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A MATLAB-based toolbox for efficient computing on homogenous and heterogenous Windows PC
networks is introduced. The approach does not require a MATLAB client installed at the participating
machines and allows other users to employ the involved machines as desktop. Experiments involving
a Monte Carlo simulation demonstrate the efficiency and real-world usability of the approach.

1. Introduction

MATLAB has established itself as the numerical computing environment of choice on uniproces-
sors for a large number of engineers and scientists. For many scientific applications, the desired
levels of performance are only obtainable on parallel or distributed computing platforms. With
the emerge of cluster computing and the potential availability of HPC systems in many universi-
ties and companies, the demand for a solution to employ MATLAB on such systems is obvious.
A comprehensive and up-to-date overview on high performance MATLAB systems is given by the
“Parallel MATLAB Survey” at http://supertech.lcs.mit.edu/"cly/survey.html. Several sys-
tems may be downloaded from ftp://ftp.mathworks.com/pub/contrib/v5/tools/ and also from
http://www.mathtools.net/MATLAB/Parallel/. There are basically three distinct ways to use
MATLAB on HPC architectures:

1. Developing a high performance interpreter

(a) Message passing: communication routines usually based on MPI or PVM are provided.
These systems normally require users to add parallel instructions to MATLAB code [1,6,7].

(b) “Embarrassingly parallel”: routines to split up work among multiple MATLAB sessions are
provided in order to support coarse grained parallelization. Note that the PARMATLAB
and TCPIP toolboxes our own development is based upon fall under this category.

2. Calling high performance numerical libraries: parallelizing libraries like e.g. SCALAPACK are
called by the MATLAB code [9]. Note that parallelism is restricted within the library and higher
level parallelism present at algorithm level cannot be exploited with this approach.

3. Compiling MATLAB to another language (e.g. C, HPF) which executes on HPC systems: the
idea is to compile MATLAB scripts to native parallel code [2,3,8]. This approach often suffers
from complex type/shape analysis issues.

Note that using a high performance interpreter usually requires multiple MATLAB clients whereas
the use of numerical libraries only requires one MATLAB client. The compiling approach often does
not require even a single MATLAB client. On the other hand, the use of numerical libraries and
compiling to native parallel code is often restricted to dedicated parallel architectures like multicom-
puters or multiprocessors, whereas high performance interpreters can be easily used in any kind of
HPC environment. This situation also motivates the development of our custom high performance
MATLAB environment: since our target HPC systems are (heterogenous) PC clusters running a



Windows system based on the N'T architecture, we are restricted to the high performance interpreter
approach. However, running a MATLAB client on each PC is expensive in terms of licensing fees
and computational resources. Consequently, our aim in this work is to develop a high performance
interpreter which requires one MATLAB client for distributed execution only.

In section 2, we present the fundamentals of our development MDICE. Section 3 describes the basics
of an application from the area of numerical mathematics (Monte Carlo simulation) and discusses the
respective experimental results applying MDICE. Section 4 concludes the paper.

2. “MDICE” — a Toolbox for Efficient MATLAB Cluster Computing

MATLAB-based DIstributed Computing Environment (MDICE) is based on the PARMATLAB
and TCPIP toolboxes. The PARMATLAB toolbox supports coarse grained parallelization and dis-
tributes processes among MATLAB clients over the intranet/internet. Note that each of these clients
must be running a MATLAB daemon to be accessed. The communication within PARMATLAB is
performed via the TCPIP toolbox. Both toolboxes may be accessed at the Mathworks ftp-server
(referenced in the last section) in the directories parmatlab and tcpip, respectively.

However, in order to meet the goal to get along with a single MATLAB client the PARMATLAB
toolbox needs to be significantly revised. The main idea is to change the client in a way that it can be
compiled to a standalone application. At the server, jobs are created and the solve routine is compiled
to a program library (*.dll). The program library and the datasets for the job are sent to the client.
The client is running as background service on a computer with low priority. For this reason the
involved client machines may be used as desktop machines by other users during the computation
(however, this causes the need for a dynamic load balancing approach of course). This client calls
over a predefined standard routine the program library with the variables sent by the server and sends
the output of the routine back to the server. After the receipt of all solutions the server defragments
them to an overall solution. The client-server approach is visualized in Fig. 1.
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Figure 1. Client-server concept of MDICE.

In order to implement this concept, compilation limitations and restrictions need to be considered
as follows:

e Built-in MATLAB functions cannot be compiled. However, most of these functions are available
since they are contained in the MATLAB Math C/C++ Library. This library can be transferred
to an arbitrary number of clients without the payment of additional licence fees which enables the
execution of corresponding code without running MATLAB on the clients. About 70 functions
(e.g. diary, help, whos, etc.) are not supported which need to be replaced by custom code if
required by the application.

e The arguments of load, save, and exist (usually file names) need to be known at compile-time.



e The arguments of eval, input, and feval (usually data variables) need to be known at compile-
time.

For example, feval is used in the PARMATLAB toolbox to evaluate the function residing at the
client using the arguments sent by the server. It is avoided by sending the *.dll library to the client
which has a fixed interface (fun_task) for each configuration of input and output variables.

The following example illustrates the replacement of the functions eval and diary. The code is
taken from the file worker .m where the result is being sent back to the server after the computation
has been done.

Original PARMATLAB Code: MDICE Code:

%%%h% SEND ARGUMENTS %%%h% SEND ARGUMENTS

disp(’Sending output arguments’) displog(’Sending output arguments’);

sendvar (ip_fid,hostname) sendvar (ip_fid,hostname);

for i=1:func.argout for i=1:func.argout,

eval([’sendvar(ip_fid,”> ... sendvar(ip_fid,var_argout(i).data);
’argo’ int2str(i) ’)°’]) end;

end

In order to facilitate compilation, the functions disp and eval need to be replaced since diary
(which uses disp output) can not be compiled and eval requires arguments known at compile-time.
Instead of disp we introduce the custom function displog which may additionally write data to a
log-file besides displaying it. This is especially important if the client is operated in background mode.
In the original code, the outgoing arguments of the function are stored in several variables (argol,
argo2, etc.) and the sendvar command is constructed dynamically using eval. Since this can not be
compiled in this form, the results are stored in a variable of type “struct array”.

The communication functionalities of the PARMATLAB toolbox have been extended as well. For
example, in case of fault-prone file transmission (e.g. no space left on the clients’ hard disk) the server
is immediately notified about the failure. The underlying TCPIP toolbox requires all data subject to
transmission to be converted into strings. For large amounts of data this is fairly inefficient in terms
of memory demand and computational effort. In this case, we store the data as MAT-file, compress
it (since these files are organized rather inefficiently), and finally convert it into strings. After the
computation is finished and the result has been sent, a new job may be processed by the client. Note
that the *.dll library and constant variables do not have to be resent since the client informs the server
about its status.

MDICE does not support any means of automatic parallelization or automatic data distribution.
The user has to specifiy how the computations and the associated data have to be distributed among
the clients. The same is true of course for the underlying PARMATLAB toolbox.

3. Applications and Experiments

The computational tasks of the applications subject to distributed processing are split into a certain
number of equally sized jobs N to be distributed by the server among the M clients (usually N >
M). Whenever a client has sent back its result to the server after the initial distribution of M
jobs to M clients, the server assigns another job to this idle client until all NV jobs are computed.
This approach is denoted “asynchronous single task pool method” [5] and facilitates dynamic load
balancing in case of N > M. The computing infrastructure consists of the server machine (1.99 GHz
Intel Pentium 4, 504 MB RAM, Windows XP Prof.) and two types of client machines (996 MHz
Intel Pentium 3, 128 MB RAM, and 730 MHz Intel Pentium 3, 128 MB RAM, both types under
Windows XP Prof.). The Network is 100 MBit/s Ethernet. In order to demonstrate the flexibility
of our approach, we present results in “homogenous” and “heterogenous” environments. In the case
of the homogenous environment, we use client machines of the faster type only, the results of the
heterogenous environment correspond to six 996 MHz and four 730 MHz clients, respectively. Note
that the sequential reference execution times used to compute speedup have been achieved on a
996 MHz client machine with a compiled (not interpreted) version of the application to allow a fair
comparison since the client code is compiled as well in the distributed application. We use MATLAB
6.5.0 with the MATLAB compiler 3.0 and the LCC C compiler 2.4.



3.1. Numerical Mathematics: Monte Carlo Simulation
This problem is known as part of the ArgeSim comparison of parallel simulation techniques!. A
damped second order mass-spring system is described by the equation

mi(t) + kz(t) + di(t) =0

with 2/(0) = 0, z(0) = 0.1, £ = 9000, and m = 450. The damping factor d should be chosen as a
random quantity uniformly distributed in the interval [800,1200]. The task is to perform a couple of
simulation runs and to calculate and store the average responses over the time interval [0,2] for the
motion z(t) with step size 0.0005. This can be trivially distributed by generating different random
quantities d on different clients.

In order to solve the differential equation for a single value of d (which is done on each client), we
use the Runge-Kutta-Nystrom algorithm [4, p. 960]. Using this approach, a second order ordinary
differential equation (ODE) does not need to be decomposed into a system of ODEs of order one. For
a given initial value problem of second order

i=f(ty.9); yt=t)=yo; Y{="rto)=71o

we compute in each iteration step of the fourth order Runge-Kutta-Nystrom algorithm the following
experessions:

. h
Yir1r = Yit+uh+ g(kl + ko + k3),
. . 1
Yiv1 = Ui+ g(kl + 2k + 2k3 + ky),
ti+1 = tz + h

where ky = & f(ti,yi, i), k2 = B f(tit 2, yit S+ 5k1, 9i+k1), ks = B f(ti+ 2, yit S+ 5k, 9i+ks),
and k4 = % ft; + h,y; + hy; + hks,y; + 2ks). For each d, we iterate this procedure 4001 times.

3.2. Experimental Results

Monte Carlo algorithms are well known to allow for straightforward parallelism. In our case, the
partial solution for x(t) within each job is computed on the clients, consequently the server only needs
to average N (number of jobs) partial results after the clients have finished their work.

We first discuss the homogeneous environment. Fig. 2.a shows the speedup of this application
when varying the problemsize (# of iterations which denotes the number of random quantities d
used in the entire computation) and keeping the number of jobs distributed among the clients fixed
(30). Sequential execution time is 452, 902, and 1803 seconds for 1680, 3360, and 6720 iterations,
respectively. As it is expected, speedup increases with increasing problemsize due to the improved
computation/communication ratio.

However, also the plateaus resulting from load distribution problems are more pronounced for larger
problem size (e.g., 30 jobs may not be efficiently distributed among 14 clients whereas this is obviously
possible for 10 clients). Fig. 2.b shows a visualization of this phenonemon during the distributed
execution, where black areas represent computation time-intervals, gray areas communication events,
and white areas idle times.

The plateaus in speedup can be avoided in two ways. First, by setting N = M as depicted in Fig.
2.a. However, this comes at the cost of entirely losing any load balancing possibilities which would
be required in case of interfering other applications on the clients (see below). Second, by increasing
the number of jobs. Clearly, a high number of jobs leads to an excellent load distribution, but on the
other hand the communication effort is increased thereby reducing the overall efficiency. The tradeoff
between communication and load distribution is inherent in the single pool of task approach which
means that the optimal configuration needs to be found for each target environment. These facts are
shown below in the context of the heterogeneous environment.

'http://argesim.tuwien.ac.at/comparisons/cpl/cpl.html
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Figure 2. Results of Monte Carlo Simulation in homogeneous environment.
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Figure 3. Results of Monte Carlo simulation in the heterogeneous environment.

Lower speedup and less pronounced plateaus are exhibited in case of smaller problem size (Fig.
2.a). Here, the expensive initial communication phase (where the server has to send the compiled
code and input data to each of the clients) covers a significant percentage of the overall execution
time. This leads to a significantly staggered start of the computation phases at different clients which
dominates the other load inbalance problems.

Next we discuss the heterogeneous environment. Fig. 3.a shows the time demand for computing
the solution using a fixed problem size (again 6720 iterations) while changing the number of jobs used
to distribute the amount of work among the 10 clients (as defined in the last subsection). For our test
configuration, the optimal number of jobs is identified to be around 60. A further increase leads to an
increase of execution time as well as a lower number causes worse results. Fig. 3.b shows an execution
visualization where N = M = 10. Of course, the execution is not balanced due to the slower clients
involved and these machines (numbers 1,2,4,9) are immediately identified in the figure.

Whereas for N = 60 we have relatively little communication effort but obviously sufficiently bal-
anced load, the higher amount of communication required to achieve better balanced load for N > 84
degrades the overall performance of these configurations.



Finally, we investigate the impact of interfering applications running as a desktop application on
MDICE client machines. For that purpose, we execute our Monte Carlo simulation code in sequential
(1680 iterations, 452 seconds sequential execution time) on two out of four clients running the Monte
Carlo code under MDICE (6720 iterations).

Table 1
Effects of interfering application running on MDICE client machines.
| Execution time (seconds) | 4 jobs [ 12 jobs | 30 jobs ||
MDICE MC (6720 iter., 4 dedicated clients) 462 463 495
MDICE MC (6720 iter., seq. MC on 2 clients) 915 761 706
Sequential MC (1680 iterations, 452 sec.) 458 458 458

Table 1 shows at first that increasing the number of jobs in a homogeneous system (4 identical
client machines) in fact decreases execution performance. However, similar to the heterogeneous case,
increasing the job number in case of load inbalance (here caused by the sequential code running on
two machines) clearly improves the results (from 915 seconds using 4 jobs to 706 seconds using 30
jobs). The third line of the table shows that no matter how many jobs are employed within MDICE,
the impact of MDICE on running desktop applications remains of minor importance (below 2% of
the overall execution time).

4. Conclusion

The custom MATLAB-based toolbox MDICE may take advantage of the large number of Windows
NT based machines available in companies and universities. The most important property of MDICE
is that no MATLAB client is required on the participating machines. Based on the results obtained
from a Monte Carlo simulation, it proves to be very flexible and efficient in terms of low licencing fees
and execution behaviour.

REFERENCES

[1] J.F. Baldomero. PYMTB: Parallel Virtual Machine Toolbox. In S. Dormido, editor, Proceedings
of IT Congreso de Usarios MATLAB’99, pages 523-532. UNED, Madrid, Spain, 1999.

[2] L. DeRose and D. Padua. A MATLAB to Fortran 90 translator and its effectiveness. In Pro-
ceedings of 10th ACM International Conference on Supercomputing. ACM SIGARCH and IEEE
Computer Society, 1996.

[3] P. Drakenberg, P. Jakobson, and B. Kagstrom. A CONLAB compiler for a distributed memory
multicomputer. In Proceedings of the 6th SIAM Conference on Parallel Processing for Scientific
Computing, volume 2, pages 814-821, 1993.

[4] E. Kreyszig. Advanced Engineering Mathematics, 8th edition. Wiley Publishers, 1999.

[5] A.R. Krommer and C.W. Uberhuber. Dynamic load balancing — an overview. Technical Report
ACPC/TR92-18, Austrian Center for Parallel Computation, 1992.

[6] V.S. Menon and A.E. Trefethen. MultiMATLAB: integrating MATLAB with high performance
parallel computing. In Proceedings of 11th ACM International Confernce on Supercomputing.
ACM SIGARCH and IEEE Computer Society, 1997.

[7] S. Pawletta, T. Pawletta, and W. Drewelow. Comparison of parallel simulation techniques -
MATLAB/PSI. Simulation News Europe, 13:38-39, 1995.

[8] M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao. Preliminary results from a parallel MATLAB
compiler. In Proceedings of the International Parallel Processing Symposium (IPPS), pages 81-87.
IEEE Computer Society Press, 1998.

[9] S. Ramaswamy, E.W. Hodges, and P. Banerjee. Compiling MATLAB programs to SCALAPACK:
Exploiting task and data parallelism. In Proceedings of the International Parallel Processing
Symposium (IPPS), pages 814-821. IEEE Computer Society Press, 1996.



