
Finger Vein Spoof GANs: Are they really useful to
enhance PAD training?

Tessnim Boulfoul, Valentin Pröpster, Andreas Vorderleitner and Andreas Uhl
Dept. of Artificial Intelligence and Human Interfaces

University of Salzburg (PLUS)
J.-Haringerstr.2, 5020 Salzburg, Austria

Email: andreas.uhl@plus.ac.at

Abstract—Four traditional GAN-based I2I translation tech-
niques have been employed for the synthesis of biometric finger
vein presentation attack instrument (PAI) samples (three pub-
lic presentation attack datasets have been considered). These
synthetic samples have been used to train presentation attack
detectors (PAD). This work considers the more realistic setting
to augment PAD training sets with synthetic data, instead of
entirely replacing real by synthetic samples, as done in earlier
work. Our analysis reveals that uninformed usage of synthetic
data in the considered context has to be avoided as it can lead
to dramatically high APCER values. Instead, we recommend to
use an augmentation of training data with synthetic samples only
in case of too high BPCER values when training with real data
alone.

I. INTRODUCTION

Presentation attacks (PA) are typically conducted by pre-
senting artefacts mimicking real biometric traits (aka “presen-
tation attack instrument” (PAI)) to the biometric sensor to be
deceived. Counter-measures to these types of attacks have of
course already been developed and are termed “presentation-
attack detection (PAD)” or “anti-spoofing” measures [1]. A
comprehensive overview of PAD techniques for vascular data
can be found in table 14.1 in [2]. More recent examples are
e.g. [3] where a targeted fusion of recognition scheme results
is used for PAD and [4] where a customised CNN is trained to
detect PAI samples. Also, liveness detection measures can be
used against PA, typically by analysing near-infrared videos
(in the spectral domain of dorsal hand vein videos [5] or
by applying a light vision transformer approach in the Gabor
domain of finger vein videos [6]).

The last decade has brought forward several publications
that presented ways to potentially fool finger vein-based
authentication systems. In first attempts, vascular PAIs are
generated as easily as printing a previously captured finger vein
sample image on a piece of paper or on overhead projector foil
and presenting this printout (eventually manually enhanced)
to the sensor (see [7] for a review on these techniques).
Current public datasets containing PAI sample data are based
on this approach while more advanced techniques involving
smartphone displays [7] or modelling finger properties using
silicone or beeswax [8] have been developed. Obviously,
the generation of PAI samples is tedious work: Generating
printouts (manually enhanced) or physical models (in various
materials, typically with attached printed vascular structures)
and subsequent scanning with a target sensor is required to
generate the forged sample data. As a consequence, available
PAI sample datasets are of moderate size at best [3] which
endangers a statistically relevant assessment of associated

security risks. As a consequence, it is obvious to consider
the synthesis of PAI sample data to provide sufficiently sized
datasets. Note that PAI samples are used for two purposes
mainly: First, to evaluate the threat posed by such artefacts
used in a PA against a particular recognition scheme (vul-
nerability assessment), and second, to train PAD techniques
designed for securing the biometric system [1].

In this work, we focus on the second application case, i.e.
training PAD techniques using synthetic data. In earlier work
[9], [10], finger vein PAI sample data originally synthesised to
conduct a vulnerability assessment [11] has been shown to be
appropriate in principle to train a PAD system as well (at least
when choosing suited feature extraction schemes and GAN
types [9], [10]). The synthetic data has been generated after
training well-known classical image-to-image (I2I) translation
GAN structures with data from public PAI sample datasets. In
subsequent work [12], we have demonstrated that the usage of
more recent synthesis methods (i.e. StyleSwin and DDPM) for
generating PAI samples delivers competitive but nor superior
results, probably caused by the limited amount of training data
available.

The work in [9], [10] also reveals certain drawbacks when
using synthetic PAI data in PAD training, in particular when
training a two-class classifier with bona fide data (real data,
class 1) vs. synthetic PAI data (GAN generated samples, class
2). We have found that depending on features and classifier
configuration, the PAD classifier may learn two different
things: To distinguish, as intended when using a PAD scheme,
(i) bona fide samples from PAI samples (based on their visual
differences), and to distinguish, as not intended, (ii) real from
synthetic data (based on artefacts synthetic data typically
contain, e.g. so-called model fingerprints [9]). The assessment
of the PAD classifier is done with real datasets, i.e. both bona
fide and PAI samples are actually acquired by a biometric
sensor. In case the PAD classifier has indeed (unintentionally)
learned to discriminate real from synthetic data, all data used
in assessment is classified into class 1, failing to detect any
PAI samples and causing extremely high error rates for these
data. The work done so far investigates these effects for a PAD
training process which completely replaces existing, real PAI
samples with the synthetic ones in a PAD system [9], [10]. This
scenario is not realistic, as real PAI samples are required to
generate synthetic ones anyway, so why not using those being
available in PAD training ? Thus, the more realistic setting
is to augment existing real PAI samples with synthetic ones,
i.e. to use a PAI sample training set that is a mix of real
and synthetic PAI samples. This paper investigates the effects
when applying this approach in finger vein PAD training (and



assessment) and tries to answer the question if the usage of
synthetic PAI data in a mixed training data set can avoid the
pitfalls observed when entirely replacing real PAI data.

The rest of this manuscript is organised as follows: In
Section II we define the experimental settings with respect to
datasets, employed image synthesis methods and used evalua-
tion metrics, experimental results are presented in Section III.
The conclusion and outlook to future work is given in Section
IV.

II. EXPERIMENTAL SETTINGS

A. (Deep-Learning based) Synthesis of PAI Samples

A recent survey on synthetic biometric data [13] reveals,
that synthetic generation of vascular data, in particular finger
vein samples, has hardly been addressed before apart from
own prior work. One of the few exceptions is [14], where it
was shown that it is indeed possible to generate grey-scale
vascular samples (finger vein as well as hand vein data) from
corresponding binary features using a learning-based approach
(template inversion). An entirely different way for finger vein
sample synthesis, relying on a model-based approach, has been
demonstrated in [15]. Still, there are a few further examples
employing generative AI techniques: [16] proposed a GAN-
based synthesis of a finger vein sample dataset based on the
prior generation of a vein pattern image, while [17] applied an
end-to-end GAN-based sample generation where the samples
are used to augment the training set in deep-learning based
finger vein recognition. Similarly, also [18] applies a (Cycle)-
GAN-based finger vein sample synthesis approach to improve
recognition.

In earlier work [11], the following I2I networks have been
applied to generate the data used in this work as well: Cycle-
GAN [19], DistanceGAN [20], DRIT [21], and StarGANv2
[22]. The network implementations made available by the
authors of the original papers have been used to create the
data. Samples have been fed into the networks in full size and
slightly resized according to the networks need using bicubic
(e.g. CycleGAN) or bilinear (e.g. DistanceGAN) interpolation.
Augmentations are done within the network as supported,
without any additional external augmentation.

Note that for vulnerability assessment (as originally in-
tended), synthetic samples need to be suited for impersonation
(i.e. synthetic PAI samples are confused with real samples of
a person enrolled in a database by the recognition approach
used by the biometric system), while for PAD training, syn-
thetic PAI samples “only” need to look / behave similar to
real PAI samples according to the employed PAD classifiers’
perspective. Thus, the data sets synthesised in [11] for vul-
nerability assessment contain a synthetic PAI sample for each
corresponding real PAI sample in the original database.

Data synthesis for these four networks has been done in
a five-fold cross validation, i.e. for each configuration, five
different network instances have been trained from scratch to
generate their share of the final data. Fold construction prevents
to have distinct samples of a single subject in both the training
and evaluation sets, respectively (thus we separate subjects
in training and evaluation data). The detailed description
of which parameters have been used for each network can

be retrieved from https://wavelab.at/sources/Vorderleitner23b/,
based on which the synthetic data can be reproduced.

B. Datasets

The Idiap Research Institute VERA Fingervein Database
(VERA) [23] consists of 220 unique fingers captured in 2
sessions from 110 subjects. Each sample has one PAI sample
counterpart, which is generated by printing preprocessed sam-
ples on high quality paper using a laser printer and enhancing
vein contours with a black whiteboard marker afterwards.
Images come as full (250×665 pixels) or cropped (150×565
pixels) samples, overall we have 440 PAI samples.

The South China University of Technology Finger Vein
Database (SCUT) [24] was collected from 6 fingers of 100
subjects captured in 6 acquisition sessions, overall we have
3600 PAI samples. For PAI sample generation, each finger
vein image is printed on two overhead projector films which
are aligned and stacked. In order to reduce overexposure,
additionally a strong white paper is put in-between the two
overhead projector films. Images come as full (640×288
pixels, we use those) or cropped samples of variable size.

The Paris Lodron University of Salzburg Finger Vein
Spoofing Data Set (PLUS) [8] uses a subset of the PLUS Vein-
FV3 dataset as bona fide samples. For PAI sample generation,
principle curvature binarised vein structures from 6 fingers of
22 subjects were printed on paper and sandwiched into a top
and bottom made of beeswax. Capturing is done employing
two illumination variants (LED and Laser) and using two
different levels of vessel thickness. Every sample is of size
192×736 pixels, using data from 3 sessions we have 396 PAI
samples.

In Fig. 1 we display a pair of bona fide and PAI sample im-
ages, respectively, from each of the considered datasets. Note
that for PLUS data, the two samples look rather differently
(so a PAD detector should have an easy job to do), while for
VERA and SCUT similarity is much higher. The PAI samples
look much more blurred (and additionally exhibit larger areas
of overexposure in case of VERA).

(a)

(b)

(c)

Fig. 1: A pair of bona fide and real PAI sample images,
respectively, from the (a) VERA (b) SCUT, and (c) PLUS
datasets.

C. Evaluation Methodology

Note that as the available datasets are rather limited in
size, we always apply a five-fold cross validation for error



estimation (folds are constructed by separating subjects to
avoid subject related bias). We employ 396 PAI samples from
each dataset only for a fair comparison with respect to training
among the three datasets. Also, we always use balanced data in
classifier training, i.e. both classes consist of the same number
of samples and we employ the corresponding bona fide and
real/synthetic PAI samples from the same subject.

PAD Testing: As the aim is to simulate “realistic” PAD, in
all cases we test the ability of the trained PAD classifier to
discriminate between bona fide and real PAI samples (as taken
directly from the datasets). Thus, while the testing is always
done in the same manner (considering real-life application), the
training is different according to what we mean to determine.

PAD Training: For “BaseLine” results (BA), we train the
classifier to discriminate between bona fide and real PAI
samples as provided by the datasets, i.e. all real PAI samples
are used. In five-fold cross validation this obviously means that
for each fold used in testing, the remaining four folds are used
in training. To create more challenging settings (to even better
motivate the usage of synthetic data), we introduce training
scenarios S1 and S2 as follows (both scenarios involve real PAI
samples only): In S1 we reduce the size of the training set to
50% of the BA training. In five-fold cross validation this means
that for each fold used in testing, only two (randomly chosen)
folds out of the remaining four folds are used in training. In S2
we further reduce the size of the training set to only 25% of the
BA training. In five-fold cross validation this means that for
each fold used in testing, only one (randomly chosen) fold out
of the remaining four folds is used in training. For assessing
the suitedness of synthetic data, we train the classifier to
discriminate between bona fide samples and a mixture of real
and synthetic PAI samples, respectively. Training scenario S3
increases the size of the training set to 50% of the BA training
by adding synthetic data to the training set used in scenario S2.
In five-fold cross validation this is done by replacing one of the
two folds used in S1 training by synthetic PAI data (which one
is selected is randomly chosen). This also implies that the size
of the training sets in S3 and S1 is identical, they differ in their
composition only. Consequently, training scenario S4 increases
the size of the training set to 100% of the BA training by
adding more synthetic data to the training set used in scenario
S3. In five-fold cross validation this is done by replacing three
of the four folds used in BA training by synthetic PAI data
(which ones are selected is randomly chosen). Finally, training
scenario S5 uses synthetic PAI sample data only but the same
training data size as scenarios BA and S4, respectively, and
matches the training strategy investigated in earlier work [9],
[10].

PAD Assessment: To evaluate the effectiveness of the pro-
posed PAD approach, results are reported in compliance with
ISO/IEC 30107-3:2017. Since a presentation attack detection
mechanism is a binary classifier, four outcomes are possible:
correctly classified as attack (true positives TP), wrongly
classified as attack (false positive FP), correctly classified
as bona fide (true negative TN) and wrongly classified as
bona fide (false negative FN). According to the standard, we
report Attack Presentation Classification Error Rate (APCER -
proportion of PAI attack presentations incorrectly classified as
bona fide presentations) and Bona Fide Presentation Classifica-
tion Error Rate (BPCER - proportion of bona fide presentations

incorrectly classified as presentation attacks)

APCER =
FN

FN + TP
, BPCER =

FP

FP + TN
.

PAD Classifier: In order to complement the convolutional
neural networks (CNNs) used in earlier work [9], [10], we
consider pre-trained CNN architectures with a systematically
decreasing number of learn-able parameters (and a lower
number of network layers in many cases) to study the cor-
responding impact on PAD training accuracy: VGG16 [25]
with ≈138 mio. parameters, TinyNet-A [26] with ≈ 6.2 mio.
parameters, MobileNetV2 [27] with ≈ 3.4 mio. parameters,
and SqueezeNet 1.1 [28] with ≈ 1.2 mio. parameters. The
models pre-trained on ImageNet have been taken from Kaggle
(MobileNet and VGG16), Huggingface (Tinynet) and github
(SqueezeNet). For the performance assessment in PAD train-
ing, we use the networks in two ways: First, to match the ap-
proach followed in [10], we remove the classification network
part and use the pre-trained network as a feature extractor,
the resulting features are used in a KNN (K-nearest neigh-
bour, K being optimised) classifier to facilitate straightforward
comparison to [10]. Second, the classification network part is
configured to support binary classification and is “fine-tuned”
in the training process by analogy to [9]. Binary cross entropy
is used as loss function and with respect to optimisers, the best
choice between SGD and Adam optimisation is employed.

III. EXPERIMENTAL RESULTS

For each of the three datasets and the four GAN-types,
we present a visual example of a synthetic PAI sample for
qualitative analysis in Fig. 2. When comparing to Fig. 1,
we observe that the PAI samples from the SCUT dataset are
difficult to synthesise properly, as except for the CycleGAN
result, the samples lack in clear vascular structure. The DRIT
data look rather disappointing overall, as even the PLUS data
clearly lack in detail (which is rather prominent and much
better generated by the other GAN-types).

(a)

(b)

(c)

(d)
VERA SCUT PLUS

Fig. 2: Example synthetic PAI sample images: (a) CycleGAN
(b) DistanceGAN (c) StarGANv2 (d) DRIT

In Table I we present quantitative PAD results in terms
of APCER in % obtained for training scenario S2 (lowest
amount of data used) for all CNN variants and the three
datasets considered. Only APCER values exceeding 0.5% are
listed. In the exponent, we provide the order-number(s) of the
training scenarios S3 - S5 for which an improvement in terms



of APCER as compared to S2 is observed (i.e. the exponent
shows, for which training setting adding synthetic data is
beneficial). Is the number given in bold, all GANs improve
APCER, otherwise only a subset of the GANs used led to an
improvement.

We observe that out of 24 configurations (8 PAD classifiers,
3 datasets), only 9 exhibit APCER in excess of 0.5%. From
these 9 cases, 5 did not benefit at all from adding additional
synthetic training data (no matter how much was added). From
those which took benefit, only a single configuration improved
for S3, S4, and S5 as well and in most of these cases, only
a subset of GANs led to improved results. It is interesting to
observe that S5 improved over S2 in two cases only, and this
is only seen for a subset of GANs.

TABLE I: Quantitative results: S2 Results exceeding 0.5%
APCER, and stages S3 - S5 improving this result when adding
synthetic PAI samples (given in the exponent).

Architecture VERA SCUT PLUS

TinyKNN 9345 5 10
Tiny 2 1 434

SqueezeKNN – – –
Squeeze – – –

MobileKNN 35 3 –
Mobile – – –

VGGKNN – – 234

VGG – – –

There are 4 PAD classifiers without any APCER value ex-
ceeding 0.5%, so overall we observe fairly good results. Fine-
tuning the classification network is obviously superior to using
the network output as feature vector in KNN-classification.
TinyNet-A is clearly the least suited architecture to handle the
classification task at hand.

In Table II we present the analogous PAD results in terms
of BPCER in % obtained for training scenario S2 (lowest
amount of data used) for all CNN variants and the three
datasets considered. The results have a different characteristic
than those for APCER. We observe that out of 24 configura-
tions, 12 exhibit BPCER in excess of 0.5%. From these 12
cases, all did benefit from adding additional synthetic training
data (no matter how much was added). From those which took
benefit, a majority improved for S3, S4, and S5 as well and in a
majority of these cases, all considered GANs led to improved
results. It is also interesting to observe that, contrasting to
increased APCER values, S5 improved over S2 in all relevant
configurations.

There are 3 PAD classifiers without any BPCER value
exceeding 0.5%, so again, overall we observe fairly good
results. Fine-tuning the classification network is confirmed to
be superior to using the network output as feature vector for
KNN-classification. TinyNet-A is also clearly confirmed to be
the least suited architecture to handle this classification task.
To summarise, wisely chosen CNNs can cope with training
scenario S2 quite well, such that the addition of synthetic data
to augment training is not required. Higher APCER values are
much more difficult to improve by adding additional synthetic

TABLE II: Quantitative results: S2 Results exceeding 0.5%
BPCER, and stages S3 - S5 improving this result when adding
synthetic PAI samples (given in the exponent).

Architecture VERA SCUT PLUS

TinyKNN 5345 16345 335

Tiny 15 2345 1345

SqueezeKNN – 8345 –
Squeeze – – –

MobileKNN 245 1345 3345

Mobile – – –
VGGKNN 145 9345 –

VGG – – –

training data as compared to higher BPCER values. Using
exclusively synthetic PAI samples in training (scenario S5) can
hardly improve high APCER values, while this approach works
well for high BPCER values.

In Tables III - V we take a different perspective. For each
dataset and training scenario separately, we present APCER
and BPCER values exceeding 4.5%. This is done in two
groups: BA, S1, and S2 form the first group, S3 - S5 form
the second group. A group covers one line and it is only listed
in case of at least one training scenario in that group leads to
those higher APCER / BPCER values (i.e. the more lines we
see, the weaker are the PAD results). If different GANs exhibit
distinct behaviour, they are listed separately, if they show the
same tendency, a APCER / BPCER range for all of them is
provided.

The VERA results shown in Table III exhibit only two BA,
S1, S2 groups, i.e. those results generated by TinyKNN. For
those, APCER is improved over S2 for all GANs using S3
and S4, but significantly worsened using S5 (for three out of
four GANs). On the other hand, BPCER is improved over S2
results for all GANs only in case of S5. For the other groups
shown, adding synthetic samples in training worsens the re-
sults, partially significantly so (as the first group results are not
displayed). S5 results (i.e. training with synthetic PAI samples
only) are the worst in many cases. We see more APCER results
being listed, and GANs exhibit similar behaviour in many
cases. The two VGG-16 variants and MobileNetv2 results do
not show up at all.

SCUT results are displayed in Table IV. Similar to VERA
results, the TinyKNN results cover both groups and APCER
as well as BPCER. Using additional synthetic data worsens
the APCER results (in particular the S5 results are very poor),
but improves BPCER results. For the other PAD classifier net-
works, we only observe results for the first group for BPCER,
which are obviously improved using additional synthetic data
(as those lines are not listed). For APCER, only results for
the second group are present, i.e. showing results which are
worsened from unproblematic results to partially very poor
APCER, especially for the S5 training setting. We see more
APCER results being listed, and again GANs exhibit similar
behaviour in many cases. MobileNetv2 results do not show up
at all.

For the PLUS dataset, results are shown in Table V. It



TABLE III: Quantitative results: VERA (BaseLine and training with five training set variants, S3 - S5 involving a growing
number of GAN synthesised PAI samples).

Architecture Error Synthesis BA S1 S2 S3 S4 S5

TinyKNN APCER – - 6 9
Cycle - 5 19
Dist - 7 10

DRIT - - 20
BPCER – - - 6

Cycle 8 - -
DRIT 9 5 5
Star 9 8 -

Tiny APCER All - 6-8 40-67

SqueezeKNN APCER All - - 37-97

Squeeze APCER All 3-8 - 7-81

MobileKNN APCER All 5 8 2-7
BPCER Cycle - - 9

TABLE IV: Quantitative results: SCUT (BaseLine and training with five training set variants, S3 - S5 involving a growing
number of GAN synthesised PAI samples).

Architecture Error Synthesis BA S1 S2 S3 S4 S5

TinyKNN APCER – - 6 5
All 13-17 19-25 71-99

BPCER – 9 14 16
All 6-8 - -

Tiny APCER All 10-13 13-20 53-82

SqueezeKNN APCER All\Cycle - - 57-98
BPCER – - - 8

Squeeze APCER Dist 23 - 21
DRIT 21 - 40
Star - - 48

MobileKNN APCER All 9 10 10

VGGKNN BPCER – - 9 9

VGG APCER DRIT 7 - -

is interesting to observe that only APCER lines are present
(although the PAI samples are so different from bona fide
ones for this dataset), and results for the first group are again
only seen for TinyKNN. Adding synthetic data improves these
results for S4 only, S3 and S5 lead to very poor results. For
the other networks, again S5 leads to very poor results. GANs
exhibit similar behaviour in many cases, MobileNet(KNN)
results as well as VGG results do not show up at all.

To summarise, the TinyNet architecture turns out to per-
form very poorly in both configurations, MobileNetv2 with
fine-tuned classification network is not listed for any dataset,
thus is very stable. We observe more APCER lines being listed
(thus indicating poor results), but in most cases the additional
synthetic data do not improve previously poor APCER results
or worsen results not being problematic on real data only. S5
results are often particularly poor in these cases.

IV. CONCLUSION

We have found that adding synthetic PAI sample data to
PAD training datasets is by no means suited to be applied as

a general strategy. First, by a sensible selection of the PAD
classifier (e.g. MobileNetV2 is a perfect choice in our case)
the PAD errors can be kept low even in case of small training
set size. Second, the role synthetic data can play, depends on
the nature of the error considered: Higher APCER values are
difficult to improve with additional synthetic data in training,
and using synthetic data without need often worsens results
(the worst case is often seen when relying on synthetic PAI
sample data in training exclusively, as done in previous work
[9], [12]). On the other hand, high BPCER values can be
improved using additional synthetic data in training, often
using synthetic data exclusively is a good choice. The type
of GAN used for sample synthesis plays a minor role.

REFERENCES

[1] S. Marcel, J. Fierrez, and N. E. (Eds.), Handbook of Biometric Anti-
Spoofing: Presentation Attack Detection and Vulnerability Assessment.
Springer, 2023.

[2] J. Kolberg, M. Gomez-Barrero, S. Venkatesh, R. Ramachandra, and
C. Busch, Presentation Attack Detection for Finger Recognition. Cham:
Springer International Publishing, 2020, pp. 435–463.



TABLE V: Quantitative results: PLUS (BaseLine and training with five training set variants, S3 - S5 involving a growing number
of GAN synthesised PAI samples).

Architecture Error Synthesis BA S1 S2 S3 S4 S5

TinyKNN APCER – 5 6 10
APCER All 12-27 3-5 12-70

Tiny APCER Dist 5 6 20

SqueezeKNN APCER All\Cycle - 5 79-100

Squeeze APCER All\Cycle - - 18-100

VGGKNN APCER All - - 15-43

[3] J. Schuiki, M. Linortner, G. Wimmer, and A. Uhl, “Attack detection
for finger and palm vein biometrics by fusion of multiple recognition
algorithms,” IEEE Transactions on Biometrics, Behavior, and Identity
Science, vol. 4, no. 4, pp. 544 – 555, 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9914644

[4] K. Shaheed, A. Mao, I. Qureshi, Q. Abbas, M. Kumar, and X. Zhang,
“Finger-vein presentation attack detection using depthwise separable
convolution neural network,” Expert Systems with Applications, vol.
198, p. 116786, 03 2022.

[5] J. Schuiki and A. Uhl, “Improved Liveness Detection in Dorsal Hand
Vein Videos using Photoplethysmography,” in Proceedings of the IEEE
19th International Conference of the Biometrics Special Interest Group
(BIOSIG 2020), Darmstadt, Germany, 2020, pp. 57–65.

[6] L. Chen, T. Guo, L. Li, H. Jiang, W. Luo, and Z. Li, “A finger
vein liveness detection system based on multi-scale spatial-temporal
map and light-vit model,” Sensors, vol. 23, no. 24, 2023. [Online].
Available: https://www.mdpi.com/1424-8220/23/24/9637

[7] R. Raghavendra and C. Busch, “Presentation attack detection algorithms
for finger vein biometrics: A comprehensive study,” in 11th Interna-
tional Conference on Signal-Image Technology Internet-Based Systems
(SITIS’15), 2015, pp. 628–632.

[8] J. Schuiki, B. Prommegger, and A. Uhl, “Confronting a variety of finger
vein recognition algorithms with wax presentation attack artefacts,” in
Proceedings of the 9th IEEE International Workshop on Biometrics and
Forensics (IWBF’21), Rome, Italy, 2021, pp. 1–6.

[9] M. Langer, M. Hafner, S. Findenig, A. Radovic, A. Vorderleitner, and
A. Uhl, “Difficulties in using synthetic data for presentation attack
detection in finger vein recognition: The role of model fingerprints,” in
2024 IEEE/IAPR International Joint Conference on Biometrics (IJCB),
2024, pp. 1–10.

[10] A. Vorderleitner and A. Uhl, “Finger vein spoof gans: Issues in presen-
tation attack detector training,” in The 40th ACM/SIGAPP Symposium
on Applied Computing (SAC ’25). Catania, Italy, April 2025: ACM,
New York, NY, USA, 2025, pp. 751–758.

[11] A. Vorderleitner, J. Hämmerle-Uhl, and A. Uhl, “Finger Vein Spoof
GANs: Can we Supersede the Production of Presentation Attack
Artefacts?” in 22th International Workshop on Digital Forensics and
Watermarking (IWDW’23), ser. Springer LNCS, vol. 14511, Jinan,
China, 2023, pp. 109–124.

[12] A. Vorderleitner and A. Uhl, “Finger Vein Spoof GANs: Is Synthesis
Using Diffusion or VisionTransformer Superior for Presentation Attack
Detector Training?” in 25th International Conference on Digital Signal
Processing (DSP 2025), 2025, pp. 1–5.

[13] A. Makrushin, A. Uhl, and J. Dittmann, “A survey on synthetic
biometrics: Fingerprint, face, iris and vascular patterns,” IEEE ACCESS,
vol. 11, pp. 33 887–33 899, 2023.

[14] C. Kauba, S. Kirchgasser, V. Mirjalili, A. Uhl, and A. Ross, “Inverse
biometrics: Generating vascular images from binary templates,” IEEE
Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 4,
pp. 464–478, 2021.

[15] F. Hillerström, A. Kumar, and R. Veldhuis, “Generating and analyzing
synthetic finger vein images,” in Proceedings of the International
Conference of the Biometrics Special Interest Group (BIOSIG’14), Sep.
2014, pp. 121–132.

[16] H. Yang, P. Fang, and Z. Hao, “A gan-based method for generating

finger vein dataset,” in Proceedings of the 2020 3rd International
Conference on Algorithms, Computing and Artificial Intelligence,
ser. ACAI ’20. New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3446132.
3446150

[17] J. Zhang, Z. Lu, M. Li, and H. Wu, “Gan-based image augmentation for
finger-vein biometric recognition,” IEEE Access, vol. 7, pp. 183 118–
183 132, 2019.

[18] W. Yang, C. Hui, Z. Chen, J.-H. Xue, and Q. Liao, “Fv-gan: Fin-
ger vein representation using generative adversarial networks,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 9, pp.
2512–2524, 2019.

[19] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-
Image Translation Using Cycle-Consistent Adversarial Networks,” in
2017 IEEE International Conference on Computer Vision (ICCV), Oct.
2017, pp. 2242–2251, iSSN: 2380-7504.

[20] S. Benaim and L. Wolf, “One-sided unsupervised domain mapping,”
in Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems (NIPS’17). Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 752–762.

[21] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang, “Di-
verse image-to-image translation via disentangled representations,” in
Proceedings of the European Conference on Computer Vision ECCV’18,
2018, pp. 36–52.

[22] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image
synthesis for multiple domains,” in Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition CVPR’20,
2020, p. 8188–8197.

[23] P. Tome, R. Raghavendra, C. Busch, S. Tirunagari, N. Poh, B. H. Shekar,
D. Gragnaniello, C. Sansone, L. Verdoliva, and S. Marcel, “The 1st
competition on counter measures to finger vein spoofing attacks,” in
International Conference on Biometrics (ICB’15), May 2015, pp. 513–
518.

[24] X. Qiu, W. Kang, S. Tian, W. Jia, and Z. Huang, “Finger vein
presentation attack detection using total variation decomposition,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 2, pp.
465–477, 2018.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Prooceedings of the 3rd International
Conference on Learning Representations (ICLR 2015). Computational
and Biological Learning Society, 2015, pp. 1–14.

[26] K. Han, Y. Wang, Q. Zhang, W. Zhang, C. Xu, and T. Zhang, “Model
rubik’s cube: twisting resolution, depth and width for tinynets,” in
Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems (NIPS’20). Red Hook, NY, USA: Curran
Associates Inc., 2020.

[27] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “
MobileNetV2: Inverted Residuals and Linear Bottlenecks ,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, June 2018,
pp. 4510–4520.

[28] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360


