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Abstract. Latent semantic indexing (LSI) is a recently developed method for information retrieval
(IR). It is a modification of the usual vector space model, that offers better retrieval performance at the
cost of increased computational complexity. This makes LSI a good candidate for high performance
computing and the grid. Therefore, methods for using IR in the grid are introduced in this work,
including newly developed application interfaces that allow the usage of LSI. However, distributed
document sets have separate indices, which possibly decreases the global retrieval performance. It
can be shown that it is important for the distributed parts of the document set that similar documents
are grouped into the same part. These quality issues are investigated and new approaches to improve
the performance are presented.

1. Introduction

The term information retrieval (IR) is used for information systems where queries are not presented
as precise or formal requests and where the system has no additional information about the content
of the information source but the information source itself. Prominent examples for IR systems are
desktop and internet search engines, while database queries using SQL are an example of information
searching that is not IR.

An IR system consists of an indexing function that creates an index out of the documents and a
retrieval function that takes a query as input and returns a subset of the documents using the index.

1.1. Vector Space Model

The Vector Space Model is a very basic and wide-spread mechanism for IR. It uses linear algebra to
describe the tasks of indexing and querying. The basic principles are:

e We have n documents and a set containing all m different terms ¢1,7,,...,t, that occur in our
set of documents.

(&)

e Each document is represented by a document vector: a vector d (), where the value of d ji

reflects the importance of the term 7; in d @,

e The m x n-matrix A consisting of the column-vectors d (1) ,d @ ... ,d (n) is the index of the doc-
ument set. It is called term-document matrix.

e A query is similar to a document vector. It contains terms of our term set ¢1,1;, . . . ,t, wWith some
weighted values representing their importance. It can, therefore, be represented as a query
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vector g, where ¢; is the importance of #; in the query. As a measure of correspondence between
the query and a document vector we could use the angle between their vectors. However, it
is computationally less expensive and conceptionally more convenient to compute the cosine
between these vectors.

(¢.d)
COS 4(q,d) = W

Note that since the cosine is monotonic on [0, |, a greater cosine always means a smaller angle.

To build our index matrix, we clearly have to identify the m terms that occur in our n documents. But
how do we receive the values that reflect the importance of a term in a document? According to Luhn
[9], the frequency of occurrence of a term in a document is an appropriate measure for its importance.
So our first step is to count the occurrences of the terms. Then, weighting mechanisms are applied:
the absolute frequency of a term in a document is replaced by a relative frequency, which is called
local weighting, and words that occur very often in our text collection get smaller values which is
called global weighting.

1.2. Latent Semantic Indexing

Latent semantic indexing (LSI) [8] is a relatively new extension to the vector space model. It can
improve the quality of the results, but it also increases the size of the index and it massively increases
the indexing complexity.

The idea is to replace the term-document matrix by a lower rank approximation. An accurate ex-
planation of the effectiveness of reducing the rank of the term-document matrix can be found in [6]].
We describe documents as combinations of so-called latent concepts: in terms of linear algebra, rank
reduction means replacing vectors of a matrix by linear combinations of a limited set of vectors. In
terms of information retrieval we can see rank reduction as the identification of common concepts and
the replacing of vectors by combinations of these concepts.

To receive a lower rank approximation of the matrix, we use the truncated singular value decomposi-
tion (SVD) as described in[I.3]

1.3. Singular Value Decomposition

The singular value decomposition (SVD) is a matrix decomposition that is applicable on every matrix
containing real or complex values. It splits a matrix A into three matrices U, ¥ and V such that
A=UXV'", where U and V are orthogonal and ¥ is a diagonal matrix. For a detailed description of
the SVD see [7]. We are interested in the matrix X, that has some interesting properties:

It is a diagonal matrix containing the singular values of A in decreasing order along its diagonal.

The rank of the matrix A is equal to the number of non-zero singular values in X.

The Frobenius norm of the matrix A is equal to the Frobenius norm of the matrix X.

We can build a matrix Ay of rank k < rank, if we compute A, = UYL,V |, where X is a diagonal
matrix containing the kK maximum values of X in decreasing order along its diagonal.
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e A theorem by Eckart and Young [7/]] states that Ay, as defined above, is the best rank-k approxi-
mation in terms of Frobenius norm distance.

The SVD has the following properties when used in an information retrieval engine:

e Synonymy and polysemy: the automatic transformation of the documents from the term space
into a latent concept space is able to link documents which use different words for the same
thing (synonymy) and to separate documents who use the same words in differing meanings

(polysemy).

e Computational complexity: SVD algorithms are computationally quite complex. If we can
not use powerful performance optimisations, the complexity of the computation can hardly be
handled for large document sets.

e Loss of sparsity: generally, term-document matrices are very sparse. According to [S]], the
ratio of non-zero elements in these matrices is typically no more than 1%, while the U, £
and V matrices or reduced-rank approximations computed from the results of the SVD have
no significant ratio of non-zero elements. Although rank reduction reduces up to 90% of the
size of the large U and V matrices, they still remain significantly larger than the original term-
document matrix.

e Rank optimisation: we know that we can generally improve the searching performance if we
reduce the rank of the term-document matrix. However, the algorithms to compute the optimal
rank (e.g. as described in [[10]) do not seem to provide a reliable estimation in our test situations.

Our IR system supports two implementations of the SVD: The parallel two-sided block-Jacobi SVD
algorithm with dynamic ordering by Gabriel Oksa [4], which optimised for Grid nodes that are sys-
tolic parallel computers and the xGESDD algorithm of the LAPACK library [3], which is one of the
fastest general purpose algorithms to compute the SVD directly.

1.4. Performance measures

There are two basic performance measures for IR systems:

e The precision reveals the proportion of relevant documents of all documents retrieved.

e The recall reveals the proportion of the retrieved documents of all relevant documents.

Both of these measures return a value between 0 and 1, where O means worst and 1 means best.
However, they share the disadvantage that none of them is very useful without the other: If we just
return all documents, we will certainly obtain a recall of 1, but nobody will be satisfied by the result.
Similarly, we could return no documents at all and get a precision of 1. As one-dimensional measure
for query performance, we use the precision-recall break-even point in this paper: the (possibly
approximated) point where precision and recall are equal.



Another important thing to mention is that we need reference query results to compute our perfor-
mance measures. Because there is no perfect IR approach, we have to evaluate queries by hand,
a procedure that is both time consuming and not necessarily valid: different human searchers will
probably deliver different results — these are, after all, two of the reasons why we need powerful IR
systems. To cope with these problems, there are some freely available sets of documents, queries and
results that are used to compare IR systems. In this paper, we use the MEDLINE text collection [1]].

2. Data Indexing Interfaces

There are several official efforts to evolve information retrieval on the grid. In this section we present
the most important ones and then introduce the features of our new indexing interface.

2.1. OGSA-DAI - Apache Lucene

OGSA-DAL, the powerful and flexible grid-middleware for transparent data access on the grid, con-
tains an unsupported information retrieval functionality since its version number 3.0. More con-
crete, it includes indexing and searching activities built on the wide-known Lucene engine of the
Apache Project. It incorporates wide-known searching-, indexing- and optimisation features, but is
optimised for query- and indexing performance — so it does of course not take use of complex and
time-consuming features like LSI.

The indexing and searching engine is accessed by three OGSA-DAI Activities: addIndexFile imports
a new text file into the file system and generates an index, searchIndexedFiles searches an index and
readFile is used to randomly access a file.

Note that this system does not support global searches on distributed document sets, whereas the
system presented in this paper is designed to provide a framework for document sets that are spread
over several nodes in the grid. However, one could combine several OGSA-DALI indices by OGSA-
DQP services [2].

2.2. The GridIR-Working Group

The GridIR-Working Group is an official working group of the Globus Alliance. It aims at a common
standard for IR-engines on the grid. Until now, they have published overviews of the project and the
proposed architecture which consists of the following parts:

e The communication layer that can be based either on grid technology or simply on common
internet technologies like web services.

e Collection managers: special nodes that track source documents for updates.
o Indexers that maintain the index databases and provide methods for searching this databases.

e The query processor, the interface to the user. It can e.g. be a page on the internet or a grid
service.

This system promises to closely resemble the aims of our approach. It does, however, not seem that
there is much activity in this project in the recent years. Until now, the information published by this
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working group is far from a complete standard description, so it was not possible to implement this
standard.

2.3. Activities for Information Retrieval using LSI

Our approach to implement the usage of LSI and different reordering methods made it necessary to
introduce a hierarchical structure. So in our system we have master nodes which propagate queries
and add documents to well-known other nodes to build up a tree-like structure of parent and child
nodes.

We also have new activities compared to the Apache Lucene approach: createIndex creates an empty
index. This is necessary because we need a place to define whether we use LSI and term-document
matrix distribution. This should happen before documents are added. commitIndex commits opera-
tions like adding files to the index. This is useful because of the potential time consumed by changing
the index. Another necessary activity is gatherSimilarities, which compares a document with all
reachable documents and returns the searching node where it fits best.

2.3.1. Architecture of Grid-IR using LSI

The architecture of our approach has two kinds of grid nodes.

e Simple node: a computer in the network that is responsible to hold and search parts of indices.
It is also the node which optimises the indices by our SVD-based rank reduction. A node may
hold several indices but need not hold complete indices. A node is basically only able to locally
create and search the part of the index which it holds.

e Master node: a special node that knows the names and addresses of all nodes the hold parts of
the index. It may but does not have to hold itself a part of the index. Unless explicitly prohibited
by a service option, it sends search queries and any other types of jobs it receives to all nodes it
knows before it searches its own indices.

It is possible to have one single master node which provides a well-known entry point for a
client or it would also be possible to have a tree-like structure of parent and children nodes.

The following structuring elements are introduced:

e Index: an index is practically a set of files which hold the important data to make efficient
searching on raw and unsorted text documents or document vectors possible. One index is
normally distributed over a set of nodes.

e Document vector: a document vector is a preprocessed file in a well-defined form. Every text
document will automatically be transformed to a document vector. However, it is also possible
for a client to pass a document vector directly. This allows e.g. for multimedia data to be
indexed on the basis of extracted features.

If a hierarchical structure is not wanted by the user, e.g. if migrating from the standard OGSA-DAI
activities or if the configuration is too static for an application, every node has to be configured as
master who has its own index.



2.3.2. Usage scenarios

The need to distribute document sets and indices can result from several situations. First, the retrieval
may be part of a bigger application which produces and manipulates documents in a distributed way.
The retrieval subsystem then has to accept the location of the documents and cannot move them to
another node. Thus, document vectors are always added locally to the index. Only the queries can
(but do not have to) be performed globally to locate matching documents across sites.

Second, data may become very large so distributed storage may be necessary. However, moving
documents to a certain node once at the time they are included into the index may be acceptable. In
both cases, it usually is better to store documents and their index on the same node because in a grid
application it is often required to add or remove nodes, which is more easily done if each node brings
its own indices.

Of course, another reason to distribute indices is that indices may become too large or the computa-
tional demands for creating and manipulating indices are too high for a single node. Given this variety
of applications, our system is designed for flexibility to support all of them.

2.3.3. Examples of Grid-IR activities using LSI

The following is an example OGSA-DAI perform document that initiates the creation of an index
container on the node where it is sent to and on all nodes below in the hierarchy. It defines a name
and the level of optimisation which controls the method of index creation such as rank reduction.

<createlIndex name="testCreatelIndex">
<index>recipes</index>
<optimizelevel>8</optimizeLevel>
<output name="testOutput"/>
</createIndex>

The following perform document posts a query to all underlying nodes containing the index “recipes”
and expects 20 documents to be returned.

<searchIndex name="testSearch">
<keyWord>apple</keyWord>
<keyWord>pie</keyWord>
<index>recipes</index>
<numberOfAnswers>20</numberOfAnswers>
<local="false"/>
<output name="testOutput"/>

</searchIndex>

3. Efficiency of LSI on distributed documents

In “grid-enabled” information retrieval systems, we will most certainly never have a single document
base. If we want to use the power of the grid methodology, we have a true distributed system of servers
without centralised control, so we have no way to run a rank reduction on the global document base.

6



100 T T T T L— T
linear speedup ——
SVD speedup
80 —
60 - —
Qo
=}
o
[0
[0
Q.
)
40 —
20 —
0 ———’—’.—’—’_’._’_’_’._’/’._’_’—’.—’—’—’._’_’i
1 2 3 4 5 6 7 8
parts

Figure 1. Performance increase achieved by distribution of the document set.

The results presented in this section discuss whether LSI remains effective if we split up the document
base before rank reduction is applied and what we can do to improve the resulting quality. For our
investigations we have used the MEDLINE text collection [1], a text collection which is often used in
literature to compare the performance of information retrieval systems. It contains 1033 documents
and a set of 30 queries and results; data that is necessary to compute the efficiency measures described

in[L4l
3.1. Indexing Performance

We have seen that LSI is a computationally very expensive process, so our first question we have to ask
is: does the indexing process become significantly faster if we can take advantage of parallelisation?
According to Figure[l] the performance increase achieved by parallelisation is very high: splitting to
two nodes results in a speedup of 8 for the creation of the index. This superlinear speedup results
from the fact that the complexity of the SVD is not linear. Therefore, calculating two SVDs on half
the data is faster, even if not performed in parallel. Of course, this is not possible without losing
information: computing a rank reduction of two halves of a matrix using the truncated SVD leads to
different results than a rank reduction on the whole matrix, as we will see in the next section.

3.2. Efficiency of Random Distribution

The first question for our experiments was: what efficiency can we expect if we allow arbitrary
distribution? To simulate this, the text collection was just split up randomly and LSI was applied on
the resulting parts. The results are disappointing: even a splitting into 2 parts makes a rank reduction
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Figure 2. Query performance after splitting up the text collection randomly.

less effective. Starting with 8 parts, every rank reduction will result in a performance even worse than
what we will get if we do not apply LSI (see Figure 2)). This is not very surprising if we know that the
optimal rank for the distribution using our information retrieval engine seems to be approximately %
of the starting rank: if the documents are really distributed randomly, each part should approximately
contain as many latent concepts as documents, so we can not reduce the rank without losing latent
concepts.

Therefore, arbitrary distribution is only feasible for very large data sets or data sets with a relatively
small amount of concepts.

3.3. Maximum Cosine Reordering Algorithm

Because the performance for randomly distributed documents is bad, we try to improve it by reorder-
ing them in order to reduce the number of latent concepts per part, i.e. to distribute documents in a
way so that documents containing a certain concept are located in the same part, if possible, so the
negative effects of partitioning should be smaller. Thus, the idea behind the reordering algorithm is
to group similar documents.

As similarity measure between documents, we use the cosine value of their angle; the same measure
we use for the computation of similarities between documents and queries. To compute a partitioning
of a large document set into parts of equal sizes in a reasonable amount of time, we use the following
heuristic algorithm:



1. Compute similarities between all n documents, store it in an n X n matrix.

2. Find the smallest value of the similarity matrix: this value tells us which two documents are
least similar.

3. Each of these documents is put in one half.

4. For each document that is not yet in one of the halves: add similarities of the document to all
documents in the first half. The document with the highest sum of similarity values is added to
the first half.

5. Repeat step 4 for the second half.
6. Repeat steps 4 to 5 until each document is in one of the halves.

7. Repeat the algorithm on each of the halves until we have the requested number of parts.

The purpose of this algorithm is, for the time being, only to investigate the impact of the order of
documents on the retrieval performance. However, parts of the algorithm can actually be used to find
good nodes to move documents to when they are indexed.

3.4. Efficiency of Reordering

Our algorithm tries to split the matrix into parts containing documents as similar as possible, so there
should be a substantially reduced amount of latent concepts per part. The results look much better
than with random distribution: reordering with our “maximum cosine” algorithm described in [3.3]
and splitting into 2 parts leads to an efficiency almost as good as without any splitting, as we can see
in Figure 3| Considering the large computational performance benefit (see this seems to be very
promising. However, after splitting into 8 parts (see Figure @) we can not reach the efficiency of the
non-distributed approach. The query results are, however, still better than what we achieve without
using LSI.

Moreover, there seem to exist special permutations of documents where we even gain performance
compared to the original LSI approach if we sort our document base by topic and then split it up.
While it was not yet possible to develop a generic algorithm that is able to sort arbitrary document
sets this way, this is at least a very interesting and unexpected result that shows the potential of our
approach.

3.5. Application of Reordering

We have seen that reordering leads to enhanced query performance. The question is: how can we
applicate reordering in a grid-like environment? The following approaches could be convenient for
several applications:

o [f the location of the documents is dictated by another application or just by the fact that doc-
uments are already stored and should not be moved for some reason, we might face a random-
distribution situation as in Figure[2] So we have to check if an application of LSI makes sense
in the first place. However, the application that generates the documents might as well produce
an order by topic and the performance could even increase.
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Figure 3. Query performance after several reordering methods and splitting into 2 parts.
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Figure 4. Query performance after several reordering methods and splitting into 8 parts.
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e If we want to distribute our document set to several grid nodes or just to “initialise” the grid-
based IR engine, we can first reorder the documents with an algorithm similar to the one de-
scribed in [3.3] such that similar documents reside on each node. Note that this is the reason
why the gatherSimilarities activity is required.

e If users want to submit documents to a master node, several documents can be cached and re-
ordered such that every known node gets the same amount of documents and they are delivered
where they fit best.

4. Conclusion

There is a variety of scenarios to use information retrieval in the grid. The interface structure presented
in this work has the flexibility to support most of them. Documents that are statically stored on one
or more nodes can be incorporated into a distributed index. Also, documents can be dynamically
redistributed to be grouped according to document similarity. The system can easily handle nodes
that are added to or removed from the grid, because indices are completely distributed.

However, it has been shown that using LSI in a grid-distributed information retrieval engine is not
necessarily as effective as it is with a unified document set. It can even make the query performance
worse.

It is, however, effective to use LSI in a distributed environment if the documents on a node share sim-
ilarities, so the number of latent concepts on one node is much smaller than the number of documents
on that node. This can also be the case if there are generally few latent concepts compared to the
number of documents. If this is not the case, we might redistribute the documents to ensure this.
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