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ABSTRACT
If digital watermarking is to adequately protect content in
systems which provide both resolution and quality scalabil-
ity, then the watermarking algorithms used must provide
both resolution and quality scalability. Although there ex-
ists a tradeoff between resolution and quality scalability, we
demonstrate that it is possible to achieve both types by tak-
ing advantage of human visual system characteristics to in-
crease quality scalability without compromising resolution
scalability. To this end, we present a new algorithm for tex-
ture detection, which is specifically designed to avoid the
false detection of edges as well as smooth regions. Further-
more, we present a case for texture detection using a single
resolution only; noting that, in a watermarking context, this
method offers advantages over the more popular multi-scale
approach.

Categories and Subject Descriptors
I.4.m [Image Processing and Computer Vision]: Mis-
cellaneous; E.m [Data]: Miscellaneous

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
digital watermarking, scalable, texture analysis

1. INTRODUCTION
Demand for increased flexibility in content delivery has

lead to the development of scalable compression algorithms
which offer the ability to easily adapt content to suit the
capabilities of the user’s system. The widespread use of
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scalable compression for content delivery, however, requires
effective means to secure such content. That is, it requires
the development of scalable watermarking algorithms.
Watermarking algorithms considering this problem have

been proposed, however they tend to focus on a single type
of scalability, resolution [16, 24] or quality [6, 21]. Peng et
al. [18] consider both types, but their algorithm deals exclu-
sively with authentication and is not a watermarking algo-
rithm. In this paper we focus on providing a spread spec-
trum watermarking algorithm which has both resolution and
quality scalability, demonstrated through experimental test-
ing using the JPEG2000 compression algorithm.
From a spread spectrum based algorithm, one can obtain

either resolution or quality scalability by using a constant
embedding strength. To fully protect content in systems
which are both resolution and quality scalable we require
a watermarking algorithm with both resolution and quality
scalability. This goal is beyond reach for a non-adaptive
algorithm, because the low-resolution coefficient selection
required for resolution scalability and the high embedding
strength required for quality scalability must be traded-off
to avoid violating the watermark invisibility constraint.
To alleviate this tradeoff, we begin with a non-adaptive

resolution scalable algorithm and exploit the contrast sensi-
tivity and texture masking characteristics of the human vi-
sual system (HVS) to construct an HVS adaptive algorithm
that has good quality scalability whilst retaining the reso-
lution scalability present in the original algoithm. Contrast
sensitivity functions, which model the ability of the human
visual system to precieve low-contrast patterns, are quite
common in the literature and are simply applied to allow
the adjustment of watermark embedding strength according
to the resolution and orientation of the embedded coeffi-
cient. Finding an acceptable algorithm for texture based
embedding strength adjustment, however, is not as simple.
Thus we present a new algorithm for texture detection in
watermarking.
Existing texture based watermarking algorithms increase

the embedding strength in edged regions, which are poten-
tially sensitive to modification, as well as in textured re-
gions. Our algorithm is specifically designed to concentrate
on textured regions only, avoiding the visible distortions
which may occur when strength increases are applied to
edges. Furthermore, our texture algorithm is applied in the
wavelet domain but uses only a single resolution for each
coefficient to be watermarked. This is perhaps somewhat
counter-intuitive, as a common reason for using the wavelet
domain for texture detection is the ability to analyse the
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texture at many different scales. Accordingly, we also offer
a case for the use of single resolution based texture detec-
tion, considering both the implementation advantages and
the advantages in watermark quality.
This research is on watermark scalability and, as such,

the robustness evaluation is focused entirely on compression
in the form of resolution and quality reduction and not on
other forms of attack. We would expect that the robust-
ness of our watermarking algorithm to manipulations such
as cropping and slight rotation would remain similar to that
of other non-blind spread spectrum algorithms. Robustness
to filtering will depend on the type of filter but as resolution
reduction is essentially a form of low pass filtering we would
expect good robustness to such attacks; also the strength
increases applied to textured regions should provide some
protection against high pass filtering.
The determination of whether or not the proposed algo-

rithm provides improved scalability over existing schemes
requires the development of measures of watermark scala-
bility. Furthermore, it is desirable that the same measures
can be used to examine either resolution or quality scala-
bility. We present two such measures, corresponding to the
two properties of a scalable watermark. The first of these
evaluates the minimum level of watermark protection pro-
vided to content of ‘acceptable’ quality. The second assesses
how well increases in content ‘value’ are matched with in-
creases in watermark protection. The calculation of these
measures for different watermarking algorithms, across the
same set of resolution and quality scaled content, enables us
to compare resolution and quality scalability using standard
statistical tests.
Experimental comparison of the proposed HVS adaptive

algorithm with the non-adaptive algorithm on which it is
based shows a substantial increase in the detectability of
the watermark in quality-scaled content and no significant
decrease in the detectability of the watermark in resolution-
scaled content, demonstrating that the techniques proposed
are effective in alleviating the resolution/quality scalabil-
ity tradeoff. The HVS adaptive algorithm is also compared
with the widely acknowledged algorithm of Cox et al. [7]
and the algorithm of Xia et al. [24] which was designed with
edge/texture-based HVS adaptation, resolution scalability
and integration with compression algorithms in mind. We
will show that the Cox algorithm presents good quality scal-
ability at the expense of resolution scalability, the Xia algo-
rithm does the reverse and the proposed algorithm offers a
balance between the two.

2. BACKGROUND

2.1 Digital Watermarking
Digital Watermarking is the act of embedding data in dig-

ital content. Digital watermarks can be used in a range of
applications for purposes such as copyright protection, au-
thentication and labelling.
Most digital watermarking algorithms must strike a bal-

ance between the following three desriable but competing
properties: capacity, the amount of data which is embed-
ded; robustness, the ability of the embedded data to survive
manipulations of the content (be they malicious or innocent)

and invisibility1, the ability of the distortions caused by
embedding remain unnoticed by a human observer.
The watermarking algorithms in this paper are consid-

ered for copyright protection of scalably compressed image
content. As is generally the case with copyright protection
watermarks, the capacity requirement is extremely low - a
single bit indicating the presence or absence of the copyright
holder’s watermark. In this case the tradeoff is between in-
visibility and robustness.

2.2 A Simple Spread Spectrum Watermark-
ing Algorithm

The following outlines embedding and detection compo-
nents of the basic spread spectrum watermarking algorithm
first introduced by Cox et al.
Setup:

Let W = (w1, w2, ..., wN ) be an N-element Gaussian wa-
termark sequence with zero mean and unit variance. Let I
represent the original image, I ′ the watermarked image and
I∗ a potentially distorted copy of the image which may or
may not contain the watermark. Let d be a variable indi-
cating the success or failure of watermark detection. Let
s(W1,W2) be a statistic, such as similarity

sim(W1,W2) =
W1.W2√
W2.W2

or correlation

cor(W1,W2) =
W1.W2p

(W1.W1)(W2.W2)

that measures the closeness of the match between two N-
element sequences W1 and W2.
A threshold Tfp is determined according to behaviour of the
chosen detection statistic and the maximum acceptable false
positive rate for watermark detection.

Embedding:

Input: I,W
Output: I ′
o Select coefficients V = (v1, v2, ..., vN ) from I
o I ′ = I
o Select corresponding coefficients (v′1, v

′
2, ..., v

′
N ) from I ′

o v′i = vi(1 + αwi)

Detection:

Input: I, I∗,W
Output: d
o Select coefficients V = (v1, v2, ..., vN ) from I
using the same process as for Embedding

o Select corresponding coefficients (v∗1 , v
∗
2 , ..., v

∗
N ) from I∗

o Extract W ∗ = (w∗
1 , w

∗
2 , ..., w

∗
N ) where w∗

i = 1
α
( vi∗

vi
− 1)

o Calculate the detection statistic, s(W,W ∗)
o If s(W,W ∗) > Tfp, d = Yes else d = No

1There is a class of watermark known as the visible water-
mark, often used to add a visible trademark or logo to image
or video content, for which the invisibility constraint does
not apply, but the watermarks in this paper are not of this
class.
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2.3 JPEG2000
JPEG2000 is a new wavelet-based image compression stan-

dard, which has been developed to provide higher levels of
consistency, performance and flexibility than the old DCT-
based JPEG standard. An important feature of the stan-
dard as it applies to internet and mobile applications is that
JPEG2000 offers greatly improved options for scalability.
During the compression process, a discrete wavelet trans-

form is applied using a dyadic decomposition structure. The
lowest resolution layer is formed from the LL subband af-
ter n decompositions and each subsequent resolution layer
contains the additional LH, HL and HH subbands required
for image reconstruction at twice the horizontal and vertical
resolutions.
A context adaptive bit plane coder is independently ap-

plied to spatially contiguous groups of coefficients from the
same subband to produce a number of coding passes; each
pass generally encodes a single bit each2 from some of the co-
efficients in the group. These passes are then arranged into
layers so that those passes which provide the greatest quality
improvements are in the lowest layer, those which provide
slightly smaller improvements appear in the next layer and
so on. The number of passes included in each layer is de-
termined according to the target compression rate for the
subimage resulting from the addition of that layer.

2.4 Scalable Watermarking
The need for efficient distribution of content to a wide va-

riety of devices, each with different display and processing
capabilities and different connection bandwidths, has given
rise to scalable compression schemes, which allow the trans-
mission of only the portions of the content that are required
for the best performance on the particular device. However,
if scalable distribution schemes are employed, then in order
to adequately protect the content using watermarking, we
require watermarking algorithms which are also scalable.

Scalable Watermarking algorithms consist of combined
watermark embedding and detection schemes intended for
use with scalable content and possessing the following two
properties:

1. The watermark is detectable in any portion of the
scaled content which is of ‘acceptable’ quality.

2. Increased portions of the scaled content provide re-
duced error in watermark detection appropriate to the
improved content quality.

The first property ensures that some degree of protection
is given whenever the content is still of value. The second
property ensures that more valuable content is given a higher
degree of protection.
As there are different types of scalability in compression,

there are, correspondingly, different types of scalability in
watermarking. The two main types of scalability which are
of importance to the compression of still images are resolu-
tion and quality scalability.

Resolution scalability (or spatial scalability) is the abil-
ity to easily display visual data at a number of target spa-
tial resolutions. It is achieved by encoding a low resolu-
tion version of the image separately from one or more lay-

2If the bit encoded for a given coefficient is the most signif-
icant bit of that coefficient, an additional bit representing
the sign of the coefficient will also be encoded.

ers of higher resolution refinement data. This data can be
combined with the appropriately scaled low resolution im-
age to produce a higher resolution image. Typically each
refinement-layer allows the display of an image at twice the
horizontal and twice the vertical resolution previously ob-
tainable.

Quality scalability is the ability to easily display visual
data at a number of target quality levels. It is achieved
by encoding a coarsely quantized version of the image sepa-
rately from one or more layers of more finely quantized re-
finement data at the same resolution. The refinement-layers
can be combined with the coarsely quantized version of the
image to produce a higher quality image. Quality scalability
is also termed SNR scalability, however the quality metric
used to determine the layers need not be directly related to
the signal-to-noise ratio (SNR).
If the definition of scalable watermarking holds when a

watermarking algorithm is employed with a resolution scal-
able compression scheme then the watermarking algorithm
can be deemed to provide ‘resolution scalability’. Similarly,
if the definition holds when the watermarking algorithm is
employed with a quality scalable compression scheme it can
be deemed to provide ‘quality scalability’. In order to be
truly useful for the protection of still image content within
a scalable distribution scheme, a watermarking algorithm
must provide both types of scalability.
Watermarking algorithms will satisfy the scalability con-

ditions to varying degrees. A watermarking algorithm which
well satisfies property 1 of our scalable watermarking defi-
nition will produce watermarks which are still detectable in
more highly scaled content. We can compare the resolution
or quality scalability of watermarking algorithms in terms
of property 1 by comparing the detection statistic values at
the lowest resolution or lowest quality subimage.
A watermarking algorithm which well satisfies property 2

will result in an increase in watermark detectability when
a new portion of content is received which closely matches
the increase in content value provided by the inclusion of
that portion. We can evaluate scalability according to prop-
erty 2 by comparing the amount of watermark which is ac-
tually present in each layer with the amount of watermark
which would ideally be present layer (based on the estimated
‘value’ of the content at that layer).

2.5 Resolution/Quality Scalability Tradeoff
The simple spread spectrum watermarking scheme de-

scribed in section 2.2 is non-adaptive, in that it uses a con-
stant embedding strength α regardless of the properties of
the selected coefficients V . This results in a tradeoff between
resolution and quality scalability.
Both Embedding and Detection require a set of coefficients

to be selected from the transformed image. Depending on
the selection scheme used we will achieve varying degrees of
scalability in the resulting watermarking algorithm.
Examination of alternative coefficient selection schemes

[19] highlights a tradeoff between resolution scalability and
quality scalability. Selection schemes which are designed for
reduced image distortion, such as that in [7], allow a reason-
ably high embedding strength; the result of which is that
much of the watermark is still available at low quality layers,
providing good quality scalability. However, such schemes
are limited in their selection of low resolution coefficients
due to the distortion inherent in such selection.
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The only mechanism for improving the algorithm’s resolu-
tion scalability is to allow the selection scheme to include a
far greater number of coefficients from low resolution layers.
Unfortunately, in order to maintain watermark invisibility,
this requires a reduction in embedding strength which re-
sults in a reduction in quality scalability.
Increasing the embedding strength α for a resolution scal-

able algorithm should increase it’s quality scalability. This
cannot be done for a non-adaptive watermarking algorithm,
with a constant α, without compromising invisibility con-
straints. However, replacing the constant α with a variable
αi may allow us to selectively increase the strength for coef-
ficients that will not contribute to the perceived distortion.
If the αi can be sufficiently increased in this manner, for
sufficient number of coefficients, then the algorithm will be
both resolution and quality scalable.

3. MEASURING SCALABILITY
The construction of measures of scalability enables us to

experimentally compare the resolution and quality scalabil-
ity of the proposed algorithm with that of existing algo-
rithms. These measures must adhere closely to the definition
of watermark scalability, be easy to calculate and should be
applicable to either type of scaled content.
We propose two measures of scalability, corresponding to

the to properties 1 and 2 of a scalable watermark. For prop-
erty 1 we define detectability, which evaluates the minimum
level of watermark protection provided to content of ‘accept-
able’ quality. For property 2 we define graceful improve-
ment, which assesses how well increases in content ‘value’
are matched with increases in watermark protection.
Each construction considers the case of a scalably com-

pressed, watermarked image composed of n layers (the same
construction applies regardless of whether resolution or qual-
ity layers are used). From this image are obtained n subim-
ages, where subimage k consists of layers 1 to k. From each
subimage, the similarity statistic simk is calculated.

3.1 Property 1 - Detectability
An algorithm satisfying property 1 will produce a water-

mark which is detectable in any version of the scaled content
which is of ‘acceptable’ quality. What constitutes ‘accept-
able’ is highly subjective, so for the purposes of this paper
we assume that the subimages produced in our experiment
(section 6) are of acceptable quality. Thus, provided the
watermark is detectable in the most highly scaled subimage,
the lowest layer, it will be detectable in all scaled versions of
the content. The higher the detection statistic at the lowest
layer, the better property 1 will be satisfied.
Although the false positive and false negative error rates

are the ultimate measures of watermark protection, these
rates are generally low, thus a great number of trials are
required to obtain enough false positives or false negatives
for an approximation of the error rate. To reduce the num-
ber of trials required we can use the watermark detection
statistic; since, for any detection threshold, higher values of
the detection statistic result in lower error rates.
We construct a detectability measure D to evaluate scal-

ability in terms of property 1 using the calculated values of
the similarity detection statistic (sim) at the lowest resolu-

tion3 or lowest quality subimage (k = 1)

D = sim1.

3.2 Property 2 - Graceful Improvement
An algorithm satisfying property 2 will produce a water-

mark in which increased portions of the scaled content pro-
vide reduced error in watermark detection to appropriate to
the improved content quality. This means that the more a
particular layer contributes to the overall image content, the
more of the watermark should be embedded in that layer.
The better the fit between the value of each layer and the
amount of watermark contained in that layer, the better
property 2 will be satisfied.
We construct a graceful improvement measure G to evalu-

ate scalability in terms of property 2 by comparing the ideal
amount of watermark present in a given layer k with the
actual amount present in the same layer.
The ideal is the number Ik of watermark elements, from

an N-element watermark, which would ideally be embed-
ded in layer k given it’s value. Let Pk denote the perceptual
quality of subimage k relative to the original image, mea-
sured using PSNR. The content ‘value’ contributed by layer
k can then be described as the improvement in perceptual
quality caused by the addition of layer k, or Pk −Pk−1. The
ideal number of watermark elements in layer k is then sim-
ply the value of layer k proportional to the full image value
Pn − P0 (where subimage n is the full watermarked image
and subimage 0 is an empty (mid-grey) image), multiplied
by the number of elements N in the full watermark.

Ik =N
Pk − Pk−1

Pn − P0

To calculate the actual number Ak of watermark elements
present in a subimage that has been formed using a resolu-
tion decomposition we could simply count the number of
watermarked coefficients present in the subimage, as each of
these is a complete coefficient and will thus contain an en-
tire watermark element. Attempting to do the same thing
for a quality decomposition is problematic, however, since a
subimage formed using a quality decomposition may consist
of partial coefficients and, as a result, contain partial wa-
termark elements. A number of partial watermark elements
are required to provide an equivalent level of protection to
one full watermark element, and this number will vary ac-
cording to how much of each watermark element is present
in the subimage.
We can avoid this problem by noting that, when the ex-

tracted watermark consists of complete watermark elements,
the expected value of the similarity detection statistic is
equal to the square root of the number of watermark ele-
ments. Thus for a resolution decomposition, the expected
number of complete watermark elements present subimage
k is sim2

k; while for a quality decomposition, the partial wa-
termark elements contained in subimage k provide a level
of protection equivalent to that of sim2

k complete water-
mark elements. In either case, we can define actual as the
expected number of complete watermark elements which

3To enable fair comparison between algorithms which pro-
hibit embedding in the LL band and those which do not,
the resolution subimage which consists of the LL band only
is not included in any of the calculations. Thus the ‘lowest
resolution’ subimage consists of the LL, LH, HL and HH
subbands after n decompositions.
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would have to be embedded in layer k to cause the observed
change in the detection statistic from subimage k − 1 to
subimage k; calculated as follows

Ak =(simk)
2 − (simk−1)

2.

How greatly the actual number of watermark elements dif-
fers from the ideal number of watermark elements across all
layers is measured by

∆ =
X

k

(Ak − Ik)2
Ik

.

The use of squared difference between actual and ideal re-
sults in a preference for more evently distributed schemes
which obtain values close to the ideal for all layers, over
those which are very close to ideal on most layers but far
from ideal on other layers. Division by the ideal ensures
that the differences between actual and ideal are considered
in proportion to the layer value. We form a more convenient
measure of how closely the actual matches the ideal by nor-
malising so that the possible values range between 0 and 1
so that a value of 1 indicates a perfect fit to the ideal

G =1− ∆

N( N
Im

− 1)

where m is the layer for which 0 < Im ≤ Ik ∀k.

4. HVS ADAPTIVE WATERMARKING
To alleviate the tradeoff between resolution and quality

scalability that occurs with non-adaptive watermarking, we
adapt the embedding strength according to properties of the
human visual system and the image content. Studies of the
human visual system suggest that the embedding distortion
may be masked depending on the contrast sensitivity at the
frequency of the embedded coefficient vi and the textural
properties of the image in the same spatial region as the
embedded coefficient.

4.1 CSF Based Masking
Contrast sensitivity is the ability to distinguish a low-

contrast pattern from an area of uniform colour. The small-
est detectable difference in contrast changes depending on
the spatial frequency of the pattern being viewed. The mod-
ification of a wavelet coefficient during the watermarking
process causes a small change in contrast at the particular
location and frequency associated with that wavelet coeffi-
cient. If the contrast sensitivity at that frequency is low,
then the modification is less likely to cause a visible artifact
than if the contrast sensitivity at that frequency is high.
Thus a good first step towards improving the quality scal-
ability of our watermarking algorithm would be to increase
the value of αi according to the estimated contrast sensitiv-
ity at the subband to which vi belongs.
These increases are easily achieved through the use of an

appropriate Contrast Sensitivity Function (CSF), which de-
scribes the relative contrast sensitivity of the human visual
system for sinusoidal patterns of various frequencies, where
the frequency f is measured in cycles per degree of visual
angle. While there are many versions of the CSF available,
the majority have been developed using luminance based
experiments only. The versions in [17] have been developed
specifically for use with colour image content, for a number

of different colour spaces. We adopt4 those provided for the
YCbCr space, commonly used in JPEG2000 compression.

CSFY = 0.997f2e−0.970f0.758
+ 0.221e−0.800f1.999

CSFCb = e−0.2041f0.900

CSFCr = e−0.1521f0.893

The CSF is then sampled at the midpoint of the frequency
range covered by each subband in each resolution level to
obtain an estimate CSF(r, s) for the average sensitivity to
modifications in resolution r and subband s. The multi-
plicative inverse of the resulting value, then, describes the
relative amount of modification which can be applied to a
subband while maintaining the invisibility watermark.
Thus for embedding in a coefficient vi from component ci,

resolution level ri and subband si we set

αCSF,i =
α

CSFci(ri, si)
.

The calculation of frequency range given the resolution
of the image requires an estimate of the viewing distance,
with further distances moving the region of greatest sensi-
tivity closer to the lowest resolution. The result of this is
that if the viewing distance is further than that used in the
calculation of f , the actual sensitivity in the low-resolution
subbands of the Y component will be greater than the esti-
mated sensitivity, potentially resulting in watermark visibil-
ity. To avoid this problem, we follow the method suggested
in [17] and estimate a minimum viewing distance and then
set CSFY(r, s) = 1 for all r below that in which the peak
CSF value is found.

4.2 Texture Based Masking
It has been noted [4,14,15] that the human visual system

is less sensitive to modifications in textured regions. Re-
gions which attract the label textured are those which are
substantially composed of high-contrast areas. The texture
masking property can be exploited by increasing αi at coef-
ficients which lie in textured regions.
In order to achieve this it is necessary to at least iden-

tify whether or not a given coefficient lies within a textured
region. Further, it is desirable to determine the degree to
which the region is textured, where regions composed of ar-
eas of higher contrast or in which the high-contrast areas are
more densely packed are considered more highly textured,
in order to provide a greater increase to embedding strength
in highly textured regions.
A drawback associated with the use of texture based mask-

ing is the problem of edges. Edge regions are also composed
of high contrast areas. As a result, texture detection algo-
rithms used for watermarking [2,3,23] often detect edges as
well. That is, rather than distinguishing textured regions
from edged and smooth regions, they distinguish smooth
regions from edged and textured regions. This problem is
often not addressed, with [23] citing decreased sensitivity to
‘edged and textured’ regions as a whole.
While there does exist an edge based masking effect, it is

highly limited [9]. First, it requires that the site of modifi-
cation be very near the edge (within 2 or 3 pixels). Second,
and more importantly, it requires that the modification and

4The function CSFY presented here is a corrected version
of the one found in [17] in which the values 0.997 and 0.221
have been switched.
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the edge be of the same orientation. The extremely lim-
ited orientation sensitivity of the critically sampled wavelet
transform employed in JPEG2000 compression means that
this second criterion is unlikely to be satisfied. Furthermore,
there is the potential for increased sensitivity to modifica-
tion near edges due to their importance in high-level vision
tasks [12,13,22]. In contrast to previous algorithms, our al-
gorithm is designed exclusively for texture detection rather
than edge and texture detection. This allows us to embed
more strongly in textured regions without risking visibility
at edges.
By determining a texture score ti = Texture(vi) for the

coefficient vi we can adjust the embedding strength accord-
ingly:

αi = (1 + ti)αCSF,i

To avoid distortion to smooth and edged regions we thresh-
old the texture score, setting ti = 0 whenever Texture(vi) <
TTexture this maintains the embedding strength for those
regions at αCSF,i.
In an image composed largely of smooth regions, very few

coefficients will be identified as textured and receive the as-
sociated increase in embedding strength. Thus for such im-
ages we will expect the texture based strength adjustment
step to make little or no difference to algorithm performance.

4.2.1 Texture Scoring Algorithm
This algorithm provides a texture score t indicating the de-
gree of texture present in the neighbourhood surrounding a
given coefficient v at the resolution r to which the coefficient
belongs.

Preconditions:
The resolution r must satisfy r > �R

3
	, where R is the num-

ber of resolution levels in the decomposed image.

Setup:
Let B0 be an n × n block of coefficients centred at v, ex-
cluding those coefficients which are not within the subband
boundary. The nominal blocksize n should be small enough
that any texture detected is reasonably local to the coeffi-
cient examined, yet sufficiently large to allow discrimination
between textured and edged regions; sizes ranging from 15
to 19 show good performance.
Define blocks B1 and B2 similarly for the remaining two

subbands at resolution r. Let S0, S1 and S2 be the average
coefficient magnitudes of the subbands containing blocks B0,
B1 and B2 respectively, and let |Bi| be the number of coef-
ficients in block i 5. The threshold adjustment parameter q
and the weights w1 and w2 are constants.
For a blocksize n = 17 and threshold adjustment param-

eter q = 0.6̇ we found the weight values w1 = 7.72̇ and
w2 = 0.4 to work well.

5The number of coefficients |Bi| in a given block may be less
than the intended size of n × n if the block is too close to
the subband boundary.

Texture:

Input: B0, B1, B2, S0, S1, S2

Output: t
o For i = 0 to 2

e(Bi) =
P

b∈Bi

|b|
|Bi|

c(Bi) =
P

b∈Bi ∧ |b|>qSi

1
|Bi|

o E =
p
max( e(B0)e(B1), e(B0)e(B2), e(B1)e(B2) )

o C =
p
max( c(B0)c(B1), c(B0)c(B2), c(B1)c(B2) )

o t = w1C +w2E

The Texture algorithm is designed to produce a texture
score t that is large if the region around a coefficient v, at the
same resolution, is textured but is small if the same region
is smooth or edged. This region is comprised of the 3 blocks
of wavelet coefficients which correspond to the spatial neigh-
bourhood of the coefficient v at the same resolution but at
3 different orientations (horizontal, vertical and diagonal).
High-magnitude coefficients within the blocks represent ar-
eas with high horizontal, vertical or diagonal contrast, so
blocks in textured regions can be expected to contain many
high-magnitude coefficients.
The energy e of a block is the average magnitude of co-

efficients within that block. It will be large when the block
contains many high-magnitude coefficients (ie. is textured)
and small when the block contains no high-magnitude coef-
ficients (ie. is smooth). Edged regions often contain sections
with higher contrast than textured regions. Thus, if a block
contains a strong edge then e may also be large, even when
many of the coefficients contained in the block are of low-
magnitude.
The count c of high-magnitude coefficients, proportional

to block size, will be high in textured blocks, which con-
tain many high-magnitude coefficients, but will generally
be low in edged blocks, which contain relatively few high-
magnitude coefficients. We do not use a fixed value above
which a coefficient is considered ‘high-magnitude’ because
this will vary according to the image, resolution and sub-
band orientation. Instead, we count all coefficients greater
than some fraction q of the average coefficient magnitude
for the subband as high-magnitude. The value chosen for
q effects the magnitude at which a coefficient is considered
to be of high-magnitude for the purposes of detecting tex-
ture. It must be small enough that a textured region will
contain many coefficients which exceed the threshold but
large enough that the threshold is not exceeded by many
coefficients in smooth regions. If we assume the wavelet co-
efficients of each subband to have a laplacian distribution,
then with a value of q = 0.6̇ approximately 50% of coeffi-
cients examined will be considered high-magnitude for the
purposes of inclusion in the count. In some cases, this value
will be too low, causing large values of c in regions which
appear fairly smooth.
To further reduce the chance of large values in edged re-

gions, we note that an edge is generally high contrast in
a single orientation only, while a textured region often con-
tains areas of high contrast in several orientations. We define
the E and C values using the maximum pairwise multiples
of the e and c component values at various orientations,
ensuring that the E and C are large only if their compo-
nent values are large for at least two orientations; taking
the square root restores the E and C values to the same
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range as their components. As the E values will distinguish
textured regions from smooth regions but not from edged
regions, and the C values will distinguish textured regions
from edged regions but not from smooth regions, we use a
weighted sum of both C and E to produce a final texture
score t, which is capable of distinguishing textured regions
from both edged and smooth regions.

5. THE CASE FOR SINGLE RESOLUTION
BASED TEXTURE SCORES

There are many texture algorithms [2, 3, 5, 8, 10] which
employ a wavelet transform. A major advantage of wavelet-
based algorithms in texture-related applications is the multi-
scale nature of the wavelet transform, which allows tex-
ture features to be computed at a number of different res-
olutions and thus improves accuracy over single-scale tech-
niques. Given that this is the case, it seems counter-intuitive
to offer a wavelet-based texture algorithm which operates on
a single resolution only. There are, however, two reasons we
may wish to do this. The first is purely the implementation
advantage of reduced computational overheads. The second
is the watermark quality advantage which results from in-
creasing the embedding strength of coefficients only in those
resolutions which are themselves able to mask the modifica-
tions.

5.1 Implementation
For maximum usefulness in a scalable watermarking con-

text, the texture estimation algorithm must be able to func-
tion as part of a watermarking scheme within a scalable
compression system. Given that the texture score produced
by the algorithm is used to adjust the watermark strength
on the embedding side, the texture score should be obtain-
able on the detection side. As a result, the texture algorithm
should be suitable for use by a device with potentially sig-
nificant limited capabilities and hence the fewer resolutions
required, the better. In a typical six-level decomposition,
up to five resolution levels might be involved in calculation
of a texture score, reducing this to one resolution level can
thus reduce the requirements to one fifth. However, this
will be inconsequential if the use of only a single resolution
significantly reduces our ability to determine the degree of
texture in each region, resulting in inappropriate embedding
strengths.

5.2 Quality
While the many wavelet-based texture algorithms make

use of the multi-scale nature of the wavelet transform, these
algorithms are commonly designed for tasks such as texture
classification where using a number of different resolutions
allows textures which are similar at some resolutions to be
distinguished using other resolutions.
In a watermarking context, however, we are only inter-

ested in texture because of its ability to mask the visual
distortion introduced by coefficient modification. We sim-
ply require a single score which can be used to determine
if a coefficient can tolerate a higher embedding strength or
if it cannot. By calculating this score from a block in the
same resolution as the coefficient we determine the amount
of texture which occurs in the same resolution as the noise
which will be added by watermarking that coefficient. In-
cluding other resolutions risks artificially raising the score as

a result of high amounts of texture detected in resolutions
which may have little ability to mask the noise being added.
This problem can be seen in figures 1 and 2. In figure 1

a coefficient chosen from a resolution with a high texture
score has had it’s embedding strength increased by a factor
of 20. In figure 2 a coefficient, chosen from the same spatial
location6 but from a resolution with a low texture score,
has been modified in the same manner. The modification
is clearly visible in figure 2, where the texture score in the
same resolution as the modified coefficient was low.

Figure 1: High Texture Score

Figure 2: Low Texture Score

Figures 3 and 4 are similar to figures 1 and 2 but with
the modified coefficients from a different region of the im-
age. So whereas for the previous pair the high texture score
occurred in resolution level 5 and the low texture score in
resolution level 4, for this pair the high texture score occurs
in resolution level 4 and the low texture score in resolution
level 5. That in this pair of images, also, the change to the
low texture score coefficient is visible but the change to the
high texture score coefficient is not indicates that it is not
the resolution level at which the coefficient resides which is
important, but the texture score associated with it.

Figure 3: High Texture Score

Figure 4: Low Texture Score

Thus we can see that even though texture in a particular
resolution, or number of resolutions, may be high, if the tex-
ture score in the resolution of the coefficient being modified
is low, the texture does not mask the changes. Similarly,

6The modified coefficients in Figs. 1 and 2 can be roughly
located at 365 257, and those in Figs. 3 and 4 at 283 267,
in the 512x512 Lena image.
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even though texture scores at other resolutions may be low,
if the texture in the resolution of the coefficient being mod-
ified is high then the modification is masked. This suggests
that basing the texture score on the resolution of the coeffi-
cient being modified will provide more appropriate strength
adjustment than would a score including additional resolu-
tions.

6. EXPERIMENTAL RESULTS

6.1 Objectives
The primary aim of this experiment is to determine whether

the proposed HVS adaptive algorithm demonstrates a sig-
nificant increase in quality scalability over the non adaptive
algorithm, on which it is based, without showing a signifi-
cant decrease in resolution scalability. As a secondary aim,
we wish to examine the scalability of the HVS adaptive algo-
rithm relative to the existing algorithms of Cox et al. [7] and
Xia et al. [24]. The first of these has been chosen because
it is well known by the watermarking community. The sec-
ond has been chosen because it, like the proposed algorithm,
has been designed to allow detection from reduced resolu-
tion and compressed content and has texture-based human
visual system adaptation (although, unlike that of the pro-
posed algorithm, this form of texture based HVS adaptation
also increases the embedding strength in edge regions).
Both of these objectives may be achieved by comparing

the resolution and quality scalability properties of our pro-
posed algorithm with other algorithms. To do this we must
examine the scalability performance, as measured by de-
tectability and graceful improvement, of each algorithm on
resolution or quality scaled content. This can be done by us-
ing each algorithm to watermark a set of images, reducing
the resolution or quality of the watermarked images using
a scalable compression scheme and calculating the two scal-
ability measures (sections 3.1 and 3.2). Whether there is
a significant difference in average performance between the
proposed algorithm and other algorithms can then be deter-
mined by using a standard statistical test such as the paired
t-test. The details of the experiment can be found in the
following section.

6.2 Setup
Each of 65 images undergoes JPEG2000 compression us-

ing 6 resolution layers, precincts of size 128 × 128, and qual-
ity layers with rates 0.01, 0.02, 0.04, 0.06 and 0.9999. As
is usual, a transformation from RGB to YCbCr space is ap-
plied. The wavelet transformation used is the Daubechies
9,7 filter, provided by the core of the JPEG2000 standard.
Directly preceding the quantization stage, a sequence V

of N = 1000 wavelet coefficients is selected, and a water-
mark is embedded in these coefficients. In order to provide
consistent grounds for comparison, the embedding strength
α is adjusted to ensure the 99th percentile of the S-CIELAB
CIEDE 2000 error7 [20,25] of the watermarked image at full
resolution and a compression rate of 0.9999 is 4∆E, which
should ensure visual undetectability.
From the watermarked image are produced a series of 5

subimages which comprise the first k resolution or quality

7The settings used for the calculation of the S-CIELAB
CIEDE 2000 error were those of a Dell 1702FP (Analog)
monitor, 96dpi, viewed at 46cm.

layers of the full image. These subimages represent what
might be received by various devices with different resolu-
tion or bandwidth capabilities. Although there are in fact
6 resolution layers, we do not count the very lowest reso-
lution layer as many schemes specifically prohibit embed-
ding in the LL band and would result in zero similarity for
this layer, this gives us 5 subimages for each decomposi-
tion type. The watermark is extracted from each subimage
and a similarity value calculated as described in section 2.2.
To obtain a more accurate estimate of this value we perform
the above procedure using 10 different Gaussian watermarks
and record the average similarity value simk for the k-layer
subimage. From the 5 similarity values obtained from each
image and decomposition type we calculate a detectability
measure D (section 3.1), for scalability property 1, and a
graceful improvement measure G (section 3.2), for scalabil-
ity property 2.
The above process is repeated using four different water-

marking algorithms: Cox, Xia, nohvs and hvs. The em-
bedding and detection procedures used for all algorithms
are those described in section 2.2; however the algorithms
use different embedding strengths and different coefficient
selection methods.

• Cox
The Cox algorithm is a version of the well-known al-
gorithm presented in [7]. Embedding is performed us-
ing a fixed embedding strength α. In the experiments
in [7], the coefficients V , selected from a discrete co-
sine transformed image, were the highest magnitude
coefficients from the greyscale component, excluding
the DC coefficient. The algorithm implemented here
uses a version of the same selection scheme suitable for
our wavelet transformed image, the coefficients V are
the highest magnitude coefficients from the greyscale
component, excluding the LL subband.

• Xia
The Xia is a version of the algorithm presented in
[24], which was designed to allow detection from com-
pressed, reduced resolution content. The embedding
strength is adapted according to the HVS using the
formula αi = viα, which increases the strength of the
watermark at “edges and textures”. In their paper, the
coefficients V , selected from a four-level wavelet trans-
formed image, were the highest magnitude coefficients
excluding the LL subband. Our implementation uses
the same coefficient selection procedure but applied to
our six-level wavelet transformed image.

Also, in the original algorithm of Xia et al., detec-
tion of the extracted watermark utilised the corella-
tion statistic cor, rather than the similarity statistic,
and watermark presence was determined by comput-
ing the correlation between the candidate watermark
W and all shifted versions of the extracted watermark
W ∗ in search of a distinct peak in the correlation. To
allow comparison, our implementation uses the simi-
larity detection statistic sim and detection threshold
Tfp.

• nohvs

The nohvs algorithm is a non-adaptive, resolution scal-
able algorithm presented in [19]. Embedding is per-
formed using a fixed embedding strength α. The co-
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efficients V , selected from a six-level wavelet trans-
formed image, are those with magnitude greater than
two fifths the maximum magnitude coefficient at each
resolution level (including the LL subband).

• hvs

The hvs algorithm is the same as the nohvs algorithm
except that it employs the HVS-adapted embedding
strength αi = (1 + ti)αCSF,i, described in section 4.2.

For each decomposition type, a paired t-test is used to
compare the average detectability and graceful improvment
of the proposed hvs scheme with each of the other schemes.
For each of n images, the difference in detectability, or in
graceful improvement, between the hvs scheme and another
scheme is calculated. The mean m and standard error SE
of these differences are used to calculate the test statistic

t =
m

SE

which, provided the differences are normally distributed, fol-
lows a student’s-t distribution with ν = n − 1 degrees of
freedom. This allows us to determine the p-value which is
the probability of obtaining the observed mean difference,
either positive or negative, should the differences be due
to random variation only. The number of images n has
been chosen as 65 to allow detection of substantial differ-
ences with at least 99% confidence and 90% power. We
consider a mean difference of 0.863 for a resolution decom-
position and 1.37 for a quality decomposition to represent
a substantial change in mean detectability8.We consider a
mean difference of 0.0356 for a resolution decomposition and
0.0342 for a quality decomposition to represent a substantial
change in mean graceful improvement9. The 65 images used
are natural images with horizontal and vertical dimensions
ranging from 311 to 768; they have been obtained from the
gimp-savvy photo archive [11], an online database of pub-
lic domain images sourced from the National Aeronautics
and Space Administration, the National Oceanic and At-
mospheric Administration, and the U.S. Fish and Wildlife
Service.
We hope to find an improvement in quality scalability for

the hvs algorithm when compared to the nohvs algorithm,
without the presence of a corresponding reduction in resolu-
tion scalability. The Cox and Xia algorithms are presented
to allow comparison with existing schemes.

6.3 Detectability
Table 1 shows the paired t-test results for the detectability

measure. A positive mean difference indicates that the hvs

scheme shows improved detectability over the given scheme,
with larger values indicating a greater level of improvement.
Figure 5 shows the mean detectability values for each scheme
over all 65 images used.
By assuming that the similarity statistic follows a nor-

mal distribution [7] we can estimate the false negative rate

8An increase in mean detectability of this magnitude would
reduce the false negative detection error for a threshold of
6 by at least 25% for schemes with mean detectability at
or above the detection threshold and standard deviations
of 2.71 for a resolution decomposition or 4.28 for a quality
decomposition.
9An increase in graceful improvement of this magnitude is
a change of 0.72× the estimated standard deviation of the
average scheme.

Table 1: Paired t-test results - Detectability
scheme decomposition p-value mean difference

nohvs resolution 3.6× 10−11 -0.00288
Cox resolution 2.2× 10−16 10.4853
Xia resolution 3.6× 10−10 -2.8327

nohvs quality 4.4× 10−10 4.7591
Cox quality 5.9× 10−15 -5.0401
Xia quality 1.5× 10−6 3.6001
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Figure 5: Average Detectability Values

for each algorithm at the lowest resolution or quality layer.
This is done by using the mean and standard deviation of
the detectability values for each algorithm to fit a normal
distribution and then calculating the proportion of this dis-
tribution which lies below the detection threshold. Table 2
shows the estimated false negative rates for each algorithm
at the lowest resolution and the lowest quality layer for a
threshold value of 6. The Cox algorithm has by far the
fewest false negatives for the quality decomposition and the
Xia scheme has by far the fewest false negatives for the res-
olution decomposition. The hvs algorithm is the only one
for which false negative error rates for both resolution and
quality scaled content are below 0.05.

Table 2: Estimated Rate of False Negative Errors
scheme decomposition estimated false negative rate
nohvs resolution 0.00033
hvs resolution 0.00033
Cox resolution 0.74190
Xia resolution 2.951 × 10−6

nohvs quality 0.13175
hvs quality 0.020007
Cox quality 1.3426 × 10−6

Xia quality 0.05811

That the tradeoff between quality and resolution detectabil-
ity has not been entirely eliminated is apparent from the rel-
ative performances of the Cox, Xia and hvs schemes. There
is a substantial increase in resolution detectability relative
to the Cox scheme, but a substantial decrease in quality de-
tectability relative to the same scheme; there is a substantial
increase in quality detectability relative to the Xia scheme,
but a substantial decrease in resolution detectability.
Despite this, the lessening of this tradeoff due to the in-

troduction of human visual system based techniques is clear.
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The hvs scheme has substantially improved quality detectabil-
ity over the nohvs scheme, with a mean difference as high
as 4.76, and yet the resolution detectability10 barely suffers
at all, with a mean difference of just -0.0029, well below the
0.863 which we take to represent a substantial difference.

6.4 Graceful Improvement
Table 3 shows the paired t-test results for the graceful

improvement measure. A positive mean difference indicates
that the hvs scheme shows increased graceful improvement
over the given scheme, with a larger value indicating a greater
increase. Figure 6 shows the average detectability values for
each scheme over all 65 images used.

Table 3: Paired t-test results - Graceful Improve-
ment

scheme decomposition p-value mean difference
nohvs resolution 0.6596 -0.001769
Cox resolution 0.2103 0.007108
Xia resolution 2.2× 10−16 0.1041
nohvs quality 0.5118 -0.002666
Cox quality 9.351 × 10−5 -0.01725
Xia quality 2.693 × 10−10 0.03407

The paired differences obtained using the resolution de-
composition do not appear to be normally distributed, thus
conclusions drawn from the resolution decomposition rows
of table 3 may not be reliable. Thus we also provide (table 4)
results for the sign test, which does not rely on the normal-
ity of the paired differences, on the graceful improvement
measure for the resolution decomposition.

Table 4: Sign test results - Graceful Improvement
scheme decomp. p-value median difference
nohvs resolution 1 3.94 × 10−5

Cox resolution 0.002626 0.0169
Xia resolution 1.163 × 10−16 0.1088

co
x

xi
a

no
hv

s
hv

s

Graceful Improvement

si
m

ila
rit

y

0.0 0.2 0.4 0.6 0.8 1.0

resolution
quality

Figure 6: Average Graceful Improvement Values

10The paired differences for resolution detectability of the
hvs and nohvs schemes are not normally distributed, thus
the use of the paired t-test is questionable; however a sign
test confirms the result given, with a median difference of
-0.0018.

The graceful improvement comparisons highlight a prob-
lem with the Xia scheme. Both resolution and quality com-
parisons show the Xia scheme to have substantially worse
performance than the hvs scheme (and, by transitivity, all
other schemes). This may be the result of an overempha-
sis of the watermark in large and low-resolution coefficients
and an underemphasis in small and high-resolution coeffi-
cients, caused by weighting the embedding strength by the
coefficient magnitude.
The differences between the hvs and Cox schemes are

qualitatively the same as those found in the detectability
comparison. The hvs scheme outperforms the Cox scheme
for a resolution decomposition, while the Cox scheme out-
performs the hvs scheme for a quality decomposition. How-
ever, these differences do not appear to be substantial.
As expected, the use of HVS adaptation did not affect

the graceful improvement performance using a resolution
decomposition. However, nor did it affect the graceful im-
provement performance using a quality decomposition. This
means that the improvements in quality detectability gained
through the use of HVS adaptation have not translated into
improvements in quality graceful improvement. This is does
not appear to be too great a problem since, as is not the
case for detectability, the nohvs scheme already shows good
graceful improvement for both resolution and quality de-
compositions.

7. CONCLUSION
While a quality scalable algorithm, such as that proposed

by Cox et al., aids image distribution to devices with dif-
fering bandwidth capabilities and a resolution scalable algo-
rithm, such as that proposed by Xia et al., aids image dis-
tribution to devices with different display resolutions. Only
an algorithm which is both resolution and quality scalable
is suitable for image distribution across a range of devices
differing in both bandwidth and display capabilities.
By taking advantage of human visual system features, we

can reduce the tradeoff between resolution and quality scala-
bility, enabling a watermarking algorithm which is both res-
olution and quality scalable. This is demonstrated through
the modification of a wavelet based spread spectrum scheme
to employ an HVS-adaptive embedding strength using fre-
quency and texture based masking. While the non-adaptive
algorithm has good resolution scalability, it has poor qual-
ity scalability. In contrast, the adaptive watermarking al-
gorithm not only maintains the resolution scalability results
of the basic algorithm but also demonstrates good quality
scalability.
The algorithm which determines the texture component of

the variable embedding strength is slightly unconventional
in that it uses only a single resolution of the multiresolution
wavelet decomposition. We argue that while multiresolu-
tion texture analysis may be ideal in contexts such as tex-
ture based image segmentation, this is not the case in the
context of scalable watermarking. This is, firstly, because a
multiresolution approach has increased computational com-
plexity and memory requirments which makes it unsuited
to use on target devices with limited memory or processing
capabilities and, secondly, because the evaluation of texture
at resolutions other than that containing the coefficient un-
dergoing modification may cause an unwarranted increase
in embedding strength and compromise the watermark in-
visibility constraint.
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