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Chapter 1

Introduction

This chapter gives an overview about motivation for input pattern selection in an MAS.
Additionally we give an overview of already existing methods of resolution.

1.1 Introduction to Artificial Neural Networks

1.1.1 Introduction to Artificial Intelligence

Science arises from the very human desire to understand and control the world. The
invention of electronic computers greatly enhanced the human ability to model the sci-
entific and technical problems into programs, and to solve them in an astonishingly fast
way. Traditionally, problems were encoded into programs in the following steps:

1. Scientists research and understand a scientific model

2. Reduce this model into a few formula or rules

3. Code these formulas and rules into computer readable languages

Then after the program was developed, it could be used with different input data to
solve a particular kind of problem. In analyzing this problem-solving model, we could
figure out two presumptions: first, people should have full knowledge of the steps to
solve the problem; second, these steps could be encoded into computer understandable
languages. And in this traditional model, programs and computers had no intelligence
of their own; they only conducted what programmers told them to do. But as people’s
ability to understand the world increased, they found the two presumptions were hardly
true for many complicated problems, which were too complex to be reduced into a serial
of predefined steps, and too difficult to program by hand.

As biological science was highly developed, people found out that each biological unit
was just a physical unit that followed a set of very simple rules, but it could solve a large
amount of complex problems, even problems they had never met before. So why not let
electronic computers mimic those biological units, and while programmed to follow a set
of simple pre-programmed rules, to solve complex problem in an innovative way. In this
sense, let computers became ”intelligent”. So inspired by the biological evolution, there
emerged the new technology of artificial intelligence.

6



CHAPTER 1. INTRODUCTION 7

1.1.2 What is an ANN?

An ANN1 is an information-processing system that is based on generalizations of human
cognition or neural biology.
The key features of NN consists of (taken from [1]):

• Information processing occurs at many simple elements called neurons.

• Signals are passed between neurons over connection links.

• Each connection link has an associated weight, which, in a typical neural net,
multiplies the signal transmitted.

• Each neuron applies an activation function (usually nonlinear) to its net input
(sum of weighted input signals) to determine its output signal.

A neural network (NN) is characterized by its particular:

• Architecture; its pattern of connections between the neurons.

• Learning Algorithm; its method of determining the weights on the connections.

• Activation function; which determines its output.

1.2 Introduction to Multi Agent Systems

MAS2 are computational systems in which two or more agents interact or work together
to perform some set of tasks or to satisfy some set of goals. These systems may be
comprised of homogeneous or heterogeneous agents. An agent in the system is considered
a locus of problem-solving activity, it operates asynchronously with respect to other
agents, and it has a certain level of autonomy. Agent autonomy relates to an agents
ability to make its own decisions about what activities to do, when to do them, what
type of information should be communicated and to whom, and how to assimilate the
information received.
Characteristics of Agents:

Autonomy An agent works independent from his host.

Single minded The agent performs a clear predefined job, his behavior is corresponded
to this task.

Reactive The agents program run is event driven.

Environment dependent Interfaces to his environment and available resources deter-
mine his activities.

Permanent State information stay for the whole program run.

1Acronym for Artificial Neural Network. Short form: NN
2Acronym for Multi Agent System
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Additionally, Agents may have some optional characteristics:

Interactive Communication between different agents is possible.

Mobile The agent moves between different hosts.

Adaptive He automatically adjusts himself to changed boundary conditions.

1.2.1 Mixture of Experts

A mixture of experts is a probabilistic model that can be interpreted as a mixture model
for estimating conditional probability distributions. The model consists of a gating
network that divides the problem into smaller problems and makes expert networks
specialize on each of these sub problems. In terms of a mixture model the expert networks
correspond to conditional component densities and a gating network to input dependent
mixture coefficients.
Note that, the gating network splits the data in a ”soft” way, allowing several experts to
be selected at a time. Since the gating networks deals with the decomposition in smaller
tasks the choice of the type of gating network is an important one.
There a three well known types for gating networks:

• Single Layer Perceptron with a soft-max activation function (standard mixture of
experts model)

• Multi Layer Perceptron with a soft-max output activation function (also known as
gated experts)

• Using Gaussian kernels to divi de the input space with soft hyper-ellipsoids

For complex compositions sometimes a hierarchical mixture of experts is used. This
mixture has a tree structure, where the leaves contain the expert networks and the
non-terminal nodes contain the gating networks.

A short overview of these gating network types is given in [2]

1.2.2 Cooperation in MAS

One of the key problems in cooperative MAS is how to get agents to cooperate effectively
[3]. The need to interact in such systems occurs because agents solve sub-problems
that are interdependent, either through contention for resources or through relationships
among the sub-problems. These relationships arise from two basic situations related to
the natural decomposition of domain problem solving into sub problems.

• The first situation is where the subproblems are the same or overlapping, but dif-
ferent agents have either alternative methods or data that can be used to generate
a solution.
For example, in a distributed situation assessment application, overlapping sub-
problems occur when different agents are interpreting data from different sensors
(independent information sources) that have overlapping sensor regions (cover sim-
ilar information).
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• Another form of interdependence occurs when two sub-problems are part of a larger
problem in which a solution to the larger problem requires that certain constraints
exist among the solutions to its subproblems.
For example, in a distributed expert system application involving the design of
an artifact where each agent is responsible for the design of a different component
(subproblem), there are constraints among these subproblems that must be adhered
to if the individual component designs will mesh together into an acceptable overall
design.
Depending upon the character of subproblem interdependencies, the interactions
among agents in a MAS can be complex, often requiring a multistep dialogue
similar to an asynchronous co-routine type of inter-action.

Knowledge Query and Manipulation Language

KQML 3 is a standardised language for inter agent communication. In KQML messages
are called Performatives. The syntax of these Performatives follows the Common Lisp
Polish Prefix Notation.

Blackboard Architecture

The blackboard architecture is a design pattern that supports systems where nondeter-
ministic solving strategies are used [4].

In many cases there are no known strategies how agents bring their results together.
This is where the blackboard architecture takes place. There will be a ”blackboard”, data
storage, where all elements of the solution space and corresponding control information
are hold. Each agent sends its output to the blackboard and a central control component
decides if the agents solution is plausible. Agents have the ability to use already existing
solutions from other agents to establish a new hypothesis. The control component may
reject an existing hypothesis or declare it as the final solution.

1.3 Motivation for Input Pattern Selection

When training an ANN we often face the problem of huge amounts of possible training
data. This would result in extreme time consuming training cycles if all available data
is used for teaching the network. So it’s important to select only the essential part of
the training pattern and keep the training data set as small as possible.

On the other hand, minimization of generalization error has also to be guaranteed,
in order to ensure that the trained network can properly yield an optimal result. The
selection of training data presented to the neural network influences whether or not the
network learns a particular task. Like a child, how well a network will learn depends on
the examples presented. A good set of examples, which illustrate the tasks to be learned
well, is necessary for the desired learning to take place. The set of training examples
must also reflect the variability in the patterns that the network will encounter after
training. At first glance this appears to be a contradictory pair of objectives. However,
just as the generalization error must be as low as possible, data sampling which involves

3Acronym for Knowledge Query and Manipulation Language



CHAPTER 1. INTRODUCTION 10

both collection and measurement of data is expensive and therefore needs to be reduced
to a minimum. There are several methods of resolution for selecting a well fitting subset
of the original (in most cases very huge) data set. However, the problem of selecting the
optimal training set has not yet been solved.

1.4 Existing Methods of Input Pattern Selection

• Active Learning

– Active Selection

– Active Sampling

• Dynamic Pattern Selection

• Training Data Selection with Genetic Algorithms

• Training Data Selection with Multi Layer Neural Networks

1.4.1 Active Selection

The starting point for active learning is the observation that the traditional approach of
randomly selecting training samples leads to large, highly redundant training sets. Such
training sets can be obtained if the learner is enabled to select those training data that
he/she expects to be most informative. In this case, the learner is no longer a passive
recipient of information but takes an active role in the selection of the training data.
A deeper introduction to active learning can be achieved in [5].

1.4.2 Active Sampling

Recent research has shown active learning methods to be effective in increasing the mod-
eling reliability of a neural network system. An active learning agent has the ability to
query its environment in order to make a selection of its training data. One approach
to the implementation of active leaning is to use querying-by-committee. This results in
considerably reduced data collection and at the same time does not compromise the ac-
curacy of identification. A nonlinear plant with both clean and noisy data is successfully
modeled by such a technique and a feed forward neural network controller based upon
such a model is demonstrated to perform effectively.

Minimized Data Collection - Active Querying Example

This is a data gathering method based on active querying. In this method data is reduced
to a minimum, yet modeling accuracy is not compromised. The active querying criterion
is determined by whether or not several neural network models agree when they are
fitted to random sub samples of a small amount of collected data.
For details see [6].
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1.4.3 Dynamic Pattern Selection

In contrast to active pattern selection, the dynamic pattern selection algorithm achieves
concise training sets by continually validating the generalization properties of the net.
Details of this method can be found in [7].

1.4.4 Training Data Selection with Genetic Algorithms

In this method a genetic algorithm is employed for the parallel selection of appropriate
input pattern for the training data set.
For an example see [8].

1.4.5 Training Data Selection with Multi Layer Neural Net-
works

This method selects a small number of training data, which guarantee both generalization
and fast training of the MLNNs applied to pattern classification. The generalization will
be satisfied using the data locate close to the boundary if the pattern classes. However,
if these data are only used in the training, convergence is slow. Therefore the MLNN
is first trained using some number of the data, which are randomly selected (Step 1).
The data, for which the output error is relatively large, are selected. Furthermore, they
are paired with the nearest data belong to the different class. The newly selected data
are further paired with the nearest data. Finally, pairs of data, which locate close to
the boundary, can be found. Using these pairs of the data, the MLNNs are further
trained(Step 2). Since, there are some variations to combine Steps 1 and 2, the proposed
method can be applied to both off-line and on-line training. The proposed method can
reduce the number of the training data, at the same time, can hasten the training.
A detailed description can be found at [9].



Chapter 2

Project specification

2.1 Satellite Image Classification

Since mankind is able to take pictures from outer space, it has always been a difficult task
to recognize specific patterns, related to a special problem. As computer science raised a
stadium where computers are able to perform some ”intelligent” tasks, a wide research
area established in solving the problem of automatic image classification. There have
been many different methods of resolution, ranging from genetic algorithms to neural
networks. One common problems in all these attempts is that applications of biological
methods are extreme time intensive.
Nowadays distributed systems are well known and popular used, so it’s the logical con-
sequence applying this technology to the problem domain of image classification. One
possible way achieving a collaboration of these technologies is by using a multi agent
system.

2.1.1 Data Structure

One important characteristic of satellite images is the wavelength used for sampling.
Each wavelength range is distinguished by determined advantages and disadvantages,
which places it best in certain application areas. Table 2.1 lists the most common used
wavelength ranges, which was taken from [10].

12
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Table 2.1: Wavelengths in the electromagnetic spectrum routinely used for various re-
mote sensing applications

Wavelength
range

Notation Application related areas

0.40-0.50 µm blue Water penetration and water depth
0.50-0.60 µm green Vegetation greenness, ocean colour
0.60-0.70 µm red Chlorophyll absorption in healthy plants, iron

oxide content in soils, water sediment load
0.70-0.90 µm near IR Healthy vegetation response, crop monitoring

and classification, land and water separation;
vegetation and soil separation; separation of
built and vegetated surface cover

1.55-1.75 µm near IR Soil moisture content
2.00-2.40 µm SWIR Presence of clay-based minerals
3.00-4.00 µm mid IR + thermal IR Volcanic activity, bush fires, underground fires
9.00-12.50 µm far IR + thermal IR Earth ocean and land temperatures
2.4-3.75 cm X-band microwave Forest canopy shape, crop classification. Ocean

roughness,wind speed
3.75-7.5 cm C-band microwave Crown thickness, leaf/branch size and orienta-

tion. Plant morphology. Ocean surface rough-
ness, wind speed; oil seeps; surface elevation;
land cover; bathymetry; geology; gravity fields;
sea-ice and iceberg monitoring

15-30 cm L-band microwave Trunk size and tree density; ocean roughness;
soil surface roughness; soil moisture content;
forest clearcut areas

30-100 cm P-band microwave Trunk size and tree density; soil moisture con-
tent; soil surface penetration and under surface
phenomena; snow penetration

2.1.2 Sample Images

In our problem domain the used wavelengths are the X- and the P-Band. Pictures 2.1
and 2.2 represent the same geographical area, where picture 2.1 was sampled in the
X-Band and picture 2.2 in the P-Band.
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Figure 2.1: X-Band example

Figure 2.2: P-Band example

2.1.3 Example for a Classification

Find a properly visualization of such classifications during research is always difficult
and time consuming. Therefore using some powerful tools is a duty. In our case YARB
1, an ultimate visualization system, fitted best.
In picture 2.3 you can see a classification of such a satellite image printed with YARB.

1Yet Another Result Browser
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Figure 2.3: Sat-Example (Viewed with YARB)
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2.2 System Architecture

There are many boundary conditions to be thought of, and we will discuss every part of
them in a separate section:

• Multiple agents

• Local experts, ability to make requests for reinforcement

• Autonomous movement of agents

• Controller

• Distributed system, communication

• World modeling

Agents

The system should be built of different agents. Each agent has its own operational area
and should have a high degree of autonomy. It is free to move around its area and
collect data samples, which is used to learn the associated classification neural network.
But there is not only a NN for classification, the movement control of the agent is also
realized by a neural network.
The gathered data samples are hold in a ”bag pack”, that has a limited capacity. The
decision which data samples are valuable is made by the agent itself.

The expertise of an expert should be convergent to the maximum, but when the
data distribution of its area is too wide spread, this can’t be guaranteed. In this case the
expert has the ability to ask for reinforcement so that his area will be split into a distinct
number of sub areas and each area will be inspected by a own agent. To prevent the loss
of the old agents gained experience a nice extension would be to implement mechanism
for transferring knowledge between agents. There are already research approaches on
such mechanisms, like the one in [11].

Controller

After the learning period of all the agents is finished, the user may ask the controller for
the classification results. The responsibility of the controller is then to ask the agents,
which are experts of a distinct area, and bring together the corresponding results.

Distribution and communication

One boundary condition is to decrease the time consumption needed for full classify a
satellite image. This is done by distributing the agents to multiple computer systems.
Therefore a stable and efficient communication system is needed. As the preferred im-
plementation language is Java, the method of choice will be RMI.
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World modeling

Using different frequency bands leads to a big problem for system modeling: Should the
agents move on a discrete area filled with data samples or on a net based on the real
measure points? The advantage of the former method is that agent movement is trivial
and it is easy to determine the experts of a specified area. The problem would be that
there wont be a data sample on each point of the square grid, and even large areas of the
grid may have almost no samples. As illustration of this problem take a look at picture
2.3, where the mass of data samples are only in a relatively small zone.

Another approach would be to create a net consisting only of the sample points. But
then it would be difficult to calculate the movement of an agent and also find the best
experts of an area.



Chapter 3

Software Design

Literature:

• General software analysis and design: [12, pages 741-822]

• UML: [13]

• Software pattern (Design pattern): [14], [15], [4]

3.1 General design aims

When designing our software to meet the requirements as described in the section for
system architecture (Section 2.2), we had to take care of several boundary conditions:

• Flexible implementation of agent movement control

• Use a NN-library but in a replaceable way

• Easy change of world representation

• Concentrate the agent creation process in a central module

• Information interchange between different system components should be based on
calls and callbacks (avoid polling over process boundaries)

• Multi threaded agent training

• User interface should be separated from the agent controller

• Agent state extracted from implementation to reduce network traffic

3.1.1 Naming conventions

As in every project where more than one developer is working on, SatMAS needs naming
conventions, too. We designed our style guide to be not too strength (because most pro-
grammers don’t like to be told how to do their work). Although naming should be done
by general good software engineering practices, the most common naming conventions
are given here.

18
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Interface Names

In the SatMAS design all interface classes have the prefix I. Example: IWorld.

Property methods

In addition to the classes provided by the JDK all property methods have set-, get-,
is-, or update prefix followed by the name of the controlled property. (e. g. getName or
setParent).

Variables

Our variable naming convention is nearly the same as the famous hungarian notation
in the Windows programming world. There, all variables have a lower prefix with their
corresponding type, which can be one of the following:

integer: Prefix: n (e. g. nIndex)

float: Prefix: f (e. g. fAverage)

String: Prefix: str (e. g. strFilePath)

boolean: Prefix: b (e. g. bResult)

If the type is none of these, you should give the variable a really speaking name. For
member variable it is mandatory to put the prefix m to it (e. g. m nArrayCounter).
NOTE: This naming conventions are not mandatory for loop variables.

3.2 Component Diagramms

Components of the system and their responsibilities are shown here:

Figure 3.1: Component diagram: System Components
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3.2.1 Management Client

The Management Client is the user interface of SatMAS.

Responsibility

• Visualization

• Configuration

Collaborators

• Controlling Master

3.2.2 Controlling Master

The Controlling Master is SatMAS’s central intelligence component. Cooperation be-
tween Controlling Master and Working Slave is implemented as Master-Slave design
pattern as described in [4, pages 245-291].

Responsibility

• Agent controller

• Disposition of agents

• Query results

• Creation of agents

• Input/Output of pattern/net files

• Notify client

Collaborators

• Management Client

• Working Slave

3.2.3 Working Slave

All time consuming operations of SatMAS are processed on a Working Slave.

Responsibility

• Provide infrastructure for agent training

• Notify master after training of an agent has finished
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Collaborators

• Controlling Master

3.3 Class diagrams

3.3.1 Agent model

In order to give the Controlling Master the ability to build agents with different behaviors,
the agents are modeled as seen in figure 3.2.

Figure 3.2: Class diagram: Agent Model

Special design decisions:

IMovementController This interface enables flexible replacement of movement be-
havior of an agent
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IAgentState Agent state extracted from implementation to reduce network

3.3.2 Management Client

A smart and simple console interface is sufficient for this design stage (diagram 3.3).

Figure 3.3: Class diagram: Manager Model

3.3.3 Controlling Master

Class modeling of the central intelligence component is in figure 3.4.

Special design decision:

IAgentFactory Separate modeling of an agent creation interface leads into a looser
coupling between the agent controller and the working slave. Additionally variation
of agent components is facilitated.

3.3.4 Working Slave

Figure 3.5 is a working slave’s class diagram.

Special design decisions:

IANNFacade To minimize dependency on a distinct ANN-package, an abstraction level
is introduced. Realized with the Facade design pattern from [15, pages 189-198].

JFroehlichANNFacade Due to lack of free available ANN-package Jörg Fröhlich wrote
his own implementation, which fitted best for SatMAS at first glance.

3.3.5 World modeling

As discussed in section 2.2, best selection of a concrete world model needs to be re-
searched. Therefore an abstract model for worlds and their data is needed, as seen in
diagram 3.6.
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Figure 3.4: Class diagram: Master Model
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Figure 3.5: Class diagram: Slave Model
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Figure 3.6: Class diagram: World Model
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Special design decisions:

IWorld Abstract description of a real world model. After creation a world model is
immutable.

IWorldPoint Represents a concrete position on a world model, including data access
methods.

IWorldRect A rectangular region on a world model.

IWorldCursor Mobile position marker on a world model.

Concrete implementation of a world

This implementation example of a discrete world models a plane 2D area, on which each
raster point is reachable.

Figure 3.7: Class diagram: Concrete implementation of a world

3.4 Sequence diagrams

3.4.1 Agent training and result evaluation - overview

Diagram 3.8 gives a rough overview how agents are trained, and after finishing their
learning phase the whole result is queried.



CHAPTER 3. SOFTWARE DESIGN 27

Figure 3.8: Sequence diagram: Agent training and result evaluation - overview



Chapter 4

Implementation and prototype
testing

4.1 Implementation

Programming language: Java

JDK: only tested on 1.3

Neural Network package: jaNet

Pattern file library: NetJen

Unit test framework: JUnit

4.1.1 JESICA

A fancy name gives an excellent product the right touch. So we also had to find a
agreeable-sounding name for this great java project. After weeks of hard, mind exhaust-
ing work, JESICA was born. JESICA is the short form of
Java Experimentation Sytem for Image Classification with Agents .

4.2 First Run

Here comes the first pictures of JESICA’s first working prototype.

Run parameter:

Number of Agents: 4

Input pattern size: 400 (20x20)

Input pattern type: XOR

Agent way length: 30

Agent movement step size: 2

28
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Agent movement strategy: random

Agent bag size: 10

NN validation pattern set: Agent’s way

NN minimum error: 0.001

NN training cycles: 1000

NN learning rate: 0.5
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Run 1:

Figure 4.1: First Run: Input pattern

Figure 4.2: First Run: Result
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Figure 4.3: First Run: Way of first Agent

Figure 4.4: First Run: Way of second Agent

Figure 4.5: First Run: Way of third Agent
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Figure 4.6: First Run: Way of fourth Agent

4.3 Further experiments with random agent move-

ment

This agent’s movement controller works on a simple, random based strategy. The indi-
vidual movement steps will be decided by a randomizer, with the only constraint that
no points are allowed that are already in the agent’s bag.

Run parameter:

Number of Agents: 8

Input pattern size: 400 (20x20)

Input pattern type: XOR

Agent way length: 30

Agent movement step size: 2

Agent movement strategy: random, no points that are already in bag

Agent bag size: 10

NN validation pattern set: Agent’s way

NN minimum error: 0.001

NN training cycles: 3000

NN learning rate: 0.1
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Run 1:

Figure 4.7: Random move: Input pattern

Figure 4.8: Random move, Run 1: Output pattern
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Figure 4.9: Random move, Run 1, Agent 1: Way MSE

Figure 4.10: Random move, Run 1, Agent 2: Way MSE
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Figure 4.11: Random move, Run 1, Agent 3: Way MSE

4.3.1 Experiment: more Agents

Run parameter:

Number of Agents: 16

Input pattern size: 400 (20x20)

Input pattern type: XOR

Agent way length: 30

Agent movement step size: 2

Agent movement strategy: random, no points that are already in bag

Agent bag size: 10

NN validation pattern set: Agent’s way

NN minimum error: 0.001

NN training cycles: 3000

NN learning rate: 0.1

Run 2:
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Figure 4.12: Random move, Run 2: Output pattern

4.3.2 Experiment: smaller step size

Run parameter:

Number of Agents: 16

Input pattern size: 400 (20x20)

Input pattern type: XOR

Agent way length: 30

Agent movement step size: 1

Agent movement strategy: random, no points that are already in bag

Agent bag size: 10

NN validation pattern set: Agent’s way

NN minimum error: 0.001

NN training cycles: 3000

NN learning rate: 0.1
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Run 3:

Figure 4.13: Random move, Run 3: Output pattern

Figure 4.14: Random move, Run 3, Agent 1: Way MSE

4.4 Experiments with centroid agent movement

This agent implementation uses two different strategies for movement:

• If the gradient (calculated over a specified period) of the way MSE is less or equal
null, random movement is used.

• If the gradient is positive, a centroid movement strategy will be used. Here the
vectors of all point in the agent’s bag will be calculated, and the resulting direction
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Figure 4.15: Random move, Run 3, Agent 1: Way

Figure 4.16: Random move, Run 3, Agent 2: Way MSE
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Figure 4.17: Random move, Run 3, Agent 2: Way

Figure 4.18: Random move, Run 3, Agent 3: Way MSE
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Figure 4.19: Random move, Run 3, Agent 3: Way

will be used as parameter for a ”roulette-wheel-random-number generator”. This
generator is realized by using a modified Gaussian probability spreading.

Run parameter:

Number of Agents: 8

Input pattern size: 400 (20x20)

Input pattern type: XOR

Agent way length: 30

Agent movement step size: 2

Agent movement strategy: random, centroid based error gradient positive

Gradient calculation threshold: 5

Agent bag size: 10

NN validation pattern set: Agent’s way

NN minimum error: 0.001

NN training cycles: 3000

NN learning rate: 0.1
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Run 1

Figure 4.20: Centroid move: Input pattern

Figure 4.21: Centroid move, Run 1: Output pattern
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Figure 4.22: Centroid move, Run 1, Agent 1: Way MSE

Figure 4.23: Centroid move, Run 1, Agent 2: Way MSE



CHAPTER 4. IMPLEMENTATION AND PROTOTYPE TESTING 43

Figure 4.24: Centroid move, Run 1, Agent 3: Way MSE

Run 2

Figure 4.25: Centroid move, Run 2: Output pattern
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Run 3

Figure 4.26: Centroid move, Run 3: Output pattern
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4.4.1 Experiment: more Agents, smaller step size

Run parameter:

Number of Agents: 16

Input pattern size: 400 (20x20)

Input pattern type: XOR

Agent way length: 30

Agent movement step size: 1

Agent movement strategy: random, centroid based error gradient positive

Gradient calculation threshold: 5

Agent bag size: 10

NN validation pattern set: Agent’s way

NN minimum error: 0.001

NN training cycles: 3000

NN learning rate: 0.1
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Run 4

Figure 4.27: Centroid move, Run 4: Output pattern

Figure 4.28: Centroid move, Run 4, Agent 1: Way MSE
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Figure 4.29: Centroid move, Run 4, Agent 1: Way

Figure 4.30: Centroid move, Run 4, Agent 2: Way MSE
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Figure 4.31: Centroid move, Run 4, Agent 2: Way

Figure 4.32: Centroid move, Run 4, Agent 3: Way MSE
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Figure 4.33: Centroid move, Run 4, Agent 3: Way

Run 5

Figure 4.34: Centroid move, Run 5: Output pattern
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4.4.2 Experiment: smaller gradient threshold

Run parameter:

Number of Agents: 16

Input pattern size: 400 (20x20)

Input pattern type: XOR

Agent way length: 30

Agent movement step size: 1

Agent movement strategy: random, centroid based error gradient positive

Gradient calculation threshold: 3

Agent bag size: 10

NN validation pattern set: Agent’s way

NN minimum error: 0.001

NN training cycles: 3000

NN learning rate: 0.1
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Run 6

Figure 4.35: Centroid move, Run 6: Output pattern

Figure 4.36: Centroid move, Run 6, Agent 1: Way MSE
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Figure 4.37: Centroid move, Run 6, Agent 1: Way

Figure 4.38: Centroid move, Run 6, Agent 2: Way MSE
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Figure 4.39: Centroid move, Run 6, Agent 2: Way

Figure 4.40: Centroid move, Run 6, Agent 3: Way MSE
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Figure 4.41: Centroid move, Run 6, Agent 3: Way

Run 7

Figure 4.42: Centroid move, Run 7: Output pattern
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