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Abstract

Short-vector Single-instruction-multiple-data (SIMD) units have become common
in signal processors. Moreover, almost all modern general-purpose processors in-
clude SIMD extensions, which makes SIMD also important in high performance
computing. This chapter gives an overview of approaches to the vectorization of
signal processing algorithms. Despite their complexity, these algorithms have a rel-
atively regular data flow. This regularity makes them good candidates for SIMD
vectorization. They fall in two categories: filter banks that operate on streaming sig-
nal data, and Fourier-like transforms that operate on blocks of data. For the first
category, simple FIR filters, IIR filters and more complicated filter banks from the
field of wavelet transforms are investigated to develop and present general vector-
ization strategies. Well known loop tranformations as well as novel vectorization
approaches are combined and evaluated. For the second category, basic approaches
for the fast Fourier transform are shown and the workings of automatic vectoriz-
ing performance tuning systems are explained. The presented solutions are tested
on Intel processors with SIMD extensions and the results are compared. Wherever
possible, the reasons for performance gains or losses are uncovered so that good
vectorization strategies can be derived for arbitrary signal processing algorithms.
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13.1 Introduction

The trend in parallelization goes towards multi-level parallelism. In addition to the
combination of clusters, shared-memory architectures, and multi-core processors,
CPU cores exploit more and more internal parallelity. Among methods such as ex-
cessive pipelining, specialized units, as used in signal processors, and VLIW (very
large instruction word), SIMD (single instruction multiple data) plays an important
role. One reason for its popularity is the availability of short-vector SIMD exten-
sions in all modern general-purpose processors.

These processors are very cost-effective and, thus, heavily used in high perfor-
mance computing (HPC). As a consequence, their SIMD extensions are exploited
in most HPC software. SIMD always benefits from regularity in algorithms. For-
tunately, this is exactly what makes the difference between signal processing and
other applications. In signal processing, large amounts of data are processed in a
continuous way, which makes the use of SIMD techniques promising.

13.1.1 Signal Processing Algorithms

Most signal processing algorithms fall into two categories: filter banks and Fourier-
like transforms. Other algorithms are usually quite similar to one of the two, or
include at least one of the two as an essential ingredient.

There are differences between the two categories. The most important one is
that Fourier-type transforms operate on blocks of signal data, while filters operate
on streams of data. Another difference is that filters have the simple algorithmic
form of a convolution, whereas fast Fourier-type transforms employ more compli-
cated butterfly-like schemes. Note also that it is possible to implement convolu-
tions and, thus, filters via Fourier transforms by applying the convolution theorem.
This method is feasible whenever the filters are long. Yet another difference is that
Fourier-type algorithms usually operate on complex numbers, whereas filter banks
are almost always real-valued.

Let us look at the basic algorithms in more detail. The simplest form of a finite
impulse response (FIR) filter is

y(n) = ∑
k

x(n− k)h(k) , (13.1)

where x is the discrete input signal, y the output signal and h the (finite) filter. For
causal filters, k is non-negative. In any case, k has finite limits. The general case can
have more than one input and output signals. This leads to the form

yi(n) = ∑
j
∑
k

x j(n− k)hi, j(k) . (13.2)
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Additionally, input and output signals can be down-sampled, i.e., only every m-th
value has to be calculated in the output signal, or is non-zero in the input signal.
While this reduces the computational demand by omitting zero products, as well
as memory demands by omitting zero values from arrays, it complicates the algo-
rithms. Moreover, some values of hi, j(k) may be equal, or just have opposite signs.
This happens for symmetric filters and quadrature mirror filter pairs, for instance.
Depending on the position of the filter coefficients and down-sampling factors, this
may lead to redundant products, which means further potential for computational
reduction at the price of higher algorithmic irregularity. Finally, the filters may have
“holes”, i.e., inner zero coefficients. All this renders a general-purpose implementa-
tion highly inefficient. Each filter bank has to be handled individually, or automatic
compilation techniques must be used.

Infinite impulse response (IIR) filters are an extension of FIR filters, where the
output signal is reused as input signal.

y(n) = ∑
l

y(n− l)a(l)+∑
k

x(n− k)b(k) , (13.3)

where, of course, l > 0. The main difficulty in implementing this scheme is the
recursive data flow that introduces loop dependencies and, thus, complicates paral-
lelization and makes algebraic reformulations of the filter algorithm necessary.

On the other hand, Fourier-type algorithms are relatively irregular to start with.
Despite the easy definition of the discrete Fourier transform

y(n) = F
N

x(n) =
N−1

∑
k=0

x(k)e−i 2π
N kn , (13.4)

where N is the size of the input signal block (x(0), . . . ,x(N− 1)), and 0 ≤ n < N,
fast versions of the Fourier transform employ more complicated recursive reformu-
lations such as

F
N

x = (x̂0 + x̂1, x̂0− x̂1) , x̂0 = F
N/2

x0 , x̂1(n) = F
N/2

x1(n)e−i 2π
N n , (13.5)

where x is split into even samples x0 = (x(0),x(2), . . . ,x(N−2)), and odd samples
x1 = (x(1),x(3), . . . ,x(N−1)). This scheme is due to Cooley and Tukey [1]. In this
version, N has to be even for one recursion level and a power of two for full recursion
(radix 2). Similar schemes can be found for other radices. Further schemes include
the split-radix algorithm [2] and the Rader algorithm [3] for prime sizes N. All these
schemes may be mixed and lead to different memory access patterns with different
computational performances which depend also on machine properties. Automatic
tuning systems have been developed [4, 5] which recursively search the space of
possible implementations, starting from abstract formulations of the algorithms plus
rewriting schemes in dedicated signal processing languages such as SPL [6].
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13.1.2 Short-Vector SIMD

In SIMD architectures, data is organized in registers containing vectors of several
values. These registers can be used in operations such as multiplication and addition
just as normal registers. The difference is that the values in the vectors are operated
on independently in parallel. Since it is common that a vector consists of p = 4 val-
ues, we will use this for demonstration throughout this chapter. A vector is written
as a = (a0,a1,a2,a3). Vector operators are displayed with circles:

a�b = (a0 ·b0,a1 ·b1,a2 ·b2,a3 ·b3), a⊕b = (a0 +b0, . . . ,a3 +b3) . (13.6)

SIMD computers have been popular in the eighties and early nineties, mainly due to
MasPar and the Connection Machines. Modern SIMD extensions of general purpose
CPUs are different from those in that the vectors are much shorter, i.e., p = 2, 4, or
8, hence the name “short-vector SIMD”. All these architectures have different con-
straints in accessing and arranging data in vector registers. While traditional vector
computers only offered certain shift or rotation operations, new SIMD extensions
include almost general variations of values in vector registers, written as

a(p,q,r,s) = (ap,aq,ar,as) , (13.7)

or, in the more common form with two operands,

(a,b)(p,q,r,s) = (cp,cq,cr,cs) , (13.8)

where c = (a,b) = (a0,a1,a2,a3,b0,b1,b2,b3), and 0≤ p,q,r,s < 8. Not all of these
so-called shuffle operations are available as single instruction on all architectures.
As an important example, in Intel MMX and SSE, the shuffle operation has the
restriction that the first two values of the destination vector have to be from the
first operand and the last two from the second operand, i.e., 0 ≤ p,q < 4 ≤ r,s <
8 in Eq. (13.8). Additionally, there are two operations called “unpack operations”
which interleave the values of the first or second halves of the source operands,
i.e., (a,b)(0,4,1,5) and (a,b)(2,6,3,7). The maximum number of necessary instructions
for an arbitrary shuffle operation is two. On the other hand, the Motorola AltiVec
architecture provides instructions for arbitrary shuffle operations.

Architectures can also differ in the allowed numerical precisions, and in the vec-
tor size depending on the precision. The common configuration, though, is that vec-
tor registers have 128 bit, so they support 4-fold SIMD for single precision (i.e., 32
bit) and 2-fold SIMD for double precision floating point numbers (i.e., 64 bit). Inte-
ger numbers are also possible, but we will concentrate on floating point numbers in
this chapter.

Another restriction of most SIMD architectures is that they require aligned data
access to memory. This means that p consecutive values that are read from memory
into a vector register, must have a starting address that is a multiple of the vector size.
As a consequence, the programmer has to take care that arrays are properly aligned
when they are allocated, and that they are read and written in non-overlapping blocks
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of p values. Although some processors allow unaligned reads and writes, these are
usually much slower than aligned accesses.

13.2 General Vectorization Approaches

Most compilers today include options to automatically vectorize the code in order to
utilize SIMD extensions. Although these vectorizations rarely lead to optimal code,
it is advisable to look at vectorization strategies that might also help in manual
vectorization of our signal processing algorithms.

13.2.1 Loop Unrolling

If the inner loop of the algorithm only contains a small number of operations, as is
the case for the filter algorithm, then a simple approach is to unroll p iterations of
the inner loop, where p is the vector length. The corresponding p operations, one
from each iteration, are scheduled to be executed in parallel in a vector instruction.

This approach has only one advantage and many disadvantages. The advantage
is that the data to be processed probably lies consecutively in memory and can sim-
ply be read into a vector register. However, this is mostly not true for both, input
and output data simultaneously. Moreover, the data is unlikely to be aligned. For
instance, in a simple filter algorithm the data to be read is shifted by one for every
outer loop iteration. Therefore, it is aligned only every p-th time.

If iterations depend on previous iterations, the method is hardly usable at all.
This is partly so for the filter algorithm. The multiplication of source data with filter
coefficients can be done in parallel, but the summation of the products is inherently
serial. Some SIMD architectures provide instructions for horizontal sums which
could be used in this situation. However, this reintroduces scalars in the algorithm
and, therefore, is suboptimal.

Nevertheless, unrolling a larger number of iterations, or even the whole inner
loop, may allow good vectorization through clever shuffling of data in registers.
This is, however, a complex problem to solve, and is treated next.

13.2.2 Straight Line Code Vectorization

Algorithms may contain blocks of code with no loops at all. If not, such blocks
can be produced by loop unrolling. [7] presents a basic approach to automatic vec-
torization of such a block. It starts with the speculative aggregation of destination
variables into vector variables, followed by a depth-first search for appropriately
aggregated operations and source variables. If no feasible solution can be found,
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backtracking is used to explore other combinations of variables into vectors. Be-
cause a full search may be too expensive, heuristics are used for choosing good
candidates for aggregation.

This optimizing compiler technique is used and is especially important in auto-
matically tuned FFT packages [8, 9], where small FFTs are recursively expanded
into straight line codelets which are then included in larger FFTs.

13.2.3 Loop Fusion

If an algorithm consists of several passes that process the same arrays of data, where
each pass reads the data that a previous pass has written, these data accesses degrade
the performance and make the algorithm dependent on large cache sizes. Often, it is
possible to fuse these passes into a single one. This is done by interleaving the loop
iterations of different passes. Of course, one has to make sure that data is not read
by an iteration of a later pass before it is written by an iteration of an earlier pass.
In other words, a proper rescheduling of all passes’ loop iterations has to be applied
through a reformulation of the algorithm that respects data dependencies.

As a consequence, intermediate data is likely to be read immediately after it is
written. Therefore, it is better to remove these writes and reads in the first place
and keep the data in registers, local variables or local buffers instead. The resulting
algorithm consists of a single fused loop containing a larger loop body. In addition to
the improved performance due to decreased cache dependency, the larger loop body
may be vectorized more easily using techniques for straight line code vectorization.

13.2.4 Loop Transposition

Most algorithms contain nested loops. The inner loop is likely to have dependencies
between iterations, which makes vectorization difficult. On the other hand, the outer
loop very often has independent iterations. This is the case, for instance, if the outer
loop iterates the output index, and the output values are calculated independently
from each other, or if the outer loop iterates rows of a row-wise transform.

It should then be possible to transpose the outer and inner loop in order to elim-
inate dependencies in the new inner loop. This corresponds to the commutation of
sum operators if the algorithm is formulated as double sum. Temporary variables
that pass data between iterations, such as running sums, have to be avoided or taken
care of by storing one value for each outer iteration.

Of course, this introduces new memory accesses and reduces the parallel effi-
ciency. Therefore, it may be better to transpose only blocks of the outer loop, ideally
blocks of exactly p iterations. This leads to an algorithm that is basically a copy of
the original algorithm, but operates on vectors instead of scalars. Temporary vari-
ables are kept in vectors as well and do not have to be saved.
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This approach is a simple example of iteration rescheduling. It may have benefits
even if the outer loop has dependencies. However, a disadvantage is that data access
may not be contiguous any more. This can make shuffle operations or even redun-
dant data accesses necessary. In many cases, a simple p× p block transposition can
solve the problem. Such a transposition can be implemented by

b(0) = (a(0),a(1))(0,2,4,6), b(1) = (a(2),a(3))(0,2,4,6),

b(2) = (a(0),a(1))(1,3,5,7), b(3) = (a(2),a(3))(1,3,5,7),

c(0) = (b(0),b(1))(0,2,4,6), c(1) = (b(2),b(3))(0,2,4,6),

c(2) = (b(0),b(1))(1,3,5,7), c(3) = (b(2),b(3))(1,3,5,7) .

(13.9)

This scheme uses the minimum of eight shuffle instructions and can also be used on
Intel SSE architectures. It arranges non-consecutive data (a(0)

i ,a(1)
i ,a(2)

i ,a(3)
i ) into

the vectors c(i). On the other hand, it distributes the consecutive data in vectors
a( j) to corresponding slots of different vectors (c(0)

j ,c(1)
j ,c(2)

j ,c(3)
j ). Very often, al-

gorithms can operate more easily on transposed vectors c(i).

13.2.5 Algebraic Transforms

If it is possible to reformulate an algorithm algebraically , it is worth checking
whether the reformulation is more suitable for vectorization. Reformulations can
be as simple as applying associative and distributive laws to addition and multipli-
cation. The associative law can, for instance, reverse the dependencies of summing
loops.

Moreover, it is important to distinguish between dynamic and static data. In our
algorithms dynamic data is mainly signal data that keeps changing. Static data con-
sists of filter or transform coefficients that are constant over loops and, in most cases,
available at compile-time. By applying the distributive law, it can be possible to shift
operations on dynamic data to operations on static data.

An example would be a(x + y) + by, where x and y represent dynamic signal
data and a and b are static coefficients. This expression can be transformed into
ax + (a + b)y, where a + b can be calculated outside of the signal data loop, thus
saving one addition per iteration.

This approach can also reduce shuffle operations if applied cleverly. Combined
with loop unrolling and vector aggregation, the space of possible reformulations is
usually large. Therefore, algorithm specific approaches have to be found, or auto-
matic optimizers with heuristics have to be applied.

Exploring the space of reformulations is even more important for Fourier-type
transforms. This is already done in optimized sequential algorithms [4, 5], as stated
in Sect. 13.1.1. Vectorization of automatically generated straight-line code blocks
(codelets) increases the necessity for testing different possible code blocks since
some may be vectorized more efficiently than others. Inside the code blocks, the
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above method of algebraic reformulation could be applied if simple rescheduling,
i.e., the aggregation strategy [8], is not sufficient. However, sequential optimization
is usually the only algebraic reformulation step within code blocks.

13.3 Convolution Type Algorithms

The most common type of algorithm in signal processing is filtering. Filtering is
basically a convolution of signal data x(t) with the filter impulse response h(t). If
the impulse response is finite, the convolution can be implemented directly. If it
is infinite or too large, a recursive formulation has to be found that is equal to, or
approximates the filter. The latter will be treated in the next section.

In this section we will examine simple filters as well as more complex filter banks
in order to develop and evaluate the most important vectorization approaches. As
examples of filter banks, filter pairs which are common in wavelet transforms (see
Sect. 13.6.1) are used. Automatic vectorization so far has not produced any per-
formance increase for wavelet transforms [10, 11]. Also, approaches on old SIMD
arrays [12, 13, 14] cannot be adapted directly. Therefore, good manual vectorization
strategies [15, 16] are important.

Experimental results will also be presented, which were conducted on an Intel
Pentium 4 CPU with 3.2GHz and 2MB cache size using the SSE extension with
vectors of 4 single precision numbers. All implementations use the same amount of
code optimization, i.e., memory access through incremented pointers instead of in-
dexed arrays, and compilation with gcc 3.3.5 with the -O3 option. SIMD operations
are implemented using gcc’s built-in functions for vector extensions and the -msse
option. Note that, in order to have full control over generated code, no automatic
vectorization is applied.

13.3.1 Simple FIR Filter

The simplest case of an FIR filter has one input signal x and one output signal y, and
does not apply any down- or upsampling. It is defined by

y(n) = ∑
k

x(n− k)h(k) . (13.10)

There are two loops, the inner one for k and the outer for n. The loop iteration de-
pendencies are shown in Fig. 13.1. We will now vectorize this expression by various
methods and evaluate their advantages and disadvantages. The first method to try is
simple loop vectorization. It is depicted as method A in Fig. 13.1. Four consecutive
iterations shall be combined into one vectorized iteration. However, as the sum op-
eration imposes dependencies between iterations, we have to break the parallelity.
We get
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Fig. 13.1 Loop iteration de-
pendencies and vectorization
strategies for simple FIR
filtering

signal data

filter taps

AC

B

y(n) =∑
k

S(x(n−4k−m, . . . ,n−4k−m+3)�h(4k+m, . . . ,4k+m−3)) . (13.11)

The operator S() calculates the scalar sum of a vector’s elements. On some archi-
tectures there is an instruction that implements the S-operator. If there is no such
instruction, a sequence of shuffle and add operations followed by an element extrac-
tion must be used, which is costly and may degrade the performance.

The dislocation parameter m does not have an influence on the result. It has,
however, an influence on the range of k. If indices of h(·) lie outside of its finite
support, h has to be padded with zeros, which introduces redundant calculations
and degrades the parallel efficiency, especially for short filters. For causal filters,
where indices have a minimum of 0, m = 3 avoids zero padding at least at the lower
end of indices. m also determines the alignment of vectorized data access. To make
the read operations on x aligned, m should depend on n such that n−m is a multiple
of the vector size p, i.e., four in our examples. The alignment of read operations on
h cannot be set independently, but this could be solved by preparing p copies of h
with different alignments.

The application of the S operator already makes mild use of the associative law. It
can be further exploited to vectorize most of the summing operation by commutating
the sum and S operator:

y(n) = S

(
∑
k

x(n−4k−m, . . . ,n−4k−m+3)�h(4k +m, . . . ,4k +m−3)

)
.

(13.12)
There are still scalar operations in this algorithm such as the S operator and also
the store operation on y. To make the entire process parallel, we have to look for
a different approach. Therefore, we make use of the loop transposition method de-
scribed in Sect. 13.2.4 by introducing another index l that shall be used to vectorize
blocks of n-indices. It turns out that we have two options to reformulate Eq. (13.10),
namely
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B : y(n+ l) = ∑
k

x(n+ l− k)h(k) , and (13.13)

C : y(n+ l) = ∑
k

x(n− k)h(k + l) . (13.14)

Let us look at method C first. The resulting vectorization strategy is depicted in
Fig. 13.1 as C, and can be formulated as

y(n, . . . ,n+3) = ∑
k

x(n− k)(0,0,0,0)�h(k,k +1,k +2,k +3) , (13.15)

where the so-called splat operator a(0,0,0,0) = (a,a,a,a) on a scalar a creates a vec-
tor filled with the value a. We see that this method is still not completely vectorized
because it reads the x array sequentially before applying the splat operator. How-
ever, this may be circumvented by vectorized reads followed by four simple shuffle
operations for each read, i.e., x(n− k, . . . ,n− k +3)(i,i,i,i) for 0≤ i < 4.

Note that the range of the index k has to be extended to generate all products. For
causal filters, k has to start at k = −3. This introduces the need of additional zero-
padding of h and, as a consequence, redundant operations. Moreover, the access of
the h array is entirely non-aligned.

Therefore, our hope lies in method B. Its vectorization strategy is depicted in
Fig. 13.1 as B, and can be formulated as

y(n, . . . ,n+3) = ∑
k

x(n− k, . . . ,n− k +3)�h(k)(0,0,0,0) . (13.16)

This method has the big advantage that no zero-padding of h is necessary. Therefore,
there are no redundant calculations. Two disadvantages are the non-aligned access
of x and the sequential access of h. The latter problem can be reduced by preparing
vectors h(k)(0,0,0,0) in advance, which is favorable especially for short filters.

Fig. 13.2 Shuffle operations
for all vector realignments on
Intel architecture

The non-aligned access of x implies one shuffle operation per non-aligned read,
i.e., p− 1 = 3 shuffles for p = 4 reads. However, these shuffle operations may not
be available as single instructions on certain architectures. Unfortunately, this is the
case for Intel SSE. However, as all possible realignments are necessary, shuffled
vectors can be reused in other shuffle operations to also achieve a rate of one shuffle
per non-aligned read. The method is depicted in Fig. 13.2 and can be written as
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a = (x(n, . . . ,n+3),x(n+4, . . . ,n+7))(2,3,4,5) ,
x(n+1, . . . ,n+4) = (x(n, . . . ,n+3),a)(1,2,5,6) ,
x(n+2, . . . ,n+5) = a ,
x(n+3, . . . ,n+6) = (a,x(n+4, . . . ,n+7))(1,2,5,6) .

(13.17)

To summarize, we have applied the associative law and the loop transposition
method to reschedule and reformulate loop iterations in order to vectorize the simple
FIR filter algorithm. Method B turns out to be the most efficient due to the lack of
redundant calculations. This is confirmed by experiments. We will now apply these
insights in the vectorization of some exemplary and more complicated filter banks.

13.3.2 The Haar Filter

The Haar filter is the simplest orthogonal wavelet filter. It is a 2-tap filter. The co-
efficients are (a,a) = (

√
2

2 ,
√

2
2 ) in the low-pass form and (a,−a) = (

√
2

2 ,−
√

2
2 ) in

the high-pass form, where the low- and high-pass filters form a filter bank. Together
with down-sampling by a factor of 2, the following assignments define the filtering
algorithm of the Haar wavelet transform.

for all i : L(i)← ax(2i)+ax(2i+1), H(i)← ax(2i)−ax(2i+1) (13.18)

L and H are the low-pass and the high-pass subbands, respectively. As a first se-
quential improvement we can reuse already computed products, which leads to

for all i : p← ax(2i), q← ax(2i+1), L(i)← p+q, H(i)← p−q . (13.19)

We see that for each pair L(i),H(i) of output values we have to read two input
values x(2i),x(2i+1). Since we want to read and write only full vectors when using
SIMD, we consequently have to read two vectors in each iteration. We find the
vectorization of the Haar filter as

for all i :
p← x(8i, . . . ,8i+3)�a(0,0,0,0), q← x(8i+4, . . . ,8i+7)�a(0,0,0,0),
r← (p,q)(0,2,4,6), s← (p,q)(1,3,5,7),
L(4i, . . . ,4i+3)← r⊕ s, H(4i, . . . ,4i+3)← r	 s .

(13.20)

In the first line two perfectly aligned vectors are read and each element is immedi-
ately multiplied by the coefficient a. In the second line the elements are rearranged
into one vector containing all even elements and one containing all uneven elements
using shuffle operations. To calculate the sum and difference of every two neighbor-
ing elements, we just have to add and subtract the two vectors, which is done in the
third line.

While the sequential algorithm requires two multiplies and two additions (or sub-
tractions) for every two input values, the SIMD version requires two packed multi-



14 Contents

plies and two packed additions for every eight input values. This gives a theoretical
speedup of 4. However, since the shuffle operations also require some execution
time and memory access can be a bottleneck, the speedup is reduced and we get an
actual speedup of 2.7.

13.3.3 Biorthogonal 7/9 without Lifting

In the following sections we will discuss the more complicated example of the
biorthogonal 7/9-tap filter which is used in many multimedia applications such as
the JPEG2000 standard [17]. Note that all algorithms will show the same phases:
memory read, coefficient multiplication, data rearrangement, summation and mem-
ory write. Some will have a different order of execution, though. Especially coeffi-
cient multiplication and data rearrangement will be interchanged.

13.3.3.1 Sequential Algorithm

The biorthogonal 7/9 filter is an example of an uneven, symmetrical filter. It has
9 low-pass (a,b,c,d,e,d,c,b,a) and 7 high-pass coefficients (p,q,r,s,r,q, p). The
sequential algorithm is

for all i :
L(i)← ax(2i−4)+bx(2i−3)+ cx(2i−2)+dx(2i−1)+ ex(2i)

+dx(2i+1)+ cx(2i+2)+bx(2i+3)+ax(2i+4),
H(i)← px(2i−2)+qx(2i−1)+ rx(2i)+ sx(2i+1)

+rx(2i+2)+qx(2i+3)+ px(2i+4) .

(13.21)

However, this algorithm can be optimized in terms of the number of required mul-
tiplications due to the symmetry of the filters. Samples that have to be multiplied
by the same coefficient and added afterwards can be added before multiplication
instead, saving one multiply.

for all i :
L(i)← a(x(2i−4)+ x(2i+4))+b(x(2i−3)+ x(2i+3))

+c(x(2i−2)+ x(2i+2))+d(x(2i−1)+ x(2i+1))+ ex(2i) ,
H(i)← p(x(2i−2)+ x(2i+4))+q(x(2i−1)+ x(2i+3))

+r(x(2i)+ x(2i+2))+ sx(2i+1) .

(13.22)

Thus, 14 adds and only 9 multiplies (instead of 16) are required in each itera-
tion. To see the gain in performance of the optimized sequential algorithm, look at
Fig. 13.3. This plot shows the execution times in ns/sample over the size of trans-
formed data. The algorithm has been performed several times on the same data in
order to unveil the influence of cache on the execution time. However, the fact that
execution times per sample do not vary significantly with the data size shows that
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Fig. 13.3 Execution time of
naive and improved sequential
algorithm in ns/sample. The
horizontal axis shows the size
of the repeatedly transformed
data set in number of single
precision values.
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accessing cached data has little impact on the performance. This shows that mem-
ory access is not a bottleneck and the speedups shown in this and the following
sections represent algorithmic improvements. The improved algorithm gains a se-
quential speedup of 1.18. All parallel speedups in this section will be measured
against the improved algorithm.

13.3.3.2 SIMD Parallelization – Variant 1

There are many possibilities to parallelize the above algorithm. The main difference
between these variants is when to apply the phase of shuffle operations – before or
after multiplying with filter coefficients. The first variant performs this multiplica-
tion directly after source data is read from memory.

As with the Haar filter, two vectors have to be read to calculate one new low-pass
vector and one new high-pass vector. However, since the filter is now longer than
two taps, the contents of more than two vectors are actually needed. This can be
overcome by reusing intermediate results from previous iterations, which amounts
to passing values from iteration to iteration.

In this first variant, the values of each of the two recently read vectors are imme-
diately multiplied by all necessary filter coefficients. Then appropriate shuffles of
the products have to be added, leading to the following algorithm:
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for all i :
Y ← x(8i+4, . . . ,8i+7),Z← x(8i+8, . . . ,8i+11)
A←C, B← D, C← Y � (a,b,a,b), D← Z� (a,b,a,b),
E← G, F ← I, G← Y � (c,d,c,d), I← Z� (c,d,c,d),
J←M, K← N, M← Y � (e,0,e,0), N← Z� (e,0,e,0),
L(4i, . . . ,4i+3)← (A,B)(0,2,4,6)⊕ (A,B)(1,3,5,7)⊕ (E,F,G)(2,4,6,8)⊕

(E,F,G)(3,5,7,9)⊕ (K,M)(0,2,4,6)⊕ (F,G)(1,3,5,7)⊕ (F,G, I)(2,4,6,8)⊕
(B,C,D)(3,5,7,9)⊕ (C,D)(0,2,4,6),

P← R, Q← S, R← Y � (p,q, p,q), S← Z� (p,q, p,q),
T ←V, U ←W, V ← Y � (r,s,r,s), W ← Z� (r,s,r,s),
H(4i, . . . ,4i+3)← (P,Q,R)(2,4,6,8)⊕ (P,Q,R)(3,5,7,9)⊕ (U,V )(0,2,4,6)⊕

(U,V )(1,3,5,7)⊕ (U,V,W )(2,4,6,8)⊕ (Q,R,S)(3,5,7,9)⊕ (R,S)(0,2,4,6)

(13.23)

Fig. 13.4 Variant 1 of SIMD-
parallel algorithm. Vectors
are indicated by boxes, mul-
tiplication by boxes with
rounded edges, addition by a
circle with a +, shuffle op-
erations by thin arrows, and
the passing of values between
iterations by dashed arrows.
Only the low-pass calcula-
tions are shown, high-pass
operations are similar.
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Fig. 13.4 depicts the algorithm as a data-flow diagram. After multiplying the two
new source vectors by vectors of appropriate filter coefficients, they are rearranged
by shuffle operations (thin arrows) so that the sum of the resulting vectors is the
desired destination vector containing four low-pass filtered samples. Note that the
intermediate vectors (after multiplication) are passed from the previous iteration
(dashed arrows). In this way one can avoid half of the multiplication operations.

Only the low-pass calculations are shown. The operations for high-pass filtering
are similar. A big disadvantage of this variant is that no intermediate results can be
shared between the low- and high-pass part. Moreover, many shuffle operations have
to be composed by two or more instructions. One reason for this is that some such
operations require three source vectors. Another reason is that the Intel processor’s
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instruction set does not allow arbitrary shuffles. Altogether this algorithm can be
implemented by 10 multiplies, 14 adds, and 26 shuffles.

13.3.3.3 SIMD Parallelization – Variant 2

Fig. 13.5 Variant 2 of SIMD-
parallel algorithm.

x8i,...,8i+3 x8i+4,...,8i+7 x8i+8,...,8i+11x8i-4,...,8i-1

a a a a

c c c c

e e e e

b b b b

d d d d

+

L4i,...,4i+3

Y Z

A B C D

E F G I

J K

A major disadvantage of the first variant is that values that have to be collected in
a single vector are spread over several intermediate vectors, requiring more shuffle
operations. The reason for this is that downsampling causes every second value
to belong together. Therefore, the second variant inserts a single step of shuffling
before the multiplication, putting even and odd samples into separate vectors. This
leads to the following algorithm, which is also shown in Fig. 13.5.

for all i :
Y ← x(8i+4,8i+6,8i+8,8i+10),Z← x(8i+5, . . . ,8i+11),
A←C, B← D, C← Y � (a,a,a,a), D← Z� (b,b,b,b),
E← G, F ← I, G← Y � (c,c,c,c), I← Z� (d,d,d,d),
J← K, K← Y � (e,e,e,e),
L(4i, . . . ,4i+3)← A⊕B⊕ (E,G)(1,2,3,4)⊕ (F, I)(1,2,3,4)⊕

(J,K)(2,3,4,5)⊕ (F, I)(2,3,4,5)⊕ (E,G)(3,4,5,6)⊕ (B,D)(3,4,5,6)⊕C
P← R, Q← S, R← Y � (p, p, p, p), S← Z� (q,q,q,q),
T ←V, U ←W, V ← Y � (r,r,r,r), W ← Z� (s,s,s,s),
H(4i, . . . ,4i+3)← (P,R)(1,2,3,4)⊕ (Q,S)(1,2,3,4)⊕ (T,V )(2,3,4,5)⊕

(U,W )(2,3,4,5)⊕ (T,V )(3,4,5,6)⊕ (Q,S)(3,4,5,6)⊕R

(13.24)
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This has two advantages. First, there is one multiplication less for the e-coefficient.
Second, no shuffle requires more than two source vectors. Moreover, the two results
of the first shuffling step can be reused in the high-pass part. Thus, this algorithm is
implemented by only 9 multiplies, 14 adds, and 20 shuffles.

13.3.3.4 SIMD Parallelization – Variant 3

Fig. 13.6 Variant 3 of SIMD-
parallel algorithm. Multipli-
cation by a vector of equal
coefficients is depicted by a
single circle.
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The third variant adopts the scheme of the improved sequential algorithm. First,
the input vectors are shuffled so that the remaining operations can be performed as
in the sequential case. This reverses the order of phases completely. Then, vectors
that have to be multiplied by the same filter coefficients are added, followed by
multiplication and the final sum. The following algorithm is also shown in Fig. 13.6.

for all i :
Y ← x(8i+4, . . . ,8i+7), Z← x(8i+8, . . . ,8i+11),
A← J, B← K, C← (A,Y )(1,2,3,4), D← (B,Y )(1,2,3,5),
E← (C,Y )(1,2,3,6), F ← (D,Y )(1,2,3,7), G← (E,Z)(1,2,3,4),
I← (F,Z)(1,2,3,5), J← (G,Z)(1,2,3,6), K← (I,Z)(1,2,3,7),
L(4i, . . . ,4i+3)← (A⊕ J)� (a,a,a,a)⊕ (B⊕ I)� (b,b,b,b)⊕

(C⊕G)� (c,c,c,c)⊕ (D⊕F)� (d,d,d,d)⊕E� (e,e,e,e)
H(4i, . . . ,4i+3)← (C⊕ J)� (p, p, p, p)⊕ (D⊕ I)� (q,q,q,q)⊕

(E⊕G)� (r,r,r,r)⊕F� (s,s,s,s)

(13.25)

Note that only two vectors have to be passed to the next iteration. This reduces
the stress on register allocation significantly. The biggest advantage of this algo-
rithm is that all results of the shuffle phase can be reused in the high-pass part.
Unfortunately, none of the shuffles, as depicted in Fig. 13.6, can be implemented
as a single instruction. However, through appropriate rearrangements some of the
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additional instructions can be avoided. Altogether, this variant requires 9 multiplies,
14 adds, and 12 shuffles.

13.3.3.5 Experimental Results

Fig. 13.7 Speedups of the
SIMD parallelization variants
against the improved sequen-
tial algorithm. The horizontal
axis again shows the size of
the repeatedly transformed
data set.
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As variants 2 and 3 of the SIMD algorithms have the same number of multiplies
and adds as the improved sequential algorithm, only with vectors instead of single
numbers, there is a potential speedup of 4. However, due to massive shuffle oper-
ations this speedup cannot be reached, as one can see in Fig. 13.7. According to
expectations, variant 3 is the best, giving speedups of 1.8.

Again, accessing cached data has only a minor influence on performance. The
decay of speedup for small data sizes is due to complex startup and close-off oper-
ations, e.g., for initializing registers, which become more dominant for small data
sizes. The slight decay for large data sizes is probably due to cache effects.

The hand-optimized Intel IPP library has slightly better speedups for medium
data sizes. However, it seems to be more dependent on cache since its performance
decreases noticeably for large data sizes. Also, it seems to have even more problems
with startup operations for small data sizes, although filter allocation is performed
only once for all repeated calls in the experiment. Note that ippsWTFwd_32f is
used here which does not apply lifting and where filters are not fixed, i.e., defined at
runtime.

13.3.3.6 Applicability to Arbitrary Filter Banks

The approaches presented here can all be applied to other filters as well. It is not
apparent, however, which one would be the best for a given filter, or if some modi-
fication of a variant can do even better. Let us, therefore, look at how the features of
the presented variants behave on other kinds of filters.
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Variants 1 and 2 rely on the fact that a single filter coefficient has to be applied to
either even or odd samples, but not both. However, this is only true for uneven sym-
metrical filters, or filters without any symmetry. This means that variant 3 has even
more advantages for even symmetrical filters. On the other hand, variant 3 might
imply redundant multiplications for non-symmetrical filters if some low- and high-
pass coefficients are equal. This happens mostly for orthogonal wavelets. In this
case, however, filters have even length and, as a consequence, a low-pass coefficient
for even samples always corresponds to an equal high-pass coefficient for uneven
samples, or vice versa. Therefore, variant 3 does not produce redundant multiplica-
tions for orthogonal wavelets, since multiplied even samples can never be reused for
the high-pass filtering.

Important questions arise for particularly long filters. Variants 2 and 3 need to
store at least one vector for each filter tap to pass it to the next iteration. This requires
the allocation of many CPU registers and leads to additional memory accesses when
the compiler runs out of available registers. On the other hand, variant 3 has to keep
all shuffled vectors in registers, whereas variants 1 and 2 can drop shuffled vectors
(and even some other intermediate vectors) after having added them to the final sum.
However, variant 3 can also drop these if the filter is non-symmetrical.

All these remarks are only hints, of course. Filters reveal surprisingly diverse fea-
tures with respect to SIMD parallelization. Each particular filter should be examined
thoroughly, based on the approaches presented above.

13.3.4 Biorthogonal 7/9 with Lifting

As most wavelet filters, the biorthogonal 7/9 filter can also be implemented by ap-
plying the lifting scheme [18]. It is a method to implement wavelet filter pairs in a
joint pass. In this way it is possible to reduce the total number of operations.

13.3.4.1 Sequential Algorithm

The lifting approach factors the filter pair into several predict and update steps,
where odd values (values at odd position) are predicted from even values and re-
placed by the difference between prediction and actual value, and even values are
updated to represent a local average. This method significantly reduces the num-
ber of multiplies in the sequential algorithm. In this specific case the sequential
biorthogonal 7/9 without lifting uses 9 multiplies for every two samples (improved
version), whereas biorthogonal 7/9 with lifting as shown here only requires 6 mul-
tiplies.
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for all i : x(2i+1)← x(2i+1)+a(x(2i)+ x(2i+2)),
for all i : x(2i)← x(2i)+b(x(2i−1)+ x(2i+1)),
for all i : x(2i+1)← x(2i+1)+ c(x(2i)+ x(2i+2)),
for all i : x(2i)← x(2i)+d(x(2i−1)+ x(2i+1)),
for all i : x(2i+1)←−ex(2i+1),
for all i : x(2i)← 1

e x(2i)

(13.26)

The low-pass and high-pass subbands are then found interleaved in even and odd
positions, respectively. Note that the coefficients a, . . . ,e are not the same as in the
sequential algorithm, but are the result of the factorization process on which the
lifting scheme is based. Note also that each of these assignments has to be executed
for all i before proceeding with the next assignment.

The lifting scheme can also be implemented in a single-loop manner in the sense
that each input value is read from memory only once and each output value is written
to memory once without subsequent updates. While this is an improvement in itself,
since it minimizes memory access, it turns out to be the only reasonable way to go
for the SIMD parallelization. To see why, let us examine the number of operations in
a single lifting pass x2n← x2n +α(x2n−1 + x2n+1). There are 2 adds and 1 multiply
for every second sample, which makes 1 add and 1

2 multiply per sample. We can
vectorize these operations by

x(2n, . . . ,2n+3)← x(2n, . . . ,2n+3)+
(α,0,α,0)� (x(2n−1, . . . ,2n+2)+ x(2n+1, . . . ,2n+4)) . (13.27)

Since x(2n−1, . . . ,2n + 2) and x(2n + 1, . . . ,2n + 4) require shuffle operations, we
need 2 shuffles, 2 adds and 1 multiply for every 4 samples, giving 1

2 shuffle, 1
2 add

and 1
4 multiply per sample or – taken together – 1.25 operations instead of 1.5 in the

non-SIMD case. This is, obviously, not a satisfying speedup, given the theoretical
maximum speedup of 4.

Therefore, we develop a new algorithm with a single outer loop. To do so, we
have to rewrite it by applying the well known loop fusion technique (see Sect.
13.2.3). Immediately after iteration (i, j) of loop i, iteration (i + 1,k) of the sub-
sequent loop i + 1 is executed that depends on iteration (i, j) and does not depend
on an iteration (i, l) in loop i occurring later in that loop (l > j). The process begins
with the first loop. After one iteration of each loop has been executed, one iteration
of the fused loop is completed and the process starts over with a subsequent itera-
tion. As iteration (i, j) also depends on iteration (i, j−1), values have to be passed
between iterations. For every two input values, two output values can be calculated,
one low-pass and one high-pass coefficient. This leads to the following algorithm:

for all i :
o← q, p← x(2i+3), q← x(2i+4),
r← s, s← p+a(o+q),
t← u, u← o+b(r + s),
v← w, w← r + c(t +u),
L(i)← t +d(v+w) · 1

e , H(i)← w · (−e) .

(13.28)
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Fig. 13.8 Sequential single-
loop algorithm for the
biorthogonal 7/9 filter with
lifting. Circles with three in-
puts (l left, r right, u upper)
denote basic lifting operations
y = u + α(l + r). Rounded
frames indicate single itera-
tions.
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This algorithm is also shown in Fig. 13.8 for a very short data length of 10. Itera-
tions, as described above, are denoted “main”. Longer data would, of course, require
more “main” iterations. Note that intermediate values q,s,u,w are passed from iter-
ation to iteration, indicated by arrows that cross iteration borders in Fig. 13.8. These
four values have to be set properly at the beginning of the loop. Also, the end of the
loop needs special treatment. Fig. 13.8 shows how this must be done in the case of
mirroring border handling in the phases denoted by “prolog” and “epilog”.

13.3.4.2 SIMD Parallel Algorithm

To be able to obtain speedup using SIMD operations, again full vectors have to be
read. Like in variant 2 of the biorthogonal filter without lifting, data is shuffled after
being read from memory. Then SIMD operations are applied. This leads to interme-
diate results which have to be shuffled again before proceeding. These results can be
reused in the next iteration step, much like in the sequential algorithm, which leads
to the following algorithm:

for all i :
h← x2, x1← x(8i+4, . . . ,8i+7), x2← x(8i+8, . . .),
q← (h,x1)(0,2,4,6), p← (h,x1,x2)(3,5,7,9), o← (h,x1)(2,4,6,8),
r← s, s← (a,a,a,a)� (o⊕q)⊕ p, r← (r,s)(3,5,6,7),
t← u, u← (b,b,b,b)� (r⊕ s)⊕o, t← (t,u)(3,5,6,7),
v← w, w← (c,c,c,c)� (t⊕u)⊕ r, v← (v,w)(3,5,6,7),

L(4i, . . . ,4i+3)← ((d,d,d,d)� (v⊕w)⊕ t)� ( 1
e , 1

e , 1
e , 1

e ),
H(4i, . . . ,4i+3)← (−e,−e,−e,−e)�w .

(13.29)

See also Fig. 13.9 for a data-flow diagram of the algorithm.
The algorithm can also be interpreted as being equivalent to variant 3 of the non-

lifting algorithm, applied to each of the four stages for coefficients a,b,c,d. To see
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Fig. 13.9 SIMD-algorithm of
biorthogonal 7/9 filter with
lifting. Heavy use of shuffle-
operations may cause non-
optimal speedups. Like in the
sequential case, intermediate
values are passed between
iterations (dashed lines).
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this, consider each stage as the application of the short filters (a,1,a), . . . ,(d,1,d).
Then each stage consists of the steps shuffle, add, multiply, and sum, just like vari-
ant 3 in Sect. 13.3.3.2. Variants 1 and 2 could also be used here. However, consid-
erations show that these would immediately imply unreasonable slow-downs. For
other filters given in lifting scheme, a similar approach can be applied, interpreting
the lifting steps as short filters.

Again, it is not possible to implement the algorithm in a straight forward way
because SIMD extensions (e.g., Intel SSE instruction set) do not support shuffling
from three sources into a single destination in a single instruction. However, the
algorithm can be implemented with 6 multiplies, 8 adds, and 11 shuffles.

Fig. 13.10 Execution times
in ns/sample of sequential
and SIMD implementations
with and without lifting over
the size of the repeatedly
transformed data set (number
of floats).
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13.3.4.3 Experimental Results

Fig. 13.10 shows execution times of the sequential and SIMD implementations
of the lifting algorithm in comparison to the non-lifting algorithm. Interestingly,
the sequential implementation is slower with lifting than without, despite the re-
duced number of multiplies and adds. Theoretical considerations [18] would imply
a speedup of 1.64. An investigation of the assembler code showed no obvious rea-
son, the faster code being significantly longer. A guess is that there is a peculiar
problem in scheduling the instructions optimally which can be resolved more easily
in the longer code.

Fig. 13.11 Speedup of the
SIMD implementation with
lifting against implementa-
tions without lifting or SIMD.
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However, the SIMD implementation is able to reduce the execution times sig-
nificantly. Again, cached values do not seem to play an important role. Fig. 13.11
shows the speedup of the SIMD implementation compared to versions without lift-
ing or SIMD. While, compared to the sequential lifting algorithm, we get a speedup
of up to 2.66 (of a theoretical maximum of 4), the speedup is only 2.36 (of theo-
retical 1.64 · 4 = 6.56) compared to the sequential algorithm without lifting since
the latter is faster, as mentioned above. However, the SIMD algorithm with lifting is
faster than that without lifting. There is a speedup of about 1.3 (of theoretical 1.64).
The speedup decay for large data sizes is again probably due to cache problems.

Again, the Intel IPP library is not able to outperform our SIMD implementation
of wavelet lifting, as can be seen in Fig. 13.10. It shows equal performance for
small and slightly worse for medium data sizes. For large data sizes there seems
to be a major cache problem, since its performance even drops below that of the
sequential non-lifting algorithm. Note that ippiWTFwdRow_D97_JPEG2K_32f_C1R
is used where lifting is applied and the filter is fixed, as in our implementation.
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13.3.5 Conclusion

The efficiency of the parallelization depends largely on the filter lengths, their align-
ments and even on the coefficients of the filters. If some of the coefficients are equal,
as there are for symmetrical filters, the sequential algorithm can be optimized by
reusing computed values. To do the same in the SIMD parallelized algorithm often
implies complicated shuffle operations.

Generally, the need for many shuffle operations reduces the speedup most. Mem-
ory access as a bottleneck could also limit speedups. However, investigations show
that the execution times are almost invariant to whether source data is in cache or
not. This means that the speedups shown above represent purely algorithmic im-
provements.

Apart from speedup issues, algorithms have to be found to derive optimal solu-
tions. This is important because each parallelization presented here is one of many
possible solutions and it is still possible that the shown solutions can be improved.
Since in practice it would be an almost unaccomplishable amount of work to hand-
code a variety of solutions to find the best, automatic optimization techniques as in
[19] are required.

13.4 Recursive Algorithms

Algorithms of the convolution type are non-recursive, which means that output val-
ues are independent of each other. Whenever previous output values are reused in the
computation of new values, the algorithm is called recursive. The infinite impulse
response (IIR) filter technique is the most important example of such an algorithm.
Therefore, we shall investigate it and examine vectorization strategies.

Fig. 13.12 Loop dependen-
cies in IIR filtering

signal data

filter taps

From a computational point of view, the difference between FIR and IIR filters
lies in the dependencies between loop iterations. Again, there are two loops, one
over signal data and one over filter taps. In the FIR case, iterations of the outer loop,
i.e., entire inner loops, are independent of each other, leading to a rather straight-
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forward SIMD parallelization where the two loops (inner and outer) are transposed
for a number of outer iterations equal to the SIMD vector size p, as shown in Sect.
13.3.1. In the IIR case, the dependencies are more complicated since all previous
output values are required to calculate a new one. See Fig. 13.12 and compare to
Fig. 13.1. Therefore, SIMD parallelization is more difficult.

In this section we will first apply usual rescheduling techniques and then show
how algebraic transforms of the algorithm can improve the vectorization signifi-
cantly, which is verified by experimental results. These are conducted on an Intel
Pentium 4 CPU with 3.2GHz and 2MB cache size using the SSE extension with
vectors of 4 single precision numbers. All implementations use the same amount of
code optimization, i.e., memory access through incremented pointers instead of in-
dexed arrays, and compilation with gcc 4.1.2 with the -O3 option. SIMD operations
are implemented using gcc’s built-in intrinsics for vector extensions and the -msse
option. Note that in order to have full control over generated code, no automatic
vectorization is applied. The results are compared to the hand-optimized Intel Inte-
grated Performance Primitives (IPP) v5.3. Note that the IPP library also uses SIMD
operations, but the applied methods are not known to the author.

13.4.1 Sequential IIR Algorithm

The goal of IIR filtering is to calculate the signal y from the signal x by

y(n) =
N−1

∑
i=1

a(i)y(n− i)+
M−1

∑
i=0

b(i)x(n− i) , (13.30)

where the second term is an FIR part with coefficients b(i) and the first term is the
IIR part with coefficients a(i). M is the number of FIR filter taps and N is the number
of IIR filter taps. The formula reveals the outer loop over n and two inner loops over
i.

The sequential implementation is optimized for performance to have a reasonable
comparison for the SIMD parallelized version. It turns out that maintaining a pointer
for y(n) and x(n) and addressing x(n− i) and y(n− i) via relative addressing is
fastest. Using extra buffers or local register variables for reused values does not
improve the performance. Therefore, a similar implementation style is adopted for
the SIMD parallelization.

13.4.2 Scheduling Approach

Rescheduling approaches only change the order in which iterations and operations
are executed. They have therefore limited power if there are too many data depen-
dencies, as there are in IIR filtering. Examples can be found in [20, 21]. We will use



Contents 27

a rather straight forward approach that will be improved by algebraic transforms in
the next section.

The FIR part is vectorized simply as in Sect. 13.3.1 (method B), with the result
given in u. The IIR part can be parallelized in just the same way for those iterations
where i≥ p, i.e., where the source vector y(n− i, . . . ,n− i+ p−1) does not overlap
with the destination vector y(n, . . . ,n+ p−1) that is being calculated. The iterations
i = 0, . . . , p− 1 might be implemented sequentially after computing the others in a
vectorized way first by

v = u ⊕
N−1

∑
i=p

y(n− i, . . . ,n− i+ p−1)� (ai, . . . ,ai) , (13.31)

followed by

y(n+ k) = vk +
p−1

∑
i=1

a(i)y(n+ k− i) for k = 0, . . . , p−1. (13.32)

A first attempt to parallelize the latter part is to split it into two phases. The first
phase treats those terms that reference y(n+ k− i) where n+ k− i < n, i.e., already
available values.

for i = 1, . . . , p−1 :
v← v ⊕ (y(n− p+ i), . . . ,y(n−1),0, . . .)�

(a(p− i), . . . ,a(p− i),0, . . .)
(13.33)

The second phase uses those elements of v that already represent y(n+k) values. At
the beginning, only v0 = y(n). Using this value, v1 can be calculated to hold y(n+1),
and so on. This leads to the following algorithm:

for k = 0, . . . , p−2 :
v← v ⊕ (. . . ,0,vk, . . . ,vk)� (. . . ,0,a1, . . . ,ap−1−k)

y(n, . . . ,n+ p−1)← v
(13.34)

This first approach yields an overhead of p− 1 multiply-accumulate vector opera-
tions, since each phase has p−1 iterations, resulting in 2(p−1) operations, where
only p−1 would be necessary if there were no problems with data dependencies.

13.4.3 Algebraic Transforms

Algebraic transforms of the algorithm can be used to eliminate troubling data de-
pendencies [22]. Here, we will follow an approach that fuses filter taps together to
resolve data dependencies [23]. Let us look at the second iteration (k = 1) of the last
algorithm. Here, v1 = y(n + 1) = v′1 + v0a(1), where v′ comes from the preceding
iteration. Now, we calculate the new v2 as v2 + v1a(1), which can consequently be
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expressed as v2 +v′1a(1)+v0a(1)2. Moreover, v2 = v′2 +v0a(2), as calculated in the
first iteration. Together, we get v′1a(1)+v0(a(1)2 +a(2)). The term v′1a(1) could be
calculated in the last iteration of the first phase, and the term v0(a(1)2 + a(2)) can
be calculated in the first iteration of the second phase because we have eliminated
v1 from the term.

Following this approach even further recursively, we get the following algorithm
that substitutes both phases.

for i = 1, . . . , p :
v← v ⊕ (y(n− p+ i), . . . ,y(n−1),0,vi, . . .vi)� s(i)

y(n, . . . ,n+ p−1)← v
(13.35)

s(i) holds the fused filter tap coefficients and has the following form:

s(1) = (a(p−1), . . . ,a(p−1),0)
s(2) = (a(p−2), . . . ,a(p−2),0,c(1))
. . .

s(p−1) = (a(1),0,c(1),c(2), . . . ,c(p−2))
s(p) = (0,c(1),c(2), . . . ,c(p−1)) ,

(13.36)

where

c(k) =
k

∑
i=1

a(k)c(k− i), c(0) = 1 . (13.37)

This approach finally has only an overhead of one multiply-accumulate vector op-
eration, since it has p iterations. For better comprehensibility, let us write the algo-
rithm for the case p = 4 as in the Intel SSE architecture:

v← v ⊕ (y(n−3),y(n−2),y(n−1),0)� (a(3),a(3),a(3),0)
v← v ⊕ (y(n−2),y(n−1),0,v2)� (a(2),a(2),0,a(1))
v← v ⊕ (yn−1,0,v1,v1)� (a(1),0,a(1),a(1)2 +a(2))
v← v ⊕ (0,v0,v0,v0)� (0,a(1),a(1)2 +a(2),a(1)3 +2a(1)a(2)+a(3))
y(n, . . . ,n+3)← v

Of course, each operation requires at least one shuffle operation, maybe two on the
Intel SSE architecture.

If the number of IIR-taps N is smaller than the vector size p, the above ap-
proach unfortunately only reduces to p− 1 operations. In this case, some divide-
and-conquer algorithm might further reduce the overhead. However, dlog2(p + 1)e
seems to be the lower bound, since y(n + p− 1) depends on the p + 1 values
u0, . . . ,up−1,y(n−1) if N takes the minimal value 2.
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13.4.4 Experimental Results

In Sect. 13.3 we have seen that the performance of an implementation of a filtering
algorithm possibly depends on whether the signal data is in the cache or not. There-
fore, we will adopt the method of varying data size to examine the cache behavior.
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Fig. 13.13 Execution time in ns per sample point and filter tap depending on the data length for
repeated filtering, showing the cache dependency of the algorithms.

The calculation time is expected to depend linearly on the data size and on the
number of filter taps N +M. Therefore, we calculate the execution time per sample
point and filter tap from the total execution time of the algorithm by ttotal/S/(N +
M), where S is the data size.

Fig. 13.13 shows the results for N = M = 2 and N = M = 10. It also includes
performance measures of the Intel IPP library. While the IPP library code seems
to depend a little on the data size, the major reason for this seems to be startup-
overhead when filling the delay-lines, which is significant only for small data sizes.
The sequential algorithm and the SIMD algorithm are completely independent of
the cache state.

Fig. 13.14 Execution time in
ns per sample point and filter
tap depending on the number
of filter taps.
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For small numbers of taps, the IPP library code seems to be faster. This is also
shown in Fig. 13.14. For N = M ≤ 5, the SIMD algorithm cannot compete with the
IPP code. The reason is probably that hand-optimized assembler code, as in the IPP
library, is more important for short loops. For N > 5, however, our SIMD approach
outperforms the IPP library by a speedup of about 1.7 and also shows more regular
behavior. Compared to the sequential algorithm, speedups from 1.5 for small N to
4.5 for large N are obtained.

13.5 Block Algorithms

Algorithms that operate on blocks of signal data usually have a more irregular struc-
ture than streaming algorithms such as filtering. The most prominent example is,
of course, the fast Fourier transform (FFT) as defined in Sect. 13.1.1. Almost all
other blocked transforms are variants of the FFT and have very similar structure. As
a consequence, vectorization strategies are basically the same. Therefore, we will
concentrate on the FFT.

13.5.1 Data Layout

The FFT operates on complex data, which raises the question where real and imag-
inary parts of complex numbers are stored. The most common is an alternating
scheme to keep real and imaginary parts closely together. The other possibility is
to store them in separate arrays. What does that mean for vectorization efficiency?
In the alternating scheme, p

2 = 2 complex numbers are kept in a vector. Simultane-
ous addition of 2 + 2 complex numbers simply takes the form of a vector addition.
However, vectorized multiplication is more complicated. The point-wise complex
product of arrays z(n) = x(n)y(n) can be implemented by

for all n :
a← (ℜx(n),ℑx(n),ℜx(n+1),ℑx(n+1))
b← (ℜy(n),ℑy(n),ℜy(n+1),ℑy(n+1))
c← a�b, d← a�b(1,0,3,2)
e← (c,d)(0,4,2,6), f ← (c,d)(1,5,3,7)� (−1,1,−1,1)
(ℜz(n),ℑz(n),ℜz(n+1),ℑz(n+1))← e⊕ f

(13.38)

This scheme in principle needs two vector multiplications and one vector addition
for 2+2 complex numbers, whereas the sequential version needs 4 multiplications
and 2 additions, or, more precisely, one addition and one subtraction for 1+1 com-
plex numbers, which seems perfect. However, there is an additional multiplication
with (−1,1,−1,1) that is necessary for the sign change in the vectorized addition,
and there are 3 shuffle operations. Moreover, the two shuffles in line 4 need two
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instructions on Intel SSE, which makes a total of 5 shuffles. As a consequence, the
speedup we get if we implement a sequence of complex multiplications in this way
is actually a slowdown of about 0.7. This is a bad thing to start with when trying to
vectorize an algorithm that is based on complex numbers.

On the other hand, the data layout with separate arrays for real and imaginary
parts implies a vectorized algorithm that is equivalent to the sequential algorithm:

ℜz(n, . . . ,n+3) = ℜx(n, . . .)�ℜy(n, . . .)	ℑx(n, . . .)�ℑy(n, . . .)
ℑz(n, . . . ,n+3) = ℜx(n, . . .)�ℑy(n, . . .)⊕ℑx(n, . . .)�ℜy(n, . . .) (13.39)

It uses 4 vector multiplications and 2 vector additions for 4 + 4 complex numbers,
which is perfect, and there are no shuffle operations at all. As a consequence, we get
a speedup of about 3.7 for a sequence of multiplications.

However, the data layout might be predetermined by existing software or inter-
face definitions. In this case, data could be rearranged after reading from memory
and before writing to memory. This can be done by one shuffle operation per input
and output vector. Intermediate stages of the algorithm can keep the separated data
organization, though.

This rearrangement can be incorporated into the bit-reverse sorting pass that is
part of the beginning or end of the FFT algorithm. Bit-reverse sorting moves x(m)
to y(n), where the binary representations of m and n satisfy

m = m020 + · · ·+mB−12B−1 = BR(n) := nB−120 + · · ·+n02B−1 , (13.40)

hence the name. If we combine these movements with the separation of real and
imaginary parts, the sorting algorithm almost does not change. Suppose the array x̃
holds the alternated parts of the complex x, i.e., x̃(2n,2n + 1) = (ℜx(n),ℑx(n)). If
the data block size is at least 8, i.e., 0≤ n < N ≤ 8, or, equivalently, B≥ 3, then the
sorting plus separation can be vectorized by

for all n :
a← x̃(BR(n), . . . ,BR(n)+3),
b← x̃(BR(n+1), . . . ,BR(n+1)+3),
c← x̃(BR(n+2), . . . ,BR(n+2)+3),
d← x̃(BR(n+3), . . . ,BR(n+3)+3),
e← (a,b)(0,2,4,6), f ← (a,b)(1,3,5,7),
g← (c,d)(0,2,4,6), h← (c,d)(1,3,5,7),
ℜy(n, . . . ,n+3)← (e,g)(0,4,1,5),
ℑy(n, . . . ,n+3)← ( f ,h)(0,4,1,5),
ℜy(n+4, . . . ,n+7)← (e,g)(2,6,3,7),
ℑy(n+4, . . . ,n+7)← ( f ,h)(2,6,3,7),

(13.41)

where n is a multiple of 2p = 8. This requires 8 shuffles for 4 input vectors.
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13.5.2 Basic FFT-Blocks

After bit-reverse sorting, the actual algorithm ensues with recursions such as that in
Eq. (13.5). If the data size N in a recursion iteration is greater than 4, then the iter-
ation consists of pointwise multiplication of half of the complex data by complex
factors of the form e−i 2π

N n, followed by addition and subtraction with the other half
of the data. Due to our data layout, this can be done easily by vectorized multiplica-
tions as in Eq. (13.39).

If the data consists of 4 complex values, then vector-local computations are nec-
essary. The FFT of size N = 4, i.e., y = F

N
x is written out sequentially as

b(0)← x(0)+ x(1), b(1)← x(0)− x(1),
b(2)← x(2)+ x(3), b(3)← x(2)− x(3),
y(0)← b(0)+b(2), y(1)← b(1)− ib(3),
y(2)← b(0)−b(2), y(3)← b(1)+ ib(3),

(13.42)

where x is assumed to be already bit-reverse sorted, i.e., x(1) and x(2) are swapped.
This algorithm looks quite regular, but the imaginary factor −i that accompanies
b(3) disturbs the regularity significantly. Nevertheless, a straight forward vectoriza-
tion can be given by

ℜb←ℜx� (1,−1,1,−1)⊕ℜx(1,0,3,2),
ℑb← ℑx� (1,−1,1,−1)⊕ℑx(1,0,3,2),
ℜy←ℜb(0,1,0,1)⊕ (ℜb,ℑb)(2,7,2,7)� (1,1,−1,−1),
ℑy← ℑb(0,1,0,1)⊕ (ℑb,ℜb)(2,7,2,7)� (1,−1,−1,1) .

(13.43)

We see that there are again vector multiplications for sign change. Note that the
algorithm itself does not include any multiplications at all. There are 6 shuffle oper-
ations, whereof 2 require two instructions on Intel SSE. To get rid of the multiplica-
tions, we reschedule the operations so that additions and subtractions are separated,
which is possible because there is always an equal number of positive and negative
signs. This leads to the following algorithm:

a← (ℜx,ℑx)(0,2,4,6), b← (ℜx,ℑx)(1,3,5,7), c← a⊕b, d← a	b,
e← (c,d)(0,2,4,6), f ← (c,d)(1,3,7,5), g← e⊕ f , h← e	 f ,
ℜy← (g,h)(0,2,4,6), ℑy← (g,h)(1,7,5,3) .

(13.44)

There are still 6 shuffle operations, only one of which needs two instructions on
Intel SSE. Surprisingly, this algorithm is about 20% slower than that in Eq. (13.43).
The reason is probably increased dependency of vector instructions and, thus, worse
schedulability. All this shows that code optimization is difficult due to architecture
dependencies, but necessary nevertheless. This problem is addressed in the next
section.
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13.5.3 Automatic Tuning and Signal Processing Languages (SPL)

Because implementations of algorithms show different performance characteristics
on different architectures, optimal implementations have to be found on each archi-
tecture separately. This not only requires implementation efforts on each architec-
ture, but many implementations have to be tested on each architecture. As this is
rarely done manually, implementations are likely to be suboptimal.

To solve this problem, automatic tuning systems have been developed [4, 5], an
approach that is well known in matrix algebra [24, 25, 26]. The idea behind these
systems is that the transform is represented by a matrix M, i.e., y = Mx, and this
matrix can be factored in to sparse matrices Mk as

M = M1M2 · · ·Mm . (13.45)

These matrices can be built from the following primitive matrices:

• the identity matrix In = diag(1, . . . ,1),
• the stride permutation matrix Lrs

r = δ ( js + k, j + kr) of size rs× rs, where 0 ≤
j < r and 0≤ k < s, and

• the “twiddle”-matrix T rs
r = diag(w0·0, . . . ,w0·(r−1),w1·0, . . . ,w(s−1)(r−1)), where

w = e−i 2π
rs .

The primitive matrices can be combined by the following operations:

• matrix multiplication,

• direct sum A⊕B =
(

A
B

)
,

• Kronecker product A⊗B =

 A0,0B · · · A0,s−1B
...

. . .
...

Ar−1,0B · · · Ar−1,s−1B

, and

• recursion, i.e., the use of smaller matrices with the same definition.

Together, these matrices and operations form a framework of a signal processing
language (SPL) [6]. As an example, it is possible to define the Fourier transform of
size 4 (DFT4) in this language through the formula

DFT4 = (DFT2⊗I2)T 4
2 (I2⊗DFT2)L4

2 . (13.46)

Such a formula does not only represent a way to construct the matrix of the trans-
form, it also defines an algorithm by which the transform can be implemented. A
recursively expanded formula can automatically be converted into an actual algo-
rithm in some programming language by substituting the primitive matrices or sim-
ple combinations M j of them by appropriate loops of arithmetic operations. Because
the matrices M j are supposed to be sparse, the resulting algorithm usually reduces
the computational complexity. For the Fourier transform, the complexity reduction
is from O(N2) to O(N logN).
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If a formula such as Eq. (13.46) is defined with symbolic indices (e.g., DFTrs =
. . .), then the formula constitutes a rule that can be applied in the recursive expansion
of formulas. Usually, the parameters of a rule allow for several possible instantia-
tions (e.g., rs = 2 ·4 or 4 ·2). Moreover, there can be several applicable rules. Thus,
a vast space of algorithmic implementations of a certain transform can be generated
automatically.

The goal of the automatic tuning system is to traverse this space, to measure
the implementations’ performances, and to choose the one implementation with the
best performance. However, some heuristics are necessary since it is usually too
expensive to include the entire space of implementations.

There are two vectorization approaches that can be derived from this automatic
tuning technique. The first one is simply to generate blocks of straight line code
(i.e., code without loops) out of formulas and rules, to vectorize these “codelets” as
described in Sect. 13.2.2. This is the approach taken in [7, 8, 9].

Another approach is to use the rules to generate vectorized code. If the expanded
formulas contain right-sided Kronecker products with Ip, where p is the vector size,
then the algorithm is directly vectorizable. This is the approach taken in [27, 28].
Special care has to be taken about shuffle operations. The formulas should be chosen
so that the permutation matrices produce only permutations that are implementable
as single shuffle instructions at a given architecture [29].

The question arises whether the SPL approach can also be used for convolution
type streaming algorithms. A problem here is that the data size is unbounded, which
would imply matrices of infinite size in the SPL formulation. To work around this
problem, one could select a small number of consecutive iterations of the outer loop
and apply the SPL approach to this block. To choose the vector size as the block size
might be a good choice. The block algorithm is then iterated for consecutive blocks.
This approach is taken in [30] for the LMS algorithm. A disadvantage is that the
technique cannot automatically choose how the block iterations interact, i.e., what
data is passed between iterations. An extension of SPL to infinite cyclic matrices
would certainly be a general solution, but this is future work.

13.6 Mixed Algorithms

There are algorithms in signal processing that cannot be classified as either con-
volution or Fourier oriented. Frequently, Fourier transforms are used on blocks
of streaming data. This is mostly combined with overlapped windowed blocks,
i.e., window functions applied to blocks before the transform to reduce artifacts due
to the lack of periodicity. The well-known short-time Fourier transform (STFT),
including the Gabor transform, is the most prominent kind of such a transform in
time-frequency analysis. Vectorization strategies here are basically the same as for
Fourier-type transforms, as those are the main part of a STFT.

On the other hand, filter operations can be applied on blocks of data, where the
handling of block borders is either zero-padded, periodic or mirrored. Moreover, fil-
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ters can be applied in several phases, which includes recursive splitting of frequency
bands, as in the wavelet transform, or multi-dimensional filtering. In these cases, the
passing of vector data between phases might be optimized for overall performance.
Therefore, we will examine a representative example more closely.

13.6.1 Recursive Convolution – Wavelet Transforms

Fig. 13.15 Wavelet transform

low-pass high-pass

low high

low high

input data

H-subband

LH-subb.
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The wavelet transform is implemented by filter pairs such as those in Sections
13.3.2–13.3.4. We get a low-pass and a high-pass subband with half the size of the
original data each. The low-pass subband is then filtered further to be substituted by
two subbands of a quarter of the size of the original data, and so on. See Fig. 13.15.

Note that the original definition of the lifting scheme in Eq. (13.26) yields an
interleaved data layout of the output data. This means that the input data of further
passes is non-contiguous, which is very bad for vectorization. Fortunately, the ap-
proach with fused loops in Eq. (13.28) can separate the subbands easily, which is
also true for the vectorized algorithm in Eq. (13.29).

Thus, the whole algorithm consists of several passes, where each one reads the
output of the preceding pass. This is subject to cache issues, even more so with
SIMD acceleration because the cache is more likely to be a bottleneck in faster
algorithms. Therefore, the loop fusion technique can also be applied to all passes of
the wavelet transform.

Note that special care has to be taken of block borders. See Fig. 13.8 for the case
of mirrored border handling. The prolog and epilog phases in this algorithm appear
in every pass of the wavelet transform. Therefore, the loop fusion has to incorporate
these phases plus a certain number of main-phase iterations into big prolog and
epilog phases, which can be arduous to hand-code.
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13.6.2 Multidimensional Algorithms

The multi-dimensional Fourier transform is implemented in separate passes for each
dimension. If the dimension of a certain pass accesses non-contiguous data, i.e., all
passes but the first, then there is an easy method for vectorization. One simply has to
perform the sequential algorithm while operating on vectors of several neighboring
data values, thus transforming several columns at once. This approach can also be
applied in the first dimension by transposing p× p blocks of input and output data
after reading and before writing to memory, respectively, thus transforming p rows
of data at once. See Eq. (13.9) for the vectorized transposition of such blocks.

input
data

LL HL

LH HH

Fig. 13.16 2-D wavelet transform

The same is true for the wavelet transform [10, 11]. Let us examine the 2-D
wavelet transform. Here, each line is filtered by this scheme followed by columns
being processed in the same way, giving four subbands denoted by LL, LH, HL,
HH. See Fig. 13.16. As explained before, we choose a data layout with separated
subbands. This has the advantage that further passes can access the subbands in the
same way and the same algorithm can be used. Otherwise, methods for the transform
as a whole would have to be developed [31].

Fig. 13.17 Execution times
per sample point (pixel) for
one separate horizontal and
vertical wavelet filtering pass,
with and without SIMD
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See Fig. 13.17 for the execution times of a 2-D filtering pass. There is one
horizontal and one vertical filtering step. The two vectorization approaches “line-
SIMD”, i.e., using the algorithm of Sect. 13.3.4.2 for horizontal filtering, and
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“transpose-SIMD”, i.e., using the above transposition approach, are compared to
the sequential “SISD” algorithm. We see that there is a performance gain by a factor
of about 2.8 over the whole range of data sizes. The transposition-based paralleliza-
tion is slightly better than the pure horizontal approach, mainly due to the lower
total number of shuffle operations.

We also see that there is a dependency on cached data and the algorithm does not
scale linearly with the data size. To reduce cache dependencies, we will now fuse
the horizontal and vertical pass [32]. In the 1-D case, we pass four values from one
iteration to the other. To do a similar thing in the second dimension, we apply an
approach that is known as pipeline or line-based computation [33]. If we imagine
a whole row as a single value (as in the easy vertical SIMD algorithm, only with
vectors of the size of a whole row), we must pass four such rows from one iteration
to the other. This amounts to a buffer of four rows. In the 1-D case, we read two
values from memory in a single iteration. In our row-wise approach this means that
we need two new rows to start an iteration.

Since the source data for this row-wise vertical filtering is the output of the hor-
izontal filtering, we try to use the output of the horizontal filtering in the vertical
transform immediately after it is available. Thus, we have to perform two horizontal
filterings (on two consecutive rows) at once. For each row we get a low-pass and
a high-pass coefficient, which makes four values in total. The two low-pass values
are fed into an iteration of the vertical type which produces an LL- and an LH-type
coefficient, followed by the same operation on the two high-pass coefficients which
produces an HL- and an HH-type coefficient. In each iteration the vertical part up-
dates four values in the four-row buffer, which are reused when the next two rows
are processed.

Fig. 13.18 Execution times
per sample point (pixel) for
the single-loop implementa-
tion with and without SIMD
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This algorithm can be vectorized without major problems, so we get a SIMD
implementation of a 2-D wavelet filtering step in a single loop. The execution times
are shown in Fig. 13.18. There is no cache dependency any more. This time the
transposition based algorithm is significantly worse than the pure line-SIMD ap-
proach. The reason for this is increased buffer size destroying data locality, and an
increased number of concurrently processed intermediate vectors per iteration mak-
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ing register allocation more difficult. The line-SIMD algorithm, however, performs
about 3.7 times faster than the non-parallelized, which is very close to the theoretical
maximum of 4.

13.7 Conclusion

Short-vector single-instruction-multiple-data (SIMD) processing is an interesting
choice for parallel signal processing. The regularity of the data flow of algorithms
used in signal processing enables manual and automatic vectorization techniques to
efficiently exploit fine-grained parallelity for code acceleration.

The task of vectorization, however, is difficult. The reason is that there is no
serve-all approach, but each algorithm has to be treated separately. This is even
true if only characteristics like filter length or symmetry are changed for an oth-
erwise simple filtering algorithm. However, most successful vectorization attempts
are based on well-known strategies such as loop unrolling, loop fusion, loop trans-
position, and algebraic transforms. Even hard cases such as recursive filters can be
parallelized efficiently in this way.

Whereas there are no general automatic vectorization systems for convolution
type filtering algorithms, and manual strategies seem to be the only way to go, the
space of possible implementations for Fourier-type algorithms is so large that au-
tomatic performance tuning systems that traverse this space to find the fastest im-
plementation cannot be beat by manual implementations, at least not in the general
case.

However, the approaches presented in this chapter together with automatic per-
formance tuning techniques may spawn efficient automatic vectorization systems
for a broader range of signal processing algorithms in the future. A promising way
to go might be the extension of signal processing languages, as used in block trans-
forms, to streaming data, as processed in filter banks.
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8. S. Kral, F. Franchetti, J. Lorenz, C. W. Überhuber, SIMD vectorization of straight line FFT
code, in: Proc. Euro-Par, 2003, pp. 251–260.

9. M. Frigo, S. G. Johnson, The design and implementation of FFTW3, in: Proc. IEEE, Vol. 93,
2005, pp. 216–231.
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