
Encryption of Progressive Meshes



Goals of this work

● Medium meshes often require many Megabyte of 
storage data and big meshes even hundreds of 
Megabyte

● Especially those high level Meshes are often 
licensed under very restrictive conditions.

● They are very expensive in production 
● So this data should be encrypted to store it in a 

secure way
● Working with such amount of data is already a very 

CPU intensive task, if it needs to be encrypted too it 
gets even worse

● So our goal is to determine if the cost of encryption 
can be reduced while still keeping a decent level of 
security



Encryption of Progressive Meshes

● Geometry Primer
● Mesh Simplification Basics
● Hausdorff Distance
● Progressive Meshes
● Progressive Meshes in MPEG4
● Testimplementation
● Testresults



Geometry Primer

● Vertex
– a point in 3D

● Triangle
– A closed polygon consisting of three vertices that are 

connected through three edges
● Trianglestrip

– A set of triangles where every triangle shares two edges 
with other triangles of the strip (except the first and the 
last ones)

● Indexed Face Set 
– A representation of triangulated polygons that is 

commonly used in 3D Applications. Every triangle corner 
is an index pointing in the list of vertices



Geometry Primer

(-3,1)
(0,0)
(1,-1)
(2,0)
(3,-1)
(1,1)
(-1,1)

(4,0)
(-2,0)

3

1

9

4

5 7

2

6

8

Trianglestrip

Indexed Face Set

4

6

8



Geometry Primer

● Indexed Face Set in VRML

<IndexedFaceSet solid="true" 
coordIndex="7 0 3 -1, 4 0 7 -1, 2 6 7 -1, 2 7 3 -1, 

             1 5 2 -1, 5 6 2 -1, 0 4 1 -1, 4 5 1 -1, 4 7 5 -1, 
   7 6 5 -1, 3 0 2 -1, 2 0 1 -1, ">

<Coordinate DEF="coord_Cube" 
point="-1.000 1.000 -1.000, -1.000 -1.000 -1.000,   
           -1.000 -1.000 1.000, -1.000 1.000 1.000, 
            1.000 1.000 -1.000, 1.000 -1.000 -1.000, 

      1.000 -1.000 1.000, 1.000 1.000 1.000, " />

</IndexedFaceSet>



Geometry Primer

● Triangulated Irregular Network
● A set of irregulary distributed points

● Connected through triangles

● Example Application: GIS



Geometry Primer

● Semi-Regular Mesh
● a semiregular solid has all its faces regular 

polygons, and it has the same pattern of 
polygons around each vertex (most of the 
vertices)

● Semi-Regular meshes can be stored 
efficiently as the connectivity information is 
implicit defined



Geometry Primer

● A Triangulation of a 3D Model can be 
separated into two parts

● Geometry Information (Vertex-Positions)
● Connectivity Information (Vertices that form 

triangles



Geometry Primer

● Manifolds

One -Manifold Two -Manifold

No Manifold



Mesh Simplification Basics

Basic Mesh simplification operations:

● Edge-Collapse
● Vertex-Pair-Collapse
● Triangle-Collapse
● Cell-Collapse
● Vertex-Removal (Vertex-Decimation)



Edge-Collapse

Edge-Collapse Vertex-Split

Half-Edge-Collapse Vertex-Split

vi

vj

vk vk

vi

vj

vi

vj

vi

vj

vi vi



Vertex-Pair-Collapse

Vertex-Pair-Collapse Vertex-Split

vi

vj

vk vk

vi

vj



Triangle-Collapse

vi

vj

vk vi



Cell-Collapse

● Fast
● Simple

● Problem: Easily produces degenerated 
Polygons



Vertex-Removal

● A generalization of the half-edge-collapse

vk vk

Remove vertex and
adjacent triangles

Retriangulate hole



Hausdorff Distance

● Calculating the difference betweeen 2D Images is 
relatively easy. One can simply subtract one pixel in 
the second image from the pixel in the first image. 
This is because the pixel positions in the first image 
correspond to those in the second image (or the 
positions can be easily interpolated)

● Such a simple algorithm for 3D Objects is not 
available and simply calculating the difference 
between vertex positions may not even be possible 
as the vertices in the first Object may not have 
corresponding vertices in the second object.



Hausdorff Distance

● One solution to this Problem that is commonly used 
is the Hausdorff distance

● Basically it calculates the maximum of all minimum 
vertex to plane distances

● Vertex to Surface Distance

● One-sided Hausdorff Distance

● Symmetric Hausdorff Distance

d  p , S ' =min
p '∈S '

∥p− p '∥2

d S , S ' =max
p∈S
d  p , S ' 

d S S ,S ' =max [d S ,S '  , d S ' , S ]



Progressive Meshes

● Progressive Meshes 
● Compressed  Progressive Meshes
● Progressive Geometry Compression
● Edgebreaker
● Touma-Gotsman
● Quadric Error Metric



Progressive Meshes

● By Hugues Hoppe
● The Mesh M is represented through a base 

Mesh M0 and a series of Refinement steps 
(vertex-split) 

● Vertex-Splits with Geomorphs for a smooth 
LOD change (only for Realtime Apps)

M0 M1 M2 M3 M4 M5 ......... M

vk vi

vj

vi

vj

vi

vj

vi

vj



Progressive Meshes (creation)

● The Progressive Mesh Hierachy is created 
through a series of edge-collapse operations

● The quality of the mesh depends largely on 
the algorithm selecting the edges for the 
collapse operator

● All possible edge-collapses are stored in a 
priority queue according to the “cost” of 
applying them

● After an edge-collapse the immediate 
neighborhood is updated and the queue 
positions are recalculated



● Hoppe uses an Energy Metric for qualifying 
the mesh fidelity that is derived fom his 
previous work (Mesh optimization)

● The goal of mesh optimization is to find a 
mesh that fits a set of points           and has a 
small number of vertices

● The energy metric consists of 4 parts
●

●              ... the total squared distance of the 
points to the Mesh (measures accuracy)

Progressive Meshes

xi∈ℝ3

E dist M E spring M E scalar M E discM 
E dist M 



Progressive Meshes

●                 ... corresponds to a spring of rest-
length zero on each edge (measures 
conciseness). Shorter edges require less 
energy

●                 ... measures accuracy of the scalar 
attributes

●                 ... measures geometric accuracy of 
the discontinuity curves to preserve the 
overall appearance of the mesh attributes 
(color,texture,...)

E spring M 

E scalar M 

E discM 



Progressive Meshes

● The cost used for sorting the priority queue is 
the difference between the energy functions 
before and after the edge collapse (lower 
delta means lower cost)

● The energy value is calculated by minimzing 
this function through varying the vertex 
position of the collapsed vertex and the 
attributes

E=E K '−EK

EK '=min
V , S
E dist V E spring V E scalar V , S E disc V 



Compressed Progressive Meshes

● Pajarola Rossignac
● They group series of refinement steps to batches to 

get better compression results (granularity vs. 
compression ratio)

● The lowest level is a coarse mesh at about 5% to 
10% the vertex count of the original mesh

● The connectivity information is efficiently encoded 
using only                   bits. 

● This is achieved by traversing a vertex spanning 
tree and indexing the two cut edges per vertex split 
as a v out of d  choice for the first edge and v out of 
d-1 for the second edge



Compressed Progressive Meshes

● The vertex positions are predicted (and then 
entropy encoded) through a variant of the 
Butterfly interpolation scheme.

A

a1

a2

ai-1
ai

ai+1

ak-1

ak

c1

c2

ci-1

ci

ci+1

ck-1 ck

alpha = 1.15



Compressed Progressive Meshes

● With this interpolation the predicted position of the 
two original vertices can be expressed as a linear 
combination of each other

● This equation can be solved with the position of the 
collapsed vertex leaving only a single predicton 
error that needs to be stored



Progressive Meshes in MPEG4

● Topological Surgery
● Progressive Forest Split



Topological Surgery

● Create a Spanning Tree over the edges and 
vertices

● The branching nodes are connected through 
so called vertex runs



Topological Surgery

● Cut the Mesh along the Tree.
● The resulting Mesh can be flattened to a 2d 

planar graph
● The branching triangles connect 3 triangle 

runs
● Create a bounding loop of the polygon



Topological Surgery

● Triangles in a run are connected throguh 
marching triangles

● The third vertex of a branching triangle is 
called the Y-vertex

● The two outgoing triangle runs of the 
branching triangle start with the edges (L,Y) 
and (R,Y)



Progressive Forest Split

● Encoding the the triangle tree



Topological Surgery

● The Algorithm needs to store:
● Vertex-Tree (triples of length,branching bit, 

leaf bit)
● Vertex Coordinates (the difference to the 

predictor )
● Triangle Tree (run length, leaf bit)
● Marching Pattern (a pattern where each bit 

describes the position of the next triangle 
left/right they). The bits need to be stored in 
the order the triangles get visited by the 
decompression algorithm.



Progressive Forest Split

● Many edges are grouped to a forest along which 
the mesh is cut open.

● The root vertex of each tree is the vertex with the 
minimum index

● The root edge of each tree is the edge with the root 
vertex

● The root triangles is the triangle with the root edge 
and the minimum triangle index



Progressive Forest Split

● The root triangle determines the direction of the 
boundary loop traversal

● The forest of trees can split by splitting on tree at a 
time. The trees are ordered according to their root 
vertex index

● The simple polygon that fills the hole is traversed in 
the same order as the hole itself, which creates a 
one-to-one mapping of the vertices



Progressive Forest Split

● The boundary loop is traversed by walking from one 
triangle to next while always keeping contact with 
the tree.

● This creates a list of vertex runs i.e
 1233333244444421111

● This can be split up into 5 runs (11111; 2; 33333;2; 
444444; 2). Every run corresponds to a vertex in 
the bounding loop(simple polygon) and needs a 
vertex index. First the algorithm reuses the old 
indices arising from this hole and then adds new 
ones at the end of the global list. 11111 => 1; 2 => 
2; 33333 => 3; 2 => 8; 444444 => 4; 2 => 9



Progressive Forest Split

Efficiently encoding the simple polygons
● Especially for small polygons (few triangles) or 

polygons with short triangle runs, the enconding 
mentioned earlier is not working properly. 
Alternative: Fixed length coding of the polygon. 2 
Bits per triangle mark the left and right edge as 
boundary or non-boundary. The triangle tree is 
traversed in a depth-first manner starting with the 
left edge first.

● Both encodings are calculated for every polygon 
and the better one is used

● That way the triangles can be stored with a cost of 
<= 2 Bits per triangle



Progressive Forest Split

● The forest of edges is stored as a bitmap with one 
bit per vertex (1 if it belongs to the tree, 0 if it 
doesn't)

● When reading this bitstream all edges of the forest 
that are already identified rule out some edges that 
are yet to be read (because  they would produce 
loops in the tree). These edges may not be stored 
which further reduces the storage cost

● To create the forests (remove the simple polygons) 
one can use an edge-collapse algorithm by adding 
two constraints to the collapsible test:
– The polygon filling the hole is simple
– No vertex that is already part of a tree may be added 

to another one (this includes direct neighbors)



Progressive Forest Split



Testimplementation

● Calculate the weight of each vertex. The 
weight is the average angle between all 
consecutive triangles
● Remove the vertex with the smallest weight 
that is non-blocking
● Remove the corresponding triangles from the 
mesh
● Triangulate the hole arising from the removal
● Mark all vertices of the hole as blocking in this 
level



Testimplementation

● Repeat the vertex removal/retriangulation 
until all remaining vertices are blocking or 
exceed the max-weight for this level

● In the next level all blocking marks are 
removed and the algorithm starts again

Removed

Blocking

Removable



Testimplementation

● Triangulate the hole



Testimplementation

● The algorithm produces several levels of 
detail where higher levels of detail increase 
the fidelity of the mesh based on the 
previous levels

● By storing the list of deleted triangles and 
vertices one can recover every level of detail 
that was produced during the simplification 
process

● As vertices are not displaced by some 
collapse functions the list of vertices can 
simply be appended 



Testimplementation

<Shape>
   <IndexedFaceSet solid="false" coordIndex="1 0 2 -1, 0 2 3 -1, 0 3 1 -1, 3 1 2 -1, ">
     <ProgressiveInformation PointOffset="0" TriangleOffset="0" DeletesTriangles=",,,,"/>
     <Coordinate DEF="coord_level1_Cube" point="-4.266000 -4.266000 4.266000, 
                                -4.266000 4.266000 4.266000, 4.266000 4.266000 -4.266000, 

         4.266000 -4.266000 4.266000, "/>
   </IndexedFaceSet>
</Shape>
<Shape>
   <IndexedFaceSet solid="false" coordIndex="0 1 4 -1, 1 4 2 -1, 0 4 3 -1, 
                                               2 3 4 -1, 0 3 5 -1, 0 5 1 -1, 5 1 2 -1, 5 2 3 -1, ">
     <ProgressiveInformation PointOffset="4" TriangleOffset="4" DeletesTriangles=" 0 1, 2 3,"/>
     <Coordinate DEF="coord_level2_Cube" point="-4.266000 -4.266000 -4.266000, 

                                                                          4.266000 4.266000 4.266000, "/>
  </IndexedFaceSet>
</Shape>
<Shape>
  <IndexedFaceSet solid="false" coordIndex="4 6 0 -1, 6 3 0 -1, 2 6 4 -1, 2 5 6 -1, 
                                              5 3 6 -1, 5 7 1 -1, 2 7 5 -1, 7 2 4 -1, 1 7 0 -1, 0 7 4 -1, ">
   <ProgressiveInformation PointOffset="6" TriangleOffset="12" DeletesTriangles=" 6 11 7, 10 4 5,"/>
   <Coordinate DEF="coord_level3_Cube" point="4.266000 -4.266000 -4.266000, 
               -4.266000 4.266000 -4.266000, "/>
  </IndexedFaceSet>
</Shape>
   

Base Mesh

Level One

Level Two



Example

2915 Vertices 1096 Vertices



Tests

● We heave learned that basically every 
progressive mesh consists of a base mesh 
and refinement data and both parts can be 
split up into geometry data and connectivity 
Information

● Additional attribute data like texture 
coordinates, color, ... are not considered 
here but can basically be handled like vertex 
positions

● Now we need to take a look at the possible 
parts that can be encrypted  



Basic Progressive Structure

Geometry

Connectivity

Geometry

Connectivity

Base Mesh Refinement Data

Detailed Mesh

● The Base Mesh may be empty. In that case 
the whole mesh is represented through the 
refinement data

● The geometry part of the refinement is 
normally the geometric error of the predicted 
positions to the real positions

Attribute Attribute



Possible starting points

One can encrypt:
● The geometry information of the Base Mesh
● The connectivity information of the Base Mesh
● The geometry information of the Refimenent Data
● The connectivity information of the Refinement 

Data
● Any combination or only parts of the above points
Our work tries to achieve two things:
● Find out which data needs to be encrypted to gain 

best security while on the other hand keep the 
costs down

● Use the intact data to predict the encrypted data as 
good as possible. This is what an attacker would do 



Importance of the different parts

● Especially for densely sampled (semi-regular) meshes 
the connectivity information is very redundant and 
therefor it should not make much sense to encrypt it.

● This should be true if and only if the geometry 
information does not depend on the connectivity 
information i.e. If the vertex positions are stored by 
saving only the difference to a predicted position the 
predictions can't be calculated without knowing the 
immediate neighborhood of the vertex



Calculating Wrong Positions

● Our testimplementation stores the absolute vertex 
positions, but for simulating advanced progressive 
formats where only the prediction error is stored we 
need to simulate this behavior

● We first need to calculate the prediction error
● And then add the prediction error to the wrong 

predicted position



Reference Diagrams

● This is the difference of the normal simplified 
mesh to the original mesh

● Some lower bound for our further tests



Encrypting absolute Vertex Positions



Guessing the absolute Positions

● The algorithm guesses the position based on the 
direct (one edge away) and indirect (two edges 
away) neighbours

● This will work for many meshes but not for arbitrary 
degenerated ones



Encrypting the differences to the 
predictor (simple)

● Averaging the direct neighbors to get the predicted 
position

● The better the predictor during compression the smaller 
the error coefficient. This means that we need to 
encrypt very much coefficients to get “good” results



Encrypting the differences to the 
predictor (butterfly)

● Slightly better than the simple prediction



Encrypting the Base Mesh

● Very effective as every refinement step is 
based either directly or indirectly on the base 
mesh (which must not even be true for very 
low detail data that is not part of the base 
mesh)



Encrypting the Base Mesh

1908 Vertices

Butterfly 300

ResetBase 256



Conclusion

● The connectivity information without the 
geometry information is useless

● If the connectivity information is missing it 
depends on the type of geometry information 
if and how much data can be recovered
– If the geometry information is stored as the 

difference to a predicted value, the data is 
useless

– If the geometry information is stored as absolute 
values (and the points are densely sampled) the 
mesh can be reconstructed to a certain point



Conclusion

● The refinement data without the base mesh 
is useless if it is based on some predictor 
function (entropy coded errors)

● Those base meshes are normally only about 
5%-10% of the size of the full mesh

● Thus the amount of data that needs to be 
encrypted to protect the mesh is reduced to 
5%-10% 



End

Thank you for your attention

Questions?



Copyrights

● The images in the Topological Surgery 
part and the Progressive Forest Split 
part are copyright of Gabriel Taubin

● All other pictures are copyright of 
Michael Gschwandtner and can be used 
by crediting the author


