
A Generalization of Quad-Trees Applied to Lossy
Image Coding

Rade Kutil
University of Salzburg, Department of Computer Sciences

Jakob Haringer-Str. 2, 5020 Salzburg, Austria
Email: rkutil@cosy.sbg.ac.at

Picture Coding Symposium (PCS 2012), pages 281-284, Krakow, Poland, May 2012. IEEE. doi:10.1109/PCS.2012.6213347

Abstract—Quad-trees are restricted to combined horizontal and
vertical decomposition of tiles. If this restriction is dropped,
anisotropic rectangular tiles result which can be arranged in
a previously developed graph structure called “bush”. Although
this graph requires more bits to be encoded, the reduction of the
number of tiles by a factor of about two more than compensates
this, especially when there is a big payload per tile such as
polynomial or DCT approximations of image content. Therefore,
together with an existing efficient coding scheme for this graph, a
lossy coding scheme based on tile-wise rate-distortion optimized
quantization of low-frequency DCT coefficients is developed. It
is able to compete with JPEG2000, especially for images with
smooth regions.

I. INTRODUCTION

Quad-trees have long been used in general image coding
[1], for bi-level images [2], and video coding [3]. In quad-
tree coding, square tiles are recursively decomposed into four
square sub-tiles. The process stops for sufficiently uniform
tiles, for which the color payload is encoded. The tree structure
also has to be encoded. However, the advantage of quad-trees
is that they can be encoded efficiently by only one bit per tile
that indicates if it is split or not.

For bi-level or indexed color images, the payload is the pixel
color. For natural images, image segments are approximated by
planar [4] or polynomial [5], [6] functions. Generalized tilings
with arbitrarily oriented linear splitting are used here, though,
to achieve a more accurate approximation of region borders.
However, this leads to increased bit budgets for encoding of
the segmentation structure, so block merge algorithms [7] or
combinations with quad-trees [8] have been developed.

These schemes can be applied to DCT [9] and wavelet
[10] coding, as well as motion estimation [11], [12], [13] in
video coding. Common to these applications is the amount of
data to be encoded per tile, which is larger than for bi-level
images, where JBIG2 [14] or chain codes [15] are far superior.
Another reason to use tree structures to encode image data is
the ability to arbitrarily select spatial details, as needed in
terrain visualization [16] and display of geospatial data [17].
Also, spatial databases use quad-trees [18] in a similar way.

This work exploits a generalization of quad-trees. Tiles may
be split anisotropically in horizontal or vertical dimension,
which may produce highly non-square tiles. In this way, many
shapes can be represented with only about half the number
of tiles, as can be seen in Figure 1. The number of these
decompositions, however, was shown to be much higher than

(a) shape (b) quad-tree (c) bush

Fig. 1. A shape and its decomposition into 3514 quad-tree tiles and 1861
bush tiles.

Fig. 2. A full bush of anisotropic tiles

that of quad-trees [19], [20]. Moreover, the representation as
a binary tree of horizontal or vertical splits is not unique,
and, therefore, causes redundancy and inefficiency in coding.
However, if the graph structure is expanded to incorporate all
possible decomposition trees with the same set of leaf nodes,
uniqueness is achieved. See Figure 2. In [21], [22], [20], such
a graph, called “bush”, together with an efficient redundancy-
free coding algorithm has been developed. Redundancy-free
means that there is only one representation for each set
of tilings and, when encoded, no encoded symbol can be
deduced from other parts of encoded data. An efficient coding
algorithm is important in our context because the amount of
data necessary to represent the tiling structure is not negligible
compared to the coding of color payload.

After anisotropic tilings have been explored in the lossless
case in [23], this work presents a lossy image compression
algorithm in order to demonstrate the benefits of bush tilings
on general images. It applies successive bitplane coding of a
subset of low-frequency DCT coefficients, which are calcu-
lated for each tile. These DCT coefficients are considered as
a tile-wise approximation in the sense of piece-wise planar or
polynomial approximations as in [5], [6]. The bit-rate per tile
is controlled by the number of bitplane passes performed. The
optimal number of passes for each tile is determined by rate-

http://dx.doi.org/10.1109/PCS.2012.6213347

0 1 2 3

(a) slots

1 0 1 1 10 0 0 1

1 1 0 0 01

1 0 0 0 01 1 1

1 1 1 0 0 01 0

1 1 0

+

+

+

-

-

sign significance refinement

sig. change no change

(b) bitplanes (c) sig. context

Fig. 3. coding of DCT coefficients

distortion optimization. The best tiling is also found in terms
of this rate-distortion optimization by minimizing the sum of
rate-distortion values, which leads to a variant of the optimal
tiling algorithm of the lossless case as in [23]. The schemes
are compared to JPEG2000.

II. CODING ALGORITHM

In order to use tilings in lossy image coding, we need a
reasonable coding algorithm that is applicable to rectangular
tiles. Each tile should represent a good local image approxima-
tion. Refinements on the approximation shall not be achieved
by a more detailed description of the contents of a tile, but
by splitting a tile into smaller ones that can be approximated
more easily.

Therefore, we perform a discrete two-dimensional cosine
transform (DCT) on the tiles and select a subset of the coef-
ficients as the approximation of the tile’s content. The subset
chosen is, of course, a set of low-frequency coefficients. It is
organized as a number of slots. Each slot groups coefficients
with horizontal frequency index i and vertical index j so that
i + j is the slot’s index. See Figure 3 (a). Slot 0 contains
the so-called DC coefficient. When n slots are used, then
n(n + 1)/2 coefficients are to be encoded, all others are
neglected. If other coefficients contain too much energy, so
that the approximation error is too big, then the tile has to be
split. The choice of DCT is, of course, motivated by JPEG, but
also by [9] which uses DCT on quad-tree tilings. The shape
of the slots is motivated by the zig-zag scan order of JPEG.

To encode the DCT coefficients efficiently, we apply a
bitplane approach, as is usual in modern compression schemes
[24], [25], [26]. Beginning with a maximum threshold, the
most significant bits of the DCT coefficients are encoded so
that the quantization error of each coefficient is smaller than
the threshold. The quantization is then refined in subsequent
passes with the threshold being divided by two in each pass.
DC coefficients tend to dominate the energy in the tile’s
DCT domain. This problem is somewhat relieved by simply
subtracting the average of the whole image from the image,
which has to be encoded in the beginning.

After each pass we get a certain total bit-rate R and a total
distortion D of the tile, i.e. the sum of squared approximation
errors. The distortion can be calculated in the DCT domain
because of the orthogonal nature of the DCT. The number of
passes must be chosen for each tile so that the sum of rates

and distortions of all tiles is an optimal compromise, which is
done with rate-distortion optimization. A rate-distortion slope
λ is chosen for the whole image, and in each tile the point on
the rate-distortion curve with the minimum RD-value D+λR
is selected. This has been proven to produce the minimum
distortion for the according total bit-rate [24], [25]. The total
bit-rate can be adjusted by the choice of λ. The optimal
number of passes has to be encoded for each tile.

However, the optimal tiling structure is not independent of
the choice of rate and distortion, i.e. the choice of the RD-slope
λ. A tile might be approximated better with a reduced bit-rate
if it is split into sub-tiles. Therefore, we add the RD-values
D+λR of the sub-tiles and compare the sum to the RD-value
of the parent tile. To be more precise, not the RD-values of the
sub-tiles themselves but the optimal values after the splitting
decision for the sub-tiles are considered here, which leads to
a recursive algorithm. If the sum is smaller, then the tile is
split into four child sub-tiles in the case of quad-tree tiling. In
the case of anisotropic bush tilings, splitting can be done in
two possible dimensions. The dimension with the smaller sum
of two RD-values is selected. This leads to a tiling algorithm
equivalent to the one in [23], where RD-values are added and
minimized instead of just tile counts.

Arithmetic coding is used to encode significance bits, refine-
ment bits and sign bits of the DCT coefficients. See Figure 3
(b). A coefficient is considered significant if it is larger than the
current bitplane threshold. If a coefficient becomes significant,
then its sign bit has to be encoded as well. The coefficient is
then approximated by 1.5 times the threshold at the decoder.
The tile’s distortion has to be reduced accordingly. Coefficients
that have become significant in previous passes are updated by
refinement bits.

Refinement and sign bits have a 50% percent probability
for 1 and 0. Significance bits, however, correlate with those
of neighboring coefficients. Therefore, they are classified into
two contexts depending on whether the left or upper neighbor,
i.e. (i − 1, j) and (i, j − 1), was significant in a previous
pass. See Figure 3 (c). When those two neighbors are not
significant, then there is a chance of only 10% or lower that
the coefficient becomes significant. Otherwise, the probability
is higher, i.e. about 50% for more than 3 slots. Additionally, a
pass with no changes in coefficient significance is abbreviated
by a single bit for the whole pass. This bit has a probability
of 2/3 for no significance change. These probabilities are
used in a fixed way in the arithmetic coder, no adaptivity
is applied. This has the advantage of better computational
performance and, more important, the rate-distortion analysis
is exact because bit statistics of neighboring tiles have no
influence on the bit-rate.

This coding scheme is supposed to be suitable for smooth
regions with sharp borders, which corresponds to shape coding
in lossless image coding. Images like that occur as technical
drawings, diagrams and cartoons. It is assumed that sharp
borders can be better approximated by tile borders or small
tiles. Anisotropic tiles should be able to adapt to borders
with a lower number of tiles, thus saving a lot of bit-rate.

(a) original (b) JPEG2000

(c) quad-tree reconstruction (d) quad-tree tiling

(e) bush reconstruction (f) bush tiling

Fig. 4. Compression of the gradient-shape image at 0.02 bits per pixel with
5 DCT slots

As the “color payload” in this case consists of encoded
DCT coefficients and is large compared to the simple color
indices of the lossless case, anisotropic tilings should show
advantages. All this is tested in the next section.

III. EXPERIMENTAL RESULTS

The lossy coding algorithm is tested on an artificial image
with a square shape that is horizontally and vertically aligned
borders, a triangular shape with angular borders, and an elliptic
shape. See Figure 4 (a). The shapes are filled with smooth
gradients. Therefore, we will call this image the gradient-
shape image. It is supposed to be suitable for the proposed
tiling-oriented coding algorithms. Results for the more natural
Lena image will also be mentioned later on.

In Figure 4 (b) one can see that JPEG2000 produces very

 20

 25

 30

 35

 40

 45

 50

 0.005 0.01 0.02 0.05 0.1 0.2 0.5

P
S

N
R

 [
d
B

]

bits per pixel

JPEG2000
40 slots
20 slots
10 slots
5 slots
3 slots
1 slots

(a) quad-tree tiling

 20

 25

 30

 35

 40

 45

 50

 0.005 0.01 0.02 0.05 0.1 0.2 0.5

P
S

N
R

 [
d
B

]

bits per pixel

JPEG2000
40 slots
20 slots
10 slots
5 slots
3 slots
1 slots

(b) bush tiling

Fig. 5. Image quality depending on bit-rate for the gradient-shape image

blurred edges for a low bit-rate of 0.02 bits per pixel. The
quad-tree coder is not able to improve this because creating
more small tiles at edges would also increase the bit con-
sumption for neighboring small tiles where it is not needed.
However, bush tilings again improve the adaptivity of the tiling
to image content significantly. This produces a much clearer
representation of shape borders with less ringing effects.

The fact that quad-tree tilings are not suitable for efficient
coding of the shapes is even more distinct in Figure 5 (a).
JPEG2000 has an up to 5 dB better PSNR than the quad-
tree coder for all feasible bit-rates. Only for very low bit-
rates, JPEG2000 has worse results probably due to the higher
amount of header information. Using 5 DCT slots seems to
be the best choice.

There is a big difference, however, between quad-tree and
bush performance, as can be seen in Figure 5 (b). The bush
tiling scheme is able to outperform JPEG2000 slightly for mid-
range qualities, and significantly for low and high bit-rates.
The best number of DCT slots is 5, just as for the quad-tree
tiling. In summary, anisotropic bush tilings are able to improve

the rate-distortion performance by about 5 dB against quad-
tree tilings.

For the Lena image, the results are similar but less dramatic.
The bush-tiling coder cannot beat JPEG2000, but is less than
0.5 dB worse, whereas the quad-tree coder is about 1.5 dB
worse than JPEG2000. A higher number of DCT slots, 10, is
the best choice for this image. The reason is that less smooth
tile content requires higher frequency coefficients.

Other natural images (Barbara, Goldhill, Peppers, Baboon)
show about the same behavior as the Lena image, i.e. 0.5 dB
below JPEG2000 for bush tilings, and 1 to 2 dB for quad-trees.
This shows that the codec is more suitable for technical draw-
ings, presentations, or other artificial images. Interestingly, a
cartoon image, while also not beating JPEG2000 in terms of
PSNR, has a much better visual quality.

The share of bits in the bitstream for encoding the quad-
trees is 0.5 to 1% for Lena and 2 to 3% for the gradient shape
image. In the bush case we need 6 to 8% for Lena and 11 to
13% for gradient shape. This shows that, although the bush
structure is more complex, it is able to more than compensate
that with bit savings in the encoding of the tile’s content. The
ratio is usually lower for higher image quality.

IV. CONCLUSIONS

Anisotropic tilings are able to represent a shape with only
half the number of tiles compared to quad-tree tilings if a
new algorithm for optimal tiling is applied. However, a bigger
part of the bit-rate has to be devoted to encoding the tiling,
although this can be done efficiently with a generalization
of trees, called “bush”. Nevertheless, the reduced number of
tiles reduces the bit-rate for the payload, i.e. the tile color
information. A lossy image compression scheme proposed in
this work is based on DCT approximation. It distributes bit-
rates among tiles by applying rate-distortion optimization. The
optimal tiling is found by an algorithm that minimizes the
total rate and distortion. Results show that bush tilings gain
up to 5 dB of image quality compared to quad-tree tilings. The
scheme is able to compete with JPEG2000 and outperforms it
for artificial images containing shapes of smooth content.

REFERENCES

[1] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images
and video,” IEEE Transactions on Image Processing, vol. 3, no. 3, pp.
327–331, May 1994.

[2] M. Manohar, P. S. Rao, and S. S. Iyengar, “Template quadtrees for
representing region and line data present in binary images,” Computer
Vision, Graphics, and Image Processing, vol. 51, no. 3, pp. 338–354,
1990.

[3] M. Lightstone and S. K. Mitra, “Quadtree optimization for image and
video coding,” Journal of VLSI Signal Processing, vol. 17, pp. 215–224,
1997.

[4] M. Sarkis and K. Diepold, “Content adaptive mesh representation of
images using binary space partitions,” IEEE Transactions on Image
Processing, vol. 18, no. 5, pp. 1069–1079, May 2009.

[5] R. Shukla, P. L. Dragotti, M. N. Do, and M. Vetterli, “Rate-distortion
optimized tree-structured compression algorithms for piecewise polyno-
mial images,” IEEE Transactions on Image Processing, vol. 14, no. 3,
pp. 343–359, Mar. 2005.

[6] H. Radha, M. Vetterli, and R. Leonardi, “Image compression using bi-
nary space partitioning trees,” IEEE Transactions on Image Processing,
vol. 5, no. 12, pp. 1610–1624, Dec. 1996.

[7] C. S. Won, “A block-based MAP segmentation for image compressions,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 8,
no. 5, pp. 592–601, Sep. 1998.

[8] A. A. Kassim, W. S. Lee, and D. Zonoobi, “Hierarchical segmentation-
based image coding using hybrid quad-binary trees,” IEEE Transactions
on Image Processing, vol. 18, no. 6, pp. 1284–1291, Jun. 2009.

[9] K. Lengwehasatit and A. Ortega, “Rate-complexity-distortion optimiza-
tion for quadtree-based DCT coding,” in Proceedings of the IEEE
International Conference on Image Processing, ICIP 2000, vol. 3, Sep.
2000, pp. 821–824.

[10] C. Y. Wang, S. J. Liao, and L. W. Chang, “Wavelet image coding using
variable blocksize vector quantization with optimal quadtree segmen-
tation,” Signal Processing: Image Communication, vol. 15, no. 10, pp.
879–890, 2000.

[11] V. Argyriou and T. Vlachos, “Quad-tree motion estimation in the
frequency domain using gradient correlation,” IEEE Transactions on
Multimedia, vol. 9, no. 6, pp. 1147–1154, Oct. 2007.

[12] J. Zhang, M. O. Ahmad, and M. N. S. Swamy, “Quadtree structured
region-wise motion compensation for video compression,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 9, no. 5, pp.
808–822, Aug. 1999.

[13] I. Rhee, G. R. Martin, S. Muthukrishnan, and R. A. Packwood,
“Quadtree-structured variable-size block-matching motion estimation
with minimal error,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 10, no. 1, pp. 42–50, Feb. 2000.

[14] F. Ono, W. Rucklidge, R. Arps, and C. Constantinescu, “JBIG2 – the
ultimate bi-level image coding standard,” in Proceedings of the IEEE
International Conference on Image Processing, ICIP 2000, vol. 1, Sep.
2000, pp. 140–143.

[15] H. Sánchez-Cruz, E. Bribiesca, and R. M. Rodrı́guez-Dagnino, “Effi-
ciency of chain codes to represent binary objects,” Pattern Recognition,
vol. 40, no. 6, pp. 1660–1674, 2007.

[16] K. Baumann, J. Döllner, K. Hinrichs, and O. Kersting, “A hybrid, hierar-
chical data structure for real-time terrain visualization,” in Proceedings
of the Computer Graphics International conference, CGI 1999, 1999,
pp. 85–92.

[17] J. Zhang and S. You, “Supporting web-based visual exploration of
large-scale raster geospatial data using binned min-max quadtree,” in
Proceedings of the 22nd international conference on scientific and
statistical database management, ser. SSDBM’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 379–396.

[18] R. K. Kothuri, S. Ravada, and D. Abugov, “Quadtree and R-tree indexes
in Oracle spatial: a comparison using GIS data,” in Proceedings of the
2002 ACM SIGMOD international conference on Management of data,
ser. SIGMOD ’02. New York, NY, USA: ACM, 2002, pp. 546–557.

[19] D. Xu and M. N. Do, “On the number of rectangular tilings,” IEEE
Transactions on Image Processing, vol. 15, no. 10, pp. 3225–3230, Oct.
2006.

[20] R. Kutil and D. Engel, “Methods for the anisotropic wavelet packet
transform,” Applied and Computational Harmonic Analysis, vol. 25,
no. 3, pp. 295–314, 2008.

[21] R. Kutil, “The graph structure of the anisotropic wavelet packet trans-
form,” in Proceedings of the 7th international scientific conference
devoted to the 25th anniversary of civil engineering faculty and 50th
anniversary of technical university Kosice, May 2002, pp. 41–47.

[22] ——, “Wavelet domain based techniques for video coding,” Ph.D. dis-
sertation, Department of Scientific Computing, University of Salzburg,
Austria, Jul. 2002.

[23] R. Kutil and C. Gfrerer, “A generalization of quad-trees applied to shape
coding,” in Proceedings of the 18th International Conference on Systems,
Signals and Image Processing (IWSSIP 2011), Sarajevo, Bosnia and
Herzegovina, Jun. 2011, pp. 265–268.

[24] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158–1170, Jul. 2000.

[25] D. Taubman and M. Marcellin, JPEG2000 — Image Compression
Fundamentals, Standards and Practice. Kluwer Academic Publishers,
2002.

[26] I. Zyout, I. Abdel-Qader, and H. Al-Otum, “Progressive lossy to lossless
compression of roi in mammograms: Effects on microcalcification
detection,” Integrated Computer-Aided Engineering, vol. 15, pp. 241–
251, 2008.

	I Introduction
	II Coding algorithm
	III Experimental results
	IV Conclusions
	References

