{i+1}$
 - **(3)** Compute k_i -partial MSF packing, add those edges to F_i

$$\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$$

2 Compute ρ -partial MSF packing, add those edges to F_0

• For i = 0 to i_{end} :

- $\bullet Sample remaining edges with probability 1/2$
- 2 If sampled $w_e \leftarrow 2w_e$
- $k_i \leftarrow \rho \cdot 2^{i+1}$
- **(a)** Compute k_i -partial MSF packing, add those edges to F_i
- Sample edges $e \in F_j$ with $p_e \sim 1/(2^j w_e)$

$$\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$$

2 Compute ρ -partial MSF packing, add those edges to F_0

• For i = 0 to i_{end} :

- $\bullet Sample remaining edges with probability 1/2$
- 2 If sampled $w_e \leftarrow 2w_e$
- $k_i \leftarrow \rho \cdot 2^{i+1}$
- **(3)** Compute k_i -partial MSF packing, add those edges to F_i
- Sample edges $e \in F_j$ with $p_e \sim 1/(2^j w_e)$

Time: $O(m\alpha(n)\log(m/n))$

$$\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$$

- 2 Compute ρ -partial MSF packing, add those edges to F_0
- Solution For i = 0 to $\frac{i_{end}}{i_{end}}$:
 - $\bullet Sample remaining edges with probability 1/2$
 - 2 If sampled $w_e \leftarrow 2w_e$
 - $k_i \leftarrow \rho \cdot 2^{i+1}$
 - **(a)** Compute k_i -partial MSF packing, add those edges to F_i
- Sample edges $e \in F_j$ with $p_e \sim 1/(2^j w_e)$

Time: $O(m\alpha(n)\log(m/n))$ Size: $O(n \log n/\epsilon^2 \log(m/(n \log(n)/\epsilon^2)))$

³Based on [FHHP11] for unweighted graphs

$$\ \, \rho \leftarrow \Theta(\log n/\epsilon^2)$$

- 2 Compute ρ -partial MSF packing, add those edges to F_0
- Solution For i = 0 to $\frac{i_{end}}{i_{end}}$:
 - $\bullet Sample remaining edges with probability 1/2$
 - 2 If sampled $w_e \leftarrow 2w_e$
 - $k_i \leftarrow \rho \cdot 2^{i+1}$
 - **(3)** Compute k_i -partial MSF packing, add those edges to F_i
- Sample edges $e \in F_j$ with $p_e \sim 1/(2^j w_e)$

Time: $O(m\alpha(n)\log(m/n))$ Size: $O(n\log n/\epsilon^2\log(m/(n\log(n)/\epsilon^2))) \rightarrow O(n\log n/\epsilon^2)$

³Based on [FHHP11] for unweighted graphs

Conclusion

Theorem

G = (V, E) polynomial weighted, M > 0. There exists an algorithm that computes an *M*-partial MSF packing in $O(m\alpha(n) \log M)$ time.

< A > <

Conclusion

Theorem

G = (V, E) polynomial weighted, M > 0. There exists an algorithm that computes an *M*-partial MSF packing in $O(m\alpha(n) \log M)$ time.

Theorem

G = (V, E) weighted, $\epsilon > 0$. There exists an algorithm that computes a $(1 \pm \epsilon)$ -cut sparsifier for G with high probability, in time $O(m\alpha(n)\log(m/n))$ and with size is $O(n\log n/\epsilon^2)$.

References

- [ACK⁺16] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P Woodruff, and Qin Zhang. On sketching quadratic forms. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages 311–319, 2016.
 - [BK96] András A Benczúr and David R Karger. Approximating st minimum cuts in $\tilde{O}(n^2)$ time. In *Proc. of the Symposium on Theory of Computing (STOC)*, pages 47–55, 1996.
- [FHHP11] Wai Shing Fung, Ramesh Hariharan, Nicholas J A Harvey, and Debmalya Panigrahi. A general framework for graph sparsification. In Proc. of the Symposium on Theory of Computing (STOC), pages 71–80, New York, NY, USA, 2011.
 - [Kar99] David R Karger. Random sampling in cut, flow, and network design problems. *Mathematics of Operations Research*, 24(2):383-413, 1999.
 - [SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. *SIAM Journal on Computing*, 40(6):1012, 1026, 2011