Distributed Optimization of Fiber Optic
Network Layout using MATLAB

Roman Pfarrhofer!, Markus Kelz', Peter Bachhiesl', Herbert Stégner', and
Andreas Uhl!+2

! Carinthia Tech Institute, School of Telematics & Network Engineering
Primoschgasse 8, A-9020 Klagenfurt, Austria
% Salzburg University, Department of Scientific Computing
Jakob-Haringerstr.2, A-5020 Salzburg, Austria

Abstract. A MATLAB-based planning tool for the computation of cost
optimized laying for fiber optic access networks is employed on homoge-
nous and heterogenous Windows PC networks. The approach is based on
a custom MATLAB toolbox which does not require a MATLAB client
installed at the participating machines. Experiments demonstrate the
efficiency and real-world usability of the approach which facilitates an
interactive network planning process.

1 Introduction

The demand for broadband capacities has entailed an increasing changeover from
conventional transmission techniques to the fiber optic technology [1]. During
the last two years European network-carriers have invested 7.5 billion Euros
in the expansion of the core and the distribution net domain (backbones, city
backbones and metropolitan area networks). However, investigations have shown
that about 95% of the total costs for the implementation may be expected for
the area-wide realization of the last mile (access networks). In order to achieve
a return on investment, carriers will be forced to link access net nodes, like
corporate clients, private customers or communication nodes for modern mobile
services (e.g. UMTS) to their city backbones.

As a consequence, the cost optimized laying of underground networks (e.g.
fiber optical networks) with respect to the given spatial topologies and under
consideration of usable infrastructures represents a challenging task of practi-
cal interest. Whereas a variety of strategic planning tools focus on problems of
laying optimization, discussion of reliability, and traffic optimization in the core
net domain [2], carriers hardly use any computational planning tools for cost
estimation and optimization in the access net domain. The planning process is
performed manually based on expert knowledge and therefore often yield sub-
optimal decisions. However, since the telecommunication market runs through
a period of consolidation the neglection of economization potentials has to be
considered as a critical competitive disadvantage.

In recent work [3], we have introduced the methodologies behind the MATLAB-
based planning tool NETQUEST-OPT for the computation of cost optimized

and real world laying for fiber optic access networks. Real-world topological
geometries are represented by detailed geoinformation data. The optimization
kernel is based on cluster strategies, exact and approximative graph theoretical
algorithms, combinatorial optimization, and ring closure heuristics. It includes
subproblems which are polynomially or even exponentially growing with respect
to the complexity of the underlying geometries. As a consequence, NETQUEST-
OPT currently requires computation times of several hours on a single worksta-
tion even for medium sized access domains. For an efficient planning process
interactivity is a desired property, e.g. for rapid prototyping of different clus-
tering strategies. This goal can only be achieved by using high performance
computing systems.

In this work, we focus on the efficient use of NETQUEST-OPT in a dis-
tributed environment using a custom distributed MATLAB approach based on
the PARMATLAB and TCPIP toolboxes. In Section 2, we describe previous ap-
proaches to use MATLAB in parallel and distributed environments and shortly
review our own development MDICE. Section 3 describes the basic principles
and the structure of NETQUEST-OPT and subsequently discusses a computing
intensive part of the tool in some detail. In Section 4 we present experimental
results of execution in homogenous and heterogenous environments.

2 MATLAB in Parallel and Distributed Computing

MATLAB has established itself as the numerical computing environment of
choice on uniprocessors for a large number of engineers and scientists.

For many scientific applications, the desired levels of performance are only
obtainable on parallel or distributed computing platforms. Therefore, a lot of
work has been done, both in industry and in academia, to develop high perfor-
mance MATLAB computing environments.

C. Moler stated in “Why there isn’t a parallel MATLAB” (Mathworks newslet-
ter in 1995) that due to the lack of widespread availability of high performance
computing (HPC) systems there would be no demand for parallel MATLAB.
With the emerge of cluster computing and the potential availability of HPC sys-
tems in many universities and companies, the demand for such a software system
is obvious. A comprehensive and up-to-date overview on high performance MAT-
LAB systems is given by the “Parallel MATLAB Survey”!. Several systems may
be downloaded from the MATHWORKS FTP? and WWW?3 servers. There are
basically three distinct ways to use MATLAB on HPC architectures:

1. Developing a high performance interpreter
(a) Message passing: communication routines usually based on MPI or PVM
are provided. These systems normally require users to add parallel in-
structions to MATLAB code [4, 5, 6].

! http://supertech.lcs.mit.edu/ " cly/survey.html
% ftp://ftp.mathworks.com/pub/contrib/v5 /tools/
3 http://www.mathtools.net/MATLAB/Parallel/

(b) “Embarrassingly parallel”: routines to split up work among multiple
MATLAB sessions are provided in order to support coarse grained par-
allelization. Note that the PARMATLAB and TCPIP toolboxes and our
own development MDICE [7] fall under this category.

2. Calling high performance numerical libraries: parallelizing libraries like e.g.
SCALAPACK are called by the MATLAB code [8]. Note that parallelism is
restricted within the library and higher level parallelism present at algorithm
level cannot be exploited with this approach.

3. Compiling MATLAB to another language (e.g. C, HPF) which executes on
HPC systems: the idea is to compile MATLAB scripts to native parallel code
[9, 10, 11]. This approach often suffers from complex type/shape analysis
issues

Note that using a high performance interpreter usually requires multiple
MATLAB clients whereas the use of numerical libraries only requires one MAT-
LAB client. The compiling approach often does not require even a single MAT-
LAB client. On the other hand, the use of numerical libraries and compiling
to native parallel code is often restricted to dedicated parallel architectures like
multicomputers or multiprocessors, whereas high performance interpreters can
be easily used in any kind of HPC environment. This situation also motivates the
development of our custom high performance MATLAB environment: since our
target HPC systems are (heterogenous) PC clusters running a Windows system
based on the NT architecture, we are restricted to the high performance inter-
preter approach. However, running a MATLAB client on each PC is expensive in
terms of licensing fees and computational resources. Consequently, our aim was
to develop a high performance interpreter which requires one MATLAB client
for distributed execution only.

MATLAB DIstributed Computing Environment (MDICE [7]) is based on
the PARMATLAB and TCPIP toolboxes. The PARMATLAB toolbox supports
coarse grained parallelization and distributes processes among MATLAB clients
over the intranet/internet. Note that each of these clients must be running a
MATLAB daemon to be accessed. The communication within PARMATLAB is
performed via the TCPIP toolbox. Both toolboxes may be accessed at the Math-
works ftp-server (referenced in the last Section) in the directories parmatlab and
tcpip, respectively.

However, in order to meet the goal to get along with a single MATLAB
client the PARMATLAB toolbox needed to be significantly revised. The main
idea was to change the client in a way that it can be compiled to a standalone
application. At the server, jobs are created and the solve routine is compiled to
a program library (*.dll). The program library and the datasets for the job are
sent to the client. The client is running as background service on a computer
with low priority. For this reason the involved client machines may be used as
desktop machines by other users during the computation (however, this causes
the need for a dynamic load balancing approach of course). This client calls over
a predefined standard routine the program library with the variables sent by the

server and sends the output of the routine back to the server. After the receipt
of all solutions the server defragments them to an overall solution.

For details on MDICE and corresponding performance results for a Monte
Carlo simulation application see [7].

3 Optimization of Fiber Optic Network Layout in the
Access Net Domain

3.1 Sequential Approach

In order to consider real world conditions, detailed geoinformation data, usually
supplied by the network carriers, are essential. We map the real world geometries
to a set of nodes V of a graph G = (V, E). In the simplest case the optimization
of network layings means to find an optimal subset E* of the set of edges E such
that all network users R C V' (R is the set of access nodes) are reachable.

According to the methods in [3] the following additional information is ex-
tracted from the GIS databases:

Penalty Grid: A spatially balanced score card combines all relevant land
classes with typical implementation costs. The access net domain is regarded
as a regular grid [x;, ®i+1] X [y, Yj+1], ¢ and j are indices of finite index sets.
Each entry of the penalty matrix P describes the specific implementation
costs for the grid pixel [z; it1] X [y;, yj+1)-

Auxiliary geometries: Plane geometries of all relevant land classes are ex-
ported. The shapes of these geometries are determined by a set S of auxiliary
nodes.

For a detailed review of some elaborate laying problems treated by NETQUEST-
OPT (e.g. consideration of redundancy requirements) we refer to [3]. In all cases
of optimization we have to construct a weighted graph G = (V, E; W). Thus we
penalize the edges in E with respect to the underlying penalty grid P for the
considered network domain. Fig. 1.a shows the corresponding implementation
costs for the different land classes of the penalty grid. Figs. 1 and 2 correspond
to an industrial benchmark project based on data provided by NetCologne, one
of the major private city net carriers in Germany.

For an edge [u,v] € E,u € V,v € V, u # v, we define the entry W, , of the
symmetric cost matrix W € Mat (|]V| x |V|) according to

K-1

Wy = Z Isk+1 — sklly Pt - (1)
k=0

As depicted in Figure 1.b, s denotes the (z,y) -coordinates of the k-th
intersection point of the edge [u,v] with the grid lines of the cost grid P. P
represents the specific implementation costs corresponding to the predecessor
pixel for the k-th intersection point sy of an edge [u, v] with the grid lines of the
cost grid. The predecessor notation corresponds to the direction from u to v.

3000
1677

1477

. penalty grid P

1277

1500
1077

877 123

northing [m]

Vit s
J ﬁ(&

Ji \

677

477

implementation costs of one meter cable [Eurt

277
77
69 269 469 669 869 1069 1269
easting [m] xl xl‘l']
(a) Implementation costs (b) Derivation of the
costs

Fig. 1. Penalty grid in the context of network laying

The computation of W is one of the most time demanding procedures in the
entire laying optimization process and requires (|V|—1)|V|/2 calls of (1). In
real world geometries, the network planning problem leads to dimensions up to
|V'| =2 20000 nodes. Due to memory restrictions on our target architectures, these
problem dimensions required us to segment the entire optimization procedure
into three hierarchical steps: determination of local clusters, local solution in
each cluster and computing cluster shortest spanning trees [3].

Fig. 2.a shows the required access nodes for the domain shown in Fig. 2.b. The
problem is partitioned into three clusters. The black circles depict the auxiliary
nodes of the first cluster based on the underlying geometries, gridding is done
with a resolution of one meter in square.

The solution depicted in Fig. 2.b was computed in 223 minutes on three
PCs. The result saves 22% distance and 20% costs with respect to the original
NetCologne laying.

3.2 Distribution Strategy

The segmentation of the spatial domain into independent clusters for an efficient
solution of the network laying problem as described above allows also straightfor-
ward and computationally efficient distributed processing at first hand. However,
this clustering procedure (inter-cluster parallelism) leads to suboptimal global
umbrella networks only, especially in case of a larger number of clusters which

. . . . —
1677 c@ Qi
O
1477 &
c®
1277
__ 1077
E
2
£ 877
5
i=
677 SO

AT7 @:
| LA

T

69 269 469 669 869 1069 1269
easting [m]

(a) 37 access nodes (triangles) and (b) Arial view of target area with
three clusters overlayed computed solution

Fig. 2. Required access nodes and computed solution.

would be required for scalable parallel or distributed execution. Therefore, clus-
tering must not be used as a means to provide parallelism. For this reason, we
propose a “intra-cluster parallelism” approach which does not exploit the paral-
lelism introduced by the clustering process at all. As a consequence, an optimal
global solution may be obtained if clustering can be avoided (i.e. the target
architecture allows a single-cluster approach).

The computations associated with the evaluation of the cost matrix W (which
are covered by our experiments) may be distributed in a simple fashion by do-
main decomposition without the requirement of inter-process communication.
This simple partitioning approach leads to entirely deterministic behaviour since
the computational effort of evaluating parts of the matrix W is not data depen-
dent. Therefore, load balancing functionalities seem not to be necessary at first
hand. However, due to the possible interference of other applications (recall that
the clients run with low priority on desktop machines) and the potential em-
ployment of the application in heterogeneous environments, we use a simple
load balancing approach (see below). We emphasize that MDICE is also em-
ployed for other, more sophisticated subproblems of NETQUEST-OPT — we
exemplarily mention the solution of Steiner Network Problems [12], the solution
of cluster interconnecting minimal spanning tree problems or the computation
of ring closure matrices for redundant networks [3]. However, due to the clarity

of the results with respect to the use of MDICE we cover the evaluation of W
as exemplary part of NETQUEST-OPT.

4 Experiments

4.1 Experimental Settings

The data required for computing the cost matrix W is split into a certain number
of equally sized jobs N to be distributed among the clients M by the server
(N > M). Whenever a client has sent back its result to the server after the
initial distribution of M jobs to M clients, the server assigns another job to this
idle client until all N jobs are computed. This approach is denoted “asynchronous
single task pool method” [13]. In case N > M this strategy is a dynamic load
balancing approach which can also cope with heterogeneous environments. When
the server contacts a client machine the first time, the compiled client software
is sent in addition to the required data to perform the first computational job.
For all subsequent jobs to be executed on this machine, only data has to be
sent (which is much less demanding of course). Note that since MDICE does not
provide tools for automatic parallelization, the N jobs (i.e. the decomposition of
W) need to be specified before the entire computation starts.

We consider cost matrices W from real-world problems associated with a
different number of edges (i.e. 36950, 114350, 394650, and 1227714) in order
to show the impact of varying the problemsize on the performance of our so-
lution. Additionally, we vary the number of jobs distributed among the worker
clients after fixing the problemsize to 394650 edges to show the tradeoff between
good load distribution versus communication effort. The computing infrastruc-
ture consists of the server machine (1.99 GHz Intel Pentium 4, 504 MB RAM,
Windows XP Prof.) and two types of client machines (996 MHz Intel Pentium
3, 128 MB RAM, and 730 MHz Intel Pentium 3, 128 MB RAM, both types
under Windows XP Prof.). The Network is 100 MBit/s Ethernet. In order to
demonstrate the flexibility of our approach, we present results in “homogenous”
and “heterogenous” environments. In the case of the homogenous environment,
we use client machines of the faster type only, the results of the heterogenous
environment correspond to six 996 MHz and four 730 MHz clients, respectively.
Note that the sequential reference execution time used to compute speedup (see
Fig. 3.a) has been achieved on a 996 MHz client machine with a compiled (not
interpreted) version of the application to allow a fair comparison since the client
code is compiled as well in the distributed application. We use MATLAB 6.5.0
with the MATLAB compiler 3.0 and the LCC C compiler 2.4.

4.2 Experimental Results

First we discuss the homogenous environment. In Fig. 3.a we display speedup
results for differently sized matrices W. It is clearly exhibited that speedup
saturates for the smaller problems at 4 or 8 clients, respectively. On the other
hand, reasonable scalability is shown for the larger problems up to 20 clients.

36,950 edges (25 jobs)
16 + 114,350 edges (25 jobs)

* 394,650 edges (25 jobs)
1,227,714 edges (73 jobs)

Worker

L L L L L L L L L ,
2 4 6 8 10 12 14 16 18 20 100 200 300 400 500 600
Number of worker-nodes Time in seconds

(a) Speedup for varying problem-size (b) Visualization of execution

Fig. 3. Results in the homogenous environment.

Fig. 3.b shows a visualization of the distributed execution, where black areas
represent computation time-intervals and gray areas communication events. The
number of edges has been fixed to 394650, the number of clients is set to 10,
and 30 jobs are used. We clearly notice the staggered start of computation at
different clients which is due to the expensive initial communication phase, where
the server has to send the compiled code and input data to each of the clients.
This behaviour is the reason why the settings N = M or N = n x M (with small
n, where n = 3 in our case) do not perform as well as expected. The solution
is to increase the number of jobs in order to balance the load at the end of the
application, however, the delayed start at several clients can not be avoided.

In the following we discuss the heterogenous environment, again the number
of edges has been fixed to 394650 and the number of clients is set to 10 as specified
in the last Section. In Fig. 4.a we vary the number of jobs distributed among the
clients. Clearly, a high number of jobs leads to an excellent load distribution,
but on the other hand the communication effort is increased thereby reducing
the overall efficiency.

For our target system, the optimal number of jobs is identified to be T75.
A further increase leads to an increase of execution time. Fig. 4.b shows an
execution visualization where N = M = 10. Of course, the performance is worse
as compared to the analogous homogenous case and the slower clients (numbers
3,6,7,8) are immediately identified.

Finally, in Figs. 5.a and 5.b we show the execution behaviour for N = 25
and N = 75, respectively. Although the structure and the visual appearance of
the two cases is quite different, we result in almost identical execution times.
Whereas for N = 25 we have little communication effort but highly unbalanced
load, the opposite is true for N = 75. The tradeoff between communication and
load distribution is inherent in the single pool of task approach which means
that the optimal configuration needs to be found for each target environment.

10001 [Doing nothing
[Communicating

M Processing

950

Time in seconds
Worker

100 200 300 400 500 600 700 800
Time in seconds

45 50
Number of jobs

(a) Execution time with a varying (b) Visualization of execution with 10
number of jobs jobs

Fig. 4. Results in the heterogenous environment.

9

Worker
Worker

300 400
Time in seconds

300 400 500 600 700
Time in seconds

(a) 25 jobs (b) 75 jobs

Fig. 5. Visualization of execution behaviour in the heterogeneous environment.

5 Conclusion

In this work, we employ a MATLAB-based planning tool for the computation
of cost optimized laying for fiber optic access networks on homogenous and het-
erogenous Windows PC networks. The custom MATLAB toolbox MDICE may
take advantage of the large number of Windows NT-architecture based machines
available in companies and universities. It proves to be efficient in terms of low
licencing fees and satisfying execution behaviour. The distributed approach sug-
gested in this work allows for an interactive network planning process provided

enough PCs are available. Additionally, our approach may lead to a better qual-
ity of the computed network solution as compared to a sequential clustering
approach in case the clustering can be avoided in the distributed execution.

References

[1]
2]
3]

[10]

[11]

[12]

[13]

G. Gilder. Telecosm: The world after bandwidth abundance. Touchstone Books,
Charmichael, 2002.

D. Bertsekas. Network Optimization: Continous and Discrete Models. Athena
Scientific, Belmont, 1998.

P. Bachhiesl, G. Paulus, M. Prossegger, J. Werner, and H. Stégner. Cost optimized
layout of fibre optic networks in the access net domain. In U. Leopold-Wildburger,
F.Rendl, and G. Wischer, editors, Proceedings of Operations Research OR’02,
Springer Series on Operations Research, pages 229-234. Springer Verlag, 2002.
J.F. Baldomero. PVMTB: Parallel Virtual Machine Toolbox. In S. Dormido, ed-
itor, Proceedings of II Congreso de Usarios MATLAB’99, pages 523-532. UNED,
Madrid, Spain, 1999.

V.S. Menon and A.E. Trefethen. MultiMATLAB: integrating MATLAB with
high performance parallel computing. In Proceedings of 11th ACM International
Confernce on Supercomputing. ACM SIGARCH and IEEE Computer Society,
1997.

S. Pawletta, T. Pawletta, and W. Drewelow. Comparison of parallel simulation
techniques - MATLAB/PSI. Simulation News Europe, 13:38-39, 1995.

R. Pfarrhofer, P. Bachhiesl, M. Kelz, H. Stogner, and A. Uhl. MDICE — a MAT-
LAB toolbox for efficient cluster computing. In Proceedings of Parallel Computing
2003 (ParCo 2003). Elsevier Science B.V., 2004. To appear.

S. Ramaswamy, E.W. Hodges, and P. Banerjee. Compiling MATLAB programs to
SCALAPACK: Exploiting task and data parallelism. In Proceedings of the Inter-
national Parallel Processing Symposium (IPPS), pages 814-821. IEEE Computer
Society Press, 1996.

L. DeRose and D. Padua. A MATLAB to Fortran 90 translator and its effective-
ness. In Proceedings of 10th ACM International Conference on Supercomputing.
ACM SIGARCH and IEEE Computer Society, 1996.

P. Drakenberg, P. Jakobson, and B. Kagstrom. A CONLAB compiler for a dis-
tributed memory multicomputer. In Proceedings of the 6th SIAM Conference on
Parallel Processing for Scientific Computing, volume 2, pages 814-821, 1993.

M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao. Preliminary results from a
parallel MATLAB compiler. In Proceedings of the International Parallel Process-
ing Symposium (IPPS), pages 81-87. IEEE Computer Society Press, 1998.

A.Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner prob-
lem. Algorithmica, 9:463-470, 1993.

AR. Krommer and C.W. Uberhuber. Dynamic load balancing — an overview.
Technical Report ACPC/TR92-18, Austrian Center for Parallel Computation,
1992.

