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We study the e�ects of random faults on the behavior of one-dimensional, non-uniform

cellular automata (CA), where the local update rule need not be identical for all grid

sites. The CA systems examined were obtained via an approach known as cellular

programming, which involves the evolution of non-uniform CAs to perform non-trivial

computational tasks. Using the \system replicas" methodology, involving a comparison

between a perfect, non-perturbed version of the CA and a faulty one, we �nd that our

evolved systems exhibit graceful degradation in performance, able to tolerate a certain

level of faults. We then \zoom" into the fault-tolerant zone, where \good" computational

behavior is exhibited, introducing measures to �ne-tune our understanding of the faulty

CAs' operation. We study the error level as a function of time and space, as well as the

recuperation time needed to recover from faults. Our investigation reveals an intricate

interplay between temporal and spatial factors, with the presence of di�erent rules in

the grid giving rise to complex dynamics. Studies along this line may have applications

to future computing systems that will contain thousands or even millions of computing

elements, rendering crucial the issue of resilience.

Keywords: Non-Uniform Cellular Automata; Cellular Programming; Fault Tolerance;

Damage Spreading.

1. Introduction

Cellular automata (CA) are discrete dynamical systems containing a �nite or in�-

nite number of simple components that interact locally.1;2 Each component can be

considered a lattice site in a low-dimensional grid space having only a �nite number
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of possible states. In synchronous, uniform CAs the values of all the sites in the grid

are updated simultaneously at each discrete time step according to a given identical

rule that depends on the state of the site itself and on that of a small number of

neighboring lattice points. Non-uniform CAs can also be considered in which the

local update rule need not be identical for all grid sites.3{5

Though simple in their de�nition and elementary components, some CAs have

been shown to be capable of complex global behavior, even in one dimension, includ-

ing chaotic phenomena and universal computation.6;7 CAs have been widely used

in the past to model natural and social phenomena and as computing machines

in domains where global behavior arises from local interactions, e.g., for low-level

image processing.8;9

CAs are massively parallel systems amenable to hardware implementation due to

the simplicity of basic components (cells) as well as the local cellular connectivity.

Most classical software and hardware systems, especially parallel ones, exhibit a

very low level of fault-tolerance, i.e., they are not resilient in the face of errors;

indeed, where software is concerned, even a single error can often bring an entire

program to a grinding halt. Future computing systems may contain thousands or

even millions of computing elements (e.g., Ref. 10). For such large numbers of

components, the issue of resilience can no longer be ignored since faults will be

likely to occur with high probability. Networks of automata exhibit in principle

some fault-tolerance. As an example one can cite arti�cial neural networks, many

of which show graceful degradation in performance when presented with noisy input;

furthermore, the malfunction of a neuron or damage to a synaptic weight causes

but a small change in the system's overall behavior, rather than bringing it to a

complete standstill. Cellular computing systems, such as CAs, may thus be seen

as a simple and convenient framework within which to study the e�ects of such

errors.

In this paper we study the e�ects of random faults on the behavior of one-

dimensional CAs that perform given computational tasks. The CA systems exam-

ined were obtained via an approach known as cellular programming, which involves

the evolution of non-uniform CAs to perform non-trivial computational tasks.11{16

In particular, we are interested in the systems' behavior as a function of the error

level; we wish to learn whether there exist error-rate regions in which the automata

can be considered to perform their task in an \acceptable" manner. Moreover, the

amount and speed of recovery after the appearance of a fault is quanti�ed and mea-

sured. We also observe how disturbances spread throughout the system to learn

under what conditions the perturbation remains limited and does not propagate to

the entire system.

In the next section related fault studies in cellular systems are brie
y reviewed,

followed by a section describing our CA systems and the computational mea-

sures employed. We then present the results obtained, ending with concluding

remarks.
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2. Previous Work on Faults and Damage in Lattice Models

The question of how errors spread and propagate in cooperative systems has been

studied in a variety of �elds. Given the di�culty of creating analytical models for

but the simplest systems, most investigations have been conducted by computer

simulation, especially in the area of statistical physics of many-body systems. One

system that has received much attention is Kau�man's model, which consists of a

non-uniform CA with irregular connectivity in which each cell (lattice site) follows

a transition rule that is a random boolean function of the state of its neighbors; the

rules as well as the connections between cells are randomly selected at the outset and

then remain �xed throughout the system's run.17 The system has been observed to

converge toward limit cycles; it can be perturbed by \mutations," which are random

changes of rules. Stau�er18 and other researchers have studied the spreading of

damage on various kinds of two-dimensional lattices as a function of the probability

p of mutating rules within the grid. Critical values of p have been found at which

a phase transition seems to occur; above the critical p the damage spreads to the

entire lattice, while below it the system is stable with respect to damage spreading.

Another well-known system in which the time evolution of damage has been

investigated is the Ising ferromagnet and related spin systems. In these \thermal

systems" transition probabilities are a function of the temperature. Reference 19

employed Monte Carlo simulations using Metropolis dynamics, �nding that there

exists a critical temperature Tc, above which (i.e., at high temperatures) an initial

damage at a few sites spreads rapidly to the entire system, while below Tc the

damage eventually dissipates. Some apparent inconsistencies in this work, due to

the use of di�erent transition probability functions, have been resolved in Ref. 20.

The general objective of the kind of research summarized above is the study of

the temporal limit behavior of the system as a function of some parameter, such

as the probability of fault or the thermal noise. For some systems critical behavior

has been shown to occur and in some cases critical exponents were computationally

determined. A recent review of damage dynamics in collective systems from the

point of view of computational physics can be found in Ref. 21.

3. Computational Tasks and Probabilistic Faults in Cellular Automata

Although the simulation methodology is similar, the main di�erence between the

studies described in the previous section and the work presented herein stems from

the fact that we focus on CAs that perform a speci�ed computational task, rather

than on the long-term dynamics of a physical system under given constraints. From

our computational point of view, what is important is the way in which the task

performance is a�ected when the system is perturbed.

Programming a CA to execute a given task or to simulate a certain physi-

cal system is in general a di�cult endeavor. This results from the local dynam-

ics of the system, which renders the design of local interaction rules to perform

global computational tasks extremely arduous. Normally the correspondence, or
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approximate correspondence, between CA rules and the desired global dynamics

has to be found by ingenuity or trial and error. Recently, an alternative approach

has been suggested, which consists of applying a process of arti�cial evolution to

\search" for the CA rules necessary to implement a prespeci�ed task.11{16;22{24

The details of these methods can be found in the cited references, the general

idea being as follows: one starts with a population of arbitrary, randomly-assigned

rules that are evaluated according to the quality, or �tness, of the corresponding

CA on the task at hand. Rules that perform better are selected and recombined,

randommutations being occasionally applied to maintain population diversity. This

evolutionary process may eventually converge toward rules that are \good enough,"

if not optimal (for recent general reviews on arti�cial evolution, the reader is referred

to Refs. 25{27). The advantage of this methodology is that little design work is

needed since the evolutionary process automatically �nds suitable rules. To date,

several CAs have been evolved to perform diverse computational tasks, including

random number generation14;15 and image processing.28;29 Two di�erent algorithms

have been used to evolve CAs. The standard genetic algorithm used by Ref. 23

gives rise to uniform CAs, whereas the algorithm of Ref. 11, known as cellular

programming, involves non-uniform ones. The latter was found to produce quasi-

uniform systems, meaning that only a few distinct rules exist in the grid upon

termination of the evolutionary process.

We next introduce the CAs that are the subject of our study. We concentrate

on one-dimensional, non-uniform CAs with two possible states per cell (denoted 0,

1), and connectivity radius r = 1, meaning that each cell is connected only to its

immediate left and right neighbors. Spatially periodic boundary conditions are used,

resulting in a circular grid. We have applied the cellular programming evolutionary

algorithm to evolve such CAs to perform a number of computational tasks, two of

which shall be considered herein, density and synchronization. The one-dimensional

density task is to decide whether or not the initial con�gurationa contains more than

50% 1s, relaxing to a �xed-point pattern of all 1s if the initial density of 1s exceeds

0.5, and all 0s otherwise. In the one-dimensional synchronization task the CA,

given any initial con�guration, must reach a �nal con�guration, within M time

steps, that oscillates between all 0s and all 1s on successive time steps. It should

be emphasized that both tasks comprise non-trivial computational problems for a

small radius CA (r � N , where N is the grid size), since a global con�guration

is to be attained in a locally-connected structure, thereby necessitating some form

of global information propagation (e.g., via emergent computation).23;24 Note that

the density task cannot be perfectly solved by a uniform, two-state CA, as proven

in Ref. 30.b

aThe term \con�guration" refers to an assignment of states to cells in the grid.
bThis result applies to the above statement of the problem, where the CA's �nal pattern (i.e.,
output) is speci�ed as a �xed-point con�guration. Interestingly, it has recently been proven that

by changing the output speci�cation, namely the �nal pattern toward which the system should
converge, a two-state, r = 1 uniform CA exists that can perfectly solve the density problem.31
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We used cellular programming to evolve non-uniform CAs to perform these

tasks, attaining high performance for the density task, and perfect performance for

the synchronization task.c The operation of non-uniform CAs that were evolved to

perform these tasks is shown in Fig. 1.d

The above CAs evolvee in time according to prescribed (evolved) deterministic

rules; however, noise can be introduced into CA rules, thereby rendering them non-

deterministic. For example, for a two-state CA, at each time step the value that

is the output of a given deterministic rule can be reversed with probability pf ,

denoted the fault probability, each site being treated independently of the others

(Fig. 1). Thus, a cell updates its state in a non-deterministic manner, setting

it at the next time step to that speci�ed in the rule table, with probability 1 �

pf , or the complementary state, with probability pf . This de�nition of noise will

be used in what follows since it reasonably models the functioning of a multi-

component machine in which the computing elements are subject to stochastic

transient faults. Other kinds of perturbations are possible, such as sites becoming

unavailable (\permanent damage") or switching to another rule for a long, possibly

inde�nite, period of time. It is also possible to consider the 
ipping of site states,

either single sites or clusters of sites. Moreover, each site may be updated at each

time step according to one rule with probability p and according to a second rule

with probability 1�p.3 The perturbed Kau�man automata,18 in which a site selects

its rule probabilistically, to be then subjected to random mutations, is an example

similar to ours.

The simulationmethodology is based on the concept of \system replicas."21;32;33

Two systems run in parallel, the original unperturbed one (pf = 0), and a second

system subjected to a non-zero probability of error (pf > 0). Both systems start

with the same initial con�guration at time t = 0, after which their temporal behavior

is monitored and the Hamming distance between the two con�gurations at each time

step is recorded.f This provides us with insight into the faulty CA's behavior, by

measuring the amount by which it diverges from a \perfect" computation. Our

studies are stochastic in nature, involving a number of measures which are obtained

experimentally, averaged over a large number of initial con�gurations.

cThe di�erent performance measures used, as well as the precise results obtained, are delineated,

e.g., in Refs. 11 and 12. Essentially, performance concerns the percentage of input con�gurations,
over a large random sample, for which a correct response is attained, as well as the number of
time steps until convergence to the correct �nal pattern. The \perfect performance" attained for
the synchronization task is meant in a stochastic sense since we cannot exhaustively test all 2N

possible initial con�gurations nor are we in possession to date of a formal proof; nonetheless, we
have tested our best-performanceCAs on numerous con�gurations, for all of which synchronization
was attained.
dThe CAs discussed in this paper are fully speci�ed in the Appendix.
eNote that we use the term `evolve' in two distinctways, the �rst referring to the arti�cial evolution
of CA rules, while the second refers to a CA's evolution in time. This is done in order to conform
with existing terminology; the appropriate meaning can be determined from the context.
fThe Hamming distance between two con�gurations is the number of bits by which they di�er.
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Fig. 1. The operation of evolved, non-uniform, r = 1 CAs. Grid size is N = 149. White squares

represent cells in state 0, black squares represent cells in state 1. The pattern of con�gurations is

shown for the �rst 200 time steps, with time increasing down the page. The initial con�gurations

were generated by randomly setting the state of each grid cell to 0 or 1 with uniform probability.

(a) A CA that was evolved to perform the density task. The operation of a \perfect" system is

shown, i.e., with fault probability pf = 0. Initial density of 1s > 0:5. (b) A CA that was evolved

to perform the synchronization task. pf = 0. (c) The CA of (b) is run with pf = 0:0001. (d) The

CA of (b) is run with pf = 0:001.
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The non-uniform CAs studied are ones that have evolved via cellular program-

ming to perform either the density or synchronization tasks, with our fault-tolerance

investigation picking up upon termination of the evolutionary process. Figures 1(c)

and 1(d) depict the operation of an evolved, non-uniformCA on the synchronization

task for two di�erent non-zero pf values.

4. Results

Figure 2 depicts the average Hamming distance as a function of the fault probability

pf . We note that the curve is sigmoid-shaped, exhibiting three observable regions:

a slow-rising slope (pf � 0:0005), followed by a sharp one (0:0005 < pf � 0:01),

ending with an attenuated slope (pf > 0:01); this latter region exhibits an ex-

tremely large Hamming distance, signifying an unacceptable level of computational

error. The most important result concerns the �rst (left-hand) region, which can be

considered the fault-tolerant zone, where the faulty CA operates in a near-perfect

manner. This demonstrates that our evolved CAs exhibit \graceful degradation"

in the face of errors. We also note that there is no essential di�erence between

the two tasks, density and synchronization, except for the higher error level in the

\unacceptable" zone attained by the density CAs. These simulations (as well as

the rest reported in this section) were repeated several times, obtaining virtually

identical results.

Fig. 2. Average Hamming distance versus fault probability pf . Five CAs were studied | two that

were evolved to perform the density task, and three that were evolved to perform the synchroniza-

tion task. Grid size is N = 149. For each pf value the CA under test was run on 1000 randomly

generated initial con�gurations for 300 time steps. At each time step the Hamming distance be-

tween the \perfect" CA and the faulty one is recorded. The average over all con�gurations and

all time steps is represented as a point in the graph.
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The above measure furnishes us with our �rst glimpse into the workings of the

faulty CAs, demonstrating an important global characteristic, namely their ability

to tolerate a certain level of faults. We now wish to \zoom" into the fault-tolerant

zone, where \good" computational behavior is exhibited, introducing measures to

�ne-tune our understanding of the faulty CAs' operation. In what follows we shall

concentrate on one task, synchronization, due to the improved evolved performance

results in comparison to the density task, obtained for the deterministic versions of

the CAs (see previous section).g We now wish to study the propagation of errors in

time; toward this end we examine the Hamming distance between the perfect and

faulty versions, as a function of time (step). Our results are depicted in Fig. 3. We

note that while Hamming distance is limited within the region suggested by Fig. 2,

there are di�erences between the CAs. Most notable is the high error rate attained

by CA 2 in the last 100 time steps.

Further investigation revealed that this is due to critical zones. These are speci�c

rules or rule blocks (i.e., blocks of cells containing the same rule) that cause an

\avalanche" of error spreading, which may eventually encompass the entire system,

as demonstrated in Fig. 4. Figure 4(a) shows that the CA's error rate peaks around

cell 60, which is at the border of rule blocks (see Appendix). Indeed, when this cell is

perturbed (Fig. 4(b)), the error may eventually spread to the entire system, resulting

in the diminished performance in later time steps, evident in Fig. 3. Interestingly,

this CA has the lowest error rate for the initial part of the computation (Fig. 3).

CA 3 exhibits the opposite time behavior, starting with a higher error rate, which

increases, however, more slowly (Fig. 3). Figure 5(a) shows that this CA exhibits

an error peak at the proximity of cell 90, a much sharper one than that of CA 2,

resulting in error containment. Again, cell 90 is at the border of two rule blocks (see

Appendix). Figure 5(a) exhibits a minimum at cell 16, which is also a border cell

(between rule blocks), demonstrating that such border rules may act in the opposite

manner, \sti
ing" error spreading rather than enhancing it. CA 1 consists of two

major rule blocks, exhibiting di�erent error dispersion behavior, as demonstrated in

Fig. 6. Thus, by introducing time and space measures, we have shown that although

all three CAs are within the fault-tolerant zone, their behavior is quite di�erent.

The �nal issue we consider is that of recuperation time. Since our CAs are in

e�ect computational systems, we wish to learn not only whether they recover from

faults but also how long this takes. Toward this end we introduced the following

measure: the CA of size N = 149 is run for 600 time steps with a given fault

probability pf . If the Hamming distance between the perfect and faulty versions

passes a certain threshold, which we have set to 0:05N bits, at time t1, and then

falls below this threshold at time t2, staying below for at least three time steps,

then recuperation time is de�ned as t2 � t1. Note that such \windows" of faulty

gNote that applying the performance measures mentioned in the previous section to the deter-

ministic versions of the three evolved synchronization CAs discussed herein revealed no di�erences
between them.
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(a)

(b)

Fig. 3. Hamming distance as a function of time for three CAs that were evolved to perform the

synchronization task. Grid size is N = 149. Each CA is run on 1000 random initial con�gurations

for 300 time steps; the Hamming distance per time step is averaged over these con�gurations.

(a) pf = 0:00005. (b) pf = 0:0001.

behavior may occur more than once during the CA's run (i.e., during the 600 time

steps); also note that t2 may equal 600 if the CA never recovers. Simply put, this

measure indicates the proportional amount of time that the CA is within a window

of unacceptable error level. Our results are depicted in Fig. 7. For pf < 0:0001
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(a)

(b)

Fig. 4. Synchronization CA 2: Critical zones. (a) Hamming distance per cell (averaged over 1000

random initial con�gurations, each run for 300 time steps). Note the peak around cell 60 (the

leftmost cell is numbered 0). (b) Perturbing this cell causes an \avalanche" of error spreading.

The �gure depicts the operation of the CA upon presentation of a random initial con�guration;

after approximately 200 time steps cell 60's state is 
ipped. This cell is situated at the border of

rule blocks (see Appendix). pf = 0:0001 for both (a) and (b). Grid size is N = 149.
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(a)

(b)

Fig. 5. Synchronization CA 3. (a) Hamming distance per cell (averaged over 1000 random initial

con�gurations, each run for 300 time steps). Note the peak around cell 90, much sharper than that

of Fig. 4. (b) Perturbing this cell does not cause an \avalanche" and the error remains contained.

This results in a lower Hamming distance as function of time (Fig. 3). The �gure depicts the

operation of the CA upon presentation of a random initial con�guration; after approximately 200

time steps cell 90's state is 
ipped. This cell is situated at the border of rule blocks (see Appendix).

pf = 0:0001 for both (a) and (b). Grid size is N = 149.



934 M. Sipper, M. Tomassini, & O. Beuret

(a)

(b)

Fig. 6. Synchronization CA 1. (a) Hamming distance per cell (averaged over 1000 random initial

con�gurations, each run for 300 time steps). Two major rule blocks are present, each exhibiting a

di�erent error dispersion behavior, the highest error level being that of the \middle" block (note

that the left and right blocks contain the same rule, as can be seen in the Appendix, and therefore

constitute one block due to the grid's circularity). (b) Three cells are perturbed, in di�erent parts

of the grid (cells 20, 70, 120). The error introduced in the middle block propagates, whereas the

other two are immediately sti
ed. The �gure depicts the operation of the CA upon presentation

of a random initial con�guration; after approximately 200 time steps the states of the above three

cells are 
ipped. pf = 0:0001 for both (a) and (b). Grid size is N = 149.
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Fig. 7. Recuperation time as a function of fault probability pf . Each of the three evolved CAs

was run on 1000 random initial con�gurations for 600 time steps. Average results are depicted in

the graph. Grid size is N = 149.

recuperation time is quite short for all three CAs, however, above this fault level,

CA 3 exhibits notably higher recuperation time than the other two. It is interesting

in that this CA has the lowest error level over time (Fig. 3).h Thus, it is more

robust to errors in general, however, certain faults may cause severe problems in

terms of recuperation time. This result, along with the others obtained above,

demonstrates the intricate interplay between temporal and spatial factors in our

evolved non-uniform CAs.

5. Concluding Remarks

We studied the e�ects of random faults on the behavior of one-dimensional, non-

uniform CAs that perform given computational tasks. The CA systems examined

were obtained by an arti�cial evolution approach, known as cellular programming.

Using the \system replicas" methodology, involving a comparison between a perfect,

non-perturbed version of the CA and a faulty one, we found that our evolved systems

exhibit graceful degradation in performance, able to tolerate a certain level of faults.

We then zoomed into the fault-tolerant zone, where \good" computational behavior

is exhibited, introducing measures to �ne-tune our understanding of the faulty CAs'

operation. We studied the error level as a function of time and space, as well as the

recuperation time needed to recover from faults.

hThough Fig. 3 shows results for pf � 0:0001, we have veri�ed that the same qualitative behavior
is exhibited for pf > 0:0001.
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Our study of evolved non-uniform CAs performing computational tasks revealed

an intricate interplay between temporal and spatial factors, with the presence of

di�erent rules in the grid giving rise to complex dynamics. Clearly we have only

taken the �rst step, and there is much yet to be explored. Other types of measures

can be considered, such as fault behavior as a function of grid size, permanent faults

along with their e�ects with respect to the rules distribution within the grid, and

\total damage time," i.e., the time required for all sites to be damaged at least once.

Another interesting issue involves the introduction of faults during the evolutionary

process itself to see how well evolution copes with such non-deterministic CAs.

Future computing systems may contain thousands or even millions of computing

elements; for such large numbers of components, the issue of resilience can no longer

be ignored since faults will be likely to occur with high probability.

Evolving cellular systems hold potential both scienti�cally, as vehicles for study-

ing phenomena of interest in the domain of complex adaptive systems, as well as

practically, showing a range of potential future applications ensuing the construc-

tion of adaptive systems. We hope this paper has shed some light on the behavior

of such systems under faulty conditions.

Appendix. Speci�cation of the Evolved Non-Uniform CAs

This appendix speci�es the �ve non-uniform, r = 1 CAs discussed in the paper,

evolved via cellular programming. The listing includes the rule found in each cell,

where rule numbers are given in accordance with Wolfram's convention,33 repre-

senting the decimal equivalent of the binary number encoding the rule table. All

grid sizes are N = 149. Cell 0 is the leftmost cell.
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Synch. 1:

From cell To cell Rule

0 32 31

33 105 83

106 106 19

107 148 31

Density 1:

From cell To cell Rule

0 39 226

40 40 234

41 71 226

72 72 234

73 142 226

143 144 224

145 148 226

Synch. 2:

From cell To cell Rule

0 55 21

56 56 85

57 58 21

59 60 53

61 73 63

74 132 31

133 148 21

Density 2:

From cell To cell Rule

0 106 226

107 108 224

109 131 226

132 132 234

133 148 226

Synch. 3:

From cell To cell Rule

0 15 53

16 16 55

17 29 59

30 89 43

90 100 39

101 101 7

102 148 53
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