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Abstract

Adapted wavelet analysis in the sense of wavelet packet algorithms is a highly relevant procedure in different types of
applications, like, e.g. data compression, feature extraction, classification problems, data analysis, numerical mathematics,
etc. Given a large or high-dimensional data set the computational demand is too high for interactive or “nearly-interactive”
processing. Therefore, parallel processing is one of the possibilities to accelerate the processing speed. In this case, special
attention has to be paid towards handling of the large amount of data in addition to the proper organization of the compu-
tations. We investigate different data decomposition approaches, border handling techniques and programming paradigms.
The memory consuming decomposition into a given arbitrary basis after adaptive basis choice is resolved by a localized
decomposition strategy. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Wavelet packets [24] represent a generalization
of the method of multiresolution decomposition and
comprise the entire family of subband coded (tree)
decompositions. Whereas in the wavelet case the
decomposition is applied recursively to the coarse
scale approximation subband only (leading to the
well known (pyramidal) wavelet decomposition tree),
in the wavelet packet decomposition the recursive
procedure is applied to all subbands (i.e. coarse scale
approximation and detailed signals), which leads to
a complete wavelet packet tree (i.e. binary tree and
quadtree in the 1D and 2D case, respectively) and
more flexibility in frequency resolution. See Fig. 1
for the 1D case.
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A given data set may be represented by different sets
of subbands. There are several possibilities (see below)
regarding the determination of subbands suitable for
an application. The meaning of suitable depends on
the type of application, e.g. signal/image compression
[26], feature extraction [18], classification algorithms
[13,14], telecommunication applications [15], numer-
ical mathematics [16], and many more. The wavelet
packet “best basis algorithm” [5] performs an adaptive
optimization of the frequency resolution of a complete
wavelet packet decomposition tree by selecting the
most suitable frequency subbands with respect to an
additive cost function. The same algorithm employed
with non-additive cost function is denoted “near-best
basis algorithm” [20], if the subband structure is re-
stricted to uniform time–frequency resolution, the cor-
responding algorithm is denoted “best level selection”
[4].

In the context of image compression, a more ad-
vanced technique is to use a framework that includes
both rate and distortion, where the best basis subtree
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Fig. 1. 1D wavelet packet and pyramidal wavelet decomposition
tree.

which minimizes the global distortion for a given cod-
ing budget is searched [17]. Other methods use fixed
bases of subbands for similar signals (e.g. fingerprints
[11]) or search for good representations with genetic
optimization methods [1,3].

Whereas, an enormous amount of work has been al-
ready done concerning the development and thorough
analysis of parallel algorithms for the fast wavelet
transform (FWT), only few papers have been devoted
to parallel wavelet packet decomposition and its spe-
cific features and demands (e.g. approaches for per-
forming the best basis algorithm and the irregular
decomposition into such a basis on parallel MIMD
[8,10,21,22] and SIMD [2,7] architectures, application
of parallel wavelet packet decomposition in numerics
[6,16]).

In this work, we discuss and investigate issues
related specifically to a parallelization of the adap-
tive wavelet packet decomposition (i.e. the best
basis algorithm) and corresponding programming
paradigms. In particular, we treat the questions of
data decomposition, boundary handling, and memory
consumption. The algorithms are discussed in the
context of 3D data as processed for 3D video cod-
ing [12] or the analysis of volumetric medical data
[23].

Fig. 2. 3D filtering with a QMF pair.

2. Sequential algorithm

The FWT uses a quadrature mirror filter (QMF)
pair to decompose a signal into a high and a low fre-
quency subband by convolution and downsampling by
two. This is repeated for the low frequency subband
only in pyramidal decomposition and for all subbands
in wavelet packet decomposition. In the 3D case, the
decomposition of a subband produces eight new sub-
bands by convolution along each of the three dimen-
sions (see Fig. 2), leading to a full decomposition tree
(octtree) which produces 8n subbands at a decompo-
sition depth of n.

We want to estimate how suitable specific parts of
the decomposition tree are with respect to a target
application. Within the best basis algorithm, this is
done by evaluating a cost function. A classical exam-
ple for compression purposes is the entropy H(X) =
−∑

jpj log pj , where pj = |xj |2/‖X‖2 and X =
(x0, x1, x2, . . . ) are the coefficients in the subband. An
additive analogue is λ(X) = −∑

j |xj |2 log |xj |2 by
the use of which

∑
iλ(Xi) can be compared efficiently

with λ(X) if X is decomposed into X1, . . . , X8.
Classically, in order to determine the best basis

(i.e. the optimal subband structure with respect to the
cost function in use), one has to perform a complete
decomposition and to compute for each subband on
each decomposition level its cost function value. Sub-
sequently, the cost of each subband is compared with
the cost of its children subbands traversing the tree in a
bottom-up manner in order to determine the subbands
with optimal cost function values. This is a recursive
procedure, leading to a decomposition tree, that stops
branching where the cost cannot be further minimized.
After that, the subbands that minimize the overall
cost have to be selected by either accessing sub-
band data kept in memory or performing a second
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Fig. 3. Best basis decomposition without a second run and mini-
mized memory demand. The letters used in the figure imply the
following: D — Backup subband and Decompose; S — Sum the
cost of subbands; R — Restore subband if decomposition does
not reduce the cost.

decomposition run according to the best basis tree.
Note that the first strategy has high memory re-
quirements and poses corresponding difficulties on
distributed memory systems whereas the second strat-
egy trades off computational complexity for memory
demand and results in a potentially highly irregular
second decomposition run which is hard to parallelize
especially on massively parallel systems [22].

Therefore, we present a strategy to avoid the sec-
ond run by backing up and restoring subbands and by
traversing the decomposition tree in depth first order
(see Fig. 3). Pseudo code 1 (Fig. 4) implements this
strategy as a recursive procedure. Within this proce-
dure, first the cost function is evaluated for the cur-
rent subband. Subsequently, the subband is backed up
before it is transformed into eight new subbands by
use of the QMF pair. After that, each new subband is
treated the same way and we receive a cost function
value for each subband which is the lowest cost that

Fig. 4. Pseudo code 1: sequential algorithm.

can be reached by the right choice of the decomposi-
tion subtree. These values are summed up and com-
pared to the value determined in the beginning of the
procedure. If this sum is not less, then the subband is
restored. The lower value is returned.

3. Parallel algorithm

3.1. Message passing approach

For a message passing parallelization, computa-
tions need to be distributed in a coarse grained way.
The data are simply split into several parts along one
or more axes and distributed among the processor
elements (PE). But at a certain decomposition depth,
subbands get too small to be processed efficiently in
parallel since single subbands are spread across all
PE. This stage is of course dependent on the number
of PE employed and is denoted “redistribution level”
[8,22]. At this stage, data has to be redistributed so
that entire subbands are located on single PE which
enables to perform the remaining computations with-
out any additional communication. Therefore, the
concept of the sequential algorithm cannot be com-
pletely adapted to the parallel algorithm.

We choose a mixed approach: as visualized in
Fig. 5, in a first phase data are classically distributed
(e.g. in equally sized blocks) and completely decom-
posed up to the redistribution level. Subsequently,
data is redistributed (see redistribution level in Fig. 5)
and decomposed using the sequential algorithm from
Section 2 (including the best basis selection for these
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Fig. 5. Parallel decomposition (without best basis selection) — different colours symbolize different PE.

subbands). In the third phase (where the final sub-
band structure is generated), we have to cope with the
possibility, that a subband at a level below the redistri-
bution level is required, so these data have to be regen-
erated somehow, as it was not backed up for memory
reasons. We choose the approach to recompose this
data from higher level subbands, because subbands
are more likely to be decomposed at these levels.

Pseudo code 2 (Fig. 6) shows how this can be imple-
mented. In a first phase, the data is distributed among
the node PE and decomposed completely up to the

Fig. 6. Pseudo code 2: parallel algorithm.

redistribution level without considering the best basis
tree. In the second phase, the data is redistributed and
subbands can be decomposed using the sequential al-
gorithm (SequDecompose), because entire subbands
are located on single PE. This includes the decompo-
sition into the best basis (sub) tree for these subbands.
After that (third phase), the cost function values and
subtree information are exchanged and the best ba-
sis tree is finally determined by “connecting” the sub-
trees together. If the best basis tree contains a branch,
that does not grow up to the redistribution level, the



R. Kutil, A. Uhl / Future Generation Computer Systems 18 (2001) 97–106 101

corresponding subband has to be recomposed, because
it was not backed up in the first phase. This is a pro-
cess similar to the first phase and does not lead to
a load balancing problem, because single subbands
are distributed among all PE below the redistribution
level.

The choice of the location of the redistribution
level is obviously very important with respect to
performance — the fewer decomposition levels are
performed before redistribution, the less boundary
treatment operations are necessary (see below). How-
ever, if redistribution is performed too early, a severe
load balancing problem may arise (especially if low
dimensional data are processed on massively parallel
systems). Note again that in the s-dimensional case,
we result in 2sn subbands at decomposition level n.
In order to guarantee a nicely distributed load, the
number of available subbands should be significantly
larger as compared to the number of PE. Consequently,
there is a trade-off between optimally balanced
load and performing the redistribution as early as
possible.

The memory requirement of the above algorithm for
a node PE is therefore ((t/#PE)+ (2r − 1)(f − 2))xy
floating point numbers for the first phase (t ,x and y are
the data sizes along the corresponding axes, f the filter
length and r the redistribution level) plus txy8−r (1+b)

for the second phase (where b stands for the memory
needed to back up the subbands before decomposition)

Fig. 7. Speedup comparison for different redistribution levels. (a) SGI Powerchallenge, (b) Cray T3E.

which should be rather small for r > 1. In this case,
b = 1 + 1

8 + 1
82 + · · · ≈ 8

7 . If we performed a second
run, backing up the subbands would not be necessary,
therefore b = 0. The conventional algorithm (storing
all subbands) would imply b = d − r , where d is the
maximum decomposition depth.

Boundary problem. A classical problem in parallel
wavelet and wavelet packet algorithms is the question
of how to handle the exchange of the necessary border
data. Recall that the need for border data located on
adjacent PE is caused by the nature of the QMF pro-
cess which involves several neighbouring data points
in order to compute a single transform coefficient. In
the literature, two approaches for the boundary prob-
lems have been discussed and compared [19,25]. Dur-
ing the data swapping method, each PE calculates only
its own data and exchanges these results with the ap-
propriate neighbour PE in order to get the necessary
border data for the next decomposition level. Employ-
ing redundant data calculation each PE computes also
necessary redundant border data in order to avoid addi-
tional communication to obtain this data. It was shown
that the decision, which method to apply, is very im-
portant for certain wavelet algorithms (see, e.g. [9] for
the á trous algorithm and Fig. 9 for 3D pyramidal fast
wavelet decomposition). Therefore, we investigate its
influence on the wavelet packet decomposition.

Multidimensional data splitting. There are several
possibilities to distribute higher dimensional data in
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the start phase, because they can be split along several
axes. It can be shown that by splitting the data along
several coordinate axes it is possible to reduce the
amount of border data that has to be exchanged, but
it increases the communication complexity (since the
number of adjacent PE is higher).

3.2. Shared memory approach

Data parallel programming on a shared memory
architecture is easily achieved by transforming a
sequential algorithm into a parallel one by simply
identifying areas which are suitable to be run in par-
allel, i.e. in which no data dependencies exist and dif-
ferent iterations access different data. Subsequently,
local and shared variables need to be declared and
parallel compiler directives are inserted.

Here we choose parallelization of a decomposition
step along one axis of the 3D data. Because one has
to take care, that parallel regions are not too short
with regard to execution time, we have to change this
strategy at a certain decomposition depth. This leads
to a simulation of the message passing algorithm (data
redistribution).

4. Experimental results

We conduct experiments on an SGI Powerchallenge
GR (at RIST++, Salzburg University) with 20 MIPS
R10000 processors and 2.5 GB memory and on a Cray
T3E with 512 compute nodes type 1200. The size
of the video data is 128 × 128 pixels in the spatial
domain, combined to a 3D data block consisting of
512 frames. QMFs with 8 coefficients are used. The
PVM version employed on the SGI Powerchallenge is
a special shared memory variant for SGI systems. On
the Cray T3E MPI is used.

Fig. 7 shows a speedup comparison for subband
based redistribution. One can see clearly that a too
low redistribution level limits the number of subbands
that are redistributed, leaving some PE without work
(load balancing problem). A too high redistribution
level increases the communication complexity of the
redistribution. This shows that redistribution based on
subbands is necessary. Note that, if best basis compu-
tations are omitted (full decomposition), the speedup
behaviour is the same, because the computational de-

mand for each subband is increased in the same way
over all decomposition levels.

Within Fig. 8, several runs of a decomposition with
different choices of the redistribution level are visual-
ized with a monitoring tool. The lowest horizontal line
symbolizes the progression of the host PE in time, the
other represent the node PE. The bold black parts of
these time lines represent calculation phases. Crossed
lines (almost vertical) symbolize the transmission of
data from one PE to the other. Time is measured in
seconds.

Figs. 9 and 10 show that whereas for pyramidal
wavelet decomposition the choice of the border han-
dling strategy does affect the performance of the
algorithm significantly, it turns out to be of almost
no relevance for wavelet packet decomposition (“n
steps with redundant data” means that the first n

steps of the decomposition do not have to exchange
border data). The reason is that in the wavelet case
the entire processing time is dominated by the first
decomposition level (where the choice of border
handling strategy is crucial) whereas in the wavelet
packet case all decomposition levels require roughly
the same computational amount. The computations
above the redistribution level are not affected by any
border problem at all which explains the different
behaviour. For the same reason, the use of differ-
ent techniques for multidimensional data splitting
shows little influence on the speedup behaviour of the
algorithm.

Finally, we compare the message passing approach
with a version of shared memory programming (see
Fig. 11). A straightforward approach (denoted “Pow-
erC without redistribution” in the plot) where simply
the loop corresponding to the dimension of the data
block is parallelized does not even show any speedup
across the entire range of processors. The reason for
this phenomenon is that the high number of parallel
regions (corresponding to the number of subbands)
cause a significant parallelization overhead. Only by
simulating the message passing approach to some
extent (which is very expensive in terms of imple-
mentation effort and therefore the advantage of shared
memory programming is lost) we reach some speedup
but still significantly below the message passing im-
plementation. This effect is caused by the fact that
the computations are performed on a large amount of
data, causing higher access times.
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Fig. 8. Effect of subband based redistribution on execution. (a) Level 1, (b) level 2, (c) level 3 and (d) level 4.

Fig. 9. Effect of different data decomposition techniques for pyramidal wavelet decomposition. (a) SGI Powerchallenge, (b) Cray T3E.
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Fig. 10. Effect of different data decomposition techniques for wavelet packet decomposition. (a) SGI Powerchallenge, (b) Cray T3E.

Fig. 11. Message passing vs. data parallel.

5. Conclusion

In this work, we have discussed several issues
important for efficient wavelet packet best basis
algorithms on parallel architectures. A localized
decomposition strategy has been developed which can
avoid the need for a second run of the algorithm in
memory critical environments and corresponding load

balancing problems. Additionally, the experiments
show clearly that in contrast to the pyramidal wavelet
transform the border data problem can be neglected.
Furthermore, we have found that a subband based
data redistribution is necessary to achieve satisfying
speedup behaviour. The shared memory programming
approach is not able to compete against the message
passing implementation on a multiprocessor.
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