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Abstract—Linear regression is used in signal analysis when
other methods like artificial neural networks or support vector
machines either lack the ability to represent the result in form of a
signal or cannot be applied to continuous target values. However,
signal noise may lead to unstable noisy solutions with bad
performance on non-trained data, especially for underdetermined
systems. This work develops a method to add statistical virtual
noise with special properties such as band-limitation to the
signals in order to reduce these properties in the solution signal.
The results show stable solutions with significantly improved
performance on non-trained data. The method is also tested on
real EEG data.

I. INTRODUCTION

Regression analysis seeks to calculate a target value for each
instance of source data. The target values are given for a set
of instances called the training set. Thus, the system learns
which properties of the source data can be used to deduce the
target value.

There are a lot of schemes to achieve this which all have
certain advantages and disadvantages. For reasons of easy
use and computational performance, linear methods are very
popular. Here, the system optimizes the coefficients of a linear
combination of the source data values in order to achieve
minimal deviations from the target values.

In signal analysis, the source data consists of sampled signal
data. A set of signals is used as the training set to learn
optimal parameters. The signals can contain noise that is not
related to the target values. Therefore, the analysis procedure
should automatically exclude the noise in order not to produce
unstable results on non-trained signal data. However, this is not
always possible. Robust methods [1], [2] have been developed
to cope with this problem.

Linear regression mostly minimizes the squared error (least
squares). Robustness against noise can either be achieved by
excluding statistical outliers as in the RANSAC algorithm [3],
or by using other estimators such as in the least-median-of-
squares method [4], or by using M-estimators [5]. All these
methods concentrate on the outlier-problem. However, noise
can affect all samples, so other methods might be more suitable
for signal analysis.

Another important linear scheme is the support vector
machine [6]. It does not minimize the squared errors but finds a
sub-plane that best separates classes of source data instances. It
turns out to yield good classification performance and is quite
robust against noise. However, in under-determined situations,

i.e. where that training set is smaller than the signal length,
near-plane data has a major influence on the outcome and
can make the result unstable. Moreover, it cannot be used on
continuous target values since it is a classification scheme.

There are also non-linear schemes such as artificial neural
networks [7], [8]. There are two problems with those. First,
it is hard to get a grip on the learning space. This leads
to suboptimal local minima and uncontrollable overfitting.
Second, they lack the nice property of linear methods that
the learned coefficients can be arranged as a time series and
are, thus, interpretable as a signal.

The motivation of this work comes from the analysis of EEG
signals [9] from experiments in neurosciences. Mostly, the task
is the classification of those signals [10], [11] according to
the experimental setup and subject responses. The resulting
solution signals are interpreted in a physiological sense [12].

EEG signals are very noisy. Usually, a number of signal
instances (single trials) are averaged to form the so called
event related potential (ERP). When only signals with a certain
target value are averaged, the corresponding signal properties
add up, while noise does not. This is basically a crude form
of a linear regression analysis. Therefore, attempts have been
made to use proper linear regression.

To cope with the noise in EEG signals, conventional noise
robust schemes seemed not to do the trick. Therefore, statisti-
cal signal properties such as the expected frequency bands of
the useful signal components (θ-, α-, and γ-oscillations) have
been exploited in [13] and finally [14], which use the methods
described in this work.

II. NOISE RESILIENCE THROUGH ARTIFICIAL
STATISTICAL NOISE

The big problem for linear regression on noisy data is that
the result vector very often relies more on noise than on the
underlying signal to approximate the target vector. This leads
to result vectors that are not only noisy themselves and do not
represent a reasonable aspect of the original data, they are also
very unstable when tested on data they have not been trained
with.

There can be several reasons for unusable noisy result
vectors:

• The whole equation system might be underdetermined,
i.e. the training set is smaller than the number of data
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points in the signal. This leads to a certain degree of
freedom which is immediately filled by noise.

• Even if the equation system is not underdetermined, the
underlying (noiseless) signals might be, ironically, too
uniform. This would lead to a noiseless equation system
with low rank, again implying degrees of freedom that
are filled by noise.

• If the signals are band-pass filtered to remove unwanted
noise prior to performing regression analysis, the opposite
is achieved for the result vector. This is because the
product of the signals and the result vector must, out
of principle, stay the same. So, whatever is suppressed in
signal data is boosted in the result vector, which means
noise.

To remove noise outside a certain frequency range [f0, f1]
from the solution vector, we might either filter the solution
vector, which might have unexpected effects on the regression
error, or use the following method. Contrary to filtering the
source data, we virtually increase the data’s noise outside the
desired frequency range.

A. Real Signals

The known result of linear regression is that the least square
solution of

∑
t a(t)x(t) ≈ b, where a is a random signal and

b a random target, can be found by solving the square linear
system ∑

t

E(a(s)a(t))x(t) = E(a(s)b) . (1)

Now we substitute the signal a(t) by ã(t) = a(t)+n(t), where
n(t) is a special noise signal that will serve our needs, with
E(n(t)) = 0. Thus, the correlation matrix becomes

E(ã(s)ã(t)) = E(a(s)a(t)) + E(n(s)n(t)) (2)

which means that we just have to add the correlation matrix
of the additional noise to our linear system.

In case of white noise, the correlation matrix has diagonal
form and the diagonal elements contain the variance of the
noise at a single point t. Therefore, by adding a certain positive
value to the diagonal of the correlation matrix, a higher number
of signals in the training set is simulated. The larger the
added value, the more resilient to noise the result should
be. However, the resulting solution x(t) will also be more
conservative, i.e. it will tend to produce flat signals around
the average target value. This method has been used in [13].
However, experiments in [13] have shown that a significant
improvement is only achieved for underdetermined systems.
Moreover, an increase of the value added to the diagonal only
slightly improves classification rates, if at all. Therefore, only
a small value should be used, in order to make the correlation
matrix have full rank, but not to decrease the power of the
solution signal.

To avoid suppressing useful data in the same way as noise,
we may model the added statistical noise so that it has
properties contrary to that of the original signals, which is
known in many applications. In our case, we want the noise

to fill a frequency spectrum outside of the expected signal
frequency band.

Thus, initially we model the noise by a single oscillation
with frequency f = 2πω, assuming, for the moment, a
sampling frequency of 1.

nω(t) = X cosωt+ Y sinωt , (3)

where X and Y are two independent random variables with
identical distributions and E(X) = E(Y ) = 0. We get

E(nω(s)nω(t)) =
1

2
(E(X2) + E(Y 2)) cosω(t− s) , (4)

where we will abbreviate the constant factor 1
2 (E(X2) +

E(Y 2)) by A. Not enough, we want our noise to fill an entire
band of frequencies [f0, f1]. Therefore, we model X and Y
as dependent on ω but with constant A and integrate over the
frequency range to get our final noise correlation∫ ω1

ω0

E(nω(s)nω(t)) =

A(ω1 sincω1(t− s)− ω0 sincω0(t− s)) (5)

Now, as we want to add noise that fills the frequencies outside
of [f1, f2], we add two noise bands [0, f1] and [f2, fs/2],
where fs is the sampling frequency (here 1). Thus, what we
have to add to our correlation matrix is

E(ã(s)ã(t)) =

E(a(s)a(t)) +

{
A(π − ω2 + ω1) s = t

A sinω1(t−s)−sinω2(t−s)
t−s s 6= t .

(6)

The solution vector should then be mainly in the frequency
range [f1, f2], with other frequencies suppressed for high
enough values of A.

B. Complex Signals

In case of complex signals, e.g. Gabor-transformed signals,
we want to solve

∑
t a(t)x(t) ≈ b, where a(t) is a complex

random signal and b is the complex target, although b is real
in our test cases. The corresponding least square solution is
found by ∑

t

E(a(s)a(t))x(t) = E(a(s)b̄) , (7)

where we, again, substitute ã(t) = a(t) + n(t) for a(t) to
add statistical noise n(t). For a certain frequency 2πω, the
complex noise signal nω can be modeled as

nω(t) = Xeiωt , (8)

where X is a complex random variable with zero mean. Then

E(nω(s)nω(t)) = E(|X|2)eiω(s−t) , (9)

and in the same way∫ ω1

ω0

E(nω(s)nω(t)) =

{
A(ω1 − ω0) s = t

A eiω1(s−t)−eiω0(s−t)

i(s−t) s 6= t ,
(10)



which has to be added to the correlation matrix.
For complex signals, we can distinguish between positive

and negative frequencies. We might want our solution signal to
have only positive frequencies in the band [f1, f2]. Therefore,
we add two noise bands [−fs, f1] and [f2, fs], where fs is
the sampling frequency. Thus, the complex correlation matrix
becomes

E(ã(s)ã(t)) =

E(a(s)a(t)) +

{
A(2π − ω2 + ω1) s = t

A−eiω2(s−t)+eiω1(s−t)

i(s−t) s 6= t .
(11)

For Gabor-transformed signals, there are several frequency
bands, which should conform to a certain smoothness in
time according to the frequency f of the band. Therefore,
we build a frequency range, e.g. [f − 3, f + 3], around this
frequency and apply this scheme for each band. What remains
is “vertical” noise in the frequency domain. Therefore, we
apply the scheme again in the frequency dimension for each
point in time.

III. ARTIFICIAL TEST-SET

In order to assess the benefits of the suggested noise
suppression scheme in a controlled test environment, we
synthesize a test signal ã(t) consisting of a sinusoid with
amplitude 1 and randomized phase and white noise with
maximum amplitude N .

ã(t) = a(t) +N(rand(1)− 0.5) , (12)

where rand(r) generates a random number in the interval
[0, r], and

a(t) =

{
sin(2πft+ φ) b = 1

sin(2πft+ π + φ) b = 0 ,
(13)

where φ = rand(0.5) is the random phase of the test signals,
which is constant for a single signal but changes for each
signal. The signals are sampled at 500 samples at sampling
rate 1. The frequency is chosen to have 10 periods within the
signal length, i.e. f = 10

500 .
The linear regression system is trained with 1000 signals,

500 each for b = 1 and b = −1. The frequency band for noise
suppression is chosen as [ 7.5500 ,

12.5
500 ]. Fig. 1 shows an example

solution signal for noise strength N = 20. One can see
that the solution signal is extremely noisy in the unmodified
case. The noise suppression scheme manages to pull a smooth
signal out of noisy signal data without reducing the solution
signal amplitude. This improves classification performance, as
seen below. Furthermore, the signal is much more expressive
for analysis purposes, since frequency and phase can easily
derived from it.

Note that the simple stabilization method of adding a
constant value to the diagonal of the correlation matrix is not
applied here because the system is overdetermined and, thus,
the method does not improve the solution signal.

The solution signal is then tested on 1000 test signals
of the same form as the training signals, but with different
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Fig. 1. Solution signals for artificial test set. The noise strength in comparison
to signal strength is N = 20.
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Fig. 2. Results of classification test for over-determined artificial test set
depending on noise strength.

random values, again 500 each for b = 1 and b = −1. If the
sign of

∑
t ã(t)x(t) is the same as that of b, then the signal

counted as correctly classified. The rate of correctly classified
out of all test signals is computed and displayed in Fig. 2.
Actually, the value displayed in Fig. 2 is an average computed
over 101 of such tests for each noise strength to eliminate
random deviations. Additionally, the lowest and highest decile
is plotted as error bars to show how large the deviations from
the average value actually are.

One can see that the noise suppression scheme is able to
increase the correct classification rate by up to 10 percent
points, depending on the noise strength. For noise strength
N = 10 and below, both noise suppressed as well as unmod-
ified solution signals detect almost all signals correctly. For
N = 500 and above, the classification rate of both schemes
is understandably around 50%, i.e. their output is that of
basically random guesses. For medium noise strength, the
improvement of our noise suppression scheme is greatest at
about N = 100. This means that, if the noise is about 100
times as strong as the original signal, the classification rate
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Fig. 3. Results of classification test for under-determined artificial test set
depending on noise strength.

can be increased from 57% to 67%.
So far, the solution has been over-determined by the test

data, i.e. the equation system has been built of 2n signals, so
there are twice as many equations than variables (points in
x(t)), and the least squares system gives a unique solution.
But what if we have a very small training set, say 20 signals,
10 for b = 1 and 10 for b = 0?

Fig. 3 shows the results for this case. The unmodified system
basically produces arbitrary noise signals that are not capable
of classification rates that significantly exceed the random
guess level of 0.5 unless the noise in the training and test
signals is very low.

Therefore, we apply a soft statistical white noise to stabilize
the least squares equation system, i.e. we add a small value,
0.001, to the diagonal of the correlation matrix. In this way, the
solution is unique and we get reasonable classification rates
up to noise strength N = 50. Greater values do not produce
better classification rates.

However, the band-limiting noise suppression is able to
improve these rates by up to over 20 percent points and
gives significant results up to noise strength N = 200. This
shows that it is even more important to exploit knowledge
about signal characteristics, such as limited frequency bands,
when the training set is small, in order to improve results in
regression analysis.

Now for complex signals. We synthesize the complex test
signal ã(t) in a similar way:

ã(t) = a(t) +N(rand(1)− 0.5) + iN(rand(1)− 0.5) (14)

where

a(t) =

{
ei2πft+φ b = 1

ei2πft+π+φ b = 0 ,
(15)

and φ = rand(0.5) as before. All other parameters also remain
the same.

Fig. 4 shows a sample solution signal for noise strength
N = 20. While the solution of the unmodified system almost
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Fig. 4. Complex solution signal for artificial test set. The noise strength in
comparison to signal strength is N = 20. The unmodified solution signal is
too noisy to be shown in this plot.
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Fig. 5. Results of complex classification test for over-determined artificial
test set depending on noise strength.

entirely consists of random noise, noise suppression yields a
smooth signal with the correct frequency and phase.

Again, we test the solution signal of a training set of
size 2n for a range of noise strengths and calculate average
classification rates, where a signal a(t) counts as correctly
classified to b by x(t) if the sign of the real part of

∑
t a(t)x(t)

is the same as that of b. Fig. 5 shows the results. Noise
suppression achieves an improvement of classification rates
of up to almost 15 percent points, which is even better than
for real signals.

Finally, in the under-determined case of only 10+10 training
signals the situation is similar to the real case. Fig. 6 shows
the results. The unmodified system produces complex random
noise and the classification rates remain at the random guess
level. Adding a real value of 0.001 to the diagonal of the
correlation matrix, representing white noise, stabilizes also the
complex system. However, the band-limited noise suppression
is able to improve the classification rates by up to 25 percent
points, which is again better than in the real case.
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Fig. 6. Results of complex classification test for under-determined artificial
test set depending on noise strength.

IV. APPLICATION TO EEG SIGNALS

The described methods have been tested [14] to reproduce
findings from [15] in an experiment in neuroscience. The
given experiment is a cued visual attention task. Subjects had
to fixate the center of a computer monitor while an arrow
indicated the appearance of a target stimulus for about 34 ms.
After a duration ranging between 600 and 800 ms a target
stimulus appeared for 50 ms on the left or on the right monitor
side (the target was either a large or a small bar). The target
had not to appear mandatory on the indicated monitor side –
in 75% of the trials the arrow indicated the correct side where
the target appeared, in 25% it indicated the wrong monitor
side. The goal for the proband was to press a certain button
for a small bar (target) and another button for a large bar.

EEG data has been recorded from several electrodes. In
our case, electrode positions O1 and O2 are analyzed because
processing of the task is expected there. See Fig. 7. Only
valid trials are used, i.e. those where the target appears at
the indicated side. If the target appears on the left side, it is
processed on the right side an vice versa. The goal of the anal-
ysis is to determine what the difference between processing
and non-processing is, i.e. what the signal properties indicate
a contralateral as opposed to an ipsilateral situation.

To do so, the EEG signals of the 200 milliseconds after
the stimulus from both electrodes are concatenated to the
signal a(t) and those with a left stimulus are associated with a
positive target b, whereas right stimuli get a negative b. About
600 such signals (single trials) have been extracted for each
subject, 300 with a left and 300 with a right target. At a
sampling frequency of 250Hz, the signal length is 50 samples.

Fig. 8 shows the solution signal of the unmodified system
for a single subject. The left part of the figure shows the
O1 electrode of the signal, the right part shows the O2
electrode. The signal is very noisy and does not represent any
neurological findings.

Fig. 9, however, shows the solution with noise suppression
outside of the frequency band [1Hz, 20Hz]. The result clearly

Fig. 7. Visual stimuli are processed contralaterally

Fig. 8. Solution signal without modification of the correlation matrix

Fig. 9. Solution signal with noise suppression



TABLE I
EEG CLASSIFICATION RATES

Method min avg max
unmodified 0.451 0.626 0.806
noise suppression 0.509 0.710 0.866

shows that the position of processing can be determined at
150ms after the stimulus, where O1 has a positive peak and
O2 a negative peak for a left stimulus, which corresponds to
the findings in [15].

To evaluate the classification rate on this data, a 1-out-of-n
test is conducted, i.e. the system is trained with all but one
single trials and then tested against the remaining one, which is
repeated for each single trial and the rate of correctly classified
single trials is calculated. Thus, we get a classification rate for
each of the 22 subjects. Table I shows the minimum, average
and maximum rates of all subjects. Like with artificial data,
the performance could be improved by about 10 percentage
points.

Note that the simple stabilization method of adding a
constant value to the diagonal of the correlation matrix does
not significantly improve the classification rates over the
unmodified system because the system is overdetermined.
Note also that the noise present in the data cannot be varied
like in Fig. 3 because the noise comes from a real world
measurement.

Several other analyses have been done on the test data, in-
cluding Gabor-transformed signals as input to complex regres-
sion analysis over all subjects, where each Gabor coefficient
was normalized in order to ignore inter-subject signal power
differences. The goal was to prove a laterality-dependent
latency of the EEG-signal, which should manifest itself in
the signal phase. Although classification rates are low, since
subject independent analysis is hard, the noise suppression
scheme manages to improve the rates from 0.519 to 0.569.

V. CONCLUSION

It has been shown that it is possible to remove certain signal
components from the solution signals of linear regression by
adding virtual statistical noise to the source data. This works
because whatever is emphasized in training data must be
suppressed in the solution signal, since the product of the two
must remain the same.

The way to do this is to add the correlation matrix of the
virtual noise to the correlation matrix of the training data,
which is used in the least squares solver of the linear regression
scheme. So, in order to get a solution signal within a certain
frequency range, noise outside this range has to be added. The
correlation matrices of such noise signals have been found in
closed form for real as well as complex signals.

Tests on an artificial test set in a classification problem show
that the new method can increase the correct classification rate

by 10 percentage points or more, depending on whether the
system is under- or over-determined. Tests on real EEG data
from an experiment in neuroscience confirm these results.

Future work might be to allow for transition bands in the
virtual noise to avoid the dampening of the solution signals at
the signal borders. Also, the frequency bands that best improve
the classification rates might be found automatically, resulting
in an unsupervised learning scheme.
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