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Abstract: A MATLAB-based toolbox for efficient computing on Windows PC networks is employed for

distributed template matching in an image database.

We discuss the results from a data distribution

and scalability viewpoint and derive interesting implications for parallel image processing applications on

cluster systems.
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1 Introduction

In the recent years, computing with visual and
multimedial data has emerged as a key technol-
ogy in many areas. Applications include consumer
electronics (Photo-CD, HDTV, SHDTV, Video-
on-Demand, video games), medical imaging (e.g.
digital radiography), video-conferencing, and sci-
entific visualization.

However, the creation, processing, and man-
agement of these data types require an enormous
computational effort, often too high for single pro-
cessor architectures. Therefore, this fact taken to-
gether with the inherent data parallelism in visual
data makes image and video processing natural
application areas for parallel computing.

This fact is also reflected by a number of con-
ferences and workshops exclusively devoted to these
topics. The “Workshop on Parallel and Distributed
Image Processing, Video Processing, and Multi-
media (PDIVM)” ! is an annual workshop co-orga-
nized by one of the authors in the framework of the
“International Parallel and Distributed Processing
Symposium (IPDPS)”. “Parallel and Distributed
Methods for Image Processing I — IV” is an an-
nual conference organized in the context of SPIE’s
annual meeting (published so far as SPIE proceed-
ings no. 3166, 3452, 3817, and 4118). Also, sev-
eral special sessions or topics at various confer-
ences have been devoted to these or similar top-
ics. For example, the “EuroPar” Conference series
features one or two streams devoted to multime-
dia techniques each year. Finally, a special issue
of the “Parallel Computing” journal on “Parallel
Computing in Image and Video Processing” has
been published recently (vol. 28(7-8), 2002).

Software based approaches are becoming more
popular in this area (beside the use of DSP chips,
FPGAs, media processors, or application specific
VLSI) because of the performance increase of ge-
neral-purpose processors and the rapid evolution
of multimedia techniques which has dramatically
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shortened the time available to come up with a
new hardware design for each improved standard
or technique.

With the emerge of cluster computing and the
corresponding potential availability of HPC sys-
tems in many universities and companies, this ar-
chitecture is a cheap and highly available and yet
powerful architecture for image processing appli-
cations [4]. However, applications requiring a large
amount of synchronization and data transfer (like

e.g. current tree based wavelet image coding schemes)

can not be implemented efficiently on such sys-
tems [2]. Additionally, the explicit programming
style required by message passing libraries for clus-
ters (like PVM, MPI, or any other suited soft-
ware system) makes program developement diffi-
cult and therefore this remains mostly a task for
specialists. The moderate parallel multiproces-
sor architecture (i.e. shared memory MIMD) —
often also denoted SMP — is an interesting (but
much more expensive) alternative to multicom-
puters for this type of image processing tasks due
to the availability of physically shared data space
and more comfortable programming environments
for parallel processing on such architectures (e.g.
OpenMP, JAVA Threads) [9].

MATLAB has established itself as the numer-
ical computing environment of choice on unipro-
cessors for a large number of engineers and scien-
tists. In the context of image processing the most
important reason is that MATLAB provides users
with easy access to an extensive library of high
quality numerical routines which can be used in
a dynamical way and may be easily extended and
integrated into existing applications.

In this work we discuss the use of the MDICE
MATLAB toolbox for template matching in an
image database on a cluster of workstations. In
particular, we focus onto data distribution and
scalability issues which arise in the context of load
balancing. In section 2, we discuss the principles
of MDICE. Section 3 covers results of distributed
template matching and discusses the interesting
results. Section 4 concludes the paper.



2 MATLAB Cluster Computing;:
MDICE

For most image processing applications, the de-
sired levels of performance are only obtainable
on parallel or distributed computing platforms.
With the emerge of cluster computing, the de-
mand for a solution to employ MATLAB on such
systems is obvious. A comprehensive and up-to-
date overview on high performance MATLAB sys-
tems is given by the “Parallel MATLAB Survey”?.
Several systems may be downloaded from the Mat-
works server. There are basically three distinct
ways to use MATLAB on HPC architectures:

1. Developing a high performance interpreter

(a) Message passing: communication rou-
tines usually based on MPI or PVM are
provided. These systems normally re-
quire users to add parallel instructions
to MATLAB code [5].

(b) “Embarrassingly parallel”: routines to
split up work among multiple MATLAB
sessions are provided in order to support
coarse grained parallelization. Note that
the PARMATLAB and TCPIP toolboxes
our own development is based upon fall
under this category.

2. Calling high performance numerical libraries:
parallelizing libraries like e.g. SCALAPACK
are called by the MATLAB code [8]. Note
that parallelism is restricted within the li-
brary and higher level parallelism present at
algorithm level cannot be exploited with this
approach.

3. Compiling MATLAB to another language (e.g.
C, HPF) which executes on HPC systems:
the idea is to compile MATLAB scripts to
native parallel code [1, 7]. This approach of-
ten suffers from complex type/shape analysis
issues.

Note that using a high performance interpreter
usually requires multiple MATLAB clients whereas
the use of numerical libraries only requires one
MATLAB client. The compiling approach often
does not require even a single MATLAB client.
On the other hand, the use of numerical libraries
and compiling to native parallel code is often re-
stricted to dedicated parallel architectures like mul-
ticomputers or multiprocessors, whereas high per-
formance interpreters can be easily used in any
kind of HPC environment. This situation also mo-
tivated the development of our custom high per-
formance MATLAB environment: since our target
HPC systems are (heterogenous) PC clusters run-
ning a Windows system based on the NT archi-
tecture, we are restricted to the high performance
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interpreter approach. However, running a MAT-
LAB client on each PC is expensive in terms of li-
censing fees and computational resources. MDICE
[6] requires one MATLAB client (on the server
machine) for distributed execution only.

MATLAB-based DIstributed Computing En-
vironment (MDICE) is based on the PARMAT-
LAB and TCPIP toolboxes. The PARMATLAB
toolbox supports coarse grained parallelization and
distributes processes among MATLAB clients over
the intranet/internet. Note that each of these
clients must be running a MATLAB daemon to be
accessed. The communication within PARMAT-
LAB is performed via the TCPIP toolbox. Both
toolboxes may be accessed at the Mathworks ftp-
server.

However, in order to meet the goal to get along
with a single MATLAB client the PARMATLAB
toolbox needed to be significantly revised. The
main idea was to change the client in a way that
it can be compiled to a standalone application.
At the server, jobs are created and the solve rou-
tine is compiled to a program library (*.dll). The
program library and the datasets for the job are
sent to the client. The client is running as back-
ground service on a computer with low priority.
For this reason the involved client machines may
be used as desktop machines by other users during
the computation (however, this causes the need
for a dynamic load balancing approach of course).
This client calls over a predefined standard rou-
tine the program library with the variables sent
by the server and sends the output of the routine
back to the server. After the receipt of all solu-
tions the server defragments them to an overall
solution. The client-server approach is visualized

in Fig. 1.
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The communication functionalities of the PAR-
MATLAB toolbox have been extended as well.
For example, in case of fault-prone file transmis-
sion (e.g. no space left on the clients’ hard disk)
the server is immediately notified about the fail-
ure. The underlying TCPIP toolbox requires all
data subject to transmission to be converted into
strings. For large amounts of data this is fairly
inefficient in terms of memory demand and com-
putational effort. In this case, we store the data
as MAT-file, compress it (since these files are or-
ganized rather inefficiently), and finally convert it

Figure 1: Client-server concept of MDICE.



into strings. After the computation is finished and
the result has been sent, a new job may be pro-
cessed by the client. Note that the *.dll library
and constant variables do not have to be resent
since the client informs the server about its sta-
tus.

MDICE does not support any means of auto-
matic parallelization or automatic data distribu-
tion. The user has to specifiy how the compu-
tations and the associated data have to be dis-
tributed among the clients. The same is true of
course for the underlying PARMATLAB toolbox.
Note that using MDICE on a PC cluster system
for distributed image processing is an extreme case
in terms of high communication cost.

3 Distributed Search in
Image Databases

3.1 Template Matching

An image database is searched for a specific tem-
plate, e.g. in our case the eye of Lena in the corre-
sponding image (see Fig. 2). We consider images
of 256 x 256 and 512 x 512 pixels, the size of the
corresponding templates is 16 x 16 and 32 x 32
pixels, respectively.

Figure 2: Lena image with template.

We add noise to the selected region in the im-
age and rotate it a random amount of degrees.
Subsequently, the server creates 90 versions of the
template, each rotated 90 degrees, and sends these
templates to the clients where the remaining 270
rotated versions are created locally using the MAT-
LAB command rot90. To facilitate distributed
search, the image database is partitioned into a

user-selected number of jobs and the jobs (i.e. im-
ages or image tiles) are distributed to be processed
independently on the clients. If the number of jobs
exceeds the number of images, these need to be
tiled accordingly. Currently, only an integer mul-
tiple of the number of images is supported for the
number of jobs. Note that in order to guarantee
correct results the images need to be distributed
in a redundant way (see Fig. 3 for a tiling) where
the size of the overlap has to be the width of the
template—1 in each dimension.
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Figure 3: Image tiling example.

Note that the alternative would be to exchange
the required border data among the clients. This
approach is called “data swapping” for example in
the case of parallel wavelet transforms [2]. Given
the high communication cost on our target system
overlapped tilting is much more efficient of course.

It is important to notice that in case of ¢ tiles
per image where ¢ is a prime the images are tiled
along one dimension only. According to [4] this
approach is called “row partitioning”. Note that
row partitioning leads to more overlapping data as
compared to the common case where both dimen-
sions are tiled. In case ¢ is non-prime, we use the
factorization of ¢ where the magnitude of the two
dimensions of each (equally sized) tile should be as
close as possible (see Fig. 3. This simple strategy
overcomes the limitations concerning the admissi-
ble job number as imposed by the “cross partition”
approach [4]. It should be pointed out that the
“heuristic partitioning” approach [4] avoids tiling
along one dimension only in case of ¢ is prime.
However, this comes at a high computational cost
to compute the partitioning strategy and an irreg-
ular mapping pattern.

At the client, for each of the possible positions
of all 360 possible rotated versions of the template
in the search area we compute a normalized cross-



correlation [3, pp. 316-317]

C(”?”) = Zf(xay)t($ —UuYy - U)
z,Y

where f(z,y) denotes the image, ¢ is the tem-
plate at position (u,v), and the sum is computed
over z and y covering the range of the template.
The rotation with the highest value for ¢(u,v) is
recorded and its position and magnitude is send
to the server. At the end of the computation the
server selects the area with the highest value of all
jobs as the targeted image region.

3.2 Experimental Settings

The computational tasks of the applications sub-
ject to distributed processing are split into a cer-
tain number of equally sized jobs N to be dis-
tributed by the server among the M clients (usu-
ally N > M). Whenever a client has sent back its
result to the server after the initial distribution of
M jobs to M clients, the server assigns another
job to this idle client until all N jobs are com-
puted. This approach is denoted “asynchronous
single task pool method” and facilitates dynamic
load balancing in case of N > M. The comput-
ing infrastructure consists of the server machine
(1.99 GHz Intel Pentium 4, 504 MB RAM) and
the client machines (996 MHz Intel Pentium 3,
128 MB RAM), both types under Windows XP
Prof. The Network is 100 MBit/s Ethernet. Note
that the sequential reference execution times used
to compute speedup have been achieved on a 996
MHz client machine with a compiled (not inter-
preted) version of the application to allow a fair
comparison since the client code is compiled as
well in the distributed application. We use MAT-
LAB 6.5.0 with the MATLAB compiler 3.0 and
the LCC C compiler 2.4.

3.3 Experimental Results

Fig. 4 shows the speedup of this application when
varying the problemsize (# of images in the data-
base) and keeping the number of jobs distributed
among the clients fixed (16). We notice plateaus
resulting from load distribution problems (e.g.,
16 jobs may not be efficiently distributed among
14 clients whereas this is obviously possible for
16 clients). Lower speedup and less pronounced
plateaus are exhibited in case of smaller problem
size. Here, the expensive initial communication
phase (where the server has to send the compiled
code and input data to each of the clients) cov-
ers a significant percentage of the overall execu-
tion time. This leads to a significantly staggered
start of the computation phases at different clients
which dominates the other load inbalance prob-
lems.

Increasing the problem size leads to an increased
speedup, as it is expected. However, the reason

can not be the improved computation/communication

ratio. Although the number of messages sent is
constant when keeping the number of jobs fixed,
the amount of data sent within each message is
increased by the factor the database is enlarged.
The reason for the increased speedup is the de-
creasing amount of overlapping data required for
generating the correct redundant tiling. For ex-
ample, when processing 2 images each image is
partitioned into 8 tiles whereas in case of 8 images
each image is cut into two halves only. Clearly, the
amount of overlapping data is a factor 4 larger in
the first case. It is important to notice that a
higher amount of overlapping data does not only
imply a higher communication amount but causes
also (and more importantly) a higher amount of
computation. As a consequence, increasing the
number of jobs to get rid of the speedup plateaus
or to achieve balanced load as in case of hetero-
geneous environments is obviously not a sound
approach in this context. This is confirmed by
the values for 8 images and 48 jobs in Fig. 4.
Employing 14 clients a much better performance
would be expected for 48 jobs as compared to 16
jobs due to the significantly better balanced load,
however, this virtual advantage is destroyed by
the higher amount of overlapping data and the
associated computations.
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Figure 4: Results of template matching: speedup with
varying problem-size.

Fig. 5 shows the time demand of distributed
execution when varying the number of jobs (in in-
teger multiples of the number of images involved)
while keeping the amount of work and the num-
ber of clients fixed (i.e. a database consisting of
eight 512 x 512 pixels images and 10 clients). The
sequential execution time is 8740 seconds. Inter-
estingly, we do not see improved performance for
a larger number of jobs. The execution time using
8 jobs only (where 2 clients do not contribute to
the computation at all) is the best value. The time
behaviour for increasing the number of jobs seems
to be highly irregular and hardly predictable.
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Figure 5: Results of template matching: varying the
number of jobs.

On the one hand, increasing the number of jobs
should help to improve the load distribution dur-
ing the execution. This effect is shown in Fig. 6
where we display corresponding results of a Monte
Carlo application using MDICE in the same en-
vironment [6]. For the test configuration consid-
ered, the optimal number of jobs is identified to
be around 60. A further increase leads to an in-
crease of execution time (caused by communica-
tion overhead) as well as a lower number causes
worse results (caused by load inbalance).

Time in seconds

10 12 24 32 48 60 84 120 140 160 240 320

Number of jobs

Figure 6: Results of Monte Carlo simulation with vary-
ing job number.

On the other hand, in case of image tiling,
a large number of jobs degrades the computa-
tion/communication ratio (more messages, same
computation) and causes a large amount of over-
lapping data in the tiling (which causes larger
messages and a higher amount of overall com-
putations). However, this tradeoff does not ex-
plain the irregular results in Fig. 5. There is
one more important aspect to be considered. The

number of jobs devided by the number of im-
ages in the database gives the number of tiles
required per image. As already previously men-
tioned, if the resulting number is a prime, the im-
age is tiled along one dimension only which re-
sults in a higher amount of overlapping data as in
case of tiling along both dimensions. The resulting
higher amount of computation in the prime case
can be clearly seen in Fig. 5: poor performance
is especially exhibited for 24, 40, 56, 88, and 104
jobs (which corresponds to 3, 5, 7, 11, and 13 tiles
per image, respectively). Fig. 7 illustrates this
fact by showing the amount of additional work in
% caused by image tiling. The larger values in the
prime case are clearly shown.
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Figure 7: Comparison of additional workload caused
by tiling using prime and non-prime job numbers.

Furthermore, the behaviour within the two classes
“prime number of tiles” and “non-prime number
of tiles” is not entirely regular as well. Figs. 8
and 9 show a visualization of the distributed ex-
ecution, where black areas represent computation
time-intervals, gray areas communication events,
and white areas idle times. The x-axis shows the
time (in seconds), y-axis is covered by the dif-
ferent clients. Eight 512 x 512 pixels images are
processed.

For example, one would expect better behaviour
for 24 jobs (Fig. 8) as compared to 40 jobs (Fig.
9) due to the lower amount of overlapping data.
However, the 40 job setting is faster. Obviously,
the higher amount of computation and communi-
cation caused by 40 jobs is more than compen-
sated by the perfect distribution of 40 jobs among
10 clients.

4 Conclusion

Using distributed template matching as a sample
application, we have observed the following facts
in the context of data parallel image processing
involving neighbourhood operations on a cluster
architecture:
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Figure 8: Visualization of load distribution with 24
jobs on 10 clients.
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Figure 9: Visualization of load distribution with 40
jobs on 10 clients.

image
tiles to be processed) does not only increase
the communication amount but also the com-
putational effort is increased since the amount
of overlapping data grows. This has two ma-
jor implications:

(a) Increasing the number of jobs to achieve
better balanced load might be contrapro-
ductive and result in worse performance.

(b) Increasing the number of processing el-
ements when keeping the problem size
fixed does not lead to better performance
at some point (poor scalability).

. The question how the image data is parti-
tioned is crucial with respect to performance
in case the application involves neighbour-
hood operations. Simple partitioning along
one dimension only (row partitioning) is shown
to perform significantly worse as compared
to tiling both image dimensions.
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