
SPMD Image Processing on Beowulf Clusters: Directives and Libraries

Paulo Oliveira and Hans du Buf
Vision Laboratory, University of Algarve

Campus de Gambelas – FCT, Faro, Portugal
dubuf@ualg.pt

Abstract

Most image processing algorithms can be parallelized
by splitting parallel loops and by using very few commu-
nication patterns. Code parallelization using MPI still in-
volves much programming overheads. In order to reduce
these overheads, we first developed a small SPMD library
(SPMDlib) on top of MPI. The programmer can use the li-
brary routines themselves, because they are easy to learn
and to apply, even without knowing MPI. However, in order
to increase user-friendliness, we also develop a small set
of parallelization and communication directives/pragmas
(SPMDdir), together with a parser that converts these into
library calls. SPMDdir will be used to develop a new ver-
sion of SPMDlib. This new version will contain much less
but generic routines that can be optimized for different net-
work topologies. Extensions for Fortran 90/95 and C will
be discussed, as well as communication optimizations.

1. Introduction

Parallel processing has become a well-established area in
computer science, although most researchers never had any
opportunity to “play” with the necessary technology. Nowa-
days every laboratory, however small, can install a Beowulf
cluster that consists of normal, cheap PCs and some inter-
connect, at least 100 Mb/s ethernet and one switch.

Installing clusters, Linux and MPI is rather trivial [6],
but using MPI is not because of its complexity and huge
functionality [4]. Programmers familiar with SGI’s direc-
tive C$DOACROSS or the new standard OpenMP (C$OMP,
see www.openmp.org) on expensive SMP and NUMA
architectures find MPI programming rather archaic. Es-
pecially in image processing, where many parallel loops
can be split (which is C$DOACROSS’s only function), but
supplemented with a very few communication patterns, the
simplicity of using a few parallelization and communication
directives can lead to a tremendous increase in program-
ming efficiency.

In our view, the most important keyword concerning par-
allel programming is simplicity. Image processing is an
ideal area for applying the SPMD model. Arrays can easily
be distributed over participating nodes and DO loops on the
nodes can be adjusted such that each one does its share of
the work. There are a few complications, like spatial neigh-
borhood operations (e.g. a convolution) in which each node
needs some data from its neighbors, but these can be easily
solved. Although using a small subset of MPI or PVM, or
the easier BSP model, is not problematic, the programmer
is always obliged to do bookkeeping in terms of addresses
and numbers of bytes (reals, integers). As will be shown,
it is straightforward to hide all this from the programmer.
Our approach is much easier than other efforts towards par-
allel image processing, it provides a high-level solution, and
it can be applied on any system with MPI support. In ad-
dition, we aim at developing a tool which is (a) low-cost
in terms of price and usage, (b) very easy to use, and (c)
which preserves code portability. The latter points imply
that the same program can be executed on one CPU (no
communications at all), on SMP systems (shared memory
with very efficient “communications” using C$DOACROSS
or C$OMP) or on clusters (distributed memory with very ex-
pensive communications using our C$SPMD), depending on
the context.

We will mention a few other approaches to paralleliz-
ing image processing. Lückenhaus and Eckstein [2] apply
an agent-based approach with the thread concept on Sun
SMP systems. Using task graphs, three processing mod-
els can be realized: data parallel (e.g. pixels), task parallel
(independent tasks like serial code blocks) and pipelining
(e.g. applying the same processing steps to an image se-
quence). Squyres et al. [5] describe the PIPT or Parallel
Image Processing Toolkit. Instead of explicitly parallelizing
each routine, a small set of basic operations is provided such
that users can easily define a window operator, for example,
which will be “embedded” in a parallelized routine. Gen-
nart and Hersch [1] describe a Computer-Aided Paralleliza-
tion (CAP) tool. CAP is a precompiler that generates C++
source code. It enables programmers to specify at a high

level of abstraction threads by using the split-merge con-
cept. Seinstra et al. [3] use the C++ function template mech-
anism to create generic algorithms on the basis of many ba-
sic and pre-defined functions like add, sub, mult and pow
that the user should include in function calls.

One common aspect of these efforts is to hide paral-
lelization details from the programmer: automatic paral-
lelization still is one of the Holy Grails of computer science.
However, efficient parallelization, especially on distributed-
memory systems, requires that the programmer must have
complete control over all communications in order to min-
imize communication overheads: each millisecond spent
with communications implies a loss of about 6 MFLOPs
on a cluster of 8 AMD Athlon XPs (1.5 GHz). This is
the reason that we extend parallelization directives with a
few communication directives: we aim at both program-
ming and execution efficiency.

Below we will first discuss our SPMD initiative, and then
explain the directive set, the parser, and the first library im-
plementation. We will conclude this paper by describing
new library implementations and some concepts for Fortran
90/95 and C, including communication optimizations.

2. The SPMD initiative

The main goal is to develop a parser or preprocessor
that translates parallelization and communication directives
(SPMDdir) into library calls (SPMDlib). The limited func-
tionality and simplicity of SPMDlib leads to a very small
set of directives: the one-to-one mapping and modular-
ity of both library and parser has two important advan-
tages: (1) in contrast to the other efforts mentioned in the
Introduction, the development will not cost many person-
years, and (2) future extensions can be easily integrated.
Additional advantages are: (3) although the programmer
should know about communication costs and paralleliza-
tion granularity, he/she must not necessarily know MPI; (4)
once that we have a working parser version, we can op-
timize the library and even the parser itself. Like BERT
(www.plogic.com), the parser could be made intelligent
in order to instruct the programmer about e.g. the number
of nodes to use.

The simplicity of our approach implies a restricted func-
tionality. However, most image processing operations can
be parallelized, including histogramming, classification,
connected component labeling, segmentation, iterative spa-
tial filterings and even the application of filter banks in the
frequency domain for texture analysis. Advanced features
allow dynamic loop scheduling for load balancing and even
pipelining. In the ideal case one node (called root) will read
an image file into an array. It will then distribute equal ar-
ray parts to other nodes, and all nodes, including root, will
process their array parts. After all processing has been com-

pleted, the other nodes will send their parts to root, which
will assemble them and then write an output file.

The underlying idea of SPMDlib is to parallelize loops
over arrays, i.e. 2D image arrays, but 1D and 3D arrays, or
even � D arrays, can be processed in the same way. SPMD
implies that all participating nodes are executing the same
program, but each node has an identifier and knows the total
number of nodes

�����
myid

�
nprocs ���
	 . Also know-

ing the loop size, each node can easily compute its part, i.e.
mystart and myend. The only restriction of SPMDlib is
that (in Fortran) parallel loops over arrays must start with
1 and have a stride of 1 (in the case of nested loops over
multidimensional arrays only the outer loop over the last
dimension must be parallelized). The implicit array parti-
tioning allows to hide all bookkeeping from the program-
mer, and in most applications all nodes will equally share
the work load. When the outer loop/array size is not a mul-
tiple of nprocs, for example a large prime number, there
are several solutions: (a) let the last node do less work, (b)
transpose the array, maybe the other dimension is more suit-
able, (c) extend the array with a few blank lines, or (d) use
for this loop fewer nodes, i.e. put to “sleep” temporarily
some nodes. Below we include a solution for dynamic loop
scheduling (balancing), but this will involve more commu-
nications and, as for most of the other solutions, will be
less suitable for fine-grain parallelization. The simplest and
most efficient solution is to split the work equally using the
outer loops over the last array dimensions, and to reduce
communications to an absolute minimum.

Apart from pipelining, we only use a virtual star topol-
ogy in which “root” distributes and collects data. Because
it may be neccessary to distribute only parts of arrays or
entire arrays, both possibilities are included in root-to-all
communications. However, only array parts are involved in
all-to-root communications (an all-to-root of entire arrays
is called an array reduction; see below). In addition, when
all nodes have processed their array parts, it may be neces-
sary that all nodes need the entire array: all-to-all communi-
cations can be more efficient1 than combining an all-to-root
of array parts with a root-to-all of the entire array. Spe-
cial versions of root-to-all and all-to-all communications
are provided for spatial filterings and other neighborhood
operations, i.e. to provide extra neighborhoods to nodes or
only exchange neighborhoods between nodes.

Normal reductions concern scalars: maximum, sum, etc.
Here there are two options: reduction-on-root (only root
needs the global) and reduction-on-all (all nodes need the
global). In addition to scalar reductions there are array re-
ductions: it may be necessary to combine entire arrays, e.g.
to sum elementwise in histogramming or to combine arrays
using logical operators AND or OR.

1Efficiency also depends on the network usage: multicast routing is
ideal for root-to-all communications!

3. SPMD directive set

In this Section we explain the main directive clauses in
relation to the SPMDlib calls; the latter will be explained in
the following section. Directives for Fortran start in the first
column and have the form
C$SPMD clause[, clause] ...
in which the clauses are executed from left to right (depend-
ing on the context). Clauses can be continued on multi-
ple lines, but each line starts with C$SPMD and clauses are
separated by comma-blank. C$SPMD directives should not
be “mixed” with C$DOACROSS or C$OMP directives; al-
though these are allowed, they will be ignored. The clauses
and their meaning are (advanced features are marked by an
*; these will not be discussed in this paper):

INIT initialize SPMDlib and MPI
END finalize SPMDlib and MPI
BARRIER node synchronization
RONLY root only does
TIME, TTIME time and total time
PARBLOCK parallel code blocks (*)
DOPAR parallel DO loop
DODYN[...] dynamic DO, chunk size
PIPE[...] node pipelining (*)
R2A[list] root-to-all
A2R[list] all-to-root
A2A[list] all-to-all
RoR[list] reduction-on-root
RoA[list] reduction-on-all

in which list is a list of scalars and array names (only
names!); the latter will be indicated by <an> below. The
following abbreviations and combinations are used in some
clauses:

TCPUS=n total number nodes (*)
NCPUS=n nodes to be used (*)
E:<an> entire array
P:<an> parts of array
P(X=n):<an> exchange n elements/

lines/planes 1/2/3D arrays
P(XC=n):<an> cyclic exchange
SUM:variable type of scalar or array

reduction: MAX,MIN,AND...
IN=variable input scalar or array

in reduction
OUT=variable output scalar or array

in reduction

INIT and END should be used in the main program or in
one subroutine. All other clauses, except for DODYN and
PIPE, can be used in other subroutines, provided that all
nodes call these.

3.1. Brief explanation

SPMDlib consists of a few subroutines for initialization
(spmd_init), synchronization (spmd_barrier) and
for splitting loops and arrays (spmd_split). Most
routines are for communications. There also is an include
file (spmd.h) with predefined and prefixed variables
and a common block (in Fortran) to pass parameters to
communication routines. Below follows a brief description
of most directives in relation to the library.

INIT invokes spmd_init(ierr) that provides
predefined scalars spmd_myid, spmd_nprocs,
spmd_mystart, spmd_mypart and spmd_myend
(all integers), as well as prefixed scalars for timing pur-
poses (normal reals). Initializes spmd_nprocs and
spmd_myid (0 to spmd_nprocs-1). Root will be
number 0. The programmer is free to use the predefined
scalars mentioned above, although code portability will be
lost.
END invokes spmd_end(ierr). Must be included
before stop/end.
BARRIER invokes spmd_barrier(ierr) and must
be used where an explicit node synchronization is required,
for example when root only (see RONLY below) needs a
significant CPU time. Note that all communications and
reductions cause an implicit node synchronization because
of the synchronous mpi_send and mpi_recv used in
the library. If BARRIER is used together with a closing
RONLY, the program will not be deadlocked because it will
be executed after the RONLY code (the parser will detect a
BARRIER inside two RONLYs and will print a warning).
RONLY is a switch to define regions in which Root-ONLY
is active, for example to prepare or output data (read/write
a file, print); the other nodes will skip this region and
continue the execution of the subsequent code until they
encounter a barrier or a communication clause. Must be
inserted before and after the code lines (or only once for
timing, see TIME! below), and invoke only an if-endif:

C$SPMD RONLY
call readfile(...,array,dim)
call normalize(...,array,dim)

C$SPMD RONLY, R2A[P:array]

becomes

if (spmd_myid.eq.0) then
call readfile(...,array,dim)
call normalize(...,array,dim)
end if
call spmd_split(dim)
call spmd_r1DPtoall(array,dim)

This example also shows a root-to-all clause R2A and the
associated routine spmd_r1DPtoall in the case of a real,

1D array declared with dimension dim, the P meaning that
root must distribute array parts. The parser will also insert
the spmd_split call if (a) this was not done before or
(b) the dimension was different. All communication and
reduction routines synchronize all nodes, hence no barrier
is necessary. If the CPU time is large and the region not
immediately followed by e.g. an R2A directive, the second
RONLY can be combined with BARRIER.
TIME and TTIME are for timing purposes. TTIME is for
larger code blocks that contain TIME directives. Both must
be combined with RONLY. The timer starts or stops on the
RONLY line that contains (T)TIME, i.e. the work to be done
by root only can be excluded or included. If an RONLY
does not involve other work for root, then RONLY, TIME!
or RONLY, TTIME! must be used. Both must be used pair-
wise, i.e. they imply start-stop, and both return predefined
normal reals spmd_time and spmd_ttime that the pro-
grammer can use. A future version may include an addi-
tional clause for telling the parser what code to include in
order to print a message. For example:

C$SPMD RONLY, TIME!
code block to be timed

C$SPMD RONLY, TIME!,
C$SPMD PRINT[Code block took:,spmd_time]

would be translated into

if (spmd_myid.eq.0) call spmd_rtime
code block to be timed
if (spmd_myid.eq.0) then
call spmd_rtime
print*,’Code block took:’,spmd_time
end if

which could include some arithmatic to convert seconds to
e.g. milliseconds.
DOPAR must be inserted directly before a parallel
DO loop, not counting empty or comment lines (e.g.
C$OMP). Must always be the outer loop over 2D/3D ar-
rays because it invokes spmd_split(dim), in which
dim is the outer loop/array dimension, to compute
spmd_mystart, spmd_mypart and spmd_myend on
all nodes. The parser will change the loop do i=1,dim to
do i=spmd_mystart,spmd_myend and the three pa-
rameters (start,part,end) will be passed (via common block)
to communication routines involving array parts. Note that
root (node number 0) equally contributes and will also pro-
cess array parts, i.e. the first parts. Since DOPAR implies
a static and equal loop scheduling, the user can put a BAR-
RIER after the loop if the loads are not balanced (not neces-
sary if the loop is immediately followed by a communica-
tion or reduction). The routine spmd_split(dim) will
check that dim is a multiple of spmd_nprocs, and will
print a warning message if this is not the case (i.e. at run-
time; the parser can also be instructed—using TCPUS—to

check this).
DODYN[chunk,array] is for dynamic scheduling of an
outer DO loop, in which each node will start with a “chunk”
and, after sending its chunk of data to root, will receive a
request for doing another chunk, until the loop has been
completed. Because of the irregular communication pat-
tern, root will only distribute chunks (start numbers of the
loop) and collect results (corresponding array chunks); all
non-root nodes must have all necessary data. The chunk
size depends on the load imbalance, and should be smaller
than the (outer) loop dimension divided by the number of
non-root nodes. A smaller chunk size implies more com-
munication calls, but each with less data. The parser will
put all necessary code lines and library calls before and after
the loop. A typical application is Direct Volume Rendering
in which the root node has an OpenGL window for display-
ing a rotating object (in this case we use the frontend of
the cluster as root, not using mpirun -nolocal). Note:
DODYN has not yet been implemented in the library, but on
the basis of our experience we know that its implementation
is rather straightforward using a few routines and predefined
integers in the spmd.h include file.

3.2. Communications and reductions

All communications are done by R2A (root-to-all), A2R
(all-to-root) and A2A (all-to-all), indicating scalars, entire
arrays (E:) or parts of arrays (P:), but without any types and
array dimensions. Example:

C$SPMD R2A(val1,val2;P:array1)

Already implemented are integer, real, double and complex
types for 1D and 2D arrays. The following restrictions and
extensions apply:
1. Array names in R2A, A2R and A2A must be preceded
by E: (Entire) or P: (Parts), like P:arrayname. This is not
necessary in RoR and RoA reductions.
2. By default arrays are split into equal parts, the number of
which corresponds to the number of nodes specified on the
command line (e.g. mpirun -np 8).
3. The variable list is a list of scalars and arrays separated by
commas and semicolons like: scal1,scal2;P:arr1;E:arr2,arr3
4. Array communications: R2A can be P or E. A2R must be
P. A2A with E implies that all nodes having only one part
will receive all parts (the entire array).
5. Spatial neighborhood operations: in the case of R2A
and A2A, P can be combined with (X=n), X meaning eX-
change, or (XC=n), XC meaning eXchange Cyclic. Exam-
ple: R2A[P(XC=3):arr1;P:arr2], where instead of “3” we
can use an integer scalar. R2A will distribute the normal
array parts of arr1 plus the neighboring elements/lines for
a first iteration; A2A will only exchange neighboring ele-
ments/lines necessary for multiple iterations of window op-
erations.

Scalar reductions can be done using only two clauses:
(1) RoR (Reduction-on-Root), where only root gets a global
value; the other nodes will continue with their local values.
(2) RoA (Reduction-on-All), where all nodes will continue
with the global value. Reduction types: we will implement
at least SUM, MAX, MIN, AND and OR. Allowed data
types for SUM, MAX and MIN are integer, real and double;
logical operations should use integers with values 0 and 1.

The same clauses and types are used for entire array
reductions, which work elementwise. The only compli-
cation occurs when all nodes are using the same working
arrays (or scalars) and the result should be stored in an-
other array (or scalar). This can be done by using for exam-
ple RoR(SUM:IN=arr1,OUT=arr2), in which arr1 and arr2
have the same type and dimensions (could be scalars of the
same type). In the case of e.g. a SUM reduction, both RoR
and RoA, the user should initialize arr2 to zero on root (us-
ing RONLY).

4. The dumb parser and existing SPMDlib

The parser, written in C, has the following main tasks:
(1) to detect and check all directives in a source program, (2)
to detect data types and array dimensions of scalars and ar-
rays included in directives, (3) to keep track of parallel loop
and array dimensions for splitting them, (4) to change par-
allel DO loops and (5) to insert the correct SPMDlib calls.
Only in the case of the advanced clauses DODYN and PIPE
it will significantly change the source code, but the parsed
code will stay legible because of extra comment lines that
indicate the actions taken. Furthermore, all SPMDlib rou-
tines and special scalars/arrays are prefixed (spmd_) in or-
der to avoid conflicts. Here we describe the existing library,
i.e. the routines already implemented in Fortran (C is under
construction). Advanced features for C and Fortran 90/95,
as well as the new library to be implemented, will be de-
scribed in a following section.

We note that the library was first developed for being
used by the programmer. Because of the user-friendliness,
this implies that the routines must be named such that it is
easy to select the right ones for different data types and ac-
tions, and that there are many different routines. For exam-
ple, R2A communications involve 4 data types, 1D and 2D
arrays, entire arrays and array parts, plus special routines
for extending array parts with additional elements/lines for
neighborhood operations. This means that there are 24 R2A
routines. However, since MPI is not concerned about data
types, i.e. only the number of bytes for each data type is
important, routines for integers call the routines for reals,
and those for complex call the real*8 ones. All this is not
necessary in developing the new library (see next section),
because the new routines are not meant to be used by the
programmer—only the directives must be used. In addi-

tion, the existing library was built taking into account the
most important features that we needed. A future version
should be more versatile, such that most basic operations
are covered, such as all possible reduction types.

The main program and all subroutines that use SPMDlib
calls need special declarations and a common block in
the spmd.h include file2. Most important are the in-
tegers spmd_myid, spmd_nprocs, spmd_mystart,
spmd_mypart and spmd_myend.

The routine spmd_init(ierror) initializes MPI
as well as a few variables, notably spmd_myid
and spmd_nprocs. The routine spmd_end quits
MPI. The routine spmd_split(dim) is used for
static loop splitting and array partitioning; it computes
spmd_mystart, spmd_mypart and spmd_myend
for changing loops and for use in the communication rou-
tines for array parts.

All communication routines have the following naming
convention:
spmd_[ty][nD][P/E][func](vars)
in which:
[ty] = i/r/d/c mean integer, real, real*8 (double)
and complex*8 data type,
[nD] = 1D/2D mean arrays with one or two dimensions
(3D to be done),
[P/E] mean only Parts of an array or an Entire array,
[func]: toall, toroot, sumonroot, syncarray, filtX and
toallX, and
(vars): the name of one array and its dimensions.
Notes: (1) Psyncarray implements A2A with the E option;
(2) PtoallX implements R2A with P(X=n), XC not yet being
implemented3; (3) PfiltX implements A2A with P(X=n),
see the same footnote; (4) Esumonroot is an example of an
array reduction; all other types can be written in one hour
or so.

The routines for scalar reductions do only the com-
munications, i.e. a local maximum or sum needs to be
done with a split loop after which globals are determined
from the locals with one (or more) reduction call. Naming
convention:
RR means Reduction-on-Root (only root gets global maxi-
mum (for example)),
RA means Reduction-on-All (global maximum goes to all).
Already implemented are:
m means max and min, and
s means sum and sum-of-squared, for integer, real and
real*8 data types. Examples:
spmd_iRAm(max,min), spmd_dRRs(sum1,sum2)
These routines are not yet linked to directives, but were
developed for image processing: (1) image normalization

2See http://w3.ualg.pt/ � dubuf/spmd.html
3Is cyclic neighborhood processing important? Top image lines have

no correlation with bottom lines. We never use this!

using the maximum and minimum values, and (2) for
computing the mean and variance in one (split) image loop
(well, RRs can do two independent sum reductions).

Note: sending one or two scalars takes the same time.
Hence, if we want only a maximum (minimum), we put a
dummy min (max) with an arbitrary value. The parser can
also do this.

5. Status, other languages, etc.

After parallelizing a few programs with the existing rou-
tines we know that the SPMDdir/lib concept works, that
there are no or few flaws in the design, and that a sim-
ple parser could be beneficial for many programmers. The
parser has now highest priority and the standard Fortran ver-
sion will be ready by summer 2003. By then we will also
have selected an implementation solution for the new li-
braries in Fortran and C (the directives, called pragmas in
C, will be the same as in Fortran).

The three main differences in the C version will be: (a)
no common block can be used, hence all pre-defined spmd
variables need to be global, (b) dynamic memory allocation
must be included, with all its implications for splitting loops
and communications, and (c) loops and their nesting differ
from Fortran. It is likely that only one pointer structure will
be supported, such as the one used by MPI.

For Fortran 90/95 we will also consider dynamic mem-
ory allocation. The question is whether a parser can always
detect the position where an array size dimension is valid
during runtime. If this causes a problem, we could include
an additional directive to assist the parser (the same prob-
lem may occur in C). Fortran 90/95 also has compact array
syntax. The parser should be capable to translate array syn-
tax to be parallelized into (nested) DO loops, but this will
impose restrictions on the use of the syntax and the arrays.

The main difference between the existing library and the
new ones for the different languages will be the number of
routines. Instead of creating many different routines for dif-
ferent data types and 1D and 2D (even 3D) arrays, a few
generic routines can be shared. Even P- and E-type com-
munications, the P-type with or without the X (eXchange)
option, can be done with three routines for R2A, A2R and
A2A traffic. Likewise, scalar and array reductions can be
implemented by means of a few generic routines that must
be called with a parameter that specifies the type of reduc-
tion.

At the moment separate communications for scalars and
arrays are done by calling separately the necessary library
routines. This involves much MPI overheads, especially for
small messages where the “elapsed” time does not depend
on the number of bytes (340 � s for up to about 500 bytes
using normal 100 Mb/s ethernet). For small messages the
latency is important, whereas for large ones the bandwidth

counts (we measured 85.8 Mb/s). Hence, one would think
that “packing” scalars and arrays into one “payload” will re-
duce the overheads. This is probably true, because packing
and unpacking involves copying from one position in mem-
ory to another position, which can be done at 83 Mbyte/s
(Pentium III 450 MHz), a factor of 8 times faster than
using ethernet. However, the final payload will still require
a latency of 340 � s and the effective bandwidth will be 85.8
Mb/s. Although the directive set allows to combine differ-
ent scalar and array communications at one point in a pro-
gram, it should be emphasized, again and again, that com-
munications must be restricted to an absolute minimum. As
a consequence, only the different scalars as specified by one
directive might be combined by packing them together.

The use of a few generic routines enables the develop-
ment of specific, optimized libraries for different cluster
configurations and network topologies. For example, if a
system (Linux kernel) uses multicast ethernet routing, the
difference between R2A communications with E and P op-
tions might be very small, because root will output all pack-
ets only once. If this is the case, there is no need for specific
R2A communications, and more effort could be spent in op-
timizing the A2R and A2A communications.

6. Communication optimizations

For the first versions the communication efficiency is less
important; we aim at something which is more or less com-
plete and which works. The root-to-all and all-to-root com-
munications are all based on the same concept: after test-
ing spmd_myid root will execute a loop over all non-root
nodes to send or receive data and the non-root nodes will
only receive or send data (virtual star topology). This solu-
tion is simple but it implies a lot of idle time, i.e. time that
nodes are waiting to be served.

Let us compare some timings, assuming a cluster with 8
CPUs and expressing timings in units � which corresponds
to the time necessary to send 1/8th of an array (in the case
of big arrays we measured 85.8 Mb/s of the theoretical 100
Mb/s). Let us also assume that we start a timer before a
“toall” call, and stop the timer after a “toroot” call. Between
the two calls each node must process data, which takes ���
seconds, say. This is illustrated in Figure 1 with �����
� .

(1) Serial execution takes ��������� seconds. (2) Parallel
execution takes �������! "�$#%���&�(')�+*,�-�/.0� seconds: this
includes sending twice 7/8th of the array. The speedup will
be �1�324')�5*6�7�/.��(�82,')�9���5*82:�;. . Obviously, the bigger
� , or the workload, the better the speedup. (3) Root will be
completely busy sending and receiving data, whereas other
nodes will be receiving or sending 1/8th of the array. These
are not idle times. Figure 1 shows that the total idle time (<
symbols) will be =�> !�3?!�@#!�A�B*1� , which is an average
of �+�DC EB� per node. If we take out the root node, because it

FGF3F>F3F3F3FIH3H3H3H3H>HGH3H3H3H9J3J3J>J3J3J3JJIH3H3H3HGH3H>H3H3H3H9K3K3K>K3KGK3F3K3K>K3K3K3KKGJ H3H3HGH3H>H3H3H3H3H K3K>K3KGK3K3F3K>K3K3K3KKGK3J H3HGH3H>H3H3H3H3H>H K>K3KGK3K3K3F>K3K3K3KKGK3K>J HGH3H>H3H3H3H3H>HGH K3KGK3K3K3K>F3K3K3KKGK3K>K3J H3H>H3H3H3H3H>HGH3H KGK3K3K3K>K3F3K3KKGK3K>K3K3J H>H3H3H3H3H>HGH3H3H K3K3K3K>K3K3F3KKGK3K>K3K3K3JIH3H3H3H3H>HGH3H3H3H9K3K3K>K3K3K3F

0
1
2
3
4
5
6
7

L L

Figure 1. Node activity between a “toall” and a
“toroot” call, marked by the vertical arrows, in
the case of eight CPUs, assuming that there is
no work before and after the calls. Symbols:F = send data; J = receive data; H = work; K
= idle (waiting).

will be completely busy with communications, the average
even becomes M
NPO . In words: all nodes, except root, will be
idle 12 times the time it takes to transmit 1/8th of the array.
The above calculation is an approximation assuming that
there is no parallelism in the communications (synchronous
mpi_send and mpi_recv). In practice, however, there
may be substantial parallelism in the communications, e.g.
during the reconstruction of array parts from ethernet pack-
ets.

In order to reduce idle times, we can adopt two strate-
gies: (A) Instead of attributing root an equal share of
the workload, its workload could be reduced, for example
halved (in Fig. 1 there would only be 5 H s in row number
0). This solution involves another array partitioning and
loop splitting, it will still be static, and it can be easily im-
plemented. However, in the ideal case, when root once dis-
tributes data and once collects data, and the bulk of process-
ing does not involve massive communications, root will not
equally contribute to the workload. (B) As for the DODYN
directive, it would be better to reserve root for only doing
communications and simple, fast array processing where re-
quired. In this case the workload will be evenly distributed
over the Q�R�S@MUT other CPUs. This solution is ideal for clus-
ters that are operated through a frontend, and it also can be
implemented very easily.

Before we installed our new cluster consisting of eight
Athlon single-CPU XP nodes, we experimented with a
small cluster with dual-Pentium III nodes. The communica-
tions between the CPUs in one node (IN in Fig. 2) are faster
than those between CPUs in different nodes (we measured
a factor of 2.66, i.e. instead of 10.7 Mbyte/s (85.8 Mb/s)
we measured 28 Mbyte/s). But 28 Mbyte/s is much slower
than copying an array in memory (82 Mbyte/s). The rea-
son for this difference is hidden in the TCP/IP stacks: an
mpi_send goes down the stack, until the detection of the
loopback, i.e. packets are not going out on the wire, and

V
W
V
W
V
W
V
W
V
W V
W V
W V
W V
W V
W V
W V
W V
W

XZY\[R

X]Y1[
ms

IN

BETWEEN

0 1 2 3 4 5 6

-1

0

1

2

3

Figure 2. Ping-pong times in log(ms) as a
function of log(N) in REALs on a dual-CPU
cluster with fast ethernet. IN refers to commu-
nications between two CPUs inside one node.
Single-trip times are half the ping-pong times.

then up again to the matching mpi_recv.
There are two solutions for speeding up the communica-

tions: (a) replacing the interconnect by a more powerful one
and (b) short-cutting the TCP/IP stacks. We studied (a) by
replacing the ethernet by SCSI. This was indeed faster, but
not much because the SCSI protocol does not have a bus
master (this was solved by circulating a “token”). Hence,
IP-over-SCSI4 needs an alternative, preferably parallel in-
terconnect with bus mastering. The second (b) problem,
i.e. MPI-over-XXX has not yet been studied, but it will in-
volve the use of direct routing tables, such that the CPUs
in dual-CPU nodes know their “neighbors.” In this case the
entire TCP/IP stacks can be avoided by copying in memory
(82 Mbyte/s), but not when doing communications between
different nodes (10.7 Mbyte/s, unless another interconnect
(XXX) is being used).

Apart from dual-CPU nodes being more efficient in
terms of space and maintenance, they can be more efficient
in communications because the underlying routines can be
rewritten to exploit parallelism. Here we study the updating
of an array of M
^_ REALs on 4 CPUs in 2 nodes: an A2A
communication in which each CPU has 1/4th of the array
but each CPU needs the entire array. Hence, we will need at
least the transmissions of quarters (1/4) in an A2R routine
and the entire array (1/1) in a R2A routine.

Table 1 gives single-trip times in ms for the payload sizes
in REALs that we will need in order to compute commu-
nication times for Ra`bM
^_ REALs. We can see that all
numbers scale well with the size, i.e. sending the entire ar-

4See http://ipoverscsi.sourceforge.net

Size IN BETWEEN

1/1 142 373
3/4 106 280
1/2 72 187
1/4 36 94
1/8 18 47

Table 1. Single-trip times in ms as a func-
tion of the array fraction for c
d\e REALs. IN
means inside a dual-CPU node, BETWEEN is
between nodes.

ray takes four times the time of sending a quarter. This
also follows from Fig. 2: the linearity of the curves down
to c+d\f REALs, below which the communication overheads
become more significant. This means that the speedup fac-
tors given below are valid until arrays of about 4000 bytes.
Scenario S1: CPUs 1, 2 and 3 send their 1/4 to 0 (A2R),
after which root sends 1/1 to all others (R2A). All commu-
nications in this case are sequential. This implies for the
A2R one IN of 36 ms plus two BETWEENs of 94 ms, a
total of 224 ms. The R2A takes one IN of 142 plus two
BETWEENs of 373, a total of 888 ms. Hence, S1 costs
1,112 ms.
Scenario S2: In the A2R CPU 1 sends 1/4 to 0 and, at the
same time, 3 sends 1/4 to 2, after which 0 and 2 have each a
different 1/2 of the array. This costs only one IN of 36 ms.
Then 2 sends 1/2 to 0, one BETWEEN of 187. The A2R
costs 223, the same as in the first scenario. We now apply
the same parallelism in the R2A: first 0 sends 1/1 to 2 (one
BETWEEN of 373), and then 0 and 2 send 1/1 simultane-
ously to 1 and 3 (one IN of 142). The R2A costs 515 ms,
hence S2 costs only 738 ms.
Scenario S3: We can make one optimized A2A routine in
which root does not collect and redistribute. In the first pass
(a) 0 sends 1/4 to 1 and simultaneously 3 sends 1/4 to 2,
which costs one IN of 36 ms. After this 1 and 2 have each
1/2. In the second pass (b) 1 sends 1/2 to 2 and 2 sends 1/2
to 1, which costs two BETWEENs of 187 or 374. Now 1
and 2 have both 1/1, but 0 and 3 need only 3/4. The third
pass (c) costs only one IN of 106. We see that S3 only costs
516 ms, i.e. we have gained more than a factor of 2 relative
to the first scenario.

Table 2 summarizes the results (4 CPUs) and compares
these with times on single-CPU systems as well as a smaller
(2 CPU) and larger (8 CPU) system. As expected, the times
on dual-CPU systems are always less than those on single-
CPU systems because of the smaller IN times.

Scalar RoA reductions can also be optimized. From Fig.
2 we see that the single-trip IN time is 0.15 ms and the BE-
TWEEN time 0.35 ms for small messages. Table 3 sum-

2 CPUs 4 CPUs 8 CPUs
single dual single dual single dual

S1 374 144 1401 1112 2940 2680
S2 1027 738 1447 1187
S3 748 516 937 706

Table 2. A2A distribution times (ms) of an ar-
ray of c+d e REALs on single- and dual-CPU
clusters according to three scenarios.

2 CPUs 4 CPUs 8 CPUs
single dual single dual single dual

S1 0.7 0.3 2.1 1.7 4.9 4.5
S2 1.4 1.0 2.1 1.7

Table 3. RoA reduction times (ms) on single-
and dual-CPU clusters for two scenarios.

marizes results for single- and dual-CPU systems, by using
similar scenarios.

Our results show that it is possible to reduce communi-
cation times, not only by using dual-CPU nodes but also
by using single-CPU nodes. After all, with ever increasing
CPU performance we also need to squeeze all out of our
interconnect: every millisecond counts!

Acknowledgments This work was partially supported by
the FCT Programa Operacional Sociedade de Informação
(POSI) in the framework QCA III.

References

[1] B. Gennart and R. Hersch. Computer-aided synthesis of par-
allel image processing applications. Parallel and distributed
methods for image processing III, Proc. SPIE 3817, pages 48–
61, 1999.

[2] M. Lueckenhaus and W. Eckstein. A thread concept for auto-
matic task parallelization in image analysis. Parallel and dis-
tributed methods for image processing II, Proc. SPIE 3452,
pages 34–44, 1998.

[3] F. Seinstra, D. Koelma, and J. Geusebroek. A software ar-
chitecture for user transparent parallel image processing on
mimd computers. Proc. 7th Int. Euro-Par Conf., Springer
LNCS 2150, pages 653–662, 2001.

[4] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI: The complete reference. MIT Press, 1996.

[5] J. Squyres, A. Lumsdaine, and R. Stevenson. A toolkit for
parallel image processing. Parallel and distributed methods
for image processing II, Proc. SPIE 3452, pages 69–80, 1998.

[6] T. Sterling, J. Salmon, D. Becker, and D. Savarese. How to
build a Beowulf. MIT Press, 1999.

