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Image Restauration Introduction

Improves image quality in case of an existing image distortion which should be removed
Contrasting to image enhancement the aim is to restore a (virtual) original image

Either the type of distortion is known or it has to be estimated

Reasons for existing distortions:
m Defocus, motion blur, noise (transmission errors, sensor noise, ... ), defects in the optical
system (Hubble), etc.
Deterministic methods: for images with low amount of noise and known distortion function

Stochastic methods: try to identify the best restauration with respect to some statistical
error-criterion (e.g. least-squares criterion)

The better the distortion is known, the better it can be removed and the better is the resulting
restauration. In many cases, the distortion needs to be estimated:

A priori estimation: distortion is known or is obtained before the restauration starts

A posteriori estimation: image analysis based on interesting pixels (e.g. edges, straight lines,
homogeneous areas) and it is attempted to estimate / reconstruct their original
properties.
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Image Distortion
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Image Distortion

We assume a position invariant linear distortion and independent additive noise:

g(x,y) = h(x,y) x f(x,y) + v(x,y) (1)
v(x,y) ... noise
h ... distortion (position invariant)
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Figure: Example: Smoothing as image distortion
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Distortion Determination
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Distortion Determination - Image Analysis

m Several alternatives how to determine (estimate, approximate) the image distortion present

m All the following techniques are approximative by nature — ideas are called “blind
deconvolution”

Image Analysis
m In the distorted image we choose image regions with “obvious” image content, e.g. a sharp
edge
m Corresponding image part is denoted gs(x, y)
m Create an approximation 2(x,y) for this image part of the original image
m Selection of the region — noise should not affect the result too much

m We are able to compute the distortion function in the DFT domain for the region selected:

N g (U, V)
hs(u,v) = f:(i
2 (u,v)

m Due to the assumed position invariance, the distortion function can be generalised to the
entire image
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Distortion Determination

m Experimental Distortion Determination
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Distortion Determination - Experimental

m Assume that the equipment used to take the distorted image is available (or at least the
same or similar model)

m Capture an image similar to the one subject to restauration

m Try to generate a distortion highly similar to the one to model by systematic testing of the
system configurations (e.g. different camera settings)

m Once identified, we take an image of an intensive point light source, to obtain the impulse
response of the distortion

m A distortion of the considered type is uniquely characterised by its impulse response

m DFT of an impulse is a constant A, thus we get:

lA1(u, v) = &(u,v)
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Distortion Determination

m Distortion Determination by Modeling
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Distortion Determination - Modeling (1)
Here we exploit knowledge about models of physical processes

Examples for simple distortions are:

Relative (uniform) motion between camera and object:
m f(x,y) moves in a way such that xp(t) and yp(t) are the time-dependent motion
components in x and y direction
m Entire image exposition is obtained by integrating the image function over the time-frame
of the shutter being opened T:
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Distortion Determination - Modeling (2)

m Integration order can be swapped:

_/T UOO /oo f(x—xo(t),y—yo(t))e2“"(“X+VY>dxdy] dt

m Expression between [] is the DFT of the shifted function f(x — xo(t),y — yo(t))

m Using the translation properties of the DFT and the independence between f(u, v) and t
we obtain:

T T
é‘_(u’ V) — / f(u7 V)e—27ri(uxo(t)+vyo(t))dt — f(u’ V) / e—27ri(ux0(t)+vy0(t))dt
0 0

= Thus, we set h(u, v) f —2mi(uxo(t)+vyo(t)) ot
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Distortion Determination - Modeling (3)

m Setting for example xp(t) = at/ T and yp(t) = 0 we get motion only in x-direction (e.g.
taking pictures from a moving car)

m At time t = T the image moved by distance a. We get

T

~ . T .

h(u, V) — / e—27rluat/T _ ' Sin(ﬂ_ua)e—mua
0

mua

m For two-dimensional motion (also yo(t) = bt/ T as well) we get:

h(u,v) = sin(m(ua 4 vb))e Ti(uatvb)

m(ua + vb)
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Distortion Determination - Modeling (4)

Defocus:

h(u,v) = Jl(‘:r) mit r? = u? + v?

e x/2)2k+1
Z )“(x/2)

kl(k+1

=0

J1 ... Bessel function Order 1
a ... Extent of Defocus

Atmospheric Turbulence:
Bu, v) = e—c(v2)7re

c is determined experimentally
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@A Distortion Removal
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Distortion Removal - Inverse Filtering

Inverse Filtering:
m Need to construct a restauration filter, exhibiting a transfer function invers to the
distortion: h=!(u, v)
m The resulting procedure is denoted “Inverse Filtering'™:
I?(U, V) = é’(u, V) ' Bil(uv V) - O(”? V) : Flil(u7 V)

m If the noise contribution is not too high, restauration is identical to inverse convolution

m If the noise contribution is too high or A(u, v) is too small we result in a large value for
O(u,v) - h(u, v)
m Dominates the inverse filtering
m Result of inverse filtering with high noise contribution (see next slide)

m Smoothed image (originally given as float data type) has been casted to char data type,
resulting in significant (quantisation) noise

m Result of inverse filtering is quite poor!
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Distortion Removal - Inverse Filtering Example

DFT of the smoothed image DFT of the Gauss kernels

DFT after inverse filtering image after restauration
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Distortion Removal - Inverse Filtering High Noise Example

smoothed image (char) 7 (Byte)

DFT of Gauss kernel DFT after inverse filtering image after restauration
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Distortion Removal - Pseudo-Inverse Filtering

Pseudo-Inverse Filtering:

huv) = /r.l(uA, v) if |h(u,v)| > T
0if |h(u,v)| < T
Case of h(u,v) being too small is “corrected” to prevent a large value for ¢(u, v) - h=(u, v)

Still, large values for ¥(u, v) remain unsolved (noise contribution)

DFT after pseudo-inverse Filtering Image after pseudo-inverse Filtering
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Wiener Filtering

C. Kauba: Image Processing and Imaging - Image Restauration 22/25



Distortion Removal - Wiener Filtering (1)

Wiener Filtering:
m Additionally exploits a priori knowledge about the noise contribution

m Delivers an estimation of the non-distorted image f with minimal error £(i, ;) — (i, ) with
respect to some determined metric

F(u,v) = hu(u,v)-2(u,v) (2)
o, v) = — V) (3)
A V2 + 265

® s, and s, are the spectral densities of the noise and the original (non-distorted) image
m Of course, these values are difficult to obtain

m To be able to conduct this type of filtering, information about the distortion and statistical
knowledge about the noise are required
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Distortion Removal - Wiener Filtering (2)

m Actual knowledge required for this process (e.g. computation of the spectral density of the
noise) might be hard or impossible to obtain

m A “parameterised” Wiener filter can be employed:

A h*(u, v)
[h(u, V)P + K

m In the process, K is optimised until the best result is reached

m Can be improved by using so-called “constrained least square” filters

m Intuitively this means that the optimisation of K is done with respect to some least
squares criterion

m E.g. to maximise image smoothness (or minimisation of image variations), expressed in terms
of a gradient operator
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Distortion Removal - Wiener Filtering Example

Original Wiener filtering

distorted image

Figure: Wiener Filtering
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