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A Nonlinear Unitary Framework for Quantum State
Reduction: a phenomenological approach

Helmut J. Efinger

Sinemo ex me quaerat, scio; si quaerenti explicare velim, nescio.
(Augustine on the nature of time)

Abstract. A nonlinear self-adjoint operator on a two-dimensional Hilbert space is constructed to
force a quantum state, composed of two orthogonal states through linear superposition, into one of
these two alternatives (reduction). Associated with this is a bifurcation-process of a collapsing state-
vector at the site of two detectors: since there are no discernible experiments for nonunitary schemes
of quantum state reduction, this paper provides an implicit nonlinear dynamics of a collapse on a
certain time interval, without rejecting unitarity. Set against a large number of explicit reduction-
proposals in the literature, the present framework should be viewed as a phenomenological nonlinear
unitary scheme that might simulate randomness in quantum physics; hence the notion of quantum-
probability appears less inaccessible. So, this essay addresses essential problems of epistemology in
guantum physics .

1. Introduction

The fundamental question to be asked is whetheantum state reductio¢icollapse of the wave-
packet”) is something mental (in the eye of the beholder, as it were), or ssaherocess in time
(independent of the observer's presence). The&@tihger equation does not settle this question: the
“reduction mechanism” is not within the realm of orthodox quantum dynamics [1] which admits a
linear unitary evolutiorof some prescribed quantum state, up to the point of measurement.

Philosophically speaking, most physicists would consider any dynamical description of the collapse
of the wave-packet as being rather superfluous: they claim that the wave function bbgctive
meaning (with respect tphysical reality, e.g. a collapse-model would not improve on the predictive
power of the standard theory. The present author is not convinced that the philosophy of quantum
mechanics should solely be based on algorithms for merely computing data relating to specific exper-
iments. As will be pointed out in the discussion, the actimaing of the collapse is of epistemological
significance, if reduction iphysically real One of the objectives of this paper then is to challenge the
almostdogmaticview that any unitary evolution of the wave function should necessarily be linear.
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Now, the basic idea behind the proposed framework is easily put into the context of major issues in
guantum theory: might perhaps the correct probabilistic interpretation of quantum mechanics come
about by viewing quantum state reduction as a nonlinear unitary bifurcation-process which simulates
randomness ?

In the following an instructive model of a nonlinear extension of the &tinger equation is pre-
sented, so as to provide a simple framework for a collapse. This nonlinear model, yet unitary, is
phenomenologicads opposed to other schemes that make explicit dynamical assumptions (compare
with [2],[3] and the references therein), though some of these exhibit rather arbitrary features and are
probably not checkable; e.g. in this essay there is no direct appeatdoglementvith the outside

world which, as in the case ehvironmentaproposals [4], would not only have to include explicit de-

tails of detectors but ultimately also the observer's mental processes! Finally, since this paper presents
a merephenomenologicdramework for a physical process, it is based on minimal assumptions.

To this end, consider a photon beam incident on a semi-transparent (“half-silvered”) mirror (or pos-
sibly some different arrangement of Stern/Gerlach-typethis beam splits up into a reflected ray

1 and a second ray 2 that passes through the mirror. In Dirac's notation we have for the quantum
state of the photonfp) = \/% (1) +12)), at thetime-pointt = 0, say (for the sake of simplicity, no
complex phase factors are considered);ubetors|1) and|2) being orthonormal.

When two detector®); and D, to be associated with the split beam, are suitably placed on either
side of the mirror (not necessarily equidistdht the interpretation of quantum mechanics tells us
that in this case thquantum-probabilityfor detecting the photon is given by tsquared amplitudes
1(1p)]* = |2lp)| = 1 (time-independent). Upon detection of the photon, reduction then means that
the vectorp) is forcedeither into thestate|1) at the site ofD, , or into thestate|2) at the site ofDs.

2. A nonlinear unitary framework for reduction

Let us suppose that the linear Sgtimger equation holds far € (—o0,0). Then att = 0, the
detectors start tinteract with the split beam, thisnteraction lasting for 7 seconds. The photon
state|p) undergoes “rotation” in a two-dimensional Hilbert space (spanned )bgnd |2)), s.t. the
reduction is completed at= 7. In order to describe this process, ic@ordinate-freegepresentation,
we simply write:

) = exp(— /Rdt[ |1>+|2>)}7 vt € [0,7),

s.t. the vectofp) is reduced either til) or |2) att = 7; hereR is an appropriate self-adjoint operator
(preserving the length dp)), and|0, 7] is thecollapsing time-interval

The actual crux is théime-parameterr, indicating thatR is to be associated with i@al process
inducedby these detectors. Notice that the evolution is still unitary,®Buteing now a nonlinear
operator (depending on the amplitudes). This is probably an unconventional approach, since here the
concept of unitarity is applied to a nonlinear evolution; yet, within the scope of the present paper,
this is the obvious way of incorporatirgjate-vector reductiomto a generalized scheme ofuai-

tary quantum dynamicsMoreover, as pointed out in the appendix, this approach might have some

1There are now various international work groups engaged in testing orthodox quantum theory, mainly in the field of
guantum optics: http://www.physics.mq.edu.au/ ~drice/quoptics.html
2Careful experimental checks are still needed (A. Zeilinger, priv. com.).



significant bearing on the notion cdndomnes# quantum physics!

Instead of Schidinger’s linear equation we now have a nonlinear evolution equation:

d|p)
_— t
i~ Rlp), t€(0,7),

whereR depends on the amplitudes of the state

2.1. The meaning of the nonlineareduction operatorkR

We choose the following ansatz for the state vectorg [0, 7] ) :

p) = 11) (cos ) + [2) (sin9), d € [0,5]

operating (for the sake of simplicity) within the first quadrant, wittlepending omn; (the initial value
Ip) |:=0 comes from the solution of the linear S6dinger equation). Then

Lty 1)~ ) 1227 %

thus by rearranging, and observing the evolution equation:

R = i (1) 2]~ [2) (1)) w, (= )

wherew is the “angular speed” at which the reduction of the state vector takes place.

Diagonalization: By introducing a unitary transformatigg i L ) note that=(|1) £ i]2))

are the normalized eigenvectors belonging to the eigenvgiues

2.2. Achoice for theangular speedv

There is no clue from first principles to start with. A simpleenomenologicahodel would be the
following nonlinear deterministic equation:

@_ 1

-~ te(
dt 27 cos2¢’ €(0,7)

with ¢(0) = 7. Thus
_ (e[ —-12) )
27 (I(Up)* ~ [2p)*)’
depending nonlinearly on the amplitudes (niinve-dependeint

Finally, integration yields:
—1
sin 2¢ = T—, vt € [0, 7].
T

3The matrix representation @ is thenw ( (Z) _OZ ) , wherew depends on the amplitudes (see below)!



Hence the state vecty) is indeed reduced, either (o) or |2) att = 7, according to the solution set:
{¢ =0,¢ = Z}; we may thus say that theitial angle ¢(0) is abifurcation-point

In a more general setting a beam splitter is not exactly “half-silvered”, se-di:

Ip) = |1) (cos éo) + [2) (sin ), 0 < g < —. 4

2
For example, the equation for t@gular speeds generalized to:
do tan 2¢
— =———t
it~ 2=y 1O
with ¢(0) = ¢o; thus:
sin2¢ = (T — t) sin2¢, Vt € [0,7].

Note that there is no analogue in classical mechanics: hence, as to the constru®ipthefe is

no correspondence principléhat would hint at an explanation for a collapse: so, in the following
we do not speculate on an explicit dynamics for detectors that would bring about the reduction of a
state-vector; by setting up a mgskenomenologicdframework for a collapse, we may simply claim

that detectors of this kind certainly exist!

Actually, we do not need an explicit knowledge %: Define, for the sake of simplicityy =
cos ¢, n = sin ¢, then:

d d i
% = (&2 - d—(f, s.t.én = —/t (€% —n?) do(t);

the reduction is completed at= 7, i.e. {n = 0, with ¢ either0 or 7. A general formula is then given

by:
d T
- —M st /0 g(€n.1) dt = £(0)1(0),

with ¢ being some appropriate function.

Generalization to complex amplitudes (accounting for interference-effectsy(£et, ¢) be an ap-
propriate complex valued function, integrable[6nr]; a unitary evolution equation for reduction on
complex numbers then reads:

dlp) 1 0 —ig o7 _ .
ZW_—W(@ 3 ) te . witr [ gtenoa = o

phenomenologically speaking, thisnditionon [0, 7] means that a collapse certainly occurs!
Incidentally, this approach is not restricted to a 2 dimensional Hilbert space: one needs at most

N(N — 1)/2 appropriatg-functions, equal to the number of independent entries in the matrix repre-
sentation ofR, with |p) € [*(N), N > 2. To be sure, it is because of these functions that detectors

4The associated quantum probabilities are giveﬂbby¢o|2 and|sin ¢0|2 , resp.: At this stage, since the present ap-
proach is strictly deterministic (exploiting merely nonlinear instability), these probabilities are left unexplained. However,
notice thatreductionto a single quantum state follows from the validity of the probability-interpretation of the theory; the
epistemologicapoint is whether this reduction is a mesebjective facfdepending on the presence of an observer) or an
objective partof the physical world, i.e., procesghat evolves irtime (see appendix)!
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select a single outcome from a set of superposed sfates . , x|, with > |§Z-|2 = 1; therefore,
without explicitly specifying the measurement process, these functmuela dynamical link be-
tween suitable detectors and the observed system; it then appears, for exampdedivatt photon-
counts are not simply a consequence of certaivironmental decoherenedfects (also see remark
at the end of the appendix), as might be suggested in [4]!

Remark 1: The eigenvectors of the diogonalizestiuction operatarcall it R, with matrix represen-

tationw ( _01 (1) ),followa Schbdinger-type evolution:
dl|r ~ 1 ,
LR e 0m). 1) oo = (1) 12

hence .
) = |1) Jsmo eFO7%0),

where thaotationis either clockwise or counter-clockwise.

Remark 2: Let the reduction be a “mental actF¢ststellung eines Zustanddg); then the result of
an observation is simply given by tlggiadratic equation

{plp) = ((pI2) + (1|p)) = 0, with |p) either [1) or |2);

our initial knowledgeof the situation (the split beam) has changkstcontinuously In case of en-
tanglement, involving two or more correlated quantum objgcig’, p”, . . . in this interpretation one
replaces each base vector with prodyéts’y |’y ... ., s.t. upon reduction the overajl) is either

1) |17 |17 ..., or [27) [2”) |2) ... This is the so-callededuction postulatevhich, from a mere
pragmaticpoint of view, is certainly not wrong; but, in the light of the present paper, does this postu-
late offer acompletedescription?

Concluding Remark: By making use of a rather simple bifurcation scheme, this paper expresses
a unifying aspect within different areas of quantum mechanics through a unitargdBaiper-type
evolution equation :

2 o (e m)
here this self-adjoint operat@ is eitherH (the linearSchibdinger-Hamiltonia, or R (the nonlinear
reduction operatoy, according to whether € (—oc0,0), ort € (0,7), say; the linear Scbdinger
equation only holds up to thiame of measurement which sets about at 0, whereas the nonlinear
evolution equation for reduction relates to the actmalasurement proceseghich is completed at
t=T.

Note that we are dealing with differeaements of realitythere are photons at the quantum-level, and
secondly there anmacroscopic gadge(beam splitters and detectors). So, | believe thdgépends on
theadmissible sizef these devices, and possibly on the frequenofthe beam (being an eigenvalue

of H), s.t. v < 1y; herer, should be someutoff for the coherent splittingnto rays of comparable
amplitudes, i.e.: for frequenciesmuch larger tham,, | would not expect that quantum-mechanical
interference effects (as in interferometry) can be resolved by any kind of experiment. Also note that
there are various views on thié/iding linebetweermicro-andmacroobjects, as discussed in [5] and
very recently in [10].



3. Discussion

The view | take here is still somewhat formal, but perhaps soothing to those who believe that in ortho-
dox quantum theory there is something amiss, i.e. the so-called “measurement process” is not part of
the general scheme. Itis not intended to consider explicit reduction-proposals, so as to urtfolel the
natureof the collapse (even considerisgperpositions of gravitational field],[3]), nor to compete

with explicit stochastic and nonunitary investigations [4],[5],[6]: by introducing a suitable framework
for state-vector reductiowithout departure from unitarity, there is no need to go beyond the rules

of standard quantum theory ; phenomenologically speaking, what really matters is the partitioning of
the timeling i.e. the interval —oo, 7): the state-vector evolves linearly on thedisturbed interval

(—o0, 0], and collapses nonlinearly on theeasuring intervalo, 7!

This phenomenological model represents an implicit nonlinear dynamics foedletion process

with a critical time-parameterr; it hints at an essentidime-scalefor the collapse of superposed
guantum statemteractingwith a macroscopiameasuring apparatus. One might conjecture that
relates to thedmissible sizef any measuring device, assuringacroscopic amplificatioof single
guantum events. However, at present it would be difficult to ascertain a definite empirical basis for
S0, experimenters are urged to pursue this issue further : for a better insight into the epistemology of
quantum physics rather intricate measurements, e.g. the siatirag of the collapse of0, 7], have

yet to be performed!

The issue in question is not a matter of numerically estimatinghich, as in the case of explicit
modifications of quantum mechanics, depends rather strongly on specific modelling assumptions;
this is a matter of principle with far-reachimgistemologicatonsequences [7]: in case thais not
determinable by measurement (irrespective of the underlying dynamics), the proponanjectie
quantum state reductioare likely to be led back to the “Copenhagen interpretation” ( foragern
version see [8]).

Appendix

Let us consider @robabilistic gamefor two players, without explicitly knowing its ingredients: it
is, at any rate, a game involving probabiliti€s and P, referring to the likelihood of winning, s.t.
P, + P, = 1: such a game may have an expediate-lapse ofr seconds. Furthermore, assume that
an appropriate function(¢, n, t) exists, withftT gdt = &n ; for the sake of simplicity, her&, n) are
real valuedgame-variablesdepending on € [0, 7], s.t. |¢|* + |5|* = 1. The question arises whether
there exists a game, s.2, = |£(0)]>, P, = |n(0)|*; for example, the first player wins the game
when|(| = 1, n = 0 att = 7. (Note, in the main text thguantum-probabilitiesn question are
determined by the absolute square of the amplitudes at the onmeetasiuremeint

Probabilities are usually assigned remdomprocesses [9]. In the present context the element of
randomnessnight be due to bifurcation, the outcomg)(either|1) or |2)) is not computable; for ex-
ample, in a Mach-Zehnder interferometer there is no certainty as to which path a photon will take after
entering the apparatus. On a macroscopic scale, however, when one ttEse®m, it is assumed

that the probability for either outcome (heads or tails) is 50%; then according to Newtonian mechan-
ics, if we would know all the physical details at some gitegne-point we could actually compute

the outcome with certainty, i.elassical probabilitiesan beembeddedhto classical physics!

However, no such computation for mutually exclusive outcomes is logically possible in quantum
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theory: principally, in quantum theory there is a lacladtlitional information as is the case when we
try to compute ainiguenumberg from a transcendental equation, likie 2¢ = Q(¢), (0 <t < 7),

att = 7, with Q(7) = 0; in fact, there is no such unique numbet at 7, even though this might be

a solution of adeterministic evolutiorquation! So, it appears that within the context of state-vector
reduction, the concept guantum-probabilitys ultimately related to that ddifurcationin the present
sense.

Remark: For example, consider trenvironmental density matrix-approaehthout state-vector re-
duction [4]: it lacks agenuine probabilistianterpretation (to be based on a random process), since
randomnesss absent from that theory, as pointed out in [9]. Thus this approach does not solve the
random measuremeptoblem!
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