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Abstract

An iris recognition algorithm based on 1D spatial domain sig-
natures is improved by extending template data from mean
vectors to 2D histogram information. EER and shape of the
FAR curve is clearly improved as compared to the original
algorithm, while rotation invariance and the low computa-
tional demand is maintained. The employment of the proposed
scheme remains limited to the similarity ranking scenario due
to its overall FAR/FRR behaviour.

Introduction

Iris recognition systems are claimed to be among the most secure
modalities exhibiting practically 0% FAR and low FRR which
makes them interesting candidates for high security application
scenarios.
Controlling the computational demand in biometric systemsis im-
portant, especially in distributed scenarios with weak andlow-
power sensor devices. Integral transforms (like those already men-
tioned or others like DFT, DCT, etc.) cause substantial complexity
in the feature extraction stage, therefore feature extraction tech-
niques operating in the spatial domain have been designed (e.g.
[3]) thus avoiding the additional transform complexity.
An additional issue causing undesired increase in complexity is the
requirement to compensate for the possible effects of eye tilt. As
a consequence, rotation invariant iris features are highlydesired to
avoid these additional computations.
Global iris histograms [2] combine both advantages, i.e. rotation
invariant features extracted in the spatial domain thus providing
low overall computational complexity. However, FAR and FRR
are worse compared to state of the art techniques. A recent ap-
proach [1] uses rotation invariant 1D signatures with radial locality
extracted from the spatial domain. In this work we aim at improv-
ing this algorithm.

Rotation Invariant Iris Signatures

Iris texture is first converted into a polar iris image which is a rect-
angular image containing iris texture represented in a polar coor-
dinate system. As a further preprocessing stage, we computelocal
texture patterns (LTP) from the iris texture as described in[1]. We
define two windowsT (X ,Y ) andB(x,y) with X > x andY > y (we
use 15×7 pixels forT and 9×3 pixels forB). Let mT be the aver-
age gray value of the pixels in windowT . The LTP value of pixels
in window B at position(i, j) is then defined as

LT Pi, j = |Ii, j −mT |

whereIi, j is the intensity of the pixel at position(i, j) in B. Note
that due to the polar nature of the iris texture, there is no need to
define a border handling strategy. LTP represents thus the local
deviation from the mean in a larger neighbourhood.
In order to cope with non-iris data contained in the iris texture,
LTP values are set to non-iris in case 40% of the pixels inB or
60% of the pixels inT are known to be non-iris pixels.

The Original 1D Case and Variants

The original algorithm [1] computes the mean of the LTP values
of each row (line) of the polar iris image and concatenates those
mean values into a 1D signature which serves as the iris template.
Clearly, this vector is rotation invariant since the mean over the
rows (lines) is not at all affected by eye tilt. If more then 65%
of the LTP values in a row are non-iris, this signature element is
ignored in the distance computation. In order to assess the distance
between two signatures, the Du measure is suggested [1] although
various other measures includingl p-norms would be applicable as
well. We also apply the Du measure in all other variants of the
algorithm proposed subsequently.
The row-mean of LTP is expected to be higher for rows closer to
the pupil for most images and decreasing for increasing distance
from the center of the pupil (which is confirmed by experimental
results in [1]). The amount of LTP fluctuation might therefore cap-
ture different characteristics of different irises better– as a variant
of the original algorithm we substitute the mean by variance. In
addition to that, we also combine mean and variance by concate-
nating the mean and variance signatures into a single one.

The 2D Extension

LTP row mean and variance capture first order statistics of the LTP
histogram. In order to capture more properties of the iris texture
without losing rotation invariance we propose to employ therow-
based LTP histograms themselves as features (since histograms are
known to be rotation invariant as well and have been used in iris
recognition before [2]). This adds a second dimension to thesig-
natures of course (where the first dimension is the number of rows
in the polar iris image and the second dimension is the numberof
bins used to represent the LTP histograms).
In fact, we have a sort of multi-biometrics-situation resulting from
these 2D signatures, since each histogram could be used as a fea-
ture vector on its own. We suggest two fusion strategies for our 2D
signatures:

1. Concatenated histograms: the histograms are simply concate-
nated into a large feature vector. The Du measure is applied as
it is in the original version of the algorithm.

2. Accumulated errors: we compute the Du measure for each row
(i.e. each single histogram) and accumulate the distances for all
rows.

The iris data close to the pupil are often said to be more distinctive
as compared to “outer” data. Therefore we propose to apply a
weighting factor> 1 to the most “inner” row, a factor= 1 to the
“outer”-most row and derive the weights of the remaining rows by
linear interpolation.

Experimental Study

For all our experiments we considered images with 8-bit grayscale
information per pixel from the CASIAa v1.0 iris image database.
We applied the experimental calculations on the images of 108
persons in the CASIA database using 7 iris images of each person
which have all been cropped to a size of 280×280 pixels.
Our MATLAB implementation applies the LTP algorithm to the
extracted iris polar image (360×65 pixels). Following the sugges-
tion in [1], we discard the upper and lower three lines of the LTP
polar image due to noise often present in these parts of the data (re-
sulting in a 360×59 pixels LTP patch). The 1D and 2D signatures
described in the last section are then extracted from these patches.

Fig. 1 CASIA iris image and the corresponding iris template, noisemask, and

LTP patch.

Figure 1 shows an example of an iris image of one person (CASIA
database), together with the extracted polar iris image, the noise
mask, and the LTP patch (template, noise mask, and LTP patch
have been scaled in y-direction by a factor of 4 for proper display).

ahttp://www.sinobiometrics.com

Experimental Results – Du1D

In Figure 2.a, we show the ROC curve of the original version of
the Du approach employing 1D signatures based on LTP row mean
vectors. The concave shape of the FAR curve for the Du algorithm
depicts a steep slope close to zero which means that low FAR val-
ues cause unrealistically high FRR. The latter result illustrates the
reason why this algorithm is restricted to the similarity ranking
scenario in the original work [1].

Fig. 2. ROC of Original Du vs. variance “enhanced” version (EER 0.22vs.

0.25)

Figure 2.b displays the ROC curve for a variant of the Du algorithm
using 1D signatures. Employing LTP row variance instead of mean
is obviously not a good idea as previous results show. Even when
combining both mean and variance signatures as shown in Figure
2.b, the results is still worse as compared to the original version.

Experimental Results – Du2D

When turning to 2D signatures, we compare different fusion strate-
gies and histogram resolutions in Table 1 with respect to their EER.
While it is obvious that too many histogram bins lead to poor re-
sults (important histogram properties are concealed by noise), also
a reduction to 20 bins results in lower EER as compared to 100
bins. When comparing the two fusion strategies, accumulating dis-
tances (AD) at a row basis is clearly superior to simple histogram
concatenation (HC) at a reasonable histogram resolution. In this
scenario, we are clearly able to improve EER as compared to the
original Du algorithm (from 0.22 down to 0.16).

# bins 1500450 255 100 20
HC 0.3 0.2 0.18 0.19
AD 0.32 0.16 0.16 0.18

Table 1 EER for two assessment variants and different histogram resolutions.

Note also, that histgram resolution up to 255 is beneficial for accu-
mulating errors fusion while it is not for histogram concatenation.
This is an intuitive result, since in case of histogram concatenation
the vectors to be compared in the Du measure are already fairly
long overall, while this is not the case for accumulating errors fu-
sion.
Table 2 compares three weighting strategies for the accumulated
errors fusion strategy. The best results are obtained when using
weight 4 for the LTP row closest to the pupil. This result confirms
the assumption, that “inner” iris information is most important for
recognition purposes.

histogram bins255 100 20
no weight 0.16 0.16 0.18
weight 2 0.15 0.15 0.19
weight 4 0.15 0.15 0.16

Table 2 EER for three weighting variants and different histogram resolutions.

We display ROC curves for the best settings for each fusion strat-
egy in Figure 3. Especially the weighted case for accumulated
errors fusion shown in Figure 3.b exhibits a much better behaviour
of the FAR curve in proximity of zero which documents also the
improved behaviour.

Fig. 4. ROC curves of Du2D (concatenated histograms, 100 bins - EER 0.18

vs. accumulated errors, weight 4, 255 bins - ERR 0.15).

Conclusion and Future Work

In this work we have improved an iris recognition algorithm based
on 1D signatures extracted from the spatial domain by including
histogram based information instead of mean values. While we
succeeded in maintaining rotation invariance in our improved ver-
sion, FAR and FRR are still significantly worse compared to state
of the art identification techniques which limits this improvement
to the employment in a similarity ranking scheme as it is the case
for the original version.
One reason for the still disappointing behaviour is as follows:
when shifting the different rows in the polar iris image witha dif-
ferent amount against each other, the 2D signatures (as wellas the
1D signatures of course) are preserved. Our results indicate that
indeed information about the spatial position of frequencyfluctua-
tions in iris imagery is crucial for effective recognition.
Since the proposed scheme excels by its low computational cost,
we aim at improving it in future work by further reducing the
amount of template data by combining several rows into a single
histogram in an optimal manner and also adapting the histogram
resolution to the importance of the row index.
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