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Abstract

The purpose of this document is to report about the use of reactive agents and hybrid methods
(i.e. artificial neural networks (ANN) and genetic algorithms (GA)) in Multi Agent Systems
(MAS) in order to solve global classification problems. First we give an overview about the
various technologies and ideas that were developed and show how other researchers used them.

Then we try to use them ourselves in order to create agents suitable for global classification tasks.
We discuss various methods for doing so and in the end we create an agent that has conservative
and explorative behavior. An experiment shows that our way of creating such an agent works.
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Chapter 1

Introduction

In this Introduction the basic terms and technologies which we used in our research are described.

1.1 Agents

It is not that easy to define the term “agent” because there are a lot of different researchers dealing
with them who have not managed to come up with a definition they agree upon. One definition
is that an agent is a piece of software and/or hardware that is capable of acting autonomous
in order to accomplish tasks on behalf of its user or creator. Another simple description of an
agent is that it is a system that tries to fulfil a set of goals in a complex dynamic environment.
For example humans and animals can be seen as very sophisticated agents with many sensors
that enables them to survive in this complex dynamic environment called earth. Agents come
in many physical guises: Agents can be robots but of course also pieces of software. There are
various types of agents for a range of purposes, i.e. internet-search agents, navigation agents,
testing agents and help agents, just to name a few.

There are several dimensions to classify agents [Hya96]. Firstly, they can be classified by their
mobility. Agents can either be static or mobile, which means they are able to move around in
real or virtual environments or in computer systems. Secondly, they may be classed as either
deliberative or reactive. Deliberative agents have a internal reasoning model which enables them to
plan their actions. In contrast to that reactive agents act in a relatively simple stimulus-response
manner which for example can mean that they are able to sense objects in their environment and
then show a specific reaction based on the sensed data. They may also be able to communicate
with other agents in basic ways. Thirdly, agents can have various attributes: autonomy, learning
and cooperation.

Autonomy means that agents can operate on their own, without explicit human guidance. A
key element in the autonomy of agents is their proactiveness, which means the can ”take the
initiative”.

Cooperation is important because obviously this is the reason for thinking about having more
than one agent for specific tasks which would be far less useful if they would not be able to
communicate with each other.

Learning is another key-feature for truly “smart” agents. You may view agents as“pieces of
intelligence” and intelligent beings certainly must have the ability to learn in order to adopt to
their environment and increase their performance.

Most agents that have been developed by now have a combination of these three attributes and
if it is possible to combine them all in a way that combines their strengths this would be a truly
smart agent. But unfortunately this does not seem to exist by now.



1.2 Multi Agent Systems (MAS)

As the term already says, in multi-agent systems a number of agents are put together for a
specific purpose. In such an ”agent society”, agents coordinate their skills, knowledge, goals and
plans jointly in order to take actions or to solve problems collectively. These agents may work
toward separate but related goals, or toward one single goal. A basic classification for MAS is
their homogeneity or heterogeneity.

In homogeneous MAS the agents are all exactly or quite the same. The idea is that despite one
agent is quite simple and easy to understand, complex patterns of behavior emerge when the
agent population is viewed globally. Especially reactive agents are quite suitable for this kind of
MAS because they react in simple stimulus-response manner. In homogenous MAS many simple
low-level interactions, which are for example agents detecting each other or other objects and
simple communications between them, can combine to form highly complex system-level behavior.
J. Ferber refers to the behavior of single agents as quantitative and to the behavior of the whole
system as qualitative behavior. This effect can be seen in biological systems too. Bees and
Ant have very limited cognitive system but have an amazing group-level cognition. An obvious
advantage of homogenous MAS is that if some agents behave wrong, which means not goal-
oriented, the overall performance of the system does decrease rapidly and not slowly. If however
the system would consist of highly specialized interdependent components (as in heterogenous
systems), the malfunction of some of them can mean the overall performance suddenly drops to
nearly zero.

Heterogenous MAS consist of different types of agents. In such systems each agent or group of
agents has a specific specialized task. There are some arguments for this approach [Ben00]: One
is that in nature there are many examples for heterogenous system, for example a multi-cellular
organism, where each cell has its specific task and these cell together form a complex being. It
seems like that teams of specialists perform better than teams of generalists in complex problem
solving. Heterogenous systems are more powerful because they are better at breaking a task
down into its component parts. A disadvantage of such system is that they are not that easy
to handle because every type of agent behaves differently and for example it is more difficult to
develop a communication language which all of them understand.

1.3 Artificial Neural Networks

1.3.1 Basics of Neural Networks

Artificial Neural Networks (ANNSs) are an abstract simulation of a real nervous system that
contains a collection of neuron units communicating with each other via axon connections. Such
a model bears a strong resemblance to axons and dendrites in a nervous system.

The first fundamental modelling of neural nets was proposed in 1943 by McCulloch and Pitts in
terms of a computational model of “nervous activity”. The McCulloch-Pitts neuron is a binary
device and each neuron has a fixed threshold logic. This model lead the works of John von
Neumann, Marvin Minsky, Frank Rosenblatt, and many others.

Consequently an Artificial Neural Network being an system that is based on the generalization
of information processing in biological neural networks there are several characteristics to be
considered [Fau94]

e Information processing occurs at many simple elements called neurons
e Signals are passed between neurons over connection links

e Kach connection link has an associated weight, that multiplies the signal transmitted



e Each neuron applies an activation function to its net input to determine its output signal.
Basically a neural network is characterized by its

e Architecture - i.e its pattern of connections between the neurons
e Learning Algorithm - i.e its method of determining the weights on the connections

e Activation function which determines its output

In a biological network you can identify neurons as a special type of processing elements with a
certain internal state called activation or activity level which is a function of the inputs it has
received. Typically a neuron sends its activation as a signal to other neurons. A neuron can send
only one activation signal at a time, however this does not exclude the signal being broadcasted
to several other neurons.

Because an ANN mimics the biological neural network, it has to resemble the essential parts
of a BNN, such as neuron, axons, hillock and more. Currently, to create an ANN, there are
two approaches. The first approach is to use experimental chips that simulate neurons and
interconnect them to create a network. However, this approach is inefficient due to the expenses
and the technologies behind it. The software solution, on the other hand, is much easier because
as the network expands, it is harder to upgrade the network through hardware than through
software.

1.3.2 Signal transmission in ANNs

As mentioned before Neurons are the basic processing elements of the neural network. In biolog-
ical neural networks each neuron has several dendrites which connect to other neurons and when
a neuron fires (sending electrical impulse), a positive or negative charge is sent to other neurons.
When a neuron receives signals from other neurons, spatial and temporal summation occurs
where spatial summation converts several weak signals into a large one, and temporal summation
converts a series of weak signals from the same source into a large signal. The electrical impulse
is then transmitted through axon to terminal buttons to other neurons. The axon hillock plays
an important role because if the signal is not strong enough to pass through it, no signal will
be transmitted. The terminal buttons are connected to other neurons or muscle cells. The gap
between the two neurons is called the synapse. The synapse also determines the “weight” of the
signal transmitted. The more often a signal is sent through the synapse, the easier it is for the
signal to be sent through.
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Figure 1.1: Functional Description of a neuron



So to describe a neuron in an ANN you need several functions and variables including weight
(a random number generated when the neuron is created), a non-linear function (to determine
whether to activate the neuron or not), a method that adds up all the inputs, and a bias/offset
value (optional) for the characterization of the neuron.

The non-linear functions that determine whether a neuron fires or not are called activation
functions. As with the training methods there exist several functions that generate the output
of the neuron with given input signals.

The output of each neuron is the sum of all the inputs multiplying the weights plus the offset
value and through a non-linear function. The non-linear function acts like a hillock. Figure 1.2
shows a variety of non-linear functions most frequently used for ANN.

1.3.3 Architecture of ANNs

A typical ANN is organized in layers that are made up of interconnected nodes that contain an
activation function. Basically you can divide these layers into three types: input layer, hidden
layer and output layer. The input layer is the only layer that receives signals outside the network.
The signals are then sent to the hidden layer, which contains interconnected neurons for pattern
recognition and relevant information interpretation. Afterwards, the signals are directed to the
final layer for outputs. So the actual act of processing is done by the hidden layer via a system of
weighted connections. This type of network is called feed-forward network.The term feed-forward
expresses that the signal flow is one way. Therefore the signal usually moves straight-forward
from the input layer to the output layer. Moreover a feed-forward network does not include
feedback loops between neurons.

Input Hidden Output
Layer Layer Layer

Fig 5

input#1 * weight#1 + input#2*weight#2..., =

n
Z {input # 0 = weight # 1) + Bias
h

Figure 1.2: Architecture of a typical ANN

A more sophisticated neural network would contain several hidden layers and loops to make the
network more efficient and to interpret the data more accurately. However when we talk about
ANNSs we usually mean feed-forward networks.

1.3.4 Training of ANNs

The process of changing weight could be referred to as the “learning stage.” Typically we do not
know what the output will look like when presenting the net with an input pattern. The ANN



must be trained to classify certain data patterns to certain outputs. This process of training is
a series of operations that change the weights on the neural connections, so the user can obtain
the output they desire.

For example, the first time the network receives inputs the outputs are some random numbers.
The user then has to tell the network what the outputs should be and an algorithm should be
applied so the weights are changed to get the outputs wanted.

There are several different types of learning rules. The most commonly used formula for simple
networks is called the Delta Rule:

Aw; = 3+ (t = yin) - 2

Where Aw; is the change made to the weights, G with 0 < 8 < 1 is the rate for adapting, ¢ is
the desired output, y;, is the actual output and z; describes the sum of inputs. The Delta Rule
is also called the Perceptron Learning Rule, and goes back to the early 1960’s.

When there are multi-layers in a neural network, the same rule can still be applied to it. The
only difference is that the desired output would be the output that is sent to the next layer of
neurons and the inputs are from the previous layer of neurons. The network stops training when
(t — yin) is close or equal to zero because it demonstrates that the network can produce desired
outputs. This delta ruled is often used by the most common class of ANNs called backpropaga-
tional neural networks where backpropagation is an abbreviation for the backwards propagation
of error. When a neural network is initially presented with a pattern it makes a random guess
what the output may be. Then it makes appropriate adjustments to the connection weights and
constantly compares the answer with the actual one until a satisfying output is reached. During
this phase we talk about backpropagation. Once the network is trained a satisfactory level of
accuracy it may be used for analyzing other data. This no longer comprises any training runs but
allows the network to work in forward propagation mode immediately. New input patterns are
presented to the ANN and processed by the middle layers as though you would train the network.
The output, however, is retained. The output received is the predicted model for the data which
can then be used for further analysis and interpretation. This ability of a neural network i.e. to
correctly classify input patterns that it has not seen before (not been trained with) is termed
generalization

Apart from the Backpropagation training method using the generalized Delta Rule there also
exist other training algorithms e.g. Kohonen Self-Organizing Maps, Adaptive Resonance Theory
(ART), ...

1.4 Artificial Evolution (AE)

The basic idea of artificial evolution is to use the principles of the natural evolution process,
the“survival of the fittest” [Darl859], which created all sorts of life on our planet, for solving
complex problems on computers. Obviously such algorithms can be used to create all sorts of
“artificial life”, which can be either real or virtual robots or agents that for example can learn
how to navigate using evolutionary algorithms. Furthermore programs that solve complex prob-
lems can be evolved. In comparison to the hand-design of a way to solve a problem the artificial
evolution approach allows a gradual emergence [Hus97].

Here is a generic algorithm for evolutionary algorithms (EA) [Ang93]:

function Evolutionary-Algorithm(population, size);



begin
for i from 1 to size do

fitness[i] := evaluate(population[il);
while not(Tester (bestof (population, fitness))) do
begin

Select(population, fitness);
Reproduce (population) ;
for i from 1 to size do
fitness[i] := evaluate(population[i]);
end;
return bestof (population, fitness)
end;

In this algorithm a population, which can for example consist of programs or agents, with a given
number of objects is evolved until one of the objects is “good enough” to stop searching for a
better one. The population with which the evolution process is started is generally uniformly
distributed over the search space. A defined fitness criterion measures how ”good” or efficient
an object is. In every loop the fittest objects are selected and reproduced. The size of the
population remains constant because all non-selected objects are replaced by reproduced ones.
Then the fitness of the new population, which is also called the new generation, is calculated. If
one object in the population fulfils the required level of fitness (this comparison is made by the
Tester-function) this object is the result of the EA.

In natural evolution the fitness criterion is generally the ability to adopt to the environment. The
species with the ability to survive and to reproduce itself is “selected” for the next generation.
But natural evolution never comes to an end and there seems to be no single final solution for
the complex problem to live on this earth. A lot of evolution threads coexist and they interfere
with the evolution of other species. This mutual interference is called “coevolution”.

There are 3 major variations of evolutionary algorithms:

e Genetic Algorithms (GA)
e Evolution Strategies (ES)

e Genetic Programming (GP)

1.4.1 Genetic Algorithms (GA)

Basically Genetic Algorithms are a family of computational models inspired by evolution. These
algorithms encode a potential solution to a specific problem on a very simple chromosome-lime
data structure and apply recombination operators to these structures to preserve critical infor-
mation.

So an implementation of a genetic algorithm usually begins with a population of chromosomes.
Then these structures are evaluated and reproductive opportunities are allocated in such a way
that those chromosomes which present a better solution to the problem targeted are given more
chances to reproduce than chromosomes that provide poorer solutions. The qualitative evaluation
of the solutions is usually seen with respect to the population globally.

Strictly interpreted the term genetic algorithm refers to a model introduced and investigated by
John Holland (1975) and by students of Holland. However in broader usage of the term a genetic
algorithm is any population-based model that uses selection and recombination operators.
Typically, in Genetic Algorithms, bit strings of a fixed length 1 represent an individual. This does
not mean, however, that GA can only solve Boolean problems, for which this coding is directly
suitable. More complex data structures can be mapped to bit strings in an appropriate way.



However, each additional mapping between the binary and the problem representation weakens
the necessary causality between genotype and phenotype. For each optimization problem one has
to decide whether to choose a representation tailored for the problem and to adapt the genetic
operators, or using a standard GA by coding the decision variables more or less skillfully in a bit
string.

A GA population consists of individuals. The selection chooses, at least, two individuals for
the next mating with a probability proportional to their fitness. Furthermore, a number c is
randomly taken from the set . The descendant receives the first ¢ bits from one parent, the
remainder from the other. This recombination process is called crossover (indicating the similarity
to recombination of DNA in biological systems) Crossover is the main manipulation operator
for this evolutionary model. Considering mutation we can also identify two other methods of
recombination. Inversion takes a segment of the fixed-length string and removes it from the
object. Then this segment is transcribed back into the original position but in reverse order. Point
mutations only modify a single position of a string by replacing it with a random value.
Individuals produced in this way replace the parental generation. This procedure is repeated
until a termination criterion is reached.

1.4.2 Evolution Strategies (ES)

Evolution-strategic optimization is based on the hypothesis that during the biological evolution
the laws of heredity have been developed for fastest genetic adaptation. Evolution-Strategies
(ES) imitate, in contrast to the genetic algorithms, the effects of genetic procedures on the
phenotype. The presumption for coding the variables in the ES is the realization of a sufficient
strong causality (small changes of the cause must create small changes of the effect). So with
Evolution strategies the main emphasis is not on developing a structure with a high level of
fitness, but for a behavior that meets the requirements of a certain fitness function. So within
the evolution process individuals are created that are similar to their parents in behavior but not
necessarily in structure. Evolution strategies consider an individual being composed of certain
behaviors whereas their interaction is typically unknown. Evolution Strategies used fixed-length
real valued strings for encoding. The problem that appears for evolution is how to preserve
the behavioral similarity between parent and offspring individuals. This is achieved by use of
suitable operators. However with Evolution Strategies there are more types of operators possible
than used with genetic algorithms. Intermediate recombination, for instance, allows creation of
offsprings by averaging the values of to parent individuals. So we actually do not only remix the
components but also mix the individuals’ features. However it is not necessary only to manipulate
the strings with recombination. Another mutation operator used in ES is to apply Gaussian noise
to the parameters. The variance of noise is defined by the following rule(known as the % success
rule):

The ratio of successful mutations to all mutations should be %.If it is greater than % then increase
o by a constant, if it is less then decrease it [Ang93]

ot—1)-¢c ifp>
ot)=<o(t—1)/c ifp<
o(t—1) if p=
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1.4.3 Genetic Programming (GP)

Genetic programming (GP) designates a set of evolutionary processes that generate genotypes
representing algorithms. These algorithms are meant to solve a specific problem. The problem



solving capability of a genotype is given by its algorithm’s capability of approximating a specific
input-output relation.

A phenotype is a genotype’s representation that is the immediate input for an interpreter or a
compiler. The program behavior shown during the phenotype’s interpretation or execution of
its compiled machine-code representation on the input-output relation gives the problem solving
capability of the represented genotype.

So with Genetic programming the individuals of the population or rather their phenotypes can
be represented as programs. The genotype-phenotype mapping is an analogy to the biological
process of protein synthesis that generates proteins from DNA.

In traditional Genetic Programming GA operators are used for selection and recombination of
the individuals. However as opposed to GA, a more expressive programming language such as
Lisp is used for describing the genotype. All functions, variables and constants that can occur
are stored as a parse tree. Functions variables and constants that require no arguments become
the leaves of the parse tree and are called terminals whereas functions requiring arguments are
the branches of the tree.

A simple GP algorithm can be described as follows:
1 Randomly generate a population of N programs made up of functions and terminals
2 Repeat the following until termination condition is satisfied:

(a) Assign a fitness to each of the programs by executing them on a specified problem and
evaluating their performance solving these problems

(b) Create a new generation of programs by genetic recombination

3 The best program over all generations or the best program at the end of the run is used as
the solution produced by the algorithm.



Chapter 2

Related Work

2.1 GA for optimizing task performance in MAS

Arvin Agah and George A. Bekey studied the results of evolution on the task performance of a
robot colony using a genetic algorithm [Arv96]. For their robots they used the Tropism System
Cognitive Architecture, which is based on the tropisms of the robots, i.e. their likes and dislikes.
Each tropism for different entities, which can for example be free spaces, obstacles, food, etc.
is encoded by a value. The higher the value the more the robots “likes” the specific entity
and therefore it is more probable that it moves towards it. The actions the robot performs is
chosen randomly, but actions with higher tropism values are more likely to be performed. These
values for a predefined selection of entities and related actions are encoded into a gene and then
evolved using genetic algorithms. The fitness function used determines the fitness based on the
number of tasks performed by the robot and its energy consumption. Multipliers are used to
assign different weights to the tasks and the energy consumption. Robot combination is done
by selecting 2 parents from the current generation (better performing ones are more likely to be
chosen for recombination) and combining their genes and in order to produce 2 new robots, which
are called the offspring. The probabilities for cross-over and mutation determine the outcome of
this recombination. If neither happens the offspring is identical to its parents. Agah and Bekey
performed an experiment where the robots had to attack predators. After about 40 generations
the maximum performance was reached via evolution. They also tried to find out optimal values
for mutation probability. It seems like that very low mutation rates (about 0.01) performed
better that higher ones in their experiments. They conclude their paper with the statement that
evolution with the use of genetic algorithms can indeed be used to evolve a colony of robots with
superior task performance, compared with the initial colony.

2.2 ANN and ES in MAS for Navigation in Unknown Environ-
ments

Fang Wang and Eric Mckenzie from the University of Edinburgh (UK) developed a multi-agent
based evolutionary ANN for general navigation in unknown environments [Wang99]. Their mo-
tivation was that real creatures do perform quite well even if they never saw the environment
they got into before. Wang and Mckenzie tried to simulate that with virtual creatures. Basically
they trained (by evolution) the agents in training environments and then tested how the agent
performs in a randomly generated environment it has not trained with. They gave their agents
to ability to learn during its lifetime in order to improve the ability of the agents to get along
with unknown environments.

The used agents have a simple visual sensor which can sense objects in a range of 90 degrees.
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The sensor used cannot differ between different objects, it just senses if the places in vision are
occupied by another object, for example a wall or an obstacle, or if it is a place where the agent
can move to. The sensor information is encoded to a real value in the interval [0,1] and this is the
only input the ANN of the agents gets. The ANN consist of one input for the sensor, 10 hidden
neurons and one motion output. There are eleven possibilities of reaction for the agent. It can
either move to the left, right or forward, remain stationary or change its viewing direction to 7
other angles. For Evolution Wang and Mckenzie used an (15,100)-Evolutionary Strategy which
means out of 100 offspring the 15 parents which performed best survive. They let “nature”, in
this case the environment judge the individual agents. In the evaluation function a successful
move is rewarded most, a direction change is rewarded less, not moving is neutral and a collision
triggers a high penalty. It also encourages the agents to move to places never been before. The
function accumulates all moves the agent makes in a one stage of the evolution process which
lasts 200 moves. The performance of the agent is evaluated in each stage of evolution by the
number of collision that occurred in the 200 steps and the number of spare places access by
the virtual creature as a percentage of all free places in the environment. After only 3 learning
stages the number of collision dropped to nearly zero and in the next 5 stages the percentage
of spare places improved to about 80 percent. After this intensive learning period the agents
were confronted with a randomly generated world to test its generalization ability. In this test in
the first couple of steps the agents with lifetime-learning do not perform significantly better that
those without, but later on those without it begin to tumble over obstacles and produce much
more collisions. In their experiments the agents have developed an emergent behavior which is
natural, efficient and robust and has not been programmed in advance. One of these behaviors is
to move forward in a straight line, which is also a common characteristics of animal movements.
Furthermore Fang and Mckenzie showed that lifetime learning is very useful for navigation in
unknown environments because it obviously enables the agents to adopt to the new situations.

2.3 Evolving Multiagent Coordination Strategies with Genetic
Programming

Thomas Haynes, Sandip Sen, Dale Schoenefeld & Roger Wainwright from The University of
Tulsa use a variant of the Genetic Programming Paradigm (GP) for the evolution scheme of their
agents [Hay95] . They evolve behavioral strategies for the predator-prey problem that involves
multiple predator agents trying to capture a prey agent within a certain world surrounding it. For
describing the agents’ behavior Haynes, Sen, Schoenefeld and Wainwright rather concentrate on
the strongly typed genetic programming paradigm (STGP). In traditional GP all of the terminal
and function member sets have to be of the same type . Introducing STGP allows the terminals
and function sets describing the behavioral strategies to be of any type although they have to
be specified before. Thus the agents’ behavioral strategies are encoded in parse trees where
the root node is a randomly chosen tack of one of the five choices the agent can make (Here,
North, East, West and South). To evolve these strategies presented as programs Haynes, Sen,
Schoenefeld and Wainwright have rated and tested them by generating random pursuit scenarios
where each program is run for 100 time steps. For each time step the fitness of the program is
determined by use of a special evaluation function with arguments such as Distance of predator
from prey, Number of Moves, Capture situation after end of simulation .... The main task of
the STGP algorithm is now to evolve the program that is used for a predator to choose its
moves. In these test scenarios the prey to be captured either moves randomly or uses a move
away from the nearest predator algorithm. As a result of their work they found out that strongly
typed genetic programming is able to generate effective strategies for predator agents capturing
a randomly moving prey or a prey that moves away from the nearest predator. They compared
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their experimental results with previous works from Richard Korf [Kor92] where deterministic
algorithms were used. Using their STGP programs preys were usually more often captured than
with deterministic methods like the maz norm and the Manhattan distance algorithms used by
Korf. However all the STGP programs tested poorly results when using special strategies for the
prey’s movement: a prey moving in a straight line, a prey that maximizes its distance from the
current positions of the predators and most surprisingly a prey that does not move at all. However
a basic problem encountered in the work of Haynes et al. is the lack of any explicit communication
between the predator agents for coordinating their actions an developing a cooperative behavior.
Too often deadlock situations occur where one agent obstructs one other e.g. if trying to move
to the same position at one time step.
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Chapter 3

Evolving local agents for global
classification problems

In this chapter we try to describe possible ways for designing agents that become local experts.
So what is a local expert? It is an agent that has 2 basic patterns of behavior: exploration and
localization. On one hand it tries to explore as much of its environment as it can, for example
by moving in a straight line as long as possible and moving away from its starting point as
far as it can. On the other hand it has the “desire” to become a local expert which means it
tries to find out what is around it and therefore does not move away too far from its starting
point. The starting point may be set randomly but it might also be useful to give the agent the
ability of changing the area it is initially set to another where for example no other agent is.
The motivation of designing such agents are that they might be very efficient when it comes to
classification tasks, for example classify a map in certain regions (streets, woods, mountains,...).
For such tasks it would be quite efficient if the agents move along lines or “borders” which
separate different regions from another. They should at first try to find a border and then move
along it until it is no longer possible or until they get back to the point they first encountered
the border. Then they should verify if the region they found is actually a homogenous region
or if other regions are inside of it. For example if a agents discovers that his regions is a forrest
this does not mean that inside this forrest is no pond or a mountain. If an agent has finished the
classification it could move to another area and try to classify it. Of course it depends on the
environment to explore when the agent can be “satisfied” with its results, the question is how
exact his classification should be verified.

3.1 Creating local experts with an evolved ANN

One of our ideas for creating local expert agents is to “let evolution do the task”. It is a try
and we’ll describe how it might work according to our knowledge. The basic idea is to use an
GA-encoded ANN as a neuro-controller for steering the agents. The agent has a visual sensor to
sense objects and the type of area it is in. The critical part of course is to find a fitness-function
that leads the evolutionary process in the right direction. One part of the function must be to
reward agents that stay in a homogenous area and move along a border. They also should be
encouraged to explore, but only or preferable in the area they are initially set to. If they sense
the beginning of a different area they should either turn left or right and then walk along the
border in order to find the whole border of the area. Therefore the fitness function must also
include a reward for finding the border of the whole area, which is accomplished if the agent
“walks around” the area. The behavior described so far is only a basic type of a local agent.
As described above more sophisticated ones would explore the inside of the area too in order to
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verify their assumption that it really is one homogenous area they found. But if the algorithm
with which we try to generate such agents here does not even produces this type of basic agents
it most certainly won’t produce more sophisticated ones.

3.2 Creating local expert agents with evolved tropism values

Inspired by [Arv96] another way of creating such agents is to use tropism values. It might be
useful to have one value for staying in the same area, one for entering another area and maybe
one for moving along separation lines. These values could easily be encoded in a gene and then
be evolved using the fitness function described above. Probably the agents would prefer staying
in the area there were initially set and walk along separation lines rather than enter another area.

3.3 Further ideas and issues

Until now we just focussed on one agent, but if more than one agent has to classify an environment
it is of course interesting to take a look on how these agents could interact. For example the
following question is raised: If an agent encounters an agent is his area, should they united to
classify the region together or should one of the agents move to another area and classify it. The
decision to make should depend on the size of the area, but probably the agents do not know
about its size already. It is also not that easy to find a simple and efficient way of communication
between the agents. It would be quite useful for them to talk about information they already
found about the environment to classify.

3.4 Creating agents with explorative and conservative behavior
with an evolved ANN

Our first approach for designing suitable agents for global classification problems is to let an
ANN do the task of controlling the agents’ explorative behavior. The main problem, however, is
to find a good balance between this explorative “feature” and the desired requirement of limiting
the agent to a local region.

3.4.1 Structure of the ANN controlling the Agents’ movements

There are quite a lot of possibilities for designing an ANN which is appropriate for the functions
desired.

Faustino Gomez and Risto Miikkulainen [Gom96] for instance use a recurrent two-layer net-
work with sigmoid units. Each layer is fully connected with its adjacent layer(s) and each unit
in the hidden layer is connected to itself and to all other hidden units.

Fang Wang and Eric Mckenzie [Wang99] use a simple feedforward network with only one hidden
layer for their MAS. Ten hidden neurons are used as conductors between one input neuron (visual
input for the agent) and one output neuron (motion output). The input value is a normalized
real number that is a combination of all points currently in the agent’s visual field. The ANN’s
output consists of a single component that controls the agent’s movement. That value stands for
eleven possible actions: move one step forward, one step left, one step right, remain stationary
or turn to the other seven different directions.
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Due to the fact that choosing an appropriate ANN architecture for a specific problems is of-
ten based on experimental results and experience, we take a quite simple design for controlling
the Agents’ movements making it easier to evolve and overview its evolutionary process.

For our ANN'’s input layer we use two neurons, one providing a value for an angle ¢ that describes
the relative position regarding the agent’s initial starting point and a second that covers the dis-
tance D. This means our agent has a “feeling” for distance and can tell where it is in relation
to its starting point. These values are processed by one hidden layer consisting of six neurons
that are initially connected with all other neurons (i.e. with all input and output neurons). The
output layer is made up of four neurons that define the directions the agent is possible to move
i.e. forward, backward, left, right.

ANN for controlling the Agents' movement

Tack Values

Agent's position relative to
starting point

Distance r

Input Layer Hidden Layer Output Layer

Figure 3.1: Architecture of the evolvable ANN

In this case the translation of the neurons values into an action is based on the “winner takes
it all” principle thus meaning that only the action connected with the most powerful value is
carried out.

As with every ANN the main values for being adapted or rather evolved are the threshold values
for a neuron’s to fire and the weights of the connection links. For evolving the net by a Genetic
algorithm we also consider the actual connections of the hidden layer for being changed.

3.4.2 Fitness function for evolution of agents

In order to reward the desired behavior which is explorative but also conservative behavior we
use the following fitness function. The function consist of two parameters:

e (y which is the maximum distance from the starting point to all of the places an agent
visited.

e (C, which is how many different places an agent has explored as percentage of how many
steps the agent has performed.
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Cy is a measure of how explorative or conservative an agent is. A very high value means that it
moved far away from its starting point whereas a low value indicates the the agent never moved
far away from its initial position. C), is obviously needed because we want an agent that explorer
as much as possible. In order to balance to two values we normalize them to a value in the
interval [0,1], where a value of 1 indicates maximum fitness. C), is already in the right interval
because it is a percentage value, i.e. calculated by dividing the actual number of visited places by
the number of steps the agent has moved. For normalizing Cjy it is at first necessary to determine
the minimum distance an agent has to move away from its initial point in order to be able to
reach all the different places it visited. If a agent has a certain Cy it is not possible to reach more

than 7 - (Cy)? places. This leads us to a minimum value of @ for Cy. When dividing this
minimum value by the actual value of Cy we get our desired normalization for Cj, a value in the
interval [0,1] where 1 means maximum fitness is reached. Now it is necessary to combine Cy and
C)p in a fitness function f:

f:wd-0d+wp-0p

Adding the 2 weights wg and w), to the values gives us the possibility to control the evolution
process by specifying whether to put the emphasis on maximizing the visited places or the local-
ization behavior of the agent. By defining that wy + w, = 1 we get a value in the interval [0,1]
for the fitness of an agent.

The following graphics show the effect of different values for wy and w, on the fitness function.
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Figure 3.2: Fitness function with w; = 0.8 and w, = 0.2
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Figure 3.3: Fitness function with wgs = 0.5 and w, = 0.5
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Figure 3.4: Fitness function with wg = 0.2 and w, = 0.8

3.4.3 Expected results

If the two fitness parameters are well balanced the outcome of the evolutionary process should be
an agent that does not move far away from its initial starting point but explores as many places
as possible. Probably it will move in a circular region in a certain movement pattern which lets
the agent move in a way that most of the circular area is explored.
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Chapter 4

Experiments

4.1 Introduction

In order to prove that our ideas for creating “local agents” work as we expected them to do,
we wrote a simple program that implements the ideas we described above on the design of the
agents ANN, the fitness function and the use of genetic algorithms. Although it is a quite simple
implementation with lots of things to improve, the results are surprisingly good.

4.2 Results

The results discussed here were produced by our test program with the following parameters: 200
generations were simulated were each one consisted of 3000 agents. The agents had to perform
200 steps and based on their movements the fitness was calculated as described above with a
value of 0.5 for wy and wy,. The mutation rate was set to 0.05, which equals an average of 2
mutations per agent when doing crossover.

The grid on the picture shows the world in which the agent moves. The initial starting point is
marked as a black square, the second black symbol indicates the agent and its current viewing
direction. The gray-shaded squares show the places the agent visited. As expected a very fit agent
has to move inside a circular area, because this is the optimal way of visiting a lot of different
places but in the same time avoiding getting too far away from the starting point. The statistics
on the right side shows the maximum and the average fitness for each generation. Note that the
maximum fitness never decreases but the average fitness does. This is caused by 2 things: First
by the used selection scheme that always selects the best half of the population for crossover,
which is why the maximum fitness never decreases. The average fitness however can decrease
because of mutations the lower the fitness on an individual. Mutation is only performed in the
crossover process so it is impossible that the fittest individual can be subject of mutations. Of
course this way of dealing with selection and mutation is just one simple way and there most
certainly will be another way that is more efficient in creating better individuals.
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Figure 4.1: Graphical output of test program
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Appendix A

Protocols

A.1 23.03.2001

1. Person responsible for protocol: Johannes Pletzer
2. Participating persons: Roland Schwaiger, Johannes Pletzer, Thomas Fuhrmann
3. Topics talked about:

e Paper should be ”compact”, which means it should be readable for persons without
specific knowledge on the topic

e We should put the emphasis on ”artificial life” rather than focusing on the formal
aspect of the topic

4. New assignments:

e Write two section for the introduction: Agents and multi-agent systems (MAS) and
artificial neural networks (ANN)

e Reading some articles in order to be able to discuss the topic

A.2 30.03.2001

1. Person responsible for protocol: Johannes Pletzer
2. Participating persons: Roland Schwaiger, Johannes Pletzer, Thomas Fuhrmann
3. Topics talked about:

e Results of previous assignment was discussed and approved with minor changes

e Maybe focus our research on lifetime learning in addition to generation-based learning
in an evolving MAS

4. New assignments:

e Improve image quality, maybe some additional image of ANN-layers
e Write another section for the introduction: Artificial evolution (AE)

e Further search on articles dealing with evolution of agent behavior
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A.3 6.04.2001

1. Person responsible for protocol: Johannes Pletzer
2. Participating persons: Roland Schwaiger, Johannes Pletzer, Thomas Fuhrmann
3. Topics talked about:
e Results of previous assignment was discussed and approved with minor changes
4. New assignments:

e Write a new chapter “related work” with descriptions of the work of other peoples. 3
sections for examples for genetic programming, genetic algorithms and evolutionary
strategies.

A.4 27.04.2001

1. Person responsible for protocol: Johannes Pletzer

\)

. Participating persons: Roland Schwaiger, Johannes Pletzer, Thomas Fuhrmann

w

. Topics talked about:
e Results of previous assignment was discussed and approved with minor changes
4. New assignments:

e Finish chapter “related work” with an example for GP

e Search for related papers and/or find strategies for creating agents that become local
experts for a certain area.

A.5 10.05.2001

1. Person responsible for protocol: Johannes Pletzer
2. Participating persons: Roland Schwaiger, Johannes Pletzer, Thomas Fuhrmann
3. Topics talked about:

e Review of the whole paper, correction of some minor mistakes.

e Results of previous assignment were discussed and problems were found in the sugges-
tions on how to create local experts.

4. New assignments:

e Find suggestions on creation of agent that has explorative and conservative behavior.
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A.6 17.05.2001

1. Person responsible for protocol: Johannes Pletzer
2. Participating persons: Roland Schwaiger, Johannes Pletzer
3. Topics talked about:
e Suggestion for creating local experts with evolved behavior was discussed.
4. New assignments:

o Write a more detailed description of how to evolve local expert agents, especially about
ANN structure and fitness function.
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