# Dynamic Matching Algorithms in Practice 

presented by Martin Grösbacher

University of Salzburg<br>Department of Computer Science

paper by Monika Henzinger, Shahbaz Khan, Richard Paul, Christian Schulz

## Motivation

## Motivation

- A matching $\mathcal{M}$ is a subset of edges in a graph, such that no two elements of $\mathcal{M}$ share a common end point


## Motivation

- A matching $\mathcal{M}$ is a subset of edges in a graph, such that no two elements of $\mathcal{M}$ share a common end point
- Applications sometimes require matchings with certain properties (maximal, maximum, maximal weight, etc.)


## Motivation

- A matching $\mathcal{M}$ is a subset of edges in a graph, such that no two elements of $\mathcal{M}$ share a common end point
- Applications sometimes require matchings with certain properties (maximal, maximum, maximal weight, etc.)
- Matchings can be computed in polynomial time


## Motivation

- A matching $\mathcal{M}$ is a subset of edges in a graph, such that no two elements of $\mathcal{M}$ share a common end point
- Applications sometimes require matchings with certain properties (maximal, maximum, maximal weight, etc.)
- Matchings can be computed in polynomial time
- If underlying graph often changes (i.e. dynamicity) computing new matches from scratch every time can still be an expensive task!


## Motivation

- A matching $\mathcal{M}$ is a subset of edges in a graph, such that no two elements of $\mathcal{M}$ share a common end point
- Applications sometimes require matchings with certain properties (maximal, maximum, maximal weight, etc.)
- Matchings can be computed in polynomial time
- If underlying graph often changes (i.e. dynamicity) computing new matches from scratch every time can still be an expensive task!
- New fully dynamic matching algorithms have been developed recently


## Motivation

- A matching $\mathcal{M}$ is a subset of edges in a graph, such that no two elements of $\mathcal{M}$ share a common end point
- Applications sometimes require matchings with certain properties (maximal, maximum, maximal weight, etc.)
- Matchings can be computed in polynomial time
- If underlying graph often changes (i.e. dynamicity) computing new matches from scratch every time can still be an expensive task!
- New fully dynamic matching algorithms have been developed recently
- Bridge the gap between theory and practice by testing out and comparing these algorithms


## Preliminaries

## Preliminaries

- Let $G=(V, E)$ be an undirected graph without parallel edges or self-loops


## Preliminaries

- Let $G=(V, E)$ be an undirected graph without parallel edges or self-loops
- $|V|=n,|E|=m$


## Preliminaries

- Let $G=(V, E)$ be an undirected graph without parallel edges or self-loops
- $|V|=n,|E|=m$
- $N(v):=\{u:\{v, u\} \in E\}$ denotes the set of neighbours of $v$


## Preliminaries

- Let $G=(V, E)$ be an undirected graph without parallel edges or self-loops
- $|V|=n,|E|=m$
- $N(v):=\{u:\{v, u\} \in E\}$ denotes the set of neighbours of $v$
- $\operatorname{deg}(v):=|N(v)|$


## Preliminaries

- Let $G=(V, E)$ be an undirected graph without parallel edges or self-loops
- $|V|=n,|E|=m$
- $N(v):=\{u:\{v, u\} \in E\}$ denotes the set of neighbours of $v$
- $\operatorname{deg}(v):=|N(v)|$

Definition (Matching)
A set of edges $\mathcal{M} \subseteq E$ such that for all pairs of edges $((u, v),(r, s)) \in \mathcal{M}: r, s, u, v$ are distinct.

## Preliminaries

## Preliminaries

- A matching is called maximal, if there is no edge in $E$ that can be added to $\mathcal{M}$



## Preliminaries

- A maximum matching $\mathcal{M}_{\mathrm{opt}}$ is a maximal matching that contains the largest number of possible edges



## Preliminaries

- An $\alpha$-approximate maximum matching is a matching that contains at least $\frac{\left|\mathcal{M}_{\text {opt }}\right|}{\alpha}$ edges



## Preliminaries

## Preliminaries

- A vertex is called free, if it is not incident to an edge $(u, v) \in \mathcal{M}$ and matched otherwise


## Preliminaries

- A vertex is called free, if it is not incident to an edge $(u, v) \in \mathcal{M}$ and matched otherwise
- For a matched vertex $u$ with $(u, v) \in \mathcal{M}$ we call $v$ the mate of $u$


## Preliminaries

- A vertex is called free, if it is not incident to an edge $(u, v) \in \mathcal{M}$ and matched otherwise
- For a matched vertex $u$ with $(u, v) \in \mathcal{M}$ we call $v$ the mate of $u$ Definition (Augmenting Path)
An augmenting path is a cycle-free path in $G$ that starts and ends on a free vertex and where edges alternate from $\mathcal{M}$ with edges from $E \backslash \mathcal{M}$


## Preliminaries

- A vertex is called free, if it is not incident to an edge $(u, v) \in \mathcal{M}$ and matched otherwise
- For a matched vertex $u$ with $(u, v) \in \mathcal{M}$ we call $v$ the mate of $u$ Definition (Augmenting Path)
An augmenting path is a cycle-free path in $G$ that starts and ends on a free vertex and where edges alternate from $\mathcal{M}$ with edges from $E \backslash \mathcal{M}$



## Preliminaries

- A vertex is called free, if it is not incident to an edge $(u, v) \in \mathcal{M}$ and matched otherwise
- For a matched vertex $u$ with $(u, v) \in \mathcal{M}$ we call $v$ the mate of $u$ Definition (Augmenting Path)
An augmenting path is a cycle-free path in $G$ that starts and ends on a free vertex and where edges alternate from $\mathcal{M}$ with edges from $E \backslash \mathcal{M}$



## Preliminaries

## Preliminaries

- Any matching without augmenting paths is a maximum matching (Theorem of Berge)


## Preliminaries

- Any matching without augmenting paths is a maximum matching (Theorem of Berge)
- Any matching without augmenting paths of length at most $2 k-3$ is a $\frac{k}{k-1}$-approximate maximum matching (Hopcroft and Karp)


## Preliminaries

- Any matching without augmenting paths is a maximum matching (Theorem of Berge)
- Any matching without augmenting paths of length at most $2 k-3$ is a $\frac{k}{k-1}$-approximate maximum matching (Hopcroft and Karp)
- Hence, a maximal matching without augmenting paths of length one is a 2 -approximate maximum matching


## Preliminaries

- Any matching without augmenting paths is a maximum matching (Theorem of Berge)
- Any matching without augmenting paths of length at most $2 k-3$ is a $\frac{k}{k-1}$-approximate maximum matching (Hopcroft and Karp)
- Hence, a maximal matching without augmenting paths of length one is a 2 -approximate maximum matching
- In the following, $\Delta$ denotes the largest degree that can be found in any state of the dynamic graph


## Algorithms

## Algorithms

(1) Random Walk-based algorithm:

- Maintains $(1+\epsilon)$-approximate maximum matching w.h.p.
- Performs random walks trying to find augmenting paths
- Update time: $O\left(\frac{\Delta^{\frac{2}{\epsilon}-1} \log (n)}{\epsilon}\right)$


## Algorithms

(1) Random Walk-based algorithm:

- Maintains $(1+\epsilon)$-approximate maximum matching w.h.p.
- Performs random walks trying to find augmenting paths
- Update time: $O\left(\frac{\Delta^{\frac{2}{\epsilon}-1} \log (n)}{\epsilon}\right)$
(2) Blossom-based algorithm (deterministic):
- Maintains $(1+\epsilon)$-approximate maximum matching
- Performs depth bounded augmenting path search
- Update time: $O\left(\Delta^{\frac{2}{\epsilon}-1}\right)$


## Algorithms

(1) Random Walk-based algorithm:

- Maintains $(1+\epsilon)$-approximate maximum matching w.h.p.
- Performs random walks trying to find augmenting paths
- Update time: $O\left(\frac{\Delta^{\frac{2}{\epsilon}-1} \log (n)}{\epsilon}\right)$
(2) Blossom-based algorithm (deterministic):
- Maintains $(1+\epsilon)$-approximate maximum matching
- Performs depth bounded augmenting path search
- Update time: $O\left(\Delta^{\frac{2}{\epsilon}-1}\right)$
(3) Baswana, Gupta \& Sen (randomized):
- Maintains 2-approximate maximum matching w.h.p.
- Vertices on multiple levels, edges are owned by vertices
- Update time: $O\left(\log (n)^{k}\right)$ (amortized)


## Algorithms

(1) Random Walk-based algorithm:

- Maintains $(1+\epsilon)$-approximate maximum matching w.h.p.
- Performs random walks trying to find augmenting paths
- Update time: $O\left(\frac{\Delta^{\frac{2}{\epsilon}-1} \log (n)}{\epsilon}\right)$
(2) Blossom-based algorithm (deterministic):
- Maintains $(1+\epsilon)$-approximate maximum matching
- Performs depth bounded augmenting path search
- Update time: $O\left(\Delta^{\frac{2}{\epsilon}-1}\right)$
(3) Baswana, Gupta \& Sen (randomized):
- Maintains 2-approximate maximum matching w.h.p.
- Vertices on multiple levels, edges are owned by vertices
- Update time: $O\left(\log (n)^{k}\right)$ (amortized)
(9) Neiman \& Solomon (deterministic):
- Maintains ( $\frac{3}{2}$ )-approximate maximum matching
- Uses concept of high degree/low degree vertices
- Update time: $O(\sqrt{(m)})$ (worst case)


## Random Walk-based Algorithm

## Random Walk-based Algorithm

(1) Pick a free vertex $u$
(2) Randomly choose neighbour $v$ of $u$
(3) If $v$ is free: match $(u, v)$ and stop walk
(9) Else: unmatch $(v, \operatorname{mate}(v))$ and match $(u, v)$


## Random Walk-based Algorithm

- Now mate $(v)$ is free, continue walk from there until $O\left(\frac{1}{\epsilon}\right)$ steps
- Length of the walk is an important parameter
- Update time for a single walk: $O\left(\frac{1}{\epsilon}\right)$



## Random Walk-based Algorithm

- By itself this does not even guarantee a maximal matching!
- Fixing by undoing all changes
- Alternative: $\Delta$-Settling: Scan through neighbours of visited vertices to find a free vertex
- Stops if either free vertex found or after $\frac{1}{\epsilon}$ steps
- If Random Walk was unsuccessful, try to match the last vertex touched by scanning all its neighbours
- Requires $O(\Delta)$ additional time per visited vertex



## Random Walk-based Algorithm

Edge Insertion:

## Random Walk-based Algorithm

Edge Insertion:
(1) If both endpoints $u, v$ are free, match $(u, v)$

## Random Walk-based Algorithm

Edge Insertion:
(1) If both endpoints $u, v$ are free, match $(u, v)$
(2) Else if both are matched: do nothing

## Random Walk-based Algorithm

Edge Insertion:
(1) If both endpoints $u, v$ are free, match $(u, v)$
(2) Else if both are matched: do nothing
(3) Else: Unmatch $v$, mate $(v)=w$, match $(u, v)$ and start Random Walk from $w$

## Random Walk-based Algorithm

Edge Insertion:
(1) If both endpoints $u, v$ are free, match $(u, v)$
(2) Else if both are matched: do nothing
(3) Else: Unmatch $v$, mate $(v)=w$, match $(u, v)$ and start Random Walk from $w$
(9) If Random Walk is unsuccessful, undo all changes and restore matching to the state before unmatching $v, w$

## Random Walk-based Algorithm

Edge Insertion:
(1) If both endpoints $u, v$ are free, match $(u, v)$
(2) Else if both are matched: do nothing
(3) Else: Unmatch $v$, mate $(v)=w$, match $(u, v)$ and start Random Walk from $w$
(9) If Random Walk is unsuccessful, undo all changes and restore matching to the state before unmatching $v, w$


## Random Walk-based Algorithm

Edge Insertion:
(1) If both endpoints $u, v$ are free, match $(u, v)$
(2) Else if both are matched: do nothing
(3) Else: Unmatch $v$, mate $(v)=w$, match $(u, v)$ and start Random Walk from $w$
(9) If Random Walk is unsuccessful, undo all changes and restore matching to the state before unmatching $v, w$


## Random Walk-based Algorithm

Edge Insertion:
(1) If both endpoints $u, v$ are free, match $(u, v)$
(2) Else if both are matched: do nothing
(3) Else: Unmatch $v$, mate $(v)=w$, match $(u, v)$ and start Random Walk from $w$
(9) If Random Walk is unsuccessful, undo all changes and restore matching to the state before unmatching $v, w$


## Random Walk-based Algorithm

Edge Deletion:

## Random Walk-based Algorithm

Edge Deletion:
(1) If $(u, v)$ was unmatched: do nothing

## Random Walk-based Algorithm

Edge Deletion:
(1) If $(u, v)$ was unmatched: do nothing
(2) Else: Scan neighbours of $u, v$, try to match them (takes $O(\Delta)$ time)

## Random Walk-based Algorithm

Edge Deletion:
(1) If $(u, v)$ was unmatched: do nothing
(2) Else: Scan neighbours of $u, v$, try to match them (takes $O(\Delta)$ time)
(3) If $u$ and/or $v$ cannot be matched and $\mathcal{M}$ was maximal before deletion: $\mathcal{M}$ is still maximal

## Random Walk-based Algorithm

Edge Deletion:
(1) If $(u, v)$ was unmatched: do nothing
(2) Else: Scan neighbours of $u, v$, try to match them (takes $O(\Delta)$ time)
(3) If $u$ and/or $v$ cannot be matched and $\mathcal{M}$ was maximal before deletion: $\mathcal{M}$ is still maximal
(9) However: free vertices may be the start of an augmenting path!

## Random Walk-based Algorithm

Edge Deletion:
(1) If $(u, v)$ was unmatched: do nothing
(2) Else: Scan neighbours of $u, v$, try to match them (takes $O(\Delta)$ time)
(3) If $u$ and/or $v$ cannot be matched and $\mathcal{M}$ was maximal before deletion: $\mathcal{M}$ is still maximal
(9) However: free vertices may be the start of an augmenting path!
(3) Start Random Walk from $u$ and/or $v$

## Random Walk-based Algorithm

Edge Deletion:
(1) If $(u, v)$ was unmatched: do nothing
(2) Else: Scan neighbours of $u, v$, try to match them (takes $O(\Delta)$ time)
(3) If $u$ and/or $v$ cannot be matched and $\mathcal{M}$ was maximal before deletion: $\mathcal{M}$ is still maximal
(9) However: free vertices may be the start of an augmenting path!
(3) Start Random Walk from $u$ and/or $v$


## Random Walk-based Algorithm

Edge Deletion:
(1) If $(u, v)$ was unmatched: do nothing
(2) Else: Scan neighbours of $u, v$, try to match them (takes $O(\Delta)$ time)
(3) If $u$ and/or $v$ cannot be matched and $\mathcal{M}$ was maximal before deletion: $\mathcal{M}$ is still maximal
(9) However: free vertices may be the start of an augmenting path!
(3) Start Random Walk from $u$ and/or $v$


## Random Walk-based Algorithm

Analysis:

## Random Walk-based Algorithm

Analysis:
(1) Maintains $(1+\epsilon)$ approximation if Random Walks are of appropriate length and repeated sufficiently often

## Random Walk-based Algorithm

Analysis:
(1) Maintains $(1+\epsilon)$ approximation if Random Walks are of appropriate length and repeated sufficiently often
(2) Path Length: $\frac{2}{\epsilon}-1$, Repetitions: $\Delta^{\frac{2}{\epsilon}-1} \log (n)$

## Random Walk-based Algorithm

Analysis:
(1) Maintains $(1+\epsilon)$ approximation if Random Walks are of appropriate length and repeated sufficiently often
(2) Path Length: $\frac{2}{\epsilon}-1$, Repetitions: $\Delta^{\frac{2}{\epsilon}-1} \log (n)$
(3) No augmenting path $\leq \frac{2}{\epsilon}-1=2\left(\frac{1}{\epsilon}+1\right)-3, k=\frac{1}{\epsilon}+1 \stackrel{\text { H.\&K. }}{\Longrightarrow} \mathcal{M}$ is a $(1+\epsilon)$-approximation of $\mathcal{M}_{\mathrm{opt}}$

## Random Walk-based Algorithm

Analysis:
(1) Maintains $(1+\epsilon)$ approximation if Random Walks are of appropriate length and repeated sufficiently often
(2) Path Length: $\frac{2}{\epsilon}-1$, Repetitions: $\Delta^{\frac{2}{\epsilon}-1} \log (n)$
(3) No augmenting path $\leq \frac{2}{\epsilon}-1=2\left(\frac{1}{\epsilon}+1\right)-3, k=\frac{1}{\epsilon}+1 \stackrel{\text { H.\&K. }}{\Longrightarrow} \mathcal{M}$ is a (1+ $\epsilon$ )-approximation of $\mathcal{M}_{\mathrm{opt}}$
(9) If there is such a path, the probability of finding it is $\geq\left(\frac{1}{\Delta}\right)^{\frac{2}{\epsilon}-1}$

## Random Walk-based Algorithm

Analysis:
(1) Maintains $(1+\epsilon)$ approximation if Random Walks are of appropriate length and repeated sufficiently often
(2) Path Length: $\frac{2}{\epsilon}-1$, Repetitions: $\Delta^{\frac{2}{\epsilon}-1} \log (n)$
(3) No augmenting path $\leq \frac{2}{\epsilon}-1=2\left(\frac{1}{\epsilon}+1\right)-3, k=\frac{1}{\epsilon}+1 \stackrel{\text { H.\&K. }}{\Longrightarrow} \mathcal{M}$ is a $(1+\epsilon)$-approximation of $\mathcal{M}_{\mathrm{opt}}$
(9) If there is such a path, the probability of finding it is $\geq\left(\frac{1}{\Delta}\right)^{\frac{2}{\epsilon}-1}$
(3) Probability that $\lambda$ walks do not find such a path: $\leq\left(1-\frac{1}{\Delta^{\frac{2}{\epsilon}-1}}\right)^{\lambda}$

## Random Walk-based Algorithm

Analysis:
(1) Maintains $(1+\epsilon)$ approximation if Random Walks are of appropriate length and repeated sufficiently often
(2) Path Length: $\frac{2}{\epsilon}-1$, Repetitions: $\Delta^{\frac{2}{\epsilon}-1} \log (n)$
(3) No augmenting path $\leq \frac{2}{\epsilon}-1=2\left(\frac{1}{\epsilon}+1\right)-3, k=\frac{1}{\epsilon}+1 \stackrel{\text { H.\&K. }}{\Longrightarrow} \mathcal{M}$ is a $(1+\epsilon)$-approximation of $\mathcal{M}_{\text {opt }}$
(9) If there is such a path, the probability of finding it is $\geq\left(\frac{1}{\Delta}\right)^{\frac{2}{\epsilon}-1}$
(3) Probability that $\lambda$ walks do not find such a path: $\leq\left(1-\frac{1}{\Delta^{\frac{2}{\epsilon}-1}}\right)^{\lambda}$
(c) Hence if $\lambda \geq \Delta^{\frac{2}{\epsilon}-1} \log (n)$ :

$$
\left(1-\frac{1}{\Delta^{\frac{2}{\epsilon}-1}}\right)^{\Delta^{\frac{2}{\epsilon}-1} \log (n)} \leq e^{-\frac{1}{\Delta^{\frac{2}{\epsilon}-1}} \Delta^{\frac{2}{\epsilon}-1} \log (n)}=e^{-\log (n)}=\frac{1}{n}
$$

## Blossom-based Algorithm

## Blossom-based Algorithm

- Theoretical bound for Random Walk-based Algorithm is fairly pessimistic


## Blossom-based Algorithm

- Theoretical bound for Random Walk-based Algorithm is fairly pessimistic
- Stops after one augmenting path has been found which can be shorter


## Blossom-based Algorithm

- Theoretical bound for Random Walk-based Algorithm is fairly pessimistic
- Stops after one augmenting path has been found which can be shorter
- Idea: Depth-bounded augmenting path search via BFS instead of Random Walks


## Blossom-based Algorithm

- Theoretical bound for Random Walk-based Algorithm is fairly pessimistic
- Stops after one augmenting path has been found which can be shorter
- Idea: Depth-bounded augmenting path search via BFS instead of Random Walks
- One search stops as soon as augmenting path was found and has running time $\Theta\left(n^{\prime}+m^{\prime}\right)$ where $n^{\prime}, m^{\prime}$ are the number of vertices and edges touched by the BFS


## Blossom-based Algorithm

- Theoretical bound for Random Walk-based Algorithm is fairly pessimistic
- Stops after one augmenting path has been found which can be shorter
- Idea: Depth-bounded augmenting path search via BFS instead of Random Walks
- One search stops as soon as augmenting path was found and has running time $\Theta\left(n^{\prime}+m^{\prime}\right)$ where $n^{\prime}, m^{\prime}$ are the number of vertices and edges touched by the BFS
- First BFS needs an additional $O(n+m)$ time to initialize the data structures, all others do book keeping of the changes they made and undo them afterwards


## Blossom-based Algorithm

Edge insertion:

## Blossom-based Algorithm

Edge insertion:
(1) If $u, v$ are free: match $(u, v)$

## Blossom-based Algorithm

Edge insertion:
(1) If $u, v$ are free: match $(u, v)$
(2) Else if only one of them is free: Start BFS from $u$

## Blossom-based Algorithm

Edge insertion:
(1) If $u, v$ are free: match $(u, v)$
(2) Else if only one of them is free: Start BFS from $u$
(3) Else: Start BFS from $u$ to find a free node $w$ via an alternating path

## Blossom-based Algorithm

Edge insertion:
(1) If $u, v$ are free: match $(u, v)$
(2) Else if only one of them is free: Start BFS from $u$
(3) Else: Start BFS from $u$ to find a free node $w$ via an alternating path
(9) Start another BFS from $w$ to find augmenting path


## Blossom-based Algorithm

Edge insertion:
(1) If $u, v$ are free: match $(u, v)$
(2) Else if only one of them is free: Start BFS from $u$
(3) Else: Start BFS from $u$ to find a free node $w$ via an alternating path
(9) Start another BFS from $w$ to find augmenting path
w


## Blossom-based Algorithm

Optimizations:

## Blossom-based Algorithm

Optimizations:
(1) unsafe: In case both $u$ and $v$ are not free: do nothing

## Blossom-based Algorithm

Optimizations:
(1) unsafe: In case both $u$ and $v$ are not free: do nothing
(2) Lazy augmenting path search: Start search from $u$ only if at least $\frac{m^{\prime}}{2}$ edges have been inserted or deleted since the last search from $u$ or no search has been started

## Blossom-based Algorithm

Optimizations:
(1) unsafe: In case both $u$ and $v$ are not free: do nothing
(2) Lazy augmenting path search: Start search from $u$ only if at least $\frac{m^{\prime}}{2}$ edges have been inserted or deleted since the last search from $u$ or no search has been started
(3) Depth-binding paths to length $\frac{2}{\epsilon}-1$ ensures deterministic $(1+\epsilon)$-approximate matching algorithm

## Blossom-based Algorithm

Optimizations:
(1) unsafe: In case both $u$ and $v$ are not free: do nothing
(2) Lazy augmenting path search: Start search from $u$ only if at least $\frac{m^{\prime}}{2}$ edges have been inserted or deleted since the last search from $u$ or no search has been started
(3) Depth-binding paths to length $\frac{2}{\epsilon}-1$ ensures deterministic $(1+\epsilon)$-approximate matching algorithm
(9) Worst case complexity of optimum version: $O(n+m)$, bounded version: $O\left(\Delta^{\frac{2}{\epsilon}-1}\right)$
(5) Edge Deletions: Start BFS from any free endpoint $u$ or $v$, combinable with LP and DB

## Experimental Setup

## Experimental Setup

(1) Ten repetitions per instance, taking geometric mean

## Experimental Setup

(1) Ten repetitions per instance, taking geometric mean
(2) Example graphs include static graphs as well as dynamic ones

## Experimental Setup

(1) Ten repetitions per instance, taking geometric mean
(2) Example graphs include static graphs as well as dynamic ones
(3) Two types of experiments: start with empty (static graph) and do insertions only as well as real dynamic graphs

## Experimental Setup

(1) Ten repetitions per instance, taking geometric mean
(2) Example graphs include static graphs as well as dynamic ones
(3) Two types of experiments: start with empty (static graph) and do insertions only as well as real dynamic graphs
(9) Most of the dynamic graph instances only use insertions, deletions are constructed by undoing insertions

## Experiments: Random Walk-based Algorithm

## Experiments: Random Walk-based Algorithm

## Quality Random Walks



## Experiments: Blossom-based Algorithm

## Experiments: Blossom-based Algorithm



## Experiments: Quality comparison of all algorithms

## Experiments: Quality comparison of all algorithms



## Experiments: Runtime comparison of all algorithms

## Experiments: Runtime comparison of all algorithms

Time


## Conclusion

(1) Maintaining optimum matchings can be done much more efficiently than the naive approach to compute matchings from scratch after every dynamic change in an unweighted graph
(2) All approximative algorithms that we have seen are able to maintain near-optimum matchings in practice while being significantly faster
(3) Random-Walks with Delta Settling enabled will be the method of choice in practice
(9) Open questions: Weighted case, dynamic multilevel algorithms, parallelization potential, real world dynamic graph instances with both insertions and deletions

## Thank you for your attention!

