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ABSTRACT
When creating a digital composite of, for example, two peo-
ple standing side-by-side, it is often difficult to match the
lighting conditions from the individual photographs. Light-
ing inconsistencies can therefore be a useful tool for revealing
traces of digital tampering. Borrowing and extending tools
from the field of computer vision, we describe how the di-
rection of a point light source can be estimated from only
a single image. We show the efficacy of this approach in
real-world settings.

Categories and Subject Descriptors
I.4 [Image Processing]: Miscellaneous

Keywords
Digital Tampering, Digital Forensics

1. INTRODUCTION
Consider the creation of a forgery showing two movie

stars, rumored to be romantically involved, walking down
a sunset beach. Such an image might be created by splicing
together individual images of each movie star. In so doing,
it is often difficult to exactly match the lighting effects due
to directional lighting (e.g., the sun on a clear day). Differ-
ences in lighting can, therefore, be a telltale sign of digital
tampering. Shown in Figure 1, for example, is a composite
image where the two people were originally photographed
with the light in significantly different positions. While this
type of forgery is fairly obvious, more subtle differences in
lighting direction may be harder to detect by simple visual
inspection [13, 7].

To the extent that the direction of the light source can be
estimated for different objects/people in an image, incon-
sistencies in the lighting direction can be used as evidence
of digital tampering. In this paper, we describe a technique
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Figure 1: A digital composite of movie stars Cher
and Brad Pitt. Note that Cher was originally pho-
tographed with a fairly diffuse non-directional light
source, whereas Brad Pitt was photographed with a
directional light positioned to his left.

for estimating the light source direction from a single image,
and show its efficacy in real-world settings.

2. METHODS
The general problem of estimating the illuminant direc-

tion has been widely studied in the field of computer vision
(e.g., [8, 2, 6]). In this section, we define the general prob-
lem, review a standard solution and then show how some
additional simplifying assumptions make the problem more
tractable. We then extend this solution to provide for a
more effective and broadly applicable forensic tool.

2.1 Infinite Light Source (3-D)
The standard approaches for estimating light source di-

rection begin by making some simplifying assumptions: (1)
the surface of interest is Lambertian (the surface reflects
light isotropically); (2) the surface has a constant reflectance
value; (3) the surface is illuminated by a point light source
infinitely far away; and (4) the angle between the surface
normal and the light direction 1 is in the range 0◦ to 90◦.

1The assumption that the angle between the surface and
light is bounded between 0◦ to 90◦ can be relaxed by replac-

ing ( ~N(x, y) · ~L) in Equation (1) with max( ~N(x, y) · ~L, 0),
which is not used here to avoid the non-linear max operator.



Under these assumptions, the image intensity can be ex-
pressed as:

I(x, y) = R( ~N(x, y) · ~L) + A, (1)

where R is the constant reflectance value, ~L is a 3-vector
pointing in the direction of the light source, ~N (x, y) is a 3-
vector representing the surface normal at the point (x, y),
and A is a constant ambient light term [3], Figure 2(a). If
we are only interested in the direction of the light source,
then the reflectance term, R, can be considered to have unit-
value, understanding that the estimation of ~L will only be
within an unknown scale factor. The resulting linear equa-
tion provides a single constraint in four unknowns, the three
components of ~L and the ambient term A.

With at least four points with the same reflectance, R,
and distinct surface normals, ~N , the light source direction
and ambient term can be solved for using standard least-
squares estimation. To begin, a quadratic error function,
embodying the imaging model of Equation (1), is given by:

E(~L, A) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

M

0

B

B

@

Lx

Ly

Lz

A

1

C

C

A

−

0

B

B

B

@

I(x1, y1)
I(x2, y2)

...
I(xp, yp)

1

C

C

C

A

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

2

=
˛

˛

˛

˛

˛

˛M~v −~b
˛

˛

˛

˛

˛

˛

2

, (2)

where || · || denotes vector norm, Lx, Ly, and Lz denote the

components of the light source direction ~L, and
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where Nx(xi, yi), Ny(xi, yi), and Nz(xi, yi) denote the com-

ponents of the surface normal ~N at image coordinate (xi, yi).
The quadratic error function above is minimized by differ-
entiating with respect to the unknown, ~v, setting the result
equal to zero, and solving for ~v to yield the least-squares
estimate:

~v = (MT M)−1MT~b. (4)

Note that this solution requires knowledge of 3-D surface
normals from at least four distinct points (p ≥ 4) on a sur-
face with the same reflectance. With only a single image
and no objects of known geometry in the scene, it is unlikely
that this will be possible. Most approaches to overcome this
problem rely on acquiring multiple images [9] or placing an
object of known geometry in the scene (e.g., a sphere) [1].
For forensic applications, these solutions are not practical.

2.2 Infinite Light Source (2-D)
In [6], the authors suggest a clever solution for estimating

two components of the light source direction (Lx and Ly)
from only a single image. While their approach clearly pro-
vides less information regarding the light source direction, it
does make the problem tractable from a single image. The
authors note that at the occluding boundary of a surface,
the z-component of the surface normal is zero, Nz = 0. In
addition, the x- and y-components of the surface normal,
Nx and Ny, can be estimated directly from the image, Fig-
ure 2(b).

Figure 2: Schematic diagram of the imaging geome-
try for an (a) infinite light source (3-D); (b) infinite
light source (2-D); and (c) local light source (2-D).
In the 2-D cases, the z-component of the surface
normal ( ~N) is zero. Unlike an infinite light source,

the direction to a local light source (~L) varies across
the sphere’s surface.

With this assumption, the error function of Equation (2)
takes the form:

E(~L, A) =
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This error function is minimized, as before, using standard
least-squares to yield the same solution as in Equation (4),



but with the matrix M taking the form given in Equa-
tion (6). In this case, the solution requires knowledge of 2-D
surface normals from at least three distinct points (p ≥ 3)
on a surface with the same reflectance.

The intensity, I(xi, yi), at a boundary point, (xi, yi), can-
not be directly measured from the image as the surface is
occluded. The authors in [6] note, however, that the inten-
sity can be extrapolated by considering the intensity profile
along a ray coincident to the 2-D surface normal. They also
found that simply using the intensity close to the border
of the surface is often sufficient (see Section 3 for a more
detailed description).

We extend this basic formulation in three ways. First, we
estimate the two-dimensional light source direction from lo-
cal patches along an object’s boundary (as opposed to along
extended boundaries as in [6]). This is done to relax the
assumption that the reflectance along the entire surface is
constant, Section 2.2.1. Then, we introduce a regularization
(smoothness) term to better condition the final estimate of
light source direction. Finally, this formulation is extended
to accommodate a local directional light source (e.g., a desk
lamp), Section 2.3.

2.2.1 Relaxing the Constant Reflectance Assumption
We relax the constant reflectance assumption by assum-

ing that the reflectance for a local surface patch (as opposed
to the entire surface) is constant. This requires us to esti-

mate individual light source directions, ~Li, for each patch
along a surface. Under the infinite light source assumption,
the orientation of these estimates should not vary, but their
magnitude may (recall that the estimate of the light source is
only within a scale factor, which depends on the reflectance
value R, Equation (1)).

Consider a surface partitioned into n patches, and, for no-
tational simplicity, assume that each patch contains p points.
The new error function to be minimized is constructed by
packing together, for each patch, the 2-D version of the con-
straint of Equation (1):

E1(~L
1, . . . , ~Ln, A) =
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where,
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The above quadratic error function is minimized, as before,
using least-squares with the solution taking on the same

form as in Equation (4). In this case, the solution provides

n estimates of the 2-D light directions, ~L1, . . ., ~Ln, and an
ambient term A. Note that while individual light source
directions are estimated for each surface patch, a single am-
bient term is assumed.

While the local estimation of light source directions allows
for the relaxation of the constant reflectance assumption, it
could potentially yield less stable results. Note that under
the assumption of an infinite point light source, the orien-
tation of the n light directions should be equal. With the
additional assumption that the change in reflectance from
patch to patch is relatively small (i.e., the change in the

magnitude of neighboring ~Li’s is small), we can condition
the individual estimates with the following regularization
term:

E2(~L
1, . . . , ~Ln) =

n
X

i=2

˛

˛

˛

˛

˛

˛

~Li − ~Li−1
˛

˛

˛

˛

˛

˛

2

. (9)

This additional error term penalizes neighboring estimates
that are different from one another. The quadratic error
function E1(·), Equation (7), is conditioned by combining it
with the regularization term E2(·), scaled by a factor λ, to
yield the final error function:

E(~L1, . . . , ~Ln, A) = E1(~L
1, . . . , ~Ln, A)

+ λE2(~L
1, . . . , ~Ln). (10)

This combined error function can still be minimized using
least-squares minimization. The error function E2(·) is first
written in a more compact and convenient form as:

E2(~v) = ||C~v||2 , (11)

where the 2n − 2 × 2n + 1 matrix C is given by:
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with ~v =
`

L1
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y L2
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y . . . Ln
x Ln

y A
´T

. The er-
ror function of Equation (10) then takes the form:

E(~v) = ||M~v −~b||2 + λ||C~v||2. (13)

Differentiating this error function yields:

E′(~v) = 2MT M~v − 2MT~b + 2λCT C~v

= 2(MT M + λCT C)~v − 2MT~b. (14)

Setting this result equal to zero and solving for ~v yields the
least-squares estimate:

~v = (MT M + λCT C)+MT~b, (15)

where + denotes pseudo-inverse. The final light direction
estimate is computed by averaging the n resulting light di-

rection estimates, ~L1, . . . , ~Ln.

2.3 Local Light Source (2-D)
Inherent to the formulation of the previous two sections

was the assumption that the directional light source, ~L, was
infinitely far away (i.e., ~L does not depend on the image
coordinates). With a local light source, however, this as-
sumption is no longer valid, Figure 2(c). The model for



an infinite light source, Equation (1), can be rewritten to
accommodate a local light source as follows:

I(x, y) = R( ~N(x, y) · ~L(x, y)) + A. (16)

Note that the light source direction is now a function of the
image coordinates.

We begin by assuming that the light source direction for
a local surface patch is constant across the patch. The light
source direction for each surface patch is then estimated
using the solution of Equation (7). In the previous section, a
regularization term, that encouraged neighboring estimates
to be equal, was introduced, Equation (9). In the case of a
local light source, a different regularization term is needed as
neighboring directions are expected to converge to a single
nearby point. This regularization term takes the form:

E2(~L
1, . . . , ~Ln) =
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where the matrix Ci is derived in Appendix A. As in the
previous section, the final error function to be minimized is
given by:

E(~L1, . . . , ~Ln, A) = E1(~L
1, . . . , ~Ln, A)

+ λE2(~L
1, . . . , ~Ln), (18)

where E1(·) is given by Equation (7), and λ is a scaling fac-
tor. Unlike the previous section, this error function cannot
be minimized analytically, and is instead minimized using
an iterative conjugate gradient minimization, Appendix B.
Although the functional form of the error function appears
similar to that of the previous section, the matrices Ci de-
pend on the light source estimate ~Li, hence the need for an
iterative minimization.

2.4 Multiple Light Sources
In the previous sections, it was assumed that a single di-

rectional light source was illuminating the scene (plus a con-
stant ambient term). This is a reasonable assumption for
outdoor images where the sun is typically the single source
of illumination. For indoor images, however, this assump-
tion is less reasonable because multiple light sources may be
present.

Light has the wonderful property that it is linear. As
such, a scene illuminated with, for example, two infinite
light sources takes the form:

I(x, y) = R(( ~N(x, y) · ~L1) + ( ~N (x, y) · ~L2)) + A

= R( ~N(x, y) · (~L1 + ~L2)) + A

= R( ~N(x, y) · ~L+) + A, (19)

where ~L+ is the vector sum of the individual vectors ~L1 and
~L2. Note that this model reduces to the same form as a sin-
gle light source, Equation (1). Using the same approach as
in the previous sections, therefore, will result in an estimate
of a “virtual” light source, the vector sum of the individ-
ual light sources. This trivially extends to three or more
individual light sources.

Although not terribly likely, it is possible that different
combinations of light sources will sum to the same “virtual”
light source, in which case this approach would be unable to
detect an inconsistency in the lighting.

3. RESULTS
We tested our technique on both synthetically generated

images and natural photographs. The synthetic images con-
sisted of one or more spheres of constant reflectance ren-
dered under either the infinite or local imaging models of
Equation (1) or (16). The natural photographs were taken
outdoors on a clear sunny day (approximating an infinite
point light source), or in a controlled lab setting with a
single directional light source (approximating a local point
light source). These images were taken with a Nikon D-100
digital camera set to capture in uncompressed RAW format.

The light direction estimation requires the localization of
an occluding boundary. These boundaries are extracted by
manually selecting points in the image along an occluding
boundary. This rough estimate of the position of the bound-
ary is used to define its spatial extent. The boundary is then
partitioned into approximately eight small patches. Three
points near the occluding boundary are manually selected
for each patch, and fit with a quadratic curve. The surface
normals along each patch are then estimated analytically
from the resulting quadratic fit.

The intensity from the occluding boundary cannot be di-
rectly measured from the image as the surface is occluded.
The authors in [6] note, however, that simply using the in-
tensity close to the border is often sufficient. The authors
also found that under certain conditions it was advantageous
to extrapolate the intensity by considering the intensity pro-
file along a ray coincident to the 2-D surface normal. In the
former case, the intensity is measured at a fixed number of
pixels from the boundary in the direction opposite to the
surface normal. More specifically, the intensity at a bound-
ary point (xi, yi) with surface normal ~N is determined by
evaluating the 1-D intensity profile

P (t) = I(xi − tNx, yi − tNy) (20)

at an offset of t = δ pixels, where δ > 0.
In the case of extrapolation, we would like to evaluate

P (t) at t = 0 (i.e., at a boundary point), but the intensity
at the boundary is unreliable due to the occlusion. This
value can, however, be extrapolated from P (t) with values
t > 0. We assume that the intensity profile can be modeled
with an exponential:

P (t) = αtβ. (21)

The model parameters, α and β, are determined using least-
squares estimation 2 on log(P (t)). In our results, we consider
P (t) for t = 1, . . . , 15, for this estimation. The intensity at
the boundary, P (0), is then simply determined by evaluat-
ing Equation (21) at t = 0. This entire process is repeated
for each point along the occluding boundary. For objects of
constant reflectance across the entire object, the extrapola-
tion method is desirable, as it yields more accurate intensity
estimates.

2The model parameters in Equation (21) are determined
using least-squares estimation on log(P (t)). Specifically, in
the log domain we have log(P (t)) = log(α) + β log(t). A
quadratic error function in the model unknowns then takes

the form E(~v) =
˛
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, where each row of the matrix

M is [1 log(ti)], each corresponding entry of the vector
~b is [log(P (ti))], and ~v = [log(α) β]T . The least-squares

estimate of this error function is ~v = (MT M)−1MT~b.



In the results of Section 3.1 (infinite light source), the
method of simply measuring the intensity near the bound-
ary was employed – measurements were made 1 pixel from
the boundary. In the results of Section 3.2 and 3.3 (local
and multiple light source), the extrapolation technique was
employed. The reason for this difference is that the objects
in our local and multiple light source experiments consisted
of spheres of constant reflectance, which lend themselves to
the extrapolation method. On the other hand, the objects in
our infinite light source experiments did not have constant
reflectance across the entire object, making it unlikely that
the extrapolation method would yield accurate results.

In all cases, we converted the original color (RGB) image
to grayscale (gray = 0.299R + 0.587G + 0.114B) from which
the intensity measurements were made.

Finally, the values of λ in the error functions of Equa-
tion (10) and (18) were empirically determined to be 10
(infinite light source), and 1 (local light source). These val-
ues were held fixed for all examples given in the next three
sections.

3.1 Infinite Light Source
Shown in Figures 4 and 5 are eight images of objects il-

luminated by the sun on a clear day. In order to determine
the accuracy of our approach, a calibration target, consisting
of a flat surface with a rod extending from the center, was
placed in each scene. The target was approximately paral-
lel to the image plane, so that the shadow cast by the rod
indicated the direction of the sun. Errors in our estimated
light source direction are given relative to this orientation.

The average estimation error is 4.8◦ with a minimum and
maximum error of 0.6◦ and 10.9◦. The image returning the
largest error, the parking meters, is shown in the bottom
panel of Figure 4. There are probably at least three reasons
for this error, and for errors in general. The first is that the
metallic surface violates the Lambertian assumption. The
second is that the paint on the meter is worn in several
spots causing the reflectance to vary, at times, significantly
from patch to patch. And the third is that we did not cali-
brate the camera so as to remove luminance non-linearities
(e.g., gamma correction) in the image.

Shown in the top panel of Figure 3 is an image of John
Kerry and Jane Fonda sharing a stage at an antiwar rally.
This image was circulated in February of 2004 in an at-
tempt to discredit John Kerry during his campaign for the
U.S. presidency. Shortly after its release, however, this im-
age was determined to be a fake, having been created by
digitally compositing two separate images. Although we do
not know the true illuminant direction, we found an incon-
sistency in the estimated light direction: 123◦ for Kerry and
86◦ for Fonda. Note that these estimates were made on
a very low quality image, giving hope that our algorithm
will be fairly robust to, among others, JPEG compression.
Shown in the bottom panel of Figure 3 is an authentic, al-
though perhaps unlikely, image of Richard Nixon and Elvis
Presley. The estimated light directions for each person are
consistent, with Nixon at 98◦ and Presley at 93◦.

3.2 Local Light Source
Shown in Figure 6 is an example of our experimental setup

for testing the local light source estimation. In the top three
panels are images of a pair of spheres imaged with the light
source at 3 of 34 different positions. The light consisted of

Figure 3: Shown above is a known forgery of John
Kerry and Jane Fonda sharing a stage at an anti-
war rally. The estimated light direction for Kerry
is 123◦, while the direction for Fonda is 86◦. Shown
below is an authentic image of Richard Nixon and
Elvis Presley. The estimated directions for Nixon
and Presley are 98◦ and 93◦.

a lamp with an exposed bulb, and the room was otherwise
devoid of any light. With the pair of spheres being placed
on either side of the origin of a world coordinate system, the
light was placed at 93 cm or 124 cm from the origin along
the y-axis, and moved from −123 to +123 cm along the x-
axis, in 17 steps. Shown in the lower panel of Figure 6 is a
schematic of these light positions (squares), with the trian-
gles representing the estimated light position. On average,
the position of the light source is estimated within 11.2 cm,
with a minimum and maximum error of 0.7 and 22.3 cm.
These values correspond to an average, minimum, and max-
imum error of 9.0%, 0.4%, and 18% as a percentage of the
distance from the light source to the origin. With respect
to estimating just the orientation of the light source, the
average error is 0.4◦ with a minimum and maximum error
of 0.04◦ and 1.1◦.



Figure 4: Shown are four images with the extracted
occluding boundaries (black), individual light source
estimates (white), and the final average light source
direction (yellow arrow). In each image, the cast
shadow on the calibration target indicates the direc-
tion to the illuminating sun, and has been darkened
to enhance visibility.

Figure 5: Shown are four images with the extracted
occluding boundaries (black), individual light source
estimates (white), and the final average light source
direction (yellow arrow). In each image, the cast
shadow on the calibration target indicates the direc-
tion to the illuminating sun, and has been darkened
to enhance visibility.
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Figure 6: Shown in the top three panels are im-
ages of two spheres photographed with a local light
source, with the extracted boundaries (black), in-
dividual light source estimates (white), and the fi-
nal average light source direction (yellow arrow) for
each sphere. Shown below is a schematic of our
complete experimental setup along with the actual
(squares) and estimated (triangles) light source po-
sitions.

3.3 Multiple Light Sources
Shown in Figure 7 are three synthetically generated im-

ages. In each case, the 3-D scene consisted of a single sphere
illuminated with one or two infinite point light sources. In
the two left-most panels the sphere was illuminated with a
single light source positioned at −20◦ and +20◦ from ver-
tical (90◦). In the right-most panel, the sphere was illumi-
nated with two lights positioned at ±20◦. Shown in each
panel is the final estimated light source direction (yellow ar-
row). The actual light sources positions of the individual
light sources are 70◦ and 110◦ yielding a virtual light source
at 90◦ for the scene illuminated by both of these lights. The
estimated directions are 69◦, 108◦, and 88◦, yielding an av-
erage error of 1.7◦. Note that in the case of the sphere illu-
minated with two light sources, the estimated direction is,
as expected, the vector sum of the individual light sources.

Figure 7: Shown are, from left to right, a sphere illu-
minated with a single light source positioned at −20◦

and +20◦ from vertical, and with two light sources
positioned at ±20◦. Note that in the latter case, the
estimate of the light source direction (yellow arrow)
corresponds to the vector sum of the individual light
source directions.

4. DISCUSSION
The creation of a digital forgery often involves combining

objects/people from separate images. In so doing, it is diffi-
cult to exactly match the lighting effects due to directional
lighting (e.g., the sun on a clear day). At least one reason for
this is that such a manipulation may require the creation or
removal of shadows and lighting gradients. And while large
inconsistencies in lighting direction may be fairly obvious,
there is evidence from the human psychophysics literature
that human subjects are surprisingly insensitive to differ-
ences in lighting across an image [13, 7]. To the extent that
the direction of the light source can be estimated for differ-
ent objects/people in an image, inconsistencies in lighting
can be used as evidence of digital tampering.

We have described a technique for estimating the direc-
tion (within one degree of freedom) of an illuminating light
source. This technique builds upon work first described
in [6]. We extended this basic formulation by relaxing some
of the simplifying assumptions that were necessary to make
the problem tractable, and by generalizing the approach to
work under a local light source (e.g., floor lamp). We showed
the efficacy of this technique on synthetically generated and
real images.

We are currently investigating how surfaces of known ge-
ometry in the image (plane, sphere, cylinder, etc.) can be
used to estimate the third component of the light source
direction, Nz . If successful, this approach will remove the
current ambiguity in the light source estimation. We are also
investigating a technique to automatically determine which
model, infinite or local, best describes the underlying image
content so that a forensic analyst does not have to decide
which model to use, as is currently the case.

We expect that the technique described here, in conjunc-
tion with other forensic tools (e.g., [4, 5, 10, 11]), will make
it increasingly harder (but never impossible) to create con-
vincing digital forgeries.
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Appendix A
This section derives the regularization term, Equation (17),
for the local light source model of Section 2.3.

Consider the local light source estimates from a pair of ob-
jects (or a pair of boundaries from a single object or a pair
of local patches from a single boundary) estimated by mini-
mizing the quadratic error function of Equation (7). Denote

these estimates as ~L1 and ~L2, and denote ~c1 and ~c2 as the
center pixel along each boundary. Assuming that these es-
timates are not parallel, the intersection of the individual
light sources is determined by solving

~c1 + α1
~L1 = ~c2 + α2

~L2 (22)

for the scalar values α1 and α2, using standard least-squares
estimation. This intersection yields an estimate of the posi-
tion of the local light source, ~L = ~c1 + α1

~L1.
Consider now the collection of individual estimates along

each patch of an occluding boundary, ~L1, . . . , ~Ln. Under the
model of a single local light source, each of these estimates
should be in the direction ~L − ~ci, where ~ci is the center
pixel of patch i. The regularization term, therefore, penal-
izes each estimate ~Li proportional to its deviation from this
direction. Specifically, the penalty is proportional to the dif-
ference between the initial estimate ~Li and the projection of
the estimate onto ~L− ~ci:

~Ri = ~Li − ~∆i

“

~∆T
i

~Li
”

=
“

I − ~∆i
~∆T

i

”

~Li

= Ci
~Li, (23)

where I is the identity matrix and where,

~∆i =
~L− ~ci

˛

˛

˛

˛

˛

˛

~L− ~ci

˛

˛

˛

˛

˛

˛

. (24)

The penalty for ~Li is then simply the magnitude of ~Ri,
Equation (17). Note that ~L, and hence the matrix Ci, is
re-estimated on each iteration of the conjugate gradient min-
imization.

Appendix B
This section describes the minimization of the error func-
tion in Equation (18) (local light source model) using the
conjugate gradient method.

Conjugate gradient minimization is an iterative technique
for finding the minimum of a continuous function. Shown in
Figure 8 is pseudocode for the version of this minimization
technique that was employed in this paper [12].

The minimization of a continuous function E(~v) begins at

a point ~v0, and searches along a direction ~∆ for a point ~v1

Conjugate-Gradient(E,~v)

1 i← 0
2 k← 0
3 ~r← −E′(~v)

4 ~∆← ~r
5 δnew ← ~r T ~r
6 δ0 ← δnew

7 while i < imax and δnew > ε2δ0

8 do δu ← ~∆ T ~∆

9 α← − E′(~v)T ~∆
~∆ T E′′(~v)~∆

10 ~v ← ~v + α~∆
11 j ← 0
12 while j < jmax and α2δu > ε2

13 do α← − E′(~v)T ~∆
~∆ T E′′(~v)~∆

14 ~v ← ~v + α~∆
15 j ← j + 1
16 ~r← −E′(~v)
17 δold ← δnew

18 δnew ← ~r T ~r
19 β ← δnew /δold
20 ~∆← ~r + β~∆
21 k← k + 1

22 if k = m or ~r T ~∆ ≤ 0 � m = dim(~v)

23 do ~∆← ~r
24 k ← 0
25 i← i + 1
26 return ~v

Figure 8: Pseudocode for conjugate gradient mini-
mization – see Appendix B.

such that E(~v1) < E(~v0). This search direction is opposite
the direction of the gradient of E(~v) at ~v0. At each itera-
tion, the process is repeated with the search proceeding from
the previous stopping point. The process terminates when
a maximum number of iterations, imax , has been reached,
or if on the ith iteration the gradient is below a tolerance ε.
The initial point, ~v0, is determined from the least-squares
solution of E1(·), Equation (7). Described next is the com-
putation of the required gradient, E′(·), and Hessian, E′′(·).

The error function of Equation (18) is composed of two
terms:

E1(~v) =
˛

˛

˛

˛

˛

˛M~v −~b
˛

˛

˛

˛

˛

˛

2

, (25)

and the regularization term:

E2(~L
1, . . . , ~Ln) =

n
X

i=1

˛

˛

˛

˛

˛

˛Ci
~Li

˛

˛

˛

˛

˛

˛

2

, (26)

where the matrix M is given by Equation (8), the vector ~v

contains the individual light estimates ~Li and the ambient

term A given in Equation (7), the vector ~b is given in Equa-
tion (7), and the matrix Ci is given in Equation (23). The
error function E2(·) may be written in a more compact and
convenient form as:

E2(~v) = ||C~v||2 , (27)



where the block-diagonal matrix C is:

C =

0

B

B

B

@

C1 0
C2 0

. . .
...

Cn 0

1

C

C

C

A

, (28)

and the form of each matrix Ci is described in Appendix A.
The error function of Equation (18) then takes the form:

E(~v) = ||M~v −~b||2 + λ||C~v||2, (29)

and is differentiated to yield the gradient:

E′(~v) = 2MT M~v − 2MT~b + 2λCT C~v, (30)

and twice differentiated to yield the Hessian:

E′′(~v) = 2MT M + 2λCT C. (31)

Note that the matrix C is recomputed at every iteration of
the minimization (i.e., it depends on the estimate of each ~Li

at each iteration).
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