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Abstract. We discuss methods for generating retina codes from retinal
images for biometric user authentication. First the optical disc as a cen-
tral reference point is located by using Hough transform followed by a
segmentation of the retina vasculature by filtering with the continuous
two-dimensional Morlet wavelet transform and classifying each pixel as
vessel or non vessel by simple thresholding. Starting from the optical
disc, concentric circles are placed over the binary vessel image for data
sampling and different variants of retina code are generated after trans-
formation to polar coordinates. The methods inter personal variability
and robustness is evaluated on the publicly available DRIVE database.
Results indicate a low inter personal variability questioning the useful-
ness of retina codes in sensible authentication systems. Specifically good
robustness against JPEG and JPEG2000 compression is observed.

1 Introduction

With the increasing usage of biometric systems the interest in not-yet widely
accepted modalities rises. Retina features are among these potentially promising
but not mainstream techniques. Being transparent, the retina is situated in the
innermost part of the ocular fundus, retinal features mainly consist of blood
vessels originating from the entry point of the optic nerve and spreading across
the ocular fundus (see Figs. 1.a and 2.a for examples). The pattern of these
vessels is said to be unique for each individual person and might therefore be used
for biometric recognition systems. However, the scanning operation is required
to be much more intrusive and controlled as compared to e.g. iris-based systems
due to the location in the inner parts of the eye and user acceptance of such
conditions is generally low. Therefore, the primary application context of this
modality will be in high security environments like military or governmental
agencies.

According to literature [6, p.106ff], retina-scan based biometric systems ex-
hibit the following strengths:

– Spoofing is difficult
– Usage of a stable physiological trait
– High recognition accuracy



Due to their location at the background of the eye, retinal features can hardly
be replaced or modified, also sensors capturing the respective images can hardly
by fooled. Therefore, a spoofing attack will be definitively hard to conduct.
On the other hand, the stability of retinal vessels is questionable since many
eye diseases include some blood vessel pathology as found e.g. in proliferative
diabetic retinopathy [7], which is characterized by new vessel growth especially
near the optical disk. The possible impact of such diseases on retina feature
based biometric systems has to be seriously considered and investigated before
a sensible deployment should take place.

Eye-based biometric modalities in general are believed to be highly secure
due to the well investigated low FAR of some popular iris recognition systems
[8, 9]. However, also in iris recognition several techniques exist which exhibit
significantly inferior recognition performance (e.g., based on histograms [10] or
wavelet coefficient statistics [11]). As a consequence, it is not only the potential
distinctiveness of the physiological trait that determines the recognition accuracy
but of course the type of extracted template data plays an at least equally
important role as well.

There is not much work available on using retinal features for biometric
purposes. Most of the literature on retinal features is found in ophthalmology
where retinal vessels are used in diagnosis or as landmarks for image registration
(see e.g. [7, 12]). Strengths and weaknesses of retina-scan based biometrics are
discussed in [6], but no concrete feature extraction technique or template data
structure is described. Crossings of retinal vessels are suggested to be used as
biometric features in [13, 14] and good accuracy is reported. Similar to fingerprint
minutiae, a type and direction can be associated with each crossing and point
pattern matching is performed in the recognition process. Retica Systems Inc.1

offers a different (commercial) solution based on a “retina code” (inspired by
Daugmans’ “iris code” principle [8]). Contrasting to the retinal vessels’ crossings
approach, a reference point is needed to register the images against for this
technique.

In this work we discuss the use of retina codes for biometric recognition as
inspired by the solution sketched by Retica Systems Inc. In particular, we will
address the issue of recognition accuracy for this concrete way to generate tem-
plate data from retinal features. Section 2 discusses feature extraction techniques
for subsequent retina code generation which include optical disc segmentation
and retinal vessel extraction. Section 3 describes several variants of retina code
generation and Section 4 is devoted to experimental testing with emphasis on the
overall code variation within a population (inter person variability is shown to
be astonishingly low), FMR under signal distortion, and code sampling. Section
5 concludes the paper.

1 www.retica.com



2 Feature Extraction Methods

Retina-based methods use ocular fundus images as a source for extracting bio-
metric features for user authentication. Extracting usable feature sets for retina
code generation from these images requires a combination of two different pre-
processing methods:

1. Finding the Optical Disc as a common reference point
2. Segmenting the retinal vessels

2.1 Optic Disc Segmentation

For retina code generation a reference point has to be defined (analogous to
the center of the pupil with iris recognition). Here the optical disc (where the
optical nerve leaves the retina) seems suitable. In the retinal images the optical
disc appears as a bright circular shaped object partly covered with vessels that
has a higher background luminance and higher local variance as the rest of the
retina. So the center of the optical disc can be used as a reference point for
developing a retina template out of a segmented vessel feature image. However
when using an automated method for optical disc location it is important to
know that this object varies in appearance, size and location.

Detection of the optical disc has been largely covered in literature and numer-
ous methods have been developed. For our application we first chose a method
that uses circular Hough transform on an thresholded edge image of the retinal
surface as in Barret et al. [15]. The Hough transform is able to find geometric ob-
jects in images by converting an object’s equation into a Hough space parameter
equation. For finding a circular objects as the optical disc we use:

(xi − x)2 + (yi − y)2 = r2 (1)

Although we use different a-priori values for the radius r of the optical disc
it can be seen as a constrained parameter limiting the search for the optical disc
to a two-dimensional problem. The Canny edge detection algorithm is used for
generating the edge image. For most images the use of a fixed threshold within
the canny edge detector leads to useful binary images. However with some im-
ages this fixed threshold yields too little or to many edges. To overcome this
shortcoming a histogram of the magnitude image is created and only the highest
five percent of the magnitude pixels are selected. Subsequently, the Hough trans-
form to the edge map. Since a bigger circle contains more pixels resulting in an
higher value in the accumulator matrix the accumulators are all normalized by
multiplying with 1/#circlepoints. The accumulator cell with the highest value
is chosen as the center of the optical disc (x, y).

However the method described sometimes yields poor results both in accu-
racy and detection time especially when testing robustness. In this case only few
edges of the optical disc are detected making it often even impossible to locate
it with the hough transform. Fig. 1 illustrates such a case.



(a) Input image (b) Result

Fig. 1: Wrong optical disc location due to sparse edge map.

So we adapted the proposed method by not using an edge-based binary image
as input for the Hough transform but taking into account the fact that the optical
disc is usually an object with the highest luminance values. Another possible
criterion suggested in literature is highest variance [16]. In order to use a global
threshold t for all possible input images (and also distorted versions) we first
apply a histogram equalization to the image. Using the highest 1 percent of the
intensity image pixels (t = 0.99) a binary image is created that predominantly
contains pixels of the optical disc. For finding the center of the circle that encloses
these pixels finally the Hough transform is applied. Fig. 2 displays the steps for
finding the optical disc. This method significantly improves results concerning
accuracy. Detection speed was improved as well by a factor of 2.7 which is
important for a fast user authentication. The reason for this improvement is
that the range of admissible radii can be much more limited as compared to the
first approach. As opposed to the first method where it was often impossible to
detect the optical disc in histogram-equalized versions of the images the second
method performs well in all robustness tests. Moreover the danger of the hough
transform being fooled by detecting circles between edges resulting from vessels
in sparse edge maps was removed.

(a) Input image (b) Histogram Equal. (c) 1% brightest pixels

Fig. 2: Finding the optical disc



Consequently, we have used the second approach in our final experiments.

2.2 Vessel Extraction

Different approaches for automatic vessel segmentation have been proposed in
literature (e.g. [7, 12]). We have chosen to adapt the MATLAB software package
mlvessel2 based on the wavelet-domain method described in [5] since it yields
good results in enhancing vessel contrast while filtering out noise. First the
retinal image is pre-processed by artificially extending the border that is defined
by the camera’s aperture in order to remove the strong contrast between the
optical fundus and the image mask. Realizing that the wavelet transform is able
to filter locally makes it effective for detecting local properties such as blood
vessels. The continuous wavelet transform is defined

Wψ(b, Θ, a) =
1
√
a

∫

f(x)ψ∗

(

x− b

a

)
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with ψ∗ denoting the complex conjugate of the 2-D Morlet wavelet ψ defined by
[5] as:

ψ(x) = eik0xe−
1

2
|Ax|2 (3)

where A = diag[
√
ε, 1], ε ≥ 1 is a 2 x 2 diagonal matrix defining the anisotropy of

the filter. We only use the results produced by the Morlet wavelet with param-
eters a = 2, k0 = [0, 3] and ε = 4 since this yields the best resolution of vessels.
So for the scale value a = 2 maximum response over all possible angles Θ starting
from 0 up to 170 degrees in steps of 10 is being calculated.

The resulting feature image is used for creating a binary vessel segmentation
image by thresholding. Simple thresholding is the method of first choice because
of its speed. However using a global threshold results in very different binary
images concerning the number of vessels thus it is not very suitable for creating
a retina template and matching. In order to achieve a well-balanced number of
vessels in the binary images we first statistically determine the mean value of
vessel pixels in a set of typical images suited for matching. For the data base
used in our experiments (see Section 4.1) this gave us a mean value of vessel
pixels of 8.5 % and a standard deviation of 1,5 %. Starting from a standard
threshold of we slightly adjust the threshold up or down until the number of
vessel pixels meets our above criteria. In order to get rid of unconnected vessels
resulting from our thresholding process all connected objects that have fewer
than a certain number of pixels are removed.

Fig. 3 shows the stages of the vessel extraction process. It is clearly visible
that the stage of removing small pixel groups is strongly required (Fig. 3.b).

3 Retina Code Generation

Starting from the center of the optical disc we use concentric circles for taking
samples from the binary vessel images. For construction of these circles we have

2 http://www.retina.iv.fapesp.br



(a) Filtered image (b) Thresholding (c) Remove small objects

Fig. 3: Vessel Segmentation

implemented Bresenham’s circle drawing algorithm [3]. For every circle pixel its
value is set according to the underlying vessel or non-vessel pixel. Then the values
of navg neighbouring circles are averaged and transformed to polar coordinates
in steps of 1◦. It is important to mention that outer circles usually degrade to
circular arcs since the optical disc is mostly located at the left or right border
of the retinal surface compare Fig. 4.c. This results in lower information density
concerning the whole retina code which is further decreased by the higher arc
length of the circles when using steps of 1◦ and the fact that the density of
the vessels is usually higher around the optical disc. Thus hitting an underlying
vessel pixel becomes more unlikely for bigger (outer) circles. This is conformed
also in the example in Fig. 5.c. So we see that it is vital for our method to set the
right parameters for the sampling procedure i.e. the number of samples (circles)
Ncirc, the averaging value navg (i.e. how many neighbouring circles are used for
producing a single bit value), and the radius of the first circle r0.

We investigate different retina code variants as shown in the settings of Table
1 in order to see how the sampling parameters affect the matching performance.
The resulting retina codes are of sizes 360x5 (225 Byte), 360x10 (450 Byte)
and 360x20 (900 Byte). These templates can be further compressed by using
Run-Length Encoding since there are usually long sequences of non-vessel pixels
within each code. Retica Systems Inc. provide the information of using 50-100
or even 20-50 bytes for their templates, but this could refer to encoded data.

Table 1: Sampling settings

Name Ncirc nstep navg r0

L1 15 3 3 5
L2 30 3 3 5
H1 60 5 3 5



Setting L1 only samples around the optical disc (only entire circles), L2 is
the same as L1 but with increased Ncirc and H1 also includes degraded circles.
Fig. 4 shows examples of the samples taken for each setting.

(a) Setting L1 (b) Setting L2 (c) Setting H1

Fig. 4: Sampling

Finally, the resulting retina codes from this sampling process are shown in
Fig. 5.

(a) Setting L1

(b) Setting L2 (c) Setting H1

Fig. 5: Retina Codes

4 Experiments

4.1 Experimental Settings

We tested and evaluated our methods on a publicly available database of non-
mydriatic images and corresponding manual vessel segmentations: the DRIVE3

database [4]. The DRIVE database consists of 40 images that were captured in
digital form from a Canon CR5 non-mydriatic 3CCD camera at 45 field of view
(FOV). The images are stored in TIFF format of size 565 x 584 with 8 bits
per color channel. Since the DRIVE database only contains images of different
persons our experiments are limited to examining the inter person variability,
FMR under image distortions, and different code sampling strategies. The green

3 www.isi.uu.nl/Research/Databases/DRIVE/



channel of the non-mydriatic images shows the best contrast so we chose it
for optical disc detection as well as for vessel extraction (and subsequent code
generation). For the first optical disc detection technique, we use the Canny edge
detector with parameters σ = 1.0, thigh = 0.2, tlow = thigh ·0.4. Hough transform
with various radii r ranging from 35 to 38 pixels is applied in the first approach,
in the second approach we succeeded in using fixed radii around 36 pixels.

Matching between two distinct retina codes is done by calculating their Ham-
ming Distance. In order to compensate for rotated versions of the images the
two retina patterns are shifted against each other and the minimum of all Ham-
ming distances is calculated. For each image to be tested the Hamming distance
with each of the remaining templates in the database is determined (“leave one
out” strategy). A pair having Hamming distance below a decision threshold T
indicates a positive match.

For testing the robustness and the performance of our approach we gen-
erate several distorted versions of our input images by using the open-source
tool Imagemagick (see Tab. 2 for the specifications) and matching the resulting
templates with the images in the database.

Table 2: Robustness Tests

Test Settings

JPEG Quality 10%
JPEG2000 Compression ratio 100:1
Rotation 90◦,−90◦ and 180◦

Sharpening r=1 pixel, σ=1, amount=500%
Hist. Equal. Standard flat histogram

4.2 Experimental Results

The first step in testing our method is matching all retina codes against each
other (for each of the settings shown in Tab.1) to see how the scores are dis-
tributed and if the codes are sufficiently discriminative. The mean relative Ham-
ming distances h̄, their standard deviations sh, and the maximum and minimum
Hamming distances hmax and hmin for this test are shown in Tab. 3. Assuming
uncorrelated templates from different persons an average close to 0.5 in terms
of Hamming distance is expected. In fact, the mean Hamming distances h̄ are
much smaller (0.123 ≤ h̄ ≤ 0.216). In addition to that, the range of obtained
Hamming distances [hmin, hmax] is very small and covers only 7-8% of the overall
possible range.

Setting L2 shows the best results with respect to highest average Hamming
distance values and standard deviation. The low values for H1 may be explained
when taking Fig.5.c as example: of course, the large black areas – stemming
from the circular arcs without any vessels close to the images’ edges – in the
code result in low Hamming distances. This is also true (in less pronounced



Table 3: Score distribution

h̄ sh hmax hmin

L1 0.206 0.022 0.236 0.165
L2 0.216 0.028 0.250 0.172
H1 0.123 0.027 0.172 0.079

manner) for the other settings where we also find an imbalance between black
(non-vessel) and white (vessel) areas causing low differences in general. These
results indicate a very low inter personal variability of the generated code which
makes the occurrence of false positive matches highly probable. While actual
matching performance can not be derived directly from these values since intra
personal variability can not be assessed at present state (due to the lack of cor-
responding data in the DRIVE database), low inter personal variability suggests
the approach not to be suited for larger populations at least. The retina code
example given by Retica Systems Inc. (“Multi-Radius Digital Pattern”4) seems
to indicate even smaller potential for high variability (since the generation is not
explained in detail, a reliable statement on this issue is not possible of course).
Recall that Retica Systems Inc. claims a template size of 20 - 100 bytes whereas
the smallest template investigated here has 225 byte. This of course worsens
the situation for the commercial system. Also, the comparison to an iris code5

suggests the retina code to be of significantly lower variability potential.

The results of the robustness test are shown in Tab. 4. Again, hmax denotes
the highest relative Hamming distance of all matches, hmin the lowest value and
FMR indicates the FMR ratio (ratio of false positive matches and the number of
tests performed). The decision threshold T for computing FMR was derived from
the score distribution test and is set to T = hmin for all subsequent robustness
and sampling tests (see Tab. 3).

Setting L2 performs best of all having only minor problems when the im-
age is histogram-equalized. This is usually a problem with vessel segmentation
yielding to many vessels and sometimes distorting the code too much. Both Set-
tings L1 and L2 show very good robustness against false positive matches even
under severe compression. This confirms previous results on lossy compression
of biometric sample data not to effect FAR as long as applied in sensible ranges
[17, 18]. Also rotation and sharpening does not lead to false positives in case of
L2. A severe problem occurs with lowpass filtering. Here the vessels lying over
the optical disc cannot be clearly distinguished any more, resulting in corrupted
codes for all settings (since sampling near the optical disc is most crucial for
our templates). Thus Lowpass filtering is omitted in Tab. 4. H1 shows very poor
results with respect to robustness. Even rotation leads to 25% FMR although
rotation is compensated in the matching stage. It is also remarkable that the
higher sampling rate of H1 does not at all improve accuracy when using dis-

4 http://www.retica.com/site/images/howitworks.pdf
5 http://www.retica.com/site/technology/irisretina.html



torted images. Overall, it gets clear that the sampling strategy for H1 is not at
all suited for generating sensible retina codes.

Table 4: Results of Robustness Tests

L1 L2 H1
hmax hmin FMR hmax hmin FMR hmax hmin FMR

JPEG 0.115 0.053 0 % 0.107 0.064 0 % 0.074 0.032 0 %
JPEG2000 0.108 0.065 0 % 0.109 0.057 0 % 0.104 0.037 25 %
Rotation 0.151 0.073 0 % 0.115 0.081 0 % 0.095 0.039 25 %

Hist. Equal. 0.172 0.097 17.5 % 0.187 0.119 5 % 0.118 0.055 17.5 %
Sharpening 0.181 0.121 2.5 % 0.158 0.124 0 % 0.103 0.06 30 %

In order to see which template size is necessary for our method to achieve
good results we further downsample the codes of all three settings to 180x5
(112.5 Byte) using nearest neighbour interpolation (see Tab. 5 for the results).
Settings L1 and L2 performed quite well with JPEG, JPEG2000 and Rotation
Tests. Hist. Equal. and Sharpening show an increased FMR between 10 and
35%. Setting H1 shows a major increase of FMRs which range from 5% with
JPEG and JPEG2000 to a maximum of 90% with Hist. Equal. The high values
of setting H1 probably results from a large code (360x20) being downsampled
to 1/8 of the original size and thus loosing too much information.

Table 5: Results of Robustness Tests with downsampling

L1 L2 H1
hmax hmin FMR hmax hmin FMR hmax hmin FMR

JPEG 0.124 0.044 0 % 0.126 0.065 0 % 0.095 0.037 5 %
JPEG2000 0.162 0.062 5 % 0.181 0.061 5 % 0.125 0.043 5 %
Rotation 0.081 0.031 0 % 0.092 0.035 0 % 0.112 0.057 10 %

Hist. Equal. 0.18 0.106 10 % 0.175 0.122 35 % 0.1 0.052 90 %
Sharpening 0.17 0.122 35 % 0.186 0.147 30 % 0.114 0.068 75 %

Considering the high compression rate JPEG2000 is operated with these
results indicate that the code size could be actually reduced with respect to
setting L2 for practical applications and still deliver acceptable results concerning
compression robustness.

5 Conclusion and Future Work

We have discussed methods for generating retina codes from retinal images for
biometric user authentication. The methods developed have exhibited very low
inter personal variability – given the fact that retina based biometrics are prob-
ably restricted to high security environments due to the inconvenient data ac-
quisition process, the real-life applicability of these techniques as a stand-alone



technique is as least questionable. It seems that the only sensible deployment
could be in a multi-modal system in combination with iris recognition (as also
offered by Retica Systems Inc.6) where the retina based part could perform an
initial fast classification process identifying a set of possible matches in identifi-
cation mode. For a final assessment intra personal variability has to be evaluated
and related to FRR and FAR. Good robustness against JPEG and JPEG2000
compression not leading to false positives at low bitrates has been observed.
Note that all those findings only apply to retina code templates but not for
retina-scan based biometrics in general. For vessel-crossing based template data
much better recognition performance has been reported.

Future work will involve a cooperation with the Department of Ophthalmol-
ogy at the local hospital to get access to data allowing the determination of intra
personal variability and to study the effects of eye diseases on a retina code based
recognition scheme.
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