
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic Matching Algorithms in Practice

presented by Martin Grösbacher

University of Salzburg
Department of Computer Science

paper by Monika Henzinger, Shahbaz Khan, Richard Paul, Christian
Schulz

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 1 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

A matching M is a subset of edges in a graph, such that no two
elements of M share a common end point
Applications sometimes require matchings with certain properties
(maximal, maximum, maximal weight, etc.)
Matchings can be computed in polynomial time
If underlying graph often changes (i.e. dynamicity) computing new
matches from scratch every time can still be an expensive task!
New fully dynamic matching algorithms have been developed recently
Bridge the gap between theory and practice by testing out and
comparing these algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

A matching M is a subset of edges in a graph, such that no two
elements of M share a common end point

Applications sometimes require matchings with certain properties
(maximal, maximum, maximal weight, etc.)
Matchings can be computed in polynomial time
If underlying graph often changes (i.e. dynamicity) computing new
matches from scratch every time can still be an expensive task!
New fully dynamic matching algorithms have been developed recently
Bridge the gap between theory and practice by testing out and
comparing these algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

A matching M is a subset of edges in a graph, such that no two
elements of M share a common end point
Applications sometimes require matchings with certain properties
(maximal, maximum, maximal weight, etc.)

Matchings can be computed in polynomial time
If underlying graph often changes (i.e. dynamicity) computing new
matches from scratch every time can still be an expensive task!
New fully dynamic matching algorithms have been developed recently
Bridge the gap between theory and practice by testing out and
comparing these algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

A matching M is a subset of edges in a graph, such that no two
elements of M share a common end point
Applications sometimes require matchings with certain properties
(maximal, maximum, maximal weight, etc.)
Matchings can be computed in polynomial time

If underlying graph often changes (i.e. dynamicity) computing new
matches from scratch every time can still be an expensive task!
New fully dynamic matching algorithms have been developed recently
Bridge the gap between theory and practice by testing out and
comparing these algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

A matching M is a subset of edges in a graph, such that no two
elements of M share a common end point
Applications sometimes require matchings with certain properties
(maximal, maximum, maximal weight, etc.)
Matchings can be computed in polynomial time
If underlying graph often changes (i.e. dynamicity) computing new
matches from scratch every time can still be an expensive task!

New fully dynamic matching algorithms have been developed recently
Bridge the gap between theory and practice by testing out and
comparing these algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

A matching M is a subset of edges in a graph, such that no two
elements of M share a common end point
Applications sometimes require matchings with certain properties
(maximal, maximum, maximal weight, etc.)
Matchings can be computed in polynomial time
If underlying graph often changes (i.e. dynamicity) computing new
matches from scratch every time can still be an expensive task!
New fully dynamic matching algorithms have been developed recently

Bridge the gap between theory and practice by testing out and
comparing these algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation

A matching M is a subset of edges in a graph, such that no two
elements of M share a common end point
Applications sometimes require matchings with certain properties
(maximal, maximum, maximal weight, etc.)
Matchings can be computed in polynomial time
If underlying graph often changes (i.e. dynamicity) computing new
matches from scratch every time can still be an expensive task!
New fully dynamic matching algorithms have been developed recently
Bridge the gap between theory and practice by testing out and
comparing these algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Let G = (V,E) be an undirected graph without parallel edges or
self-loops
|V| = n, |E| = m
N(v) := {u : {v, u} ∈ E} denotes the set of neighbours of v
deg(v) := |N(v)|

Definition (Matching)
A set of edges M ⊆ E such that for all pairs of edges
((u, v), (r, s)) ∈ M : r, s, u, v are distinct.

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Let G = (V,E) be an undirected graph without parallel edges or
self-loops

|V| = n, |E| = m
N(v) := {u : {v, u} ∈ E} denotes the set of neighbours of v
deg(v) := |N(v)|

Definition (Matching)
A set of edges M ⊆ E such that for all pairs of edges
((u, v), (r, s)) ∈ M : r, s, u, v are distinct.

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Let G = (V,E) be an undirected graph without parallel edges or
self-loops
|V| = n, |E| = m

N(v) := {u : {v, u} ∈ E} denotes the set of neighbours of v
deg(v) := |N(v)|

Definition (Matching)
A set of edges M ⊆ E such that for all pairs of edges
((u, v), (r, s)) ∈ M : r, s, u, v are distinct.

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Let G = (V,E) be an undirected graph without parallel edges or
self-loops
|V| = n, |E| = m
N(v) := {u : {v, u} ∈ E} denotes the set of neighbours of v

deg(v) := |N(v)|

Definition (Matching)
A set of edges M ⊆ E such that for all pairs of edges
((u, v), (r, s)) ∈ M : r, s, u, v are distinct.

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Let G = (V,E) be an undirected graph without parallel edges or
self-loops
|V| = n, |E| = m
N(v) := {u : {v, u} ∈ E} denotes the set of neighbours of v
deg(v) := |N(v)|

Definition (Matching)
A set of edges M ⊆ E such that for all pairs of edges
((u, v), (r, s)) ∈ M : r, s, u, v are distinct.

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Let G = (V,E) be an undirected graph without parallel edges or
self-loops
|V| = n, |E| = m
N(v) := {u : {v, u} ∈ E} denotes the set of neighbours of v
deg(v) := |N(v)|

Definition (Matching)
A set of edges M ⊆ E such that for all pairs of edges
((u, v), (r, s)) ∈ M : r, s, u, v are distinct.

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

A matching is called maximal, if there is no edge in E that can be
added to M

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 4 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

A matching is called maximal, if there is no edge in E that can be
added to M

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 4 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

A maximum matching Mopt is a maximal matching that contains the
largest number of possible edges

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 5 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

An α-approximate maximum matching is a matching that contains at
least |Mopt|

α edges

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 6 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

A vertex is called free, if it is not incident to an edge (u, v) ∈ M and
matched otherwise
For a matched vertex u with (u, v) ∈ M we call v the mate of u

Definition (Augmenting Path)
An augmenting path is a cycle-free path in G that starts and ends on a
free vertex and where edges alternate from M with edges from E \M

u
v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 7 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries
A vertex is called free, if it is not incident to an edge (u, v) ∈ M and
matched otherwise

For a matched vertex u with (u, v) ∈ M we call v the mate of u

Definition (Augmenting Path)
An augmenting path is a cycle-free path in G that starts and ends on a
free vertex and where edges alternate from M with edges from E \M

u
v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 7 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries
A vertex is called free, if it is not incident to an edge (u, v) ∈ M and
matched otherwise
For a matched vertex u with (u, v) ∈ M we call v the mate of u

Definition (Augmenting Path)
An augmenting path is a cycle-free path in G that starts and ends on a
free vertex and where edges alternate from M with edges from E \M

u
v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 7 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries
A vertex is called free, if it is not incident to an edge (u, v) ∈ M and
matched otherwise
For a matched vertex u with (u, v) ∈ M we call v the mate of u

Definition (Augmenting Path)
An augmenting path is a cycle-free path in G that starts and ends on a
free vertex and where edges alternate from M with edges from E \M

u
v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 7 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries
A vertex is called free, if it is not incident to an edge (u, v) ∈ M and
matched otherwise
For a matched vertex u with (u, v) ∈ M we call v the mate of u

Definition (Augmenting Path)
An augmenting path is a cycle-free path in G that starts and ends on a
free vertex and where edges alternate from M with edges from E \M

u
v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 7 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries
A vertex is called free, if it is not incident to an edge (u, v) ∈ M and
matched otherwise
For a matched vertex u with (u, v) ∈ M we call v the mate of u

Definition (Augmenting Path)
An augmenting path is a cycle-free path in G that starts and ends on a
free vertex and where edges alternate from M with edges from E \M

u v

u′ v′

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 8 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Any matching without augmenting paths is a maximum matching
(Theorem of Berge)
Any matching without augmenting paths of length at most 2k − 3 is
a k

k−1 -approximate maximum matching (Hopcroft and Karp)
Hence, a maximal matching without augmenting paths of length one
is a 2-approximate maximum matching
In the following, ∆ denotes the largest degree that can be found in
any state of the dynamic graph

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Any matching without augmenting paths is a maximum matching
(Theorem of Berge)

Any matching without augmenting paths of length at most 2k − 3 is
a k

k−1 -approximate maximum matching (Hopcroft and Karp)
Hence, a maximal matching without augmenting paths of length one
is a 2-approximate maximum matching
In the following, ∆ denotes the largest degree that can be found in
any state of the dynamic graph

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Any matching without augmenting paths is a maximum matching
(Theorem of Berge)
Any matching without augmenting paths of length at most 2k − 3 is
a k

k−1 -approximate maximum matching (Hopcroft and Karp)

Hence, a maximal matching without augmenting paths of length one
is a 2-approximate maximum matching
In the following, ∆ denotes the largest degree that can be found in
any state of the dynamic graph

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Any matching without augmenting paths is a maximum matching
(Theorem of Berge)
Any matching without augmenting paths of length at most 2k − 3 is
a k

k−1 -approximate maximum matching (Hopcroft and Karp)
Hence, a maximal matching without augmenting paths of length one
is a 2-approximate maximum matching

In the following, ∆ denotes the largest degree that can be found in
any state of the dynamic graph

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Any matching without augmenting paths is a maximum matching
(Theorem of Berge)
Any matching without augmenting paths of length at most 2k − 3 is
a k

k−1 -approximate maximum matching (Hopcroft and Karp)
Hence, a maximal matching without augmenting paths of length one
is a 2-approximate maximum matching
In the following, ∆ denotes the largest degree that can be found in
any state of the dynamic graph

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithms

1 Random Walk-based algorithm:
Maintains (1 + ϵ)-approximate maximum matching w.h.p.
Performs random walks trying to find augmenting paths
Update time: O(∆

2
ϵ
−1 log(n)

ϵ)

2 Blossom-based algorithm (deterministic):
Maintains (1 + ϵ)-approximate maximum matching
Performs depth bounded augmenting path search
Update time: O(∆

2
ϵ−1)

3 Baswana, Gupta & Sen (randomized):
Maintains 2-approximate maximum matching w.h.p.
Vertices on multiple levels, edges are owned by vertices
Update time: O(log(n)k) (amortized)

4 Neiman & Solomon (deterministic):
Maintains (32)-approximate maximum matching
Uses concept of high degree/low degree vertices
Update time: O(

√
(m)) (worst case)

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 10 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithms
1 Random Walk-based algorithm:

Maintains (1 + ϵ)-approximate maximum matching w.h.p.
Performs random walks trying to find augmenting paths
Update time: O(∆

2
ϵ
−1 log(n)

ϵ)

2 Blossom-based algorithm (deterministic):
Maintains (1 + ϵ)-approximate maximum matching
Performs depth bounded augmenting path search
Update time: O(∆

2
ϵ−1)

3 Baswana, Gupta & Sen (randomized):
Maintains 2-approximate maximum matching w.h.p.
Vertices on multiple levels, edges are owned by vertices
Update time: O(log(n)k) (amortized)

4 Neiman & Solomon (deterministic):
Maintains (32)-approximate maximum matching
Uses concept of high degree/low degree vertices
Update time: O(

√
(m)) (worst case)

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 10 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithms
1 Random Walk-based algorithm:

Maintains (1 + ϵ)-approximate maximum matching w.h.p.
Performs random walks trying to find augmenting paths
Update time: O(∆

2
ϵ
−1 log(n)

ϵ)

2 Blossom-based algorithm (deterministic):
Maintains (1 + ϵ)-approximate maximum matching
Performs depth bounded augmenting path search
Update time: O(∆

2
ϵ−1)

3 Baswana, Gupta & Sen (randomized):
Maintains 2-approximate maximum matching w.h.p.
Vertices on multiple levels, edges are owned by vertices
Update time: O(log(n)k) (amortized)

4 Neiman & Solomon (deterministic):
Maintains (32)-approximate maximum matching
Uses concept of high degree/low degree vertices
Update time: O(

√
(m)) (worst case)

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 10 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithms
1 Random Walk-based algorithm:

Maintains (1 + ϵ)-approximate maximum matching w.h.p.
Performs random walks trying to find augmenting paths
Update time: O(∆

2
ϵ
−1 log(n)

ϵ)

2 Blossom-based algorithm (deterministic):
Maintains (1 + ϵ)-approximate maximum matching
Performs depth bounded augmenting path search
Update time: O(∆

2
ϵ−1)

3 Baswana, Gupta & Sen (randomized):
Maintains 2-approximate maximum matching w.h.p.
Vertices on multiple levels, edges are owned by vertices
Update time: O(log(n)k) (amortized)

4 Neiman & Solomon (deterministic):
Maintains (32)-approximate maximum matching
Uses concept of high degree/low degree vertices
Update time: O(

√
(m)) (worst case)

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 10 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithms
1 Random Walk-based algorithm:

Maintains (1 + ϵ)-approximate maximum matching w.h.p.
Performs random walks trying to find augmenting paths
Update time: O(∆

2
ϵ
−1 log(n)

ϵ)

2 Blossom-based algorithm (deterministic):
Maintains (1 + ϵ)-approximate maximum matching
Performs depth bounded augmenting path search
Update time: O(∆

2
ϵ−1)

3 Baswana, Gupta & Sen (randomized):
Maintains 2-approximate maximum matching w.h.p.
Vertices on multiple levels, edges are owned by vertices
Update time: O(log(n)k) (amortized)

4 Neiman & Solomon (deterministic):
Maintains (32)-approximate maximum matching
Uses concept of high degree/low degree vertices
Update time: O(

√
(m)) (worst case)

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 10 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

1 Pick a free vertex u
2 Randomly choose neighbour v of u
3 If v is free: match (u, v) and stop walk
4 Else: unmatch (v,mate(v)) and match (u, v)

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 11 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

1 Pick a free vertex u
2 Randomly choose neighbour v of u
3 If v is free: match (u, v) and stop walk
4 Else: unmatch (v,mate(v)) and match (u, v)

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 11 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Now mate(v) is free, continue walk from there until O(1ϵ) steps
Length of the walk is an important parameter
Update time for a single walk: O(1ϵ)

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 12 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
By itself this does not even guarantee a maximal matching!
Fixing by undoing all changes
Alternative: ∆-Settling: Scan through neighbours of visited vertices to
find a free vertex
Stops if either free vertex found or after 1

ϵ steps
If Random Walk was unsuccessful, try to match the last vertex
touched by scanning all its neighbours
Requires O(∆) additional time per visited vertex

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 13 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)
2 Else if both are matched: do nothing
3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk

from w
4 If Random Walk is unsuccessful, undo all changes and restore

matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)

2 Else if both are matched: do nothing
3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk

from w
4 If Random Walk is unsuccessful, undo all changes and restore

matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)
2 Else if both are matched: do nothing

3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk
from w

4 If Random Walk is unsuccessful, undo all changes and restore
matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)
2 Else if both are matched: do nothing
3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk

from w

4 If Random Walk is unsuccessful, undo all changes and restore
matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)
2 Else if both are matched: do nothing
3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk

from w
4 If Random Walk is unsuccessful, undo all changes and restore

matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)
2 Else if both are matched: do nothing
3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk

from w
4 If Random Walk is unsuccessful, undo all changes and restore

matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)
2 Else if both are matched: do nothing
3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk

from w
4 If Random Walk is unsuccessful, undo all changes and restore

matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 15 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Insertion:

1 If both endpoints u, v are free, match (u, v)
2 Else if both are matched: do nothing
3 Else: Unmatch v,mate(v) = w, match (u, v) and start Random Walk

from w
4 If Random Walk is unsuccessful, undo all changes and restore

matching to the state before unmatching v,w

u v

w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 16 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing
2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)
3 If u and/or v cannot be matched and M was maximal before

deletion: M is still maximal
4 However: free vertices may be the start of an augmenting path!
5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing

2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)
3 If u and/or v cannot be matched and M was maximal before

deletion: M is still maximal
4 However: free vertices may be the start of an augmenting path!
5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing
2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)

3 If u and/or v cannot be matched and M was maximal before
deletion: M is still maximal

4 However: free vertices may be the start of an augmenting path!
5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing
2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)
3 If u and/or v cannot be matched and M was maximal before

deletion: M is still maximal

4 However: free vertices may be the start of an augmenting path!
5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing
2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)
3 If u and/or v cannot be matched and M was maximal before

deletion: M is still maximal
4 However: free vertices may be the start of an augmenting path!

5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing
2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)
3 If u and/or v cannot be matched and M was maximal before

deletion: M is still maximal
4 However: free vertices may be the start of an augmenting path!
5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing
2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)
3 If u and/or v cannot be matched and M was maximal before

deletion: M is still maximal
4 However: free vertices may be the start of an augmenting path!
5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm
Edge Deletion:

1 If (u, v) was unmatched: do nothing
2 Else: Scan neighbours of u, v, try to match them (takes O(∆) time)
3 If u and/or v cannot be matched and M was maximal before

deletion: M is still maximal
4 However: free vertices may be the start of an augmenting path!
5 Start Random Walk from u and/or v

u v

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 18 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Analysis:

1 Maintains (1 + ϵ) approximation if Random Walks are of appropriate
length and repeated sufficiently often

2 Path Length: 2
ϵ − 1, Repetitions: ∆ 2

ϵ
−1 log(n)

3 No augmenting path ≤ 2
ϵ − 1 = 2(1ϵ + 1)− 3, k = 1

ϵ + 1
H.&K.=⇒ M is a

(1 + ϵ)-approximation of Mopt

4 If there is such a path, the probability of finding it is ≥ (1
∆)

2
ϵ
−1

5 Probability that λ walks do not find such a path: ≤ (1− 1

∆
2
ϵ−1

)λ

6 Hence if λ ≥ ∆
2
ϵ
−1 log(n):

(1− 1

∆
2
ϵ−1

)∆
2
ϵ−1 log(n) ≤ e

− 1

∆
2
ϵ−1

∆
2
ϵ−1 log(n)

= e− log(n) = 1
n

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Analysis:

1 Maintains (1 + ϵ) approximation if Random Walks are of appropriate
length and repeated sufficiently often

2 Path Length: 2
ϵ − 1, Repetitions: ∆ 2

ϵ
−1 log(n)

3 No augmenting path ≤ 2
ϵ − 1 = 2(1ϵ + 1)− 3, k = 1

ϵ + 1
H.&K.=⇒ M is a

(1 + ϵ)-approximation of Mopt

4 If there is such a path, the probability of finding it is ≥ (1
∆)

2
ϵ
−1

5 Probability that λ walks do not find such a path: ≤ (1− 1

∆
2
ϵ−1

)λ

6 Hence if λ ≥ ∆
2
ϵ
−1 log(n):

(1− 1

∆
2
ϵ−1

)∆
2
ϵ−1 log(n) ≤ e

− 1

∆
2
ϵ−1

∆
2
ϵ−1 log(n)

= e− log(n) = 1
n

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Analysis:

1 Maintains (1 + ϵ) approximation if Random Walks are of appropriate
length and repeated sufficiently often

2 Path Length: 2
ϵ − 1, Repetitions: ∆ 2

ϵ
−1 log(n)

3 No augmenting path ≤ 2
ϵ − 1 = 2(1ϵ + 1)− 3, k = 1

ϵ + 1
H.&K.=⇒ M is a

(1 + ϵ)-approximation of Mopt

4 If there is such a path, the probability of finding it is ≥ (1
∆)

2
ϵ
−1

5 Probability that λ walks do not find such a path: ≤ (1− 1

∆
2
ϵ−1

)λ

6 Hence if λ ≥ ∆
2
ϵ
−1 log(n):

(1− 1

∆
2
ϵ−1

)∆
2
ϵ−1 log(n) ≤ e

− 1

∆
2
ϵ−1

∆
2
ϵ−1 log(n)

= e− log(n) = 1
n

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Analysis:

1 Maintains (1 + ϵ) approximation if Random Walks are of appropriate
length and repeated sufficiently often

2 Path Length: 2
ϵ − 1, Repetitions: ∆ 2

ϵ
−1 log(n)

3 No augmenting path ≤ 2
ϵ − 1 = 2(1ϵ + 1)− 3, k = 1

ϵ + 1
H.&K.=⇒ M is a

(1 + ϵ)-approximation of Mopt

4 If there is such a path, the probability of finding it is ≥ (1
∆)

2
ϵ
−1

5 Probability that λ walks do not find such a path: ≤ (1− 1

∆
2
ϵ−1

)λ

6 Hence if λ ≥ ∆
2
ϵ
−1 log(n):

(1− 1

∆
2
ϵ−1

)∆
2
ϵ−1 log(n) ≤ e

− 1

∆
2
ϵ−1

∆
2
ϵ−1 log(n)

= e− log(n) = 1
n

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Analysis:

1 Maintains (1 + ϵ) approximation if Random Walks are of appropriate
length and repeated sufficiently often

2 Path Length: 2
ϵ − 1, Repetitions: ∆ 2

ϵ
−1 log(n)

3 No augmenting path ≤ 2
ϵ − 1 = 2(1ϵ + 1)− 3, k = 1

ϵ + 1
H.&K.=⇒ M is a

(1 + ϵ)-approximation of Mopt

4 If there is such a path, the probability of finding it is ≥ (1
∆)

2
ϵ
−1

5 Probability that λ walks do not find such a path: ≤ (1− 1

∆
2
ϵ−1

)λ

6 Hence if λ ≥ ∆
2
ϵ
−1 log(n):

(1− 1

∆
2
ϵ−1

)∆
2
ϵ−1 log(n) ≤ e

− 1

∆
2
ϵ−1

∆
2
ϵ−1 log(n)

= e− log(n) = 1
n

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Analysis:

1 Maintains (1 + ϵ) approximation if Random Walks are of appropriate
length and repeated sufficiently often

2 Path Length: 2
ϵ − 1, Repetitions: ∆ 2

ϵ
−1 log(n)

3 No augmenting path ≤ 2
ϵ − 1 = 2(1ϵ + 1)− 3, k = 1

ϵ + 1
H.&K.=⇒ M is a

(1 + ϵ)-approximation of Mopt

4 If there is such a path, the probability of finding it is ≥ (1
∆)

2
ϵ
−1

5 Probability that λ walks do not find such a path: ≤ (1− 1

∆
2
ϵ−1

)λ

6 Hence if λ ≥ ∆
2
ϵ
−1 log(n):

(1− 1

∆
2
ϵ−1

)∆
2
ϵ−1 log(n) ≤ e

− 1

∆
2
ϵ−1

∆
2
ϵ−1 log(n)

= e− log(n) = 1
n

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Walk-based Algorithm

Analysis:

1 Maintains (1 + ϵ) approximation if Random Walks are of appropriate
length and repeated sufficiently often

2 Path Length: 2
ϵ − 1, Repetitions: ∆ 2

ϵ
−1 log(n)

3 No augmenting path ≤ 2
ϵ − 1 = 2(1ϵ + 1)− 3, k = 1

ϵ + 1
H.&K.=⇒ M is a

(1 + ϵ)-approximation of Mopt

4 If there is such a path, the probability of finding it is ≥ (1
∆)

2
ϵ
−1

5 Probability that λ walks do not find such a path: ≤ (1− 1

∆
2
ϵ−1

)λ

6 Hence if λ ≥ ∆
2
ϵ
−1 log(n):

(1− 1

∆
2
ϵ−1

)∆
2
ϵ−1 log(n) ≤ e

− 1

∆
2
ϵ−1

∆
2
ϵ−1 log(n)

= e− log(n) = 1
n

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Theoretical bound for Random Walk-based Algorithm is fairly
pessimistic
Stops after one augmenting path has been found which can be shorter
Idea: Depth-bounded augmenting path search via BFS instead of
Random Walks
One search stops as soon as augmenting path was found and has
running time Θ(n′ + m′) where n′, m′ are the number of vertices and
edges touched by the BFS
First BFS needs an additional O(n + m) time to initialize the data
structures, all others do book keeping of the changes they made and
undo them afterwards

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Theoretical bound for Random Walk-based Algorithm is fairly
pessimistic

Stops after one augmenting path has been found which can be shorter
Idea: Depth-bounded augmenting path search via BFS instead of
Random Walks
One search stops as soon as augmenting path was found and has
running time Θ(n′ + m′) where n′, m′ are the number of vertices and
edges touched by the BFS
First BFS needs an additional O(n + m) time to initialize the data
structures, all others do book keeping of the changes they made and
undo them afterwards

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Theoretical bound for Random Walk-based Algorithm is fairly
pessimistic
Stops after one augmenting path has been found which can be shorter

Idea: Depth-bounded augmenting path search via BFS instead of
Random Walks
One search stops as soon as augmenting path was found and has
running time Θ(n′ + m′) where n′, m′ are the number of vertices and
edges touched by the BFS
First BFS needs an additional O(n + m) time to initialize the data
structures, all others do book keeping of the changes they made and
undo them afterwards

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Theoretical bound for Random Walk-based Algorithm is fairly
pessimistic
Stops after one augmenting path has been found which can be shorter
Idea: Depth-bounded augmenting path search via BFS instead of
Random Walks

One search stops as soon as augmenting path was found and has
running time Θ(n′ + m′) where n′, m′ are the number of vertices and
edges touched by the BFS
First BFS needs an additional O(n + m) time to initialize the data
structures, all others do book keeping of the changes they made and
undo them afterwards

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Theoretical bound for Random Walk-based Algorithm is fairly
pessimistic
Stops after one augmenting path has been found which can be shorter
Idea: Depth-bounded augmenting path search via BFS instead of
Random Walks
One search stops as soon as augmenting path was found and has
running time Θ(n′ + m′) where n′, m′ are the number of vertices and
edges touched by the BFS

First BFS needs an additional O(n + m) time to initialize the data
structures, all others do book keeping of the changes they made and
undo them afterwards

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Theoretical bound for Random Walk-based Algorithm is fairly
pessimistic
Stops after one augmenting path has been found which can be shorter
Idea: Depth-bounded augmenting path search via BFS instead of
Random Walks
One search stops as soon as augmenting path was found and has
running time Θ(n′ + m′) where n′, m′ are the number of vertices and
edges touched by the BFS
First BFS needs an additional O(n + m) time to initialize the data
structures, all others do book keeping of the changes they made and
undo them afterwards

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm
Edge insertion:

1 If u, v are free: match (u, v)
2 Else if only one of them is free: Start BFS from u
3 Else: Start BFS from u to find a free node w via an alternating path
4 Start another BFS from w to find augmenting path

u v

u′w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm
Edge insertion:

1 If u, v are free: match (u, v)

2 Else if only one of them is free: Start BFS from u
3 Else: Start BFS from u to find a free node w via an alternating path
4 Start another BFS from w to find augmenting path

u v

u′w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm
Edge insertion:

1 If u, v are free: match (u, v)
2 Else if only one of them is free: Start BFS from u

3 Else: Start BFS from u to find a free node w via an alternating path
4 Start another BFS from w to find augmenting path

u v

u′w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm
Edge insertion:

1 If u, v are free: match (u, v)
2 Else if only one of them is free: Start BFS from u
3 Else: Start BFS from u to find a free node w via an alternating path

4 Start another BFS from w to find augmenting path

u v

u′w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm
Edge insertion:

1 If u, v are free: match (u, v)
2 Else if only one of them is free: Start BFS from u
3 Else: Start BFS from u to find a free node w via an alternating path
4 Start another BFS from w to find augmenting path

u v

u′w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm
Edge insertion:

1 If u, v are free: match (u, v)
2 Else if only one of them is free: Start BFS from u
3 Else: Start BFS from u to find a free node w via an alternating path
4 Start another BFS from w to find augmenting path

u v

u′w

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 22 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Optimizations:

1 unsafe: In case both u and v are not free: do nothing
2 Lazy augmenting path search: Start search from u only if at least m′

2
edges have been inserted or deleted since the last search from u or no
search has been started

3 Depth-binding paths to length 2
ϵ − 1 ensures deterministic

(1 + ϵ)-approximate matching algorithm
4 Worst case complexity of optimum version: O(n + m), bounded

version: O(∆
2
ϵ
−1)

5 Edge Deletions: Start BFS from any free endpoint u or v, combinable
with LP and DB

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Optimizations:

1 unsafe: In case both u and v are not free: do nothing

2 Lazy augmenting path search: Start search from u only if at least m′

2
edges have been inserted or deleted since the last search from u or no
search has been started

3 Depth-binding paths to length 2
ϵ − 1 ensures deterministic

(1 + ϵ)-approximate matching algorithm
4 Worst case complexity of optimum version: O(n + m), bounded

version: O(∆
2
ϵ
−1)

5 Edge Deletions: Start BFS from any free endpoint u or v, combinable
with LP and DB

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Optimizations:

1 unsafe: In case both u and v are not free: do nothing
2 Lazy augmenting path search: Start search from u only if at least m′

2
edges have been inserted or deleted since the last search from u or no
search has been started

3 Depth-binding paths to length 2
ϵ − 1 ensures deterministic

(1 + ϵ)-approximate matching algorithm
4 Worst case complexity of optimum version: O(n + m), bounded

version: O(∆
2
ϵ
−1)

5 Edge Deletions: Start BFS from any free endpoint u or v, combinable
with LP and DB

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Optimizations:

1 unsafe: In case both u and v are not free: do nothing
2 Lazy augmenting path search: Start search from u only if at least m′

2
edges have been inserted or deleted since the last search from u or no
search has been started

3 Depth-binding paths to length 2
ϵ − 1 ensures deterministic

(1 + ϵ)-approximate matching algorithm

4 Worst case complexity of optimum version: O(n + m), bounded
version: O(∆

2
ϵ
−1)

5 Edge Deletions: Start BFS from any free endpoint u or v, combinable
with LP and DB

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Blossom-based Algorithm

Optimizations:

1 unsafe: In case both u and v are not free: do nothing
2 Lazy augmenting path search: Start search from u only if at least m′

2
edges have been inserted or deleted since the last search from u or no
search has been started

3 Depth-binding paths to length 2
ϵ − 1 ensures deterministic

(1 + ϵ)-approximate matching algorithm
4 Worst case complexity of optimum version: O(n + m), bounded

version: O(∆
2
ϵ
−1)

5 Edge Deletions: Start BFS from any free endpoint u or v, combinable
with LP and DB

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experimental Setup

1 Ten repetitions per instance, taking geometric mean
2 Example graphs include static graphs as well as dynamic ones
3 Two types of experiments: start with empty (static graph) and do

insertions only as well as real dynamic graphs
4 Most of the dynamic graph instances only use insertions, deletions are

constructed by undoing insertions

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experimental Setup

1 Ten repetitions per instance, taking geometric mean

2 Example graphs include static graphs as well as dynamic ones
3 Two types of experiments: start with empty (static graph) and do

insertions only as well as real dynamic graphs
4 Most of the dynamic graph instances only use insertions, deletions are

constructed by undoing insertions

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experimental Setup

1 Ten repetitions per instance, taking geometric mean
2 Example graphs include static graphs as well as dynamic ones

3 Two types of experiments: start with empty (static graph) and do
insertions only as well as real dynamic graphs

4 Most of the dynamic graph instances only use insertions, deletions are
constructed by undoing insertions

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experimental Setup

1 Ten repetitions per instance, taking geometric mean
2 Example graphs include static graphs as well as dynamic ones
3 Two types of experiments: start with empty (static graph) and do

insertions only as well as real dynamic graphs

4 Most of the dynamic graph instances only use insertions, deletions are
constructed by undoing insertions

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experimental Setup

1 Ten repetitions per instance, taking geometric mean
2 Example graphs include static graphs as well as dynamic ones
3 Two types of experiments: start with empty (static graph) and do

insertions only as well as real dynamic graphs
4 Most of the dynamic graph instances only use insertions, deletions are

constructed by undoing insertions

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Random Walk-based Algorithm

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 25 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Random Walk-based Algorithm

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 25 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Blossom-based Algorithm

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 26 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Blossom-based Algorithm

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 26 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Quality comparison of all algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 27 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Quality comparison of all algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 27 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Runtime comparison of all algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 28 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experiments: Runtime comparison of all algorithms

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 28 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion

1 Maintaining optimum matchings can be done much more efficiently
than the naive approach to compute matchings from scratch after
every dynamic change in an unweighted graph

2 All approximative algorithms that we have seen are able to maintain
near-optimum matchings in practice while being significantly faster

3 Random-Walks with Delta Settling enabled will be the method of
choice in practice

4 Open questions: Weighted case, dynamic multilevel algorithms,
parallelization potential, real world dynamic graph instances with both
insertions and deletions

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 29 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Thank you for your attention!

Martin Groesbacher (University of Salzburg) Dynamic Matching 26.01.2022 30 / 30

