
Distributed and Parallel Graph

Distance Approximation

Yasamin Nazari

University of Salzburg
Fall 2021

2

Publications

● Relevant papers:
– M. Dinitz and N, Massively Parallel Distance Sketches,

Conference on Principles of Distributed Systems
(OPODIS) 2019 (best student paper).

– N, Sparse Hopsets in Congested Clique, Conference on
Principles of Distributed Systems (OPODIS) 2019.

● Also related:
– J. Łącki and N, Faster Decremental Approximate Shortest

Paths via Hopsets with Low Hopbound (to be submitted).

3

Outline

● Models

– Background on distributed/parallel/big data models

● Introduction to hopsets

– Application in distributed distance computation

– Massively parallel distance sketches

● Distributed algorithm for constructing hopsets

4

Evolution of Distributed Models

● LOCAL Model
– Given an input graph G=(V,E). Communication in

synchronous rounds on G.

– In each round each node can send a message of unlimited
size to each neighbor.

– Goal: Minimize rounds of communication until nodes know
their portion of output.

5

Distributed and Parallel Models

● LOCAL Model
– Given an input graph G=(V,E). Communication in synchronous

rounds on G.

– In each round each node can send a message of unlimited size
to each neighbor.

– Goal: Minimize rounds of communication until nodes know their
portion of output.

● CONGEST Model
– Similiar to LOCAL but messages can have size at most O(log n).

● Parallel (PRAM) Models
– Processers read/write on registers. Goal is to minimize parallel

rounds/depth.

6

Congested Clique Model

● Input graph G=(V,E). Communication over a clique
(all-to-all).

– Each node sends a message of size O(log n) (congestion) to
any other node.

– Similiar to CONGEST except communication graph is
different from input graph

– Closer to modern models, e.g. SDNs, MapReduce and
Massively Parallel Computation models.

7

Massively Parallel Computation
(MPC)

● MPC model: An input of size N, distributed over
P = N/S machines, O(S) memory per machine.

– Each machine has memory strictly sublinear in N.
IO/Communication bounded by memory.

– Abstraction of big data platforms such as MapReduce,
Spark, Hadoop, etc.

8

Massively Parallel Computation
(MPC)

● MPC model: An input of size N, distributed over
P = N/S machines, O(S) memory per machine.

– Each machine has memory strictly sublinear in N.
IO/Communication bounded by memory.

● Low memory MPC for a graph G (m edges and n
nodes):

– Memory per machine is .

– Overall memory is .

9

MPC vs distributed and parallel
models

● Power of MPC depends

– Primarily: memory per machine

– Secondary: number of machines
● For graphs MPC with linear in number of nodes

memory (per machine) close to Congested Clique

– In each round each machine can send a message to
any other machine since memory per machine is O(n)

● Closer to PRAM when memory per machine is very
small

10

Massively Parallel Computation

● Intuition: MapReduce

– Input: <key, value> pairs

– Map and shuffle: pairs go to machine based on their key

– Reduce: Sequential computation on one key (local
computation on a machine)

● Example: Given a graph G=(V,E), compute an aggregate
function over edges of a node (degree, lightest edge)

– Sort the input (pairs (u,v)) based on ID of the first vertex

– Pairs incident to u are in a contigious set of machines

– Find the minimum over these machines based on an
aggregate tree

11

● Previous:
– Distributed/Parallel/Big Data Models

● Next:
– Distributed Shortest Paths

12

Shortest Path Computation

● Single-source shortest paths:

– Given an undirected weighted graph G=(V,E), and a
source node s, compute (approximate) distances from
s to all nodes in V.

● Variants:

– Single-source (SSSP), Multi-source (MSSP), all-pairs
(APSP)

13

Shortest Path Computation

● Shortest path algorithms

– Dijksta’s: very sequential, not parallelizable
● Simple parallel/distributed algorithm:

– For unweighted graphs run BFS.

– For weighted graphs, run Bellman-Ford.

– Slow for graphs with large diameter, so we need a new
tool.

14

Bellman-Ford

● Single-source shortest path via Bellman-Ford:

– Each iteration: each node updates their distance
estimate from the source s by computing

 v
d(v,s)=10

u

s

3

4

8
1

3

7

9

510

8

15

Distributed Bellman-Ford

● Distributed Bellman-Ford:

– Each iteration: each node updates their distance
estimate from the source s by computing

– Each iteration can be performed in one round of
Congested Clique or MPC

● Congested Clique: Need to send only one message
of O(log n) bits for each edge

● MPC: Aggregate tree idea

16

 Bellman-Ford

● Bellman-Ford from single source :

– iterations to compute (distance using
paths of at most hops) for all .

– Require iterations is the shortest path
diameter:

● Maximum number of hops in the shortest paths. Could
be as large as .

1111
1

1
1

1

8

8

8
8

8

17

Hopsets

● Given a weighted undirected graph ,
for any :

– : shortest path distance between u and v in G.

– : shortest path with at most hops (number
of edges) between u and v.

● Given a , a -hopset is a set of
edges, s.t. between every pair of nodes :

– hopbound:

– Approx factor:

18

Hopsets

● Given , a -hopset is a set of
edges, s.t. between every pair of nodes :

– Intuition: adding hopset edges is like adding shortcuts
for reducing the diameter.

G

(3,0)-Hopset

4

64

2

2

19

Hopsets

● Application: Given a -hopset H for G, we can
compute approximate distances in dist rounds.

– Run Bellman-Ford for rounds to obtain approximate
distances ().

● Goal:

– a sparse hopset, with small hopbound, often
polylogarithmic in n, and fast construction.

– Tradeoffs based on existential lower bounds

20

● Previous:
– Intro to hopsets, and application in shortest

path computation via Bellman-Ford.

● Next:
– Using hopsets for computing

distributed/parallel distance sketches

21

Distance Sketches

● Distance sketches for a graph:

– Small information stored for each node, such that
approximate distance of a pair u, v of nodes can be
queried only using sketches of u and v.

● Existing Distance Sketches (Thorup-Zwick 05):

– Size: per node.

– Stretch: (approximation factor)

– Query time (sequential):

– Distributed/MPC query time: only 2 rounds!

22

Distance Sketches in MPC

● Distance sketches in MPC:

– Distributed algorithm by Das Sarma et al (2015) will
take rounds.

– Using hopsets we can compute distance sketches in
 rounds of MPC.

● Can we construct distance sketches in
polylogarithmic rounds?

– Yes, at the cost of a weaker stretch using spanners.

23

MPC Distance Sketches

Results Size per node Stretch Time (rounds)

Das Sarma et al.
(2015)

 DN 2019

 DN 2019 Polylogarithmic

24

● Previous:
– Using hopsets for computing massively parallel

distance sketches

● Next:
– Sparse hopsets in Congested Clique

25

Sparse Hopsets in Congested Clique

● Goal: Distributed algorithm for constructing a
sparse hopset

– Relevant paper: N, Sparse Hopsets in Congested Clique
(OPODIS 2019).

– Polylogarithmic round algorithm for sparse hopsets with
polylogairthmic hopbound in the Congested Clique model

26

Congested Clique Model

● Given a graph G=(V,E), each node can send a
message of size O(log n) (congestion) to any other
node.

– Initially each node knows the incident portion of the input,
and should know incident part of the output.

– Goal: minimize rounds of communication.

27

Hopsets in Congested Clique

Results Size Hopbound Time (rounds)

Censor-Hillel et
al. (2019)

Polylogarithmic

Elkin-Neiman
(2017, 2019)

Polylogarithmic
(func of)

 Polynomial

 N 2019 Polylogarithmic
(func of)

Polylogarithmic

28

Neighborhood Covers

● W-neighborhood cover: a clustering of nodes, s.t.

– Low diameter: Each cluster has diameter O(W log(n)).

29

Neighborhood Covers

● W-neighborhood cover: a clustering of nodes, s.t.

– Low diameter: Each cluster has diameter O(W log(n)).

– Ball preservance: For each node v, W-neighborhood (ball of radius
W) around v is contained in a cluster.

v

30

Neighborhood Covers

● W-neighborhood cover: a clustering of nodes, s.t.

– Low diameter: Each cluster has diameter O(W log(n)).

– Ball preservance: For each node v, W-neighborhood (ball of radius
W) around v is contained in a cluster.

– Low congestion/overlap: Each node overlaps with O(log(n)) clusters.

31

Hopset construction

● Centralized algorithm inspired by (Cohen 2000).

● Each iteration handles pairs of nodes u,v with
distances :

– Compute -neighborhood covers for .

– Clusters are small if their size is less than , and big
otherwise.

– Add a star rooted at the center of big clusters.

– Add all pairwise edges (clique) between all big cluster
centers.

– A clique for each small cluster (too dense).

32

Hopset construction

● Add a star rooted at the cluster center of big clusters.
● Set weight of an edge (u,v) in H to distance between u and v in G .

33

Hopset construction

● Centralized: a clique for each small clusters.
● Distributed: replaced with a hopset with constant hopbound.

34

Hopset construction

Add a clique between all big cluster centers.

35

New sparse distributed hopset

● Goal: sparser hopset and faster construction

● For distance scale :

– Compute -neighborhood covers for .

– Clusters are small if their size is less than , and big
otherwise.

– Add a star rooted at the center of big clusters.

– Add a clique between all big cluster centers.

– Locally construct a sparse hopset for each small
cluster (leads to improvements in Congested Clique).

36

Size analysis

● For a small clusters of size in :

– We added edges (size of local hopsets).

– There are at most such clusters.

– Summing over all size buckets:

37

Size analysis

● For a small clusters of size in :

– We added edges (size of local hopsets).

– There are at most such clusters.

– Summing over all size buckets:
● Star edges for each big cluster:

– adds at most forests for each scale.

38

Size analysis

● For a small clusters of size in :

– We added edges (size of local hopsets).

– There are at most such clusters.

– Summing over all size buckets:
● Star edges for each big cluster:

– adds at most forests for each scale.
● Clique edges between big cluster centers.

– At most edges in total for each scale.
● Log factor added to cover all scales.

39

Hopbound and Stretch analysis

● Path of length (R,2R] divided into equal
length segments.

– Each is contained in a cluster, (parameter of neighborhood
covers is).

● Hop bound:

– small clusters: constant hops (local hopset construction)

– big clusters: one direct edge.

... W WWWW

40

Congested Clique Implementation

● Constructing W-neighborhood covers

– Known constructions are too slow for large W.

– Use a relaxed notion of limited neighborhood covers
that can be implemented efficiently.

● Local hopsets for small clusters

– Collecting local topology and local computation by
cluster center.

– Message routing algorithm by Lenzen (2013)
● Adding a clique between big cluster centers

– -MSSP algorithm by Censor-hillel et al. (2019).

44

● Previous:
– Efficient construction of sparse hopsets in

Congested Clique

● Next:
– Dynamic hopsets with applications in near-

optimal shortest path computation
– J. Łącki and N, Faster Decremental Approximate Shortest Paths

via Hopsets with Low Hopbound.

45

Dynamic Model

● Dynamic graph algorithms

– Input changes over time

(insertions or deletions)
● Goal:

– Fast queries

– small update time
● Partially dynamic

– Insert only (incremental) or delete only (decremental)

– This work: decremental (deletion and weight increase)

46

Applications of Dynamic Hopsets

● Dynamic tools:
– Even-Schiloach’81: decremental maintainenace of

distance up to distance d in O(md) time.

– Can turn this to maintain hop bounded distance in
O(mh) time

● Dynamic All-Pairs Distance Oracles :
– Maintain a hopset with polylogarithmic hopbound

– Use the hopset to maintain distance oracles more
efficiently

47

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 44
	Slide 45
	Slide 46
	Slide 47

