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A Nonlinear Unitary Framework for Quantum State
Reduction: a phenomenological approach∗

Helmut J. Efinger†

Si nemo ex me quaerat, scio; si quaerenti explicare velim, nescio.
(Augustine on the nature of time)

Abstract. A nonlinear self-adjoint operator on a two-dimensional Hilbert space is constructed to
force a quantum state, composed of two orthogonal states through linear superposition, into one of
these two alternatives (reduction). Associated with this is a bifurcation-process of a collapsing state-
vector at the site of two detectors: since there are no discernible experiments for nonunitary schemes
of quantum state reduction, this paper provides an implicit nonlinear dynamics of a collapse on a
certain time interval, without rejecting unitarity. Set against a large number of explicit reduction-
proposals in the literature, the present framework should be viewed as a phenomenological nonlinear
unitary scheme that might simulate randomness in quantum physics; hence the notion of quantum-
probability appears less inaccessible. So, this essay addresses essential problems of epistemology in
quantum physics .

1. Introduction

The fundamental question to be asked is whetherquantum state reduction(“collapse of the wave-
packet”) is something mental (in the eye of the beholder, as it were), or somereal process in time
(independent of the observer‘s presence). The Schrödinger equation does not settle this question: the
“reduction mechanism” is not within the realm of orthodox quantum dynamics [1] which admits a
linear unitary evolutionof some prescribed quantum state, up to the point of measurement.

Philosophically speaking, most physicists would consider any dynamical description of the collapse
of the wave-packet as being rather superfluous: they claim that the wave function has noobjective
meaning (with respect tophysical reality), e.g. a collapse-model would not improve on the predictive
power of the standard theory. The present author is not convinced that the philosophy of quantum
mechanics should solely be based on algorithms for merely computing data relating to specific exper-
iments. As will be pointed out in the discussion, the actualtimingof the collapse is of epistemological
significance, if reduction isphysically real. One of the objectives of this paper then is to challenge the
almostdogmaticview that any unitary evolution of the wave function should necessarily be linear.
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Now, the basic idea behind the proposed framework is easily put into the context of major issues in
quantum theory: might perhaps the correct probabilistic interpretation of quantum mechanics come
about by viewing quantum state reduction as a nonlinear unitary bifurcation-process which simulates
randomness ?

In the following an instructive model of a nonlinear extension of the Schrödinger equation is pre-
sented, so as to provide a simple framework for a collapse. This nonlinear model, yet unitary, is
phenomenologicalas opposed to other schemes that make explicit dynamical assumptions (compare
with [2],[3] and the references therein), though some of these exhibit rather arbitrary features and are
probably not checkable; e.g. in this essay there is no direct appeal toentanglementwith the outside
world which, as in the case ofenvironmentalproposals [4], would not only have to include explicit de-
tails of detectors but ultimately also the observer‘s mental processes! Finally, since this paper presents
a merephenomenologicalframework for a physical process, it is based on minimal assumptions.

To this end, consider a photon beam incident on a semi-transparent (“half-silvered”) mirror (or pos-
sibly some different arrangement of Stern/Gerlach-type1 ): this beam splits up into a reflected ray
1 and a second ray 2 that passes through the mirror. In Dirac‘s notation we have for the quantum
state of the photon:|p〉 = 1√

2
(|1〉+ |2〉), at thetime-pointt = 0, say (for the sake of simplicity, no

complex phase factors are considered); thevectors|1〉 and|2〉 being orthonormal.

When two detectorsD1 andD2, to be associated with the split beam, are suitably placed on either
side of the mirror (not necessarily equidistant2) , the interpretation of quantum mechanics tells us
that in this case thequantum-probabilityfor detecting the photon is given by thesquared amplitudes
|〈1|p〉|2 = |〈2|p〉|2 = 1

2
(time-independent). Upon detection of the photon, reduction then means that

the vector|p〉 is forcedeither into thestate|1〉 at the site ofD1 , or into thestate|2〉 at the site ofD2.

2. A nonlinear unitary framework for reduction

Let us suppose that the linear Schrödinger equation holds fort ∈ (−∞, 0). Then att = 0, the
detectors start tointeract with the split beam, thisinteraction lasting for τ seconds. The photon
state|p〉 undergoes “rotation” in a two-dimensional Hilbert space (spanned by|1〉 and |2〉), s.t. the
reduction is completed att = τ . In order to describe this process, in acoordinate-freerepresentation,
we simply write:

|p〉 = exp(−i

∫ t

0

R dt)

[
1√
2
(|1〉+ |2〉)

]
, ∀t ∈ [0, τ ],

s.t. the vector|p〉 is reduced either to|1〉 or |2〉 at t = τ ; hereR is an appropriate self-adjoint operator
(preserving the length of|p〉), and[0, τ ] is thecollapsing time-interval.

The actual crux is thetime-parameterτ , indicating thatR is to be associated with areal process
inducedby these detectors. Notice that the evolution is still unitary, butR being now a nonlinear
operator (depending on the amplitudes). This is probably an unconventional approach, since here the
concept of unitarity is applied to a nonlinear evolution; yet, within the scope of the present paper,
this is the obvious way of incorporatingstate-vector reductioninto a generalized scheme of auni-
tary quantum dynamics. Moreover, as pointed out in the appendix, this approach might have some

1There are now various international work groups engaged in testing orthodox quantum theory, mainly in the field of
quantum optics: http://www.physics.mq.edu.au/ ∼drice/quoptics.html

2Careful experimental checks are still needed (A. Zeilinger, priv. com.).
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significant bearing on the notion ofrandomnessin quantum physics!

Instead of Schr̈odinger‘s linear equation we now have a nonlinear evolution equation:

i
d |p〉
dt

= R|p〉 , t ∈ (0, τ),

whereR depends on the amplitudes of the state|p〉.

2.1. The meaning of the nonlinearreduction operatorR

We choose the following ansatz for the state vector (∀t ∈ [0, τ ] ) :

|p〉 = |1〉 (cos φ) + |2〉 (sin φ) , φ ∈
[
0,

π

2

]
,

operating (for the sake of simplicity) within the first quadrant, withφ depending ont; (the initial value
|p〉 |t=0 comes from the solution of the linear Schrödinger equation). Then

d |p〉
dt

= − [〈2|p〉 |1〉 − 〈1|p〉 |2〉] dφ

dt
;

thus by rearranging, and observing the evolution equation:

R = −i (|1〉 〈2| − |2〉 〈1|) ω, (ω =
dφ

dt
)

whereω is the “angular speed” at which the reduction of the state vector takes place.3

Diagonalization: By introducing a unitary transformation1√
2

(
1 i
1 −i

)
, note that 1√

2
(|1〉 ± i |2〉)

are the normalized eigenvectors belonging to the eigenvalues∓ω.

2.2. A choice for theangular speedω

There is no clue from first principles to start with. A simplephenomenologicalmodel would be the
following nonlinear deterministic equation:

dφ

dt
= − 1

2 τ cos 2φ
, t ∈ (0, τ)

with φ(0) = π
4
. Thus

R =
i (|1〉 〈2| − |2〉 〈1|)

2 τ
(
|〈1|p〉|2 − |〈2|p〉|2

) ,

depending nonlinearly on the amplitudes (nowtime-dependent).

Finally, integration yields:

sin 2φ =
τ − t

τ
, ∀t ∈ [0, τ ].

3The matrix representation ofR is thenω

(
0 −i
i 0

)
, whereω depends on the amplitudes (see below)!
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Hence the state vector|p〉 is indeed reduced, either to|1〉 or |2〉 at t = τ , according to the solution set:{
φ = 0, φ = π

2

}
; we may thus say that theinitial angleφ(0) is abifurcation-point.

In a more general setting a beam splitter is not exactly “half-silvered”, so att = 0:

|p〉 = |1〉 (cos φ0) + |2〉 (sin φ0) , 0 < φ0 <
π

2
. 4

For example, the equation for theangular speedis generalized to:

dφ

dt
= − tan 2φ

2(τ − t)
, t ∈ (0, τ),

with φ(0) = φ0; thus:

sin 2φ =

(
τ − t

τ

)
sin 2φ0, ∀t ∈ [0, τ ] .

Note that there is no analogue in classical mechanics: hence, as to the construction ofR, there is
no correspondence principlethat would hint at an explanation for a collapse: so, in the following
we do not speculate on an explicit dynamics for detectors that would bring about the reduction of a
state-vector; by setting up a merephenomenologicalframework for a collapse, we may simply claim
that detectors of this kind certainly exist!

Actually, we do not need an explicit knowledge ofdφ
dt

: Define, for the sake of simplicity,ξ =
cos φ, η = sin φ , then:

dξη

dt
= (ξ2 − η2)

dφ

dt
, s.t. ξη = −

∫ τ

t

(ξ2 − η2) dφ(t);

the reduction is completed att = τ , i.e. ξη = 0, with φ either0 or π
2
. A general formula is then given

by:
dφ

dt
= −g(ξ, η, t)

ξ2 − η2
, s.t.

∫ τ

0

g(ξ, η, t) dt = ξ(0)η(0),

with g being some appropriate function.

Generalization to complex amplitudes (accounting for interference-effects): Letg(ξ, η, t) be an ap-
propriate complex valued function, integrable on[0, τ ]; a unitary evolution equation for reduction on
complex numbers then reads:

i
d |p〉
dt

= − 1

|ξ|2 − |η|2

(
0 −ig
ig 0

)
|p〉 , t ∈ (0, τ), with

∫ τ

0

g(ξη, t) dt = ξ(0)η(0);

phenomenologically speaking, thisconditionon [0, τ ] means that a collapse certainly occurs!

Incidentally, this approach is not restricted to a 2 dimensional Hilbert space: one needs at most
N(N − 1)/2 appropriateg-functions, equal to the number of independent entries in the matrix repre-
sentation ofR, with |p〉 ∈ l2(N), N ≥ 2. To be sure, it is because of these functions that detectors

4The associated quantum probabilities are given by|cos φ0|2 and|sinφ0|2 , resp.: At this stage, since the present ap-
proach is strictly deterministic (exploiting merely nonlinear instability), these probabilities are left unexplained. However,
notice thatreductionto a single quantum state follows from the validity of the probability-interpretation of the theory; the
epistemologicalpoint is whether this reduction is a meresubjective fact(depending on the presence of an observer) or an
objective partof the physical world, i.e., aprocessthat evolves intime(see appendix)!
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select a single outcome from a set of superposed states[ξ1, . . . , ξN ], with
∑

N |ξi|2 = 1; therefore,
without explicitly specifying the measurement process, these functionsmodela dynamical link be-
tween suitable detectors and the observed system; it then appears, for example, thatrandom photon-
counts are not simply a consequence of certainenvironmental decoherence-effects (also see remark
at the end of the appendix), as might be suggested in [4]!

Remark 1: The eigenvectors of the diogonalizedreduction operator, call it R̃, with matrix represen-

tationω

(
−1 0
0 1

)
, follow a Schr̈odinger-type evolution:

i
d |r〉
dt

= R̃ |r〉 , t ∈ (0, τ), |r〉 |t=0 =
1√
2
(|1〉 ± i |2〉);

hence
|r〉 = |r〉 |t=0 e±i(φ−φ0),

where therotation is either clockwise or counter-clockwise.

Remark 2: Let the reduction be a “mental act” (Feststellung eines Zustandes[1]); then the result of
an observation is simply given by thequadratic equation:

〈p|p〉 − (〈p|2〉+ 〈1|p〉) = 0, with |p〉 either |1〉 or |2〉 ;

our initial knowledgeof the situation (the split beam) has changeddiscontinuously. In case of en-
tanglement, involving two or more correlated quantum objectsp′, p′′, p′′′, . . . in this interpretation one
replaces each base vector with products|′〉 |′′〉 |′′′〉 . . . ., s.t. upon reduction the overall|p〉 is either
|1′〉 |1′′〉 |1′′′〉 . . ., or |2′〉 |2′′〉 |2′′′〉 . . .. This is the so-calledreduction postulatewhich, from a mere
pragmaticpoint of view, is certainly not wrong; but, in the light of the present paper, does this postu-
late offer acompletedescription?

Concluding Remark: By making use of a rather simple bifurcation scheme, this paper expresses
a unifying aspect within different areas of quantum mechanics through a unitary Schrödinger-type
evolution equation :

i
d |p〉
dt

= Q |p〉 , (t ∈ R1);

here this self-adjoint operatorQ is eitherH (the linearSchr̈odinger-Hamiltonian), orR (the nonlinear
reduction operator), according to whethert ∈ (−∞, 0), or t ∈ (0, τ), say; the linear Schrödinger
equation only holds up to thetimeof measurement which sets about att = 0, whereas the nonlinear
evolution equation for reduction relates to the actualmeasurement processwhich is completed at
t = τ .

Note that we are dealing with differentelements of reality: there are photons at the quantum-level, and
secondly there aremacroscopic gadgets(beam splitters and detectors). So, I believe thatτ depends on
theadmissible sizeof these devices, and possibly on the frequencyν of the beam (being an eigenvalue
of H), s.t. ν < ν0; hereν0 should be somecutoff for thecoherent splittinginto rays of comparable
amplitudes, i.e.: for frequenciesν much larger thanν0, I would not expect that quantum-mechanical
interference effects (as in interferometry) can be resolved by any kind of experiment. Also note that
there are various views on thedividing linebetweenmicro-andmacroobjects, as discussed in [5] and
very recently in [10].
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3. Discussion

The view I take here is still somewhat formal, but perhaps soothing to those who believe that in ortho-
dox quantum theory there is something amiss, i.e. the so-called “measurement process” is not part of
the general scheme. It is not intended to consider explicit reduction-proposals, so as to unfold thetrue
natureof the collapse (even consideringsuperpositions of gravitational fields[2],[3]), nor to compete
with explicit stochastic and nonunitary investigations [4],[5],[6]: by introducing a suitable framework
for state-vector reductionwithout departure from unitarity, there is no need to go beyond the rules
of standard quantum theory ; phenomenologically speaking, what really matters is the partitioning of
the timeline, i.e. the interval(−∞, τ): the state-vector evolves linearly on theundisturbed interval
(−∞, 0], and collapses nonlinearly on themeasuring interval[0, τ ]!

This phenomenological model represents an implicit nonlinear dynamics for thereduction process
with a critical time-parameterτ ; it hints at an essentialtime-scalefor the collapse of superposed
quantum statesinteractingwith a macroscopicmeasuring apparatus. One might conjecture thatτ
relates to theadmissible sizeof any measuring device, assuringmacroscopic amplificationof single
quantum events. However, at present it would be difficult to ascertain a definite empirical basis forτ ;
so, experimenters are urged to pursue this issue further : for a better insight into the epistemology of
quantum physics rather intricate measurements, e.g. the actualtiming of the collapse on[0, τ ], have
yet to be performed!

The issue in question is not a matter of numerically estimatingτ which, as in the case of explicit
modifications of quantum mechanics, depends rather strongly on specific modelling assumptions;
this is a matter of principle with far-reachingepistemologicalconsequences [7]: in case thatτ is not
determinable by measurement (irrespective of the underlying dynamics), the proponents ofobjective
quantum state reductionare likely to be led back to the “Copenhagen interpretation” ( for amodern
version see [8]).

Appendix

Let us consider aprobabilistic gamefor two players, without explicitly knowing its ingredients: it
is, at any rate, a game involving probabilitiesP1 andP2, referring to the likelihood of winning, s.t.
P1 + P2 = 1: such a game may have an expectedtime-lapse ofτ seconds. Furthermore, assume that
an appropriate functiong(ξ, η, t) exists, with

∫ τ

t
g dt = ξη ; for the sake of simplicity, here(ξ, η) are

real valuedgame-variables, depending ont ∈ [0, τ ], s.t. |ξ|2 + |η|2 = 1. The question arises whether
there exists a game, s.t.P1 = |ξ(0)|2 , P2 = |η(0)|2 ; for example, the first player wins the game
when |ξ| = 1 , η = 0 at t = τ . (Note, in the main text thequantum-probabilitiesin question are
determined by the absolute square of the amplitudes at the onset ofmeasurement).

Probabilities are usually assigned torandomprocesses [9]. In the present context the element of
randomnessmight be due to bifurcation, the outcome (|p〉 either|1〉 or |2〉) is not computable; for ex-
ample, in a Mach-Zehnder interferometer there is no certainty as to which path a photon will take after
entering the apparatus. On a macroscopic scale, however, when one tosses afair coin, it is assumed
that the probability for either outcome (heads or tails) is 50%; then according to Newtonian mechan-
ics, if we would know all the physical details at some giventime-point, we could actually compute
the outcome with certainty, i.e.classical probabilitiescan beembeddedinto classical physics!

However, no such computation for mutually exclusive outcomes is logically possible in quantum
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theory: principally, in quantum theory there is a lack ofadditional information- as is the case when we
try to compute auniquenumberφ from a transcendental equation, likesin 2φ = Ω(t), (0 ≤ t ≤ τ) ,
at t = τ , with Ω(τ) = 0; in fact, there is no such unique number att = τ , even though this might be
a solution of adeterministic evolutionequation! So, it appears that within the context of state-vector
reduction, the concept ofquantum-probabilityis ultimately related to that ofbifurcationin the present
sense.

Remark: For example, consider theenvironmental density matrix-approachwithout state-vector re-
duction [4]: it lacks agenuine probabilisticinterpretation (to be based on a random process), since
randomnessis absent from that theory, as pointed out in [9]. Thus this approach does not solve the
random measurementproblem!
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