PS Software Engineering
January 30, 2002

ImmoWarrior

Report

Andrea Geierspichler, Roman Gross, Christian Koidl, Michael Pober, Gunnar Ruhs

andreageierspichler@hotmail.com

Academic Supervisor Mag. DI Dr. Roland Schwaiger

Department of Computer Science
University of Salzburg

Correspondence to:
Universitiat Salzburg
Institut fiir Computerwissenschaften und Systemanalyse
Jakob—Haringer—Strafle 2
A-5020 Salzburg
Austria



Contents

1 The Project

2 A CRC Session
2.1 What is a CRC-session? . . . . . . . . .. . e
2.2 Organising a CRC-session . . . . . . . .. ... . e
2.3 Starting the session . . . . . . . ..o L
24 Defining Use-Cases . . . . . . . . . . o e
2.5 Perform Use-Case Scenario Testing . . . . . .. ... ... .. ... ....
2.6 Advantages of CRC-Modelling . . . . . ... .. ... ... .. .......
2.7 'Things you have to keep inmind . . . . . . .. ..o

3 Our CRC Cards

4 Essential Use Cases

5 Essential User Interface

6 Class Diagrams

7 User-Interface Prototyping

8 Sequence Diagram
8.1 What is a Squence Diagram? . . . . . . . . .. ... oo
8.2 Modeling a Sequence Diagram . . . . . .. ... ... Lo
8.3 When to use a Sequence Diagram . . . . . . . ... ... ...,
8.4 Our Sequence Diagrams . . . . . . .. .. ...

9 Activity Diagram

9.3 When to use an Activity Diagram . . . . . . . . ... ... oo,
9.4 Our Activity Diagrams . . . . . . . .. .. Lo

10 Design Class Diagram
10.1 What is a Design Class Diagram . . . . . . . . ... .. ... .. ... ...
10.2 Our Design Class Diagram . . . . . . . ... . ... ..

O O O O i R w

~J



11 Component Diagram

11.1 What is a Component Diagram . . . . . . . . .. ... ... ... .. ...
11.2 Our Component Diagrams . . . . . . . .. ... ... ...
12 Deployment Diagram
12.1 What is a Deployment Diagram? . . . . . . . ... .. ... ... .....
12.2 Modeling a Deployment Diagram . . . . . .. .. .. ... ... ......
12.3 Our Deployment Diagrams . . . . . . . .. . . ... ... ...
A Protocolls
A.1 1% Lesson - October, 25" 2001 . . . . . . .. . . ... ... ........
A.2 2™ Lesson - October, 315, 2001 . . . . . . . . . ... ... .. .. .....
A.3 37 Lesson - November, 7", 2001 . . . . .. .. .. .. ... .. ......
A4 4" Lesson - November, 14" 2001 . . . . . . .. ... ... . ... .....
A5 5™ Lesson - November, 21%*, 2001 . . . . . .. . ... ... ... ......
A.6 6™ Lesson - December, 57,2001 . . . . . . ... ... ... ... ... ...
A.7 7" Lesson - December, 12t 2001 . . . . . ... .. ... ... ... ....
A.8 8" Lesson - January, 9*,2002 . . . . . .. ... ... ... .. ... ...
A9 9% Lesson - January, 16,2002 . . . . . . ... ... ... .. .. .....

49
49
a0

53
33
93
a3



Chapter 1

The Project

To learn the how-to’s of ” Software Engineering” we simulate a real life situation in the pro-
seminar. A client, represented by the seminar-leader, comes to our software-development-
firm and gives us an assignment.

The initial information is: A company that auctions real estate wants us to develop a
software-solution for their process of collecting and representing information. (Code: “Im-
mowarrior). Potential users of this system are: the ones, who gather and enter the infor-
mation and the ones, who want to read it. Those readers can either be persons, or other
systems. This leads to two different scenarios:

e Immowarrior sends the information to an other computer system by using XML

e Immowarrior displays the information for a person - what requires us to design an
appropriate user-interface.

Specially required by the client is, that the software is to be easily maintainable and that
no one has to install client-software to be able to use Immowarrior.

For the first phase of the project, we ought to concentrate on the basic-functions of the
software, but we should keep the possibility in mind to add expansions, developed in co-
operation with our group.

This is the requirement profile for our project. The given deadline is the end of January
2002



Chapter 2
A CRC Session

2.1 What is a CRC-session?

The CRC-session was invented by Ward Cunningham and Kent Beck in 1989 and then
popularised by Rebecca Wirfs-Brock.CRC stands for Class, Responsibility and Collabora-
tor.It is an informal technique for object oriented analysis and design, used for visualising
the structure and behaviour of object oriented systems. Basically standard index cards are
used to represent classes, responsibilities and colaborabtions with other classes, they are
collected on the frontside. On the backside descriptions of the classes and attributes are
witten down. A class is an abstraction of something from the problem domain. Respon-
sibilities are tasks that can be ascribed to particular classes and a collaborator is another
class that you require to talk to in order to carry out your own responsibilities. The goal is
to define and to structure the problem domain and to represent the problem in an object
oriented way.

2.2 Organising a CRC-session

The number of people is important, too few and it becomes difficult to mentally change
gear, too many and you are not all involved and the productivity is cut by more disagree-
ments. Five is the ideal number. If there are more people, one solution is to have the
extra people be present strictly as observers. The group should be composed of develop-
ers, domain experts and an object oriented faciliator. Try to avoid having an excessivly
dominant participant - no bosses either. From the system requirements decide on a simple
set, of scenarios that you want to try out.

2.3 Starting the session

The first step is to extract classes from the problem domain. One useful tool is to find all
the nouns and verbs. The nouns are a good key to what classes are in a system and the
verbs show what their responsibilities are. With this information you can start a brain-
storming session. Now analyse which classes are important for the project. You do not



need to find all classes and responsibilities. The scenario will make them more obvious
later on. In a CRC-session subclasses and superclasses are also defined. This can be done
at any time it becomes obvious. Attributes of the class do not really have to be defined
right now. This will be necessary when you get to the design phase.

2.4 Defining Use-Cases

Each person should take the responsibility for being a class. Select a scenario, identify
and allocate new classes and responsibilities as the scenario unfoldes. Each person has to
focus on their own class. The list of classes will grow and then shrink as the group filters
out the good ones. Afterwards try out some speacial scenarious like exceptions. Later on,
when getting to the design phase consider folowing things: Target environment, language
choice of supporting software components, performance requirements.

2.5 Perform Use-Case Scenario Testing

1. Call out a new scenario. In this phase of the CRC-session the scenario is discussed
and described in basic

2. Determine which card should handle the responsibility.

3. Update the card whenever necessary. If a card needs to be updated one of two
situations has arisen: The responsibility needs to be added to an existing card or a
new card needs to be created.

4. Describe the processing logic. Now the bussines logic for the responsibilities
should be described step by step and the rules for the system should be recorded.

5. Act out the collaboration between the different classes.

2.6 Advantages of CRC-Modelling

1. The analysis is done by people who understand the problem domain (experts)
2. The future-users are actively involved in defining the model for the program.
3. CRC-modelling can easily be explained to a group of people.

4. The CRC-session leads directly into class-diagramming.

2.7 Things you have to keep in mind

e Start with simple scenarios.

e Take the time to select meaningful class names.



Take the time to write a description of the class.
If in doubt, act it out!
Layout the cards on the table to get a feeling for system structure.

Be prepared to be flexible.



Chapter 3
Our CRC Cards

This is the latest version of the cards we have developed during the course.

Classname: Admin

Responsibilities Collaborators
access user interface user interface
view free offers

log in

configurate account
create/modify account
search for real estate

view real estate info
place/edit/delete real estate
log off

Classname: EditorAndUser

Responsibilities Collaborators
access user interface user interface
view free offers

log in

configurate account

search for real estate

view real estate info
place/edit/delete real estate
log off




Classname: Editor

Responsibilities

Collaborators

access user interface

view free offers

log in

configurate account
place/edit/delete real estate
log off

user interface

Classname: User

Responsibilities

Collaborators

access user interface
view free offers

log in

configurate account
search for real estate
view real estate info
log off

user interface

Classname: Guest

Responsibilities

Collaborators

access user interface
view free offers
request new read account

user interface

Classname: User Interface

Responsibilities Collaborators

read input guest

forward data user

show info editor

start session editoranduser
admin
session

Classname: Session

Responsibilities Collaborators

create/modify/delete account user interface

initiate sending of account info account

forwards data to user interface
initiate search

send real estate info

close session

access info storage

request account info

send account info

search for info

send real estate info

info storage




Classname: Account

Responsibilities

Collaborators

access info storage
modify account info
forward account info

session
info storage

Classname: Information Storage

Responsibilities Collaborators
store account info session
store real estate info account

forward data

search for info

Classname: Search For Info

Responsibilities Collaborators
perform search info storage
forward search results session
Classname: Send Account Info

Responsibilities Collaborators
send username to e-mail/cell phone account

send password to e-mail/cell phone session

send account privileges to e-mail/cell

phone

Classname: Send Real Estate Info

Responsibilities Collaborators
send info to e-mail/cell phone session

look up account info account




Chapter 4

Essential Use Cases

adm n

edi tor

use cases

GENERAL OVERVI EW

of fer placing

wite
account
managenent

Vi ew ng
free
offers

Vi ewi ng
al |
offers

r ead
account
nmanagenent

-

~N T aw

user/ editor

user

guest

This general overview shows the main use cases and actors of ImmoWarrior.

Five different actors can interact with the system:

e guest: The guest may view the free offers and request a read account.

e user: The user may view all offers and has all the guest’s privileges.

10



e editor: The editor may place real estate offers in the system and has all the guest’s
privileges.

e user/editor: The user/editor has the same privileges as the user and additionally
the editor’s privileges.

e admin: The admin has all the privileges of the other actors and additionally the
write account management privilege.

of fer placing

4
of fer placing
A
adm n <<uses>>
edi t or "

user/ edi tor

11



view free offers / create read account / view all offers

guest

adnm n
edi t or
user/ edi t or

Vi ew ng
fre offers

create read
account

send account
I nfo

Vi ew ng
all offers

<<uses>>




adm n

create/change account

/ﬂ <<uses>>
—A

create
account

send

account
i nfo

change
account

A

\\ <<uses>>

13




manage account

manage send
A\ info
<<uses>>

adm n
edi tor \
user/ edi tor

14



Chapter 5

Essential User Interface

OVERVIEW: User Interface

l

entry point

honepage
A A
_|create new
“|read account
Y
pl ace/ edi t/ del - mai n | real estate | ol 1ist
real estate > menu " 7| search D

A

'

A 4

account config.
(sns/ mai | -info)

create/ nodi fy
account (admi n)

real estate
info

15




honepage/ mai n nmenu

honepage

free offers
(di splay only)

| ogi n
user nane passwor d
I nput field i nput field
create read account
i nk
failed error
™ di splay only
"ok
mai N menu
all offers
i nk
account -
configuration
i nk
of f er pl aci ng
i nk
| ogof f
create account
change privil eges
i nk




create read account

title(input field) credit card#(input field)
name(i nput field) exp. date(input field)
address(i nput field) AGB( di spl ay only)

phone (input field)

mai | (i nput field)

create account/change privil eges

user name(i nput field)

new user (1i nk)

\ 4 \4

user nane(di splay only) usernanme(i nput field)

password(i nput field)x2 password(i nput field)

privileges(option field) nanme(i nput field)

del et e account (I i nk) address, ... (input fields)
mai |, phone,...(input fields)
privileges(option field)

17



ALL OFFERS

SEARCH
search criterias keywor ds
| i st box I nput field
search criterias keywor ds
| i st box I nput field
search criterias keywor ds
| i st box I nput field
° [
° [
o [

Y Y
real estate |ist NO MATCHES
link Iist di splay only

Y

real estate info edi t
di splay only I nk

18



OFFER PLACI NG

list

kind of real estate

| ocati on
input file

price

input file

A

description
input file

cancel / del ete

ACCOUNT CONFI GURATI ON

new real estate
vi a SMB
checkbox

new real estate
via mai
checkbox

cel | - phone
I nput file

target enail
input file

personal data
(adress, etc.)
input file

cancel account

real estate
link Iist

19




Chapter 6

Class Diagrams

In the previous chapters we dealt with the conceptual model of our system. Now we are
going to start with the object oriented analysis. We have to transform the CRC-Model
into object-oriented class-diagrams. Therefore the CRC-Cards become Classes, a new class
for each Card. A class contains attributes and essential methods. Furthermore there are
different relations between the classes: one to one, on to many, many to many (many may
also mean zero). Inheritance is also a point of interest. Thus attributes and methods of
one class are forwarded to another one - the child-class -, which can also have additional

attributes and methods.

overvi ew

user _interface

sessi on

accounts r eal _estates

account _info

real _estate_ info

dat abase i nterface

20



Sessi on

1
conmuni cates with

1

USER | NTERFACE

| i nk-pressed(link): external
button_pressed(button): external

gets frontend

n

Layout

si ze
col or

w dget s

21



ACCOUNT _
CONTROLLER

send_account _info ();

create_account _info ();

nmodi fy_account ();

drop_account ();

get _account _data ();

0..n
accesses
1
4
DATABASE | F

user _name
1 accesses 0.. > passwor d
name
credit_card
exp_dat e
val idate_data ()
1
cont ai ns
1 1

ACCOUNT _| NFO

ADRESS

CONNECT! ON

PRI VI LEGES

street

state

phone
e-mai |

cel I phone

read

wite

admi n

22




REAL_ESTATE
SRRl e REAL_ESTATES | NFO

send_re_info (); ki nd
create_re (); | ocation
nodify re (); price
drop_re (); descri ption

get _re _data ();
val i date_data ();
serach_for_re ();

1 0..n
accesses
accesses
%)
o
3]
= [
- 2 %
- 8 E|_,
0
[] — = 9
s
S 5
%)
— <
8| 8 ~
- —
Q| E = <IN .
M S - «s = .. C
[hd (8] — — — —_
c - .- o] (%) - (0]
E — o .- > ~ T = -
~ O o -~ I — ] ©
z - g e C S 2 ® B
3] = = =
E = c ® O o O 2
(s] | | - =3 — - I | o
Q — © < £ 0 o [ R— 15 |
7 c S o 0 @ c | ®© - w
n (] =} o o I o _ 5} c [=nd
~ O o o ® - ®© N o < W
—_— - %) | o 3] | © © 1) | o = 4
) c o ¢ g 5 o 0 0 - o n
7)) 5 2 8 o B I I o © — 1 u‘“g
LLl c 2 2 § T T T B & © ;|2
) — [EIT o> »w T O © ¢ O é

23



DATABASE | NTERFACE

connect () ;
execute_sql ();

di sconnect () ;

24




Chapter 7

User-Interface Prototyping

On the basis of the user-interface design we had developed during our previous session
with the customer we created a corresponding prototype using HTML (Hypertext Markup
Language) and WML (Wireless Markup Language). The purpose of user-interface proto-
typing is to test out in reality if the conceptual model works. Therefore we have to check
if for every use-case a corresponding set of user-interface-sites exist. Another important
point is to verify all the sites are interlinked and no unexpected dead ends exist.

The flow-diagram of the HTML and WML versions can be found on the succeeding pages.
The prototypes of the Immowarrior user-interface can be found at the following locations:

e HTML version: http://www.cosy.sbg.ac.at/ TILDE mpober/sel/se_html/

e WML version: http://immowarrior.wap3.de/

25



A 4

A1i1u3 3y

ww |

34 S1|nsay Yo eas

u wpy

a

00y 91ea

34 10} yoieass

a

™~

A11u3 -3y

119sSU |

+—>

(s191)0 @21})

MN

uo IS JapA WIH

uo 1e11s 1u Wpy

k\\\\

U wpy 20y abeuwgn

4

A11u3 - Jequan

w |

S J19qUaN S1|nsay -S

a

SlagqugN Jo] yodess

NUgN U gy -— 1UN022y abeuyy
91IS Xspu |
1UN022yY B81esa D — 1S 9)\v4
NN

- adA10101d d@o2® I8 U |-I199N

26



User-Interface Prototype - WWL Version

I ndex Site/Login

|

Help for Search |<—| Search for RE »
Search Results RE | <+—> RE- Entry

27



Chapter 8

Sequence Diagram

8.1 What is a Squence Diagram?

A sequence diagram shows an interaction arranged in time sequence. In particular, it
shows the objects participating in the interaction by their “lifelines”. It does not show the
associations among the objects. The sequence diagram represents an Interaction, which
is a set of messages exchanged among objects within a collaboration to effect a desired
operation or result.

A sequence diagram has two dimensions: the vertical dimension represents time, the hor-
izontal dimension represents different objects. Normally time proceeds down the page.
Usually only time sequences are important but in real-time applications, the time axis
could be an actual metric. There is no significance to the horizontal ordering of the objects.

8.2 Modeling a Sequence Diagram

An objects in a sequence diagram is represented by a rectangle. The objects role is shown
as a vertical dashed line called the “lifeline”. This lifeline represents the existence of the
object at a particular time. If the object is created or destroyed during the period of time
shown on the diagram, then its lifeline starts or stops at the appropriate point; otherwise
it goes from the top to the bottom of the diagram.

A message is a communication between objects that conveys information with the expec-
tation that action will ensue. The receipt of a message is a kind of event. A message is
shown as a horizontal solid arrow from the lifeline of one object to the lifeline of another
object. In case of a message from an object to itself, the arrow may start and finish on the
same object symbol. The arrow is labeled with the name of the message and its argument
values. The arrow may also be labeled with a sequence number to show the sequence of
the message in the overall interaction. Sequence numbers are useful on the diagrams for
identifying concurrent threads of control.

28



8.3 When to use a Sequence Diagram

A good design can have lots of small methodes in different classes. Because of this it can be
difficult to figure out the overall sequence of behavior. This diagram is simple and visually
logical, so it easy to see the sequence of the flow of control. The diagram also clearly shows
concurrent processes and activations.

8.4 Our Sequence Diagrams
adm ni stration

CGuest User Interface Sessi on Account Controller Db

| ogged in

click admnistration

admi ni stration

new | ayout

click existing user

exi sting user

new | ayout

insert and submit
search criteria

search criteria

search criteria

request nmenbers

return nenbers U(

return menbers

new | ayout

sel ect nenber

reaquest nenber

new | ayout

enter data

nenber data

nenber data

store nmenber data

return confirm U

return confirm

new | ayout

29



beconme a menber

Cuest User

submit usernane and
passwor d

| ogin

Interface Sessi on

forward usernam and

Quest User Interface Sessi on Account Controller Db SMIP
honepage
click becoma nenber
beconme a nenber
new | ayout
insert and subnmit data
user data
user data
send account data
return confirm ‘U’
send confirm nessage
return confirm lJ/
return confirm
new | ayout
insert new eral estate
Quest User Interface Sessi on Real Estate Controller Db
| ogged in
click insert new
real estate
insert new real estate
new | ayout
insert and subnit data
real estate data
real estate data
store real estate data
return confirm U
return confirm
| new | ayout

Account Controller Db

hormepage

access

return users

4

| ogged in

password
search for user
return user data
new | ayout

30



Guest User

click manage
your account

manage your account

Interface

nodi fy and subnit data

manage account

Sessi on

new | ayout

Cuest User

click search for
real estates

user data

new | ayout

Account Controller Db

user data

store user data

return confirm

return ok

submit search criteria

sel ect real estate

sel ect multinedia

31

serach for real estates
Interface Sessi on Account Controller Db
| ogged in
search for real estates
new | ayout
search criteria
search criteria
request real estates
return real estates U,
return real estates
new | ayout
reaquest real estate
request real estate
request real estates
return real estates U,
return real estates
new | ayout
request multimedia
return mul ti medi a



visit startpage/view free offers

Cuest User Interface Sessi on Real Estate Controller Db

visit startpage

request free real estates

request free real estates

get free real estates

return free real estatesu

return free real estates

new | ayout

honepage

click real estate

request real estate

request real estate

get real estate

return eral estate U,

return real estate

new | ayout

32



Chapter 9

Activity Diagram

9.1 What is an Activity Diagram?

Activity diagrams describe the workflow behavior of a system. The diagram illustrates the
dynamic nature of a system by modeling the flow of control from activity to activity. An
activity represents an operation on some class in the system that results in a change in the
state of the system. An activity is trigged by one or more events and activity may result
in one or more events that may trigger other activity or processes.

Typically an activity diagram is attached to the implementation of an use case. The
purpose of this diagram is to focus on flows driven by internal processing (as opposed to
external events)

9.2 Modeling an Activity Diagram

Basic elemtents for creating an anctivity diagram:

Action State: Action states represent the noninterruptible actions of objects. Typically
an action state is represented by an rectangle with convex arcs as sides.

Action Flow: Action flow arrows illustrate the relationships among action states.

Object Flow: Object flow refers to the creation and modification of objects by activities.
An object flow arrow from an action to an object means that the action creates or
influences the object. An object flow arrow from an object to an action indicates
that the action state uses the object.

Initial State: A filled circle followed by an arrow represents the initial action state.

Final State: An arrow pointing to a filled circle nested inside another circle represents
the final action state.

Branching: A diamond represents a decision with alternate paths. The outgoing alter-
nates should be labeled with a condition or guard expression. You can also label one
of the paths ”else.”

33



Swimlanes: The activity diagram may be divided visually into ”swimlanes” each sepa-
rated from neighboring swimlanes by vertical solid lines on both sides. Swimlanes
are used to group related activities into one column.

9.3 When to use an Activity Diagram

Activity diagrams are used for documenting existing process, analyzing new Process Con-
cepts, identifying and finding reengineering opportunities. They are mostly used to show
parallel behavior between the different events and activities. Activity diagrams are also
used to document decisions and iterations. From the software engineering perspective
they can be used to analyze requirements of the use cases befor modeling and assigning
methods.

34



9.4 QOur Activity Diagrams

adm ni stration

| ogged in

show search
screen
show exi sting/
new sel ect screen
]

[ sel ect existing user

show user
search screen

enter search
criteria

search result
screen

show user

dat a

show manage
account screen

[sel ect user]

[ manage]

manage account

[submit]

show ok screen

[cancel user]

35



Creat e Account

visit hone

page

open form
create acc.

l

enter per-
sonal data

[entered data
correct]

send account show confirm
info i nfo

36



edit

estate

r eal

[ subnit]

(:store dat a :)

| ogged in

show mai n
nenu
sel ect: manage
your account
show nanage your
account (ui)

click real estate

to edit
show rea
estate

click: nodify

real estate
show rea
estate details

==

C nmodi fy data )

[ cancel ]

\4

37



view ng free
offers

visit home
page

vi ew free
offers

38



I nsert new
real estate

| ogged in

show mai n
nmenu
select: insert
real estate
show real estate
data formul ar

C I nsert data )

[reset] [ submit]

Cshow ok screen)

39



Logi n

vi sit honepage

| ogi n

I ncorrect

accepted

(:shOM/nain nEnu:>

40



manage your

account
| ogged in
show mai n
menu
-
click manage
your account
show manage
your account ui
<
(: edit data :)
[ subm t]
>(: store data :)
[ cancel ]

41



search for
real estate

| ogged in

show mai n
nmenu
sel ect: search
for real estate
show search
screen
type in search
criterias

[ cancel ] [find it] show resul t
screen

[ sel ect real estate]

[return to show r eal

42



sear chi ng
via WAP

| ogged in

show sear ch
Screen

<

Cent er criteri a)
show results

=

sel ect real
estate

show r ea
estate screen

43



Chapter 10

Design Class Diagram

10.1 What is a Design Class Diagram

Activity and Sequence Diagrams are the end of the analysis phase. Now we switch from
analysis to design phase. The first thing to do is to create a design class diagram.

The goal of a Design Class Diagramm is to model the static appearance of the system.
Unlike the analysis in which we concentrated on the problem domain, we focus on the
solution domain. Changes are now caused by different implementation technologies. In
this diagram the classes and their attributes and methods are shown. Additionally the vis-
ibilities (public +, protected #, private -), names, paramters and return values of methods
as well as visibilities, names and types of attributes are listed.

44



10.2 Owur Design Class Diagram

1

USER_INTERFACE_CONTROLLER

1

SESSION

1

REAL_ESTATE_INFO

n

1

ACCOUNT_INFO

n

1 1

1 1

REAL_ESTATE_CONTROLLER

ACCOUNT_CONTROLLER

1

1

1

1

DATABASE_INTERFACE

ADDRESS CONNECTION PRIVILEGES

45




ACCOUNT _| NFO

-account _id
-user _nane
-password :
-privileges : PRIVILEGES
-fam|ly_nane : string
-surname : string

-address : ADDRESS
-connection_info : CONNECTI ON
-credit_card : string
-expiry_date : string

i nt eger
string
string

CONNECTI ON

-cell _phone : string
-emui | _address : string
-phone : string

+set _account _i d(account _id: integer)
+set _user _nane(user_nane: string)

+set _password(password: string)

+set _privileges(privileges: PRIVILEGES)
+set _famly_name(fam |y_nane: string)
+set _surnanme(surname: string=

+set _address(address: ADDRESS)

+set _connection_i nfo(connection_i nfo: CONNECTI ON)
+set _credit_card(credit_card: string)
+set _expiry_date(expiry_date: string)
+get _account _i d():integer

+get _user _nane():string

+get _password():string

+get _privileges(): PRI VI LEGES

+get _fam ly_nanme():string

+get _surnane():string

+get _address() : ADDRESS

+get _connection_i nfo(): CONNECTI ON

+get _credit_card():string

+get _expiry_date():string

+set _cel | _phone(cel | _phone_nunber: string)
+set _enmi | _adress(enmil _adress: string)

+set _phone( phone: string)
+get _cel |l _phone():string
+get _emmi | _address():string
+get _phone():string

PRI VI LEGES

-prileges : integer

+set _privil eges(privil eges:
+get _privil eges():integer

i nteger)

ACCOUNT_CONTROLLER

+nmodi fy_account (account _i d:

-send_account _i nfo(account _i d:
+cr eat e_account (new_account:

i nt eger)

ACCOUNT_I| NFO) : i nt eger

i nteger, account: ACCOUNT_I| NFO
+dr op_account (account _i d: integer): bool ean

+get _account _dat a(account _i d:
+search_for_account (search_criterias:

i nteger): ACCOUNT_I NFO
string):account_id_array

46




Sessi on

+

| ogin(string, string):bool ean;

cl ose_session(): voi d;

create_read _account (account i nformati on): bool ean;

get _account _i nformati on(string):account _infornmation;
save_account (account _i nformati on): bool ean;

del et e_account (user nane) : bool ean;

get _search_results_acc(string):account _information[];
get _search _results re(string):real _estate information[]
save real estate(real estate_information): bool ean;

del ete_real _estate(account _id): bool ean;

U Controller

+ press_field(string):string;

+ press_link(string):string;

47




REAL _ESTATE_CONTROLLER

- send_real_estate_info( REAL_ESTATE_INFO ): boolean
+create_real_estate( REAL_ESTATE_INFO ) : integer (id)
+modify real_estate( integer (id), REAL_ESTATE_INFO ): boolean
+drop_real_estate( integer (id) ): boolean
+get real estate data( integer (id) ): REAL_ESTATE_INFO
+search_for_real estate( string ): integer[] (id)

(search string syntax: ?option1=value?option2=value?... )

DATABASE_INTERFACE

+ connect (DATABASE_ADDRESS): boolean
+ execute sql( string ): boolean

+ execute_sql( string ): REAL_ESTATE_INFOJ]
+ execute_sql( string ): ACCOUNT _INFQ[]

+ disconnect(): boolean

REAL_ESTATE_INFO ADDRESS

- kind: string +street: string

- real_estate_id: integer +nr: string

- location: ADDRESS 1 1] +city: string

- price: integer +zip: integer

- description: string +country: string

- files:string|] +state: string
+planet: string

+get_kind(): string

+get_location(): ADDRESS
+get_price(): integer
+get_description(): string
+get_file_url(filenr:integer): string
+get_real_estate_id(): integer
+set_kind(string)
+set_location(ADDRESS)
+set_price(integer)
+set_description(string)
+add_file_url (string)
+clear_files()
+set_real_estate_id(integer)

48



Chapter 11

Component Diagram

11.1 What is a Component Diagram

Component Diagrams show software components and the dependencies between them. The
components can exist during compilation, linking or execution. Component Diagrams show
the components just as types, not as instances. Component instances are visualized in the
deployment diagram. Components are modeled as rectangles with two smaller rectangles
jutting out from the left hand side and the name of the component written in the rectangle.
Components implement one or more interfaces, modeled using a line with a circle at the end
and the name of the interface beside the symbol. Components have dependencies on the
interfaces of other components, modeled using the standard UML dependency notation,
as seen in our component diagrams.

49



11.2 Our Component Diagrams

[
[ ]

[ ]
]

BROWSER

WEBSERVER

UI CONTROLLER

O
HTML INTERFACE

B3

WML INTERFACE

SESSION

SESSION

0
FETCH DATA

|

20



1

1]
J

SESSION

DATA-MANAGER

USER_DATA

ACC. CONTROLLER EE

REAL ESTATE DATA

R.E. CONTROLLER

[::] REAL_ESTATES

REAL ESTATE INFO FETCH RE DATA

ADDRESS

ACCOUNTS

[:::] ACCOUNT_INFO FETCH_ACCOUNT_DATA
|::| PRIVILEGES

CONNECTION

ADDRESS

o1



— DATA-MANAGER

1]
I

DB-MANAGER

SQL/DATA

DATABASE INTERFACE

1
Il

DATABASE

SQL

52



Chapter 12

Deployment Diagram

12.1 What is a Deployment Diagram?

It shows the configuration of software-components, objects and processes at runtime. A
deployment diagram is an important illustration of the topology of the system (hardware
and software combined). By inspecting a single node (i.e. hardware unit) of the diagram,
one can see, what components of the software system are running on it, and of which
logical units (classes, objects,...) these component consist.

12.2 Modeling a Deployment Diagram

This diagram is a graph of nodes, connected by associations showing the communica-
tion between them. Nodes may contain representations of components, meaning, that the
corresponding software-components are running on this specific hardware-unit. The com-
ponents are interlinked with others by dependencies (dashed arrows in the diagram) and
possibly via interfaces. Stereotypes can be used to describe the kind of dependance (e.g.
Lsupports>, <uses>>,...).

12.3 Our Deployment Diagrams

As you can see in the following diagram our system is based on a layered architecture:

93



User's Machine: PC or Handy

RN

= BROWSER

L —]

—

/
///

\ AdminServer: Host

5 HTML_INTERFACE
0 WEBSERVER
WML_INTERFACE
= SESSION —O UPDATE
\—‘o SQL/DATA
= DATA MANAGER [—O USER_DATA
- O REAL_ESTATE_DATA
== RE_INFO REAL_ESTATE_INTERFACH
—/
——= ACCOUNT INFO ACCOUNT _INTERFACE
== DB MANAGER SQL/DATA
\__ DatabaseServer
= DATABASE SQL_INTERFACE

o4




Appendix A

Protocolls

Al

1° Lesson - October, 25/, 2001

Basical information about the course and division into groups.

A.2 2" Lesson - October, 31, 2001

First meeting with the client and CRC-session.

1.

2.

Groupleader: Christian Koidl

Participating Groupmembers: Andrea Geierspichler, Gunnar Ruhs, Roman Gross,
Michael Pober

. Topics talked about: Analysis of the problem and basic class-definition

. Results:

(a) The client wants the possibility to obtain relevant information on offers via the
internet or the mobile phone.

(b) The information should be sent to the customer either automatically by the
system (push) or on individual request (pull).

Clients as banks, authorities and private persons get only one account.
The system should provide an access-control-system.

)
)
(e) Private persons receive their username/password by e-mail.
) Private persons have to pay provision for publishing their information
)

There should be the possibility to include different multimedia-elements (pic-
tures, movies, sounds,...).

. List of possible classes: Session, User Interface, Account, Permission, Information

Storage, Real Estate, Editor, Private Person, Prospective Buyer

. New assignments: Refining the problem-statement. Discuss and act out possible

use-cases. Think about the user-interface.

95



7. Open questions:

(a) Should permanent accounts be available for privat persons?
(b) Do private persons have to pay a fee although the object is not sold?

(c) Is it necessary to have an account to request information?

A.3 3" Lesson - November, 7%, 2001

1. Groupleader: Andrea Geierspichler

2. Participating Groupmembers: Christian Koidl, Gunnar Ruhs, Roman Gross, Michael
Pober

3. Topics talked about: Essential Use-Case-Definition, Essential User-Interface-Modeling

4. Use-Cases discussed:

(a) Offer-Placing
Actions: Login - Offer-Placing - Logoff
Actors: Editor
Details: The editor contacts the user-interface. The interface forwards the
login-inputs to the accout, that checks in the information-storage, if the ac-
count exists. When positiv it sends the data to the privilege. The Privilege
gets the user-permissions from the information-storage and returns it to the
account. Then the account passes the results to the user-interface. If the user
is accepted, then the interface starts a session and displays the next screen.
Now the user chooses the offer-placing-menu. Here he enters his real-estate
data. The interface reads the information and forwards it to the session, that
stores it in the information-storage. The storage sends a success message to the
user-interface over the session. The interface displays the success message and
returns to the menu-screen. The user hits the logout-button and the interface
closes the session and shows the login-screen again.

(b) Create Account
Actions: Viewing free offers - Create Account - Send Account-Information
Actor: User
Details: The User visits the Homepage. The homepage starts a session, that
querries the information-storage for the free offers. The storage returns this
informations via the session to the homepage and the session is closed. Now the
user wants to see more details, so he enters the ”create account” menu. Here
a session is started and the user is offered a form, where he enters his personal
information. The session gets this data and forwards it to the information-
storage. Then it activates send-account-information. From here the user gets
informed about his username and password. Finally the session querries for the
free offers, returns them to the homepage and closes. The free-offers-screen is
displayed again.

o6



. Essential user interface:

Homepage, subscribe screen, subscription successful, subscription error, login screen,
access denied, form for placing offers, infoscreen successful, infoscreen error,

. List of possible classes: Session, User Interface, Account, Privilege, Information Stor-

age, Real Estate, Editor, Private Person, User, Send Account Information

. New assignments: Present the essential use-cases and the essential user-interface

using slides.
Open questions:

(a) How is a user able to manage his account?

(b) Is ”Privileges” necessary?

A.4 4" Lesson - November, 14", 2001

1.

2.

A.5

. Groupleader: Roman Gross

Groupleader: Gunnar Ruhs

Participating Groupmembers: Christian Koidl, Andrea Geierspichler, Roman Gross,
Michael Pober

. Topics talked about: Presentation of the Essential Use-Cases and a basic design for

the User-Interface. (For details, please refer to chapter 4)

. Results:

(a) The different actors are to be disigned hierachically. Going out from the Guest-
Actor, the other persons can be constructed by inheritance.

(b) We have to add a new class ”System” to our list. This represents a foreign
system, that tries to interact with our software.

. List of possible classes: Session, User Interface, Account, Information Storage, Ad-

min, Editor, EditorAndUser, User, Guest, Send Account Info, Search for Info, Push
Real-Estate-Info, System

. New assignments: Present the class-strucure of the project with slides.

Open questions: so far: none

5" Lesson - November, 21", 2001

. Participating Groupmembers: Christian Koidl, Andrea Geierspichler, Gunnar Ruhs,

Michael Pober

. Topics talked about: Presentation of the Classdiagrams

. Results:

o7



(a) Cardinalities have to be inserted into the class-diagrams
(b) The attributes ”Privileges” and ” Address” are to modeled as own classes

(¢) The layout for the user-interface can be put into a class, so that all the different
sites can be objects of ”layout”

5. New assignments: Build a user-interface prototype for mobile phone using WML
(Wireless Markup Language) and for the internet using HTML.

6. Open questions: so far: none

A.6 6" Lesson - December, 5, 2001

1. Groupleader: Michael Pober

2. Participating Groupmembers: Christian Koidl, Andrea Geierspichler, Gunnar Rubhs,
Roman Gross

3. Topics talked about: Presentation of the User-Interface-Prototype (WML and HTML)
4. Results:

(a) The possibility to check the user’s resolution and then show an optimized user
interface for his special requirements should be given.

(b) An extendable permission-system should be considered.

(¢) A user should be able to view his own placed real estates, even he just has
write-permissions.

(d) If a visitor wants to search for real estates via WAP, his entered search criterias
should be listed in each card.

5. New assignments: Create sequence diagram and activity diagram

6. Open questions: so far: none

A.7 7" Lesson - December, 12/, 2001

1. Groupleader: Christian Koidl

2. Participating Groupmembers: Michael Pober, Andrea Geierspichler, Gunnar Rubhs,
Roman Gross

3. Topics talked about: Presentation of the activity diagrams and sequence diagrams
4. Results:

(a) The flow diagram has to be created from the users point of view only.

(b) Descriptions of the events have to be added to the left side of the sequence
diagrams.

5. Open questions: so far: none

o8



A.8 8 Lesson - January, 9, 2002

1. This meeting did not take place so we will talk about the topics planned for that
meeting in the next week.

A.9 9" Lesson - January, 16, 2002

1. Groupleader: Andrea Geierspichler

2. Participating Groupmembers: Michael Pober, Roman Gross, Christian Koidl, Gun-
nar Ruhs

3. Topcs talked about: Presentation of out Component Diagrams and Deployment Di-
agrams

4. Results:

(a) One thing that had to be changed in the Deployment Diagram: The direct
connection between the UI_Controller and the Real Estate_Info/Account_Info
as well as the connection between Session and Real Estate_Info/Account_Info is
not necessary.

(b) For security reasons the attributes in the ADDRESS-Class have to be private
and the corresponding methods have to be inserted.

(¢) Our Search-Methods were working with search strings not unlike those used in
CGI but we should use hash tables instead.

(d) We have to extend our CONNECTION-Class. It should theoretically be possible
to enter an indefinite number of contact information. Therefore we have to
create a "list” for the phone-numbers, etc.

(e) We should to split up the PRIVILEGE-Class into a list of classes, one for every
single privilege. Thereby the system is extendable more easily.

99



