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Much work has been done to optimize wavelet transforms for SIMD ex-
tensions of modern CPUs. However, these approaches are always re-
stricted to the vertical part of 2-D transforms with line-wise organized
memory layouts because this leads to a rather straight forward SIMD-
implementation. This work shows for some common wavelet filters that
SIMD operations can also be used on 1-D transforms and produce rea-
sonable speedups. As a result, the performance of algorithms that use
wavelet transforms, such as JPEG2000, can be increased significantly.

1 Introduction

The wavelet transform is a well-established method used in many applica-
tions in signal processing and multimedia processing and compression [1]. It
provides a redundancy-free time-frequency representation in real coefficients
and has several advantages over related transforms. First, in contrast to
blocked DCT (discrete cosine transform) coefficient manipulation does not
imply unpleasant blocking artifacts. Second, the discrete orthogonal variants
with finitely supported basis functions have linear computational complexity
O(n) while that of DCT or other Fourier-related transforms is O(n log n). The
reason for the optimal complexity of the latter variants is the applicability of
multiresolution methods. In this case, the wavelet transform can be imple-
mented in terms of a hierarchical application of FIR filter banks together with
down-sampling of the low-frequency parts.
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Despite the speed of the algorithm it is still demandable to investigate
speedup techniques, since many applications have to satisfy realtime con-
straints and processed data sets are becoming larger. While a significant
amount of work has been done for MIMD parallelization [2, 3, 4] and old
SIMD arrays [5, 6, 7], the use of SIMD extensions of modern general purpose
processors for wavelet transforms [8, 9] is still improvable as is shown in this
work.

The wavelet transform is divided into several levels, each of which consists
of the application of a quadrature mirror filter pair. Common filters have 6
to 12 taps. For 2-D data a horizontal and a vertical filtering of each row and
column has to be performed at every level. If the memory layout is such that
horizontally neighbored data is placed next to each other then the vertical
transform can be SIMD-enabled easily by performing the sequential algorithm
on vectors of horizontally neighbouring values instead of scalar values [8, 9].
The horizontal filtering is not so straight forward to parallelize. The same
problem arises in 1-D transforms and applications with memory constraints
[10]. The reason for this is that consecutive data that is read into a single
packed word requires changing treatment because of badly aligned filters and
down-sampling. Therefore, data has to be rearranged within packed regis-
ters and packed filter vectors have to be set properly. This work presents
approaches for some common filters and shows that reasonable speedups can
be achieved.

2 The Haar Filter

The Haar filter is the most simple orthogonal wavelet filter. It is a 2-tap
filter. We consider it in this section to explain the basic approach to SIMD-
parallelization of wavelet filters. The coefficients are (a, a) = (
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2 ) in the high-pass form. Together with
down-sampling by a factor of 2 the following assignments, which have to be
executed for all i, define the filtering process of the Haar wavelet transform.

Li ← ax2i + ax2i+1, Hi ← ax2i − ax2i+1

L and H are the low-pass and the high-pass subbands respectively. As a first
sequential improvement we can reuse already computed products, which leads
to

p← ax2i, q ← ax2i+1, Li ← p + q, Hi ← p− q .

We see that for each pair Li,Hi of output values we have to read two input
values x2i, x2i+1. Since it is reasonable to read and write only full packed



SIMD Parallelization of Common Wavelet Filters 143

words when using SIMD, we consequently have to read two packed words
in each iteration. We denote packed multiplication and addition by � and ⊕
respectively. To access packed words and to rearrange data in packed registers
(shuffle) we use the notation y(i0,...,im) := (yi0 , . . . , yim). Thus, we can write
the SIMD parallelization of the Haar filter for word size 4 as

p← x(8i,...,8i+3) � (a, a, a, a), q ← x(8i+4,...,8i+7) � (a, a, a, a),
r ← (p, q)(0,2,4,6), s← (p, q)(1,3,5,7),

L(4i,...,4i+3) ← r ⊕ s, H(4i,...,4i+3) ← r 	 s .

In the first line two perfectly aligned packed words are read and each element
is immediately multiplied by the coefficient a with a single packed multiply
operation for each word. In the second line the elements are rearranged into
one word containing all even elements and one containing all uneven elements
using shuffle operations. To calculate the sum and difference of every two
neighbouring elements, we just have to add and subtract the two words, which
is done in the third line.

While the sequential algorithm requires two multiplies and two additions
(or subtractions) for every two input values, the SIMD version requires two
packed multiplies and two packed additions for every eight input values. This
makes a theoretical speedup of 4. However, since the shuffle operations also
require some execution time and memory access can be a bottle-neck, the
speedup is reduced. On an Intel Pentium 4 CPU with 2.8GHz using the SSE
extension with packed words of 4 single precision numbers we get a speedup
of 2.7 for the forward transform and 1.3 for the backward transform.

In the following sections we will discuss more complicated examples with
more practical relevance. Note that all examples will show the same phases:
memory read, coefficient multiplication, data rearrangement, summation and
memory write. Some will have a different order of execution, though. Espe-
cially coefficient multiplication and data rearrangement will be interchanged.

3 Biorthogonal 4/12

The biorthogonal 4/12 filter is an example for an even, symmetrical filter. We
will use the following symbols for abbreviation of the coefficients:

α← 0.0138107, β ← 0.041432, γ ← 0.0524806, δ ← 0.267927,
ε← 0.0718155, ζ ← 0.966748, ι← 0.176777, κ← 0.53033 .

The downsampling factor of 2 and the offsets of −5 for low-pass and −1 for
high-pass yields the following formulas for the low-pass subband L and the
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high-pass subband H:

Li ←−αx2i−6 + βx2i−5 + γx2i−4 − δx2i−3 − εx2i−2 + ζx2i−1

+ ζx2i − εx2i+1 − δx2i+2 + γx2i+3 + βx2i+4 − αx2i+5,
Hi ← ιx2i−2 − κx2i−1 + κx2i − ιx2i+1 .

Our SIMD parallelization idea is similar to the one we used with the Haar
filter: we compute 8 results within one loop iteration: 4 for the low-pass
subband and 4 for the high-pass subband. In order to achieve this, we have
to read 5 packed words of our source (20 values) and shuffle them in a way so
we have a packed word for each x in the Li-, Hi-formulas:

s1 ← x(8i−6,...,8i−3), s2 ← x(8i−2,...,8i+1),

s3 ← x(8i+2,...,8i+5), s4 ← x(8i+6,...,8i+9),

s5 ← x(8i+10,...,8i+13),

a1 ← (s1, s2)(0,2,4,6), b1 ← (s1, s2)(1,3,5,7),

g1 ← (s1, s2, s3)(2,4,6,8), d1 ← (s1, s2, s3)(3,5,7,9),

e1 ← (s2, s3)(0,2,4,6), z1 ← (s2, s3)(1,3,5,7),

z2 ← (s2, s3, s4)(2,4,6,8), e2 ← (s2, s3, s4)(3,5,7,9),

d2 ← (s3, s4)(0,2,4,6), g2 ← (s3, s4)(1,3,5,7),

b2 ← (s3, s4, s5)(2,4,6,8), a2 ← (s3, s4, s5)(3,5,7,9) .

Now we can replace each coefficient symbol σ with the packed word (σ, σ, σ, σ)
and the multiplications, additions and subtractions with their packed coun-
terparts �, ⊕ and 	. The resulting formulas for the low-pass subband are:

Li ←	(α, α, α, α)� (a1 ⊕ a2)⊕ (β, β, β, β)� (b1 ⊕ b2)
⊕(γ, γ, γ, γ)� (g1 ⊕ g2)	 (δ, δ, δ, δ)� (d1 ⊕ d2)
	(ε, ε, ε, ε)� (e1 ⊕ e2)⊕ (ζ, ζ, ζ, ζ)� (z1 ⊕ z2) .

If we use the same idea for the high-pass subband, it can easily be seen that
we need not compute new shuffles, but can reuse e1, e2, z1 and z2 from the
low-pass subband:

Hi ← (ι, ι, ι, ι)� (e2 	 e1)⊕ (κ, κ, κ, κ)� (z1 	 z2) .

As further improvement, we can reuse the packed source words s3, s4 and s5

as well as the shuffles d2,g2,b2 and a2 in the next iteration. So we can replace
some of the assignments of auxiliary words with the following operations:

s1 ← s3, s2 ← s4, s3 ← s5,
a1 ← d2, b1 ← g2, g1 ← b2, d1 ← a2 .
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In this way we pass reusable packed words from one iteration to the next. This
saves 3 memory reads and 4 shuffle operations. Initially, s3, s4, s5, d2, g2, b2 and
a2 have to be set correctly of course. Note also that all five phases (see Section
2) are present and coefficient multiplication comes after data rearrangement.

With these optimizations, we need 14 packed additions and 8 packed mul-
tiplies for 8 destination values, while the simple sequential version takes 16
additions and 16 multiplies for 2 destination values. In the parallelized ver-
sion, we further need 4 packed loads and stores and 12 shuffle operations for
8 destination values. On an AMD Mobile Duron Processor we get a speedup
of 2.6 for the forward and 2.0 for the backward transform using the SSE ex-
tension.

4 Biorthogonal 7/9

The biorthogonal 7/9 filter is an example for an uneven, symmetrical filter.
It has 9 lowpass coefficients (a, b, c, d, e, d, c, b, a) and 7 high-pass coefficients
(p, q, r, s, r, q, p). The sequential algorithm is:

Li ← ax2i−4 + bx2i−3 + cx2i−2 + dx2i−1 + ex2i

+ dx2i+1 + cx2i+2 + bx2i+3 + ax2i+4,
Hi ← px2i−2 + qx2i−1 + rx2i + sx2i+1 + rx2i+2 + qx2i+3 + px2i+4 .

Our experiments show that the reuse of already computed values (e.g. dx2i+1 =
dx2j−1 for j = i + 1) does not produce any speedup in this case. Accordingly,
we use a rather straight forward approach for the SIMD parallelization.

u← x(8i+4,...,8i+7), v ← x(8i+8,...,8i+11),

u0 ← u(0,0,0,0), u1 ← u(1,1,1,1), . . . , v3 ← v(3,3,3,3),

S ← S⊕u0 � (a, c, e, c)⊕ u1 � (0, b, d, d)⊕ u2 � (0, a, c, e)⊕ u3 � (0, 0, b, d)
⊕ v0 � (0, 0, a, c)⊕ v1 � (0, 0, 0, b)⊕ v2 � (0, 0, 0, a),

T ← T ⊕u0 � (p, r, r, p)⊕ u1 � (0, q, s, s)⊕ u2 � (0, p, r, r)⊕ u3 � (0, 0, q, s)
⊕ v0 � (0, 0, p, r)⊕ v1 � (0, 0, 0, q)⊕ v2 � (0, 0, 0, p),

L(4i,...,4i+3) ← S, H(4i,...,4i+3) ← T,

S ←u0 � (a, 0, 0, 0)⊕ u1 � (b, 0, 0, 0)⊕ u2 � (c, a, 0, 0)⊕ u3 � (d, b, 0, 0)⊕
v0 � (e, c, a, 0)⊕ v1 � (d, d, b, 0)⊕ v2 � (c, e, c, a)⊕ v3 � (b, d, d, b),

T ←u2 � (p, 0, 0, 0)⊕ u3 � (q, 0, 0, 0)⊕
v0 � (r, p, 0, 0)⊕ v1 � (s, q, 0, 0)⊕ v2 � (r, r, p, 0)⊕ v3 � (s, s, q, 0) .

In the first line two packed words are read. They are rearranged immediately
after that so that there is one word for each of the 8 elements, consisting en-
tirely of copies of that element. These are then used in the coefficient multipli-
cation phase, where the consecutive coefficients are spread across consecutive
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multiplicator words. Note that, again, two packed words S, T are passed from
one iteration to the other. Therefore, each memory location has to be accessed
only once.

The sequential algorithm requires 7 + 9 = 16 multiplies and 14 additions
for 2 input values. The parallelized one requires 28 packed multiplies and 26
packed additions for 8 input values. This gives a theoretical speedup of only
2.3. One reason for this is that the parallelization is not optimal. Another
reason is that because of alignment problems due to the uneven filter length,
some multiplier words have to contain zeros, thus introducing useless com-
putations. On an Intel Pentium 4 CPU with 2.8GHz we get a speedup of
1.75.

5 Biorthogonal 7/9 with Lifting

The biorthogonal 7/9 filter can also be implemented by applying the lifting
scheme [11]. This method can reduce the number of multiplies by a factor of
up to 2. For this algorithm we are also able to obtain some speedup using
SIMD operations. The general algorithm is shown below.

x2i+1 ← x2i+1 + a(x2i + x2i+2), x2i ← x2i + b(x2i−1 + x2i+1),
x2i+1 ← x2i+1 + c(x2i + x2i+2), x2i ← x2i + d(x2i−1 + x2i+1),
x2i+1 ← −ex2i+1, x2i ← 1

ex2i

Note that in contrast to all other algorithms in this paper, each of these assign-
ments has to be executed for all i before proceeding with the next assignment.
To transform this algorithm into a single outer loop, we have to rewrite it ap-
plying passing of values between iterations again. This leads to the following
algorithm:

o← q, p← x2i+3, q ← x2i+4,
r ← s, s← p + a(o + q),
t← u, u← o + b(r + s),
v ← w, w ← r + c(t + u),
Li ← t + d(v + w) · 1

e , Hi ← w · (−e) .

To be able to use SIMD operations, we need full packed words again. Using the
same notation as in the above examples we can write the SIMD parallelization
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as

h← x2, x1 ← x(8i+4,...,8i+7), x2 ← x(8i+8,...,8i+11),

q ← (h, x1)(0,2,4,6), p← (h, x1, x2)(3,5,7,9), o← (h, x1)(2,4,6,8),

r ← s, s← (a, a, a, a)� (o⊕ q)⊕ p, r ← (r, s)(3,5,6,7),

t← u, u← (b, b, b, b)� (r ⊕ s)⊕ o, t← (t, u)(3,5,6,7),

v ← w, w ← (c, c, c, c)� (t⊕ u)⊕ r, v ← (v, w)(3,5,6,7),

L(4i,...,4i+3) ← ((d, d, d, d)� (v ⊕ w)⊕ t)� (1
e , 1

e , 1
e , 1

e ),
H(4i,...,4i+3) ← (−e,−e,−e,−e)� w .

It is not possible to implement this algorithm straight forward, because SIMD
extensions (e.g. Intel SSE2 instruction set) do not support shuffling in the way
used here. Therefore the sample implementation uses some auxiliary variables
to work around and this of course decreases performance.

As with the Haar filter the theoretical possible speedup of SIMD implemen-
tation is 4. However, due to complex shuffling operations the measured value
is much lower. Using SIMD operations in combination with lifting algorithms
should theoretically speed up the system by a factor of 6.5 compared to a se-
quential implementation of standard Biorthogonal (7/9) filter. This speedup is
composed of 64% from the algorithm [11] and 400% from the SIMD operations.

Of course, speedup depends on the implementation of SIMD features on
the processor. Measurements gave a speedup of 2.65 for forward and 1.7 for
backward transform compared to plain implementation of the lifting algorithm.
Measurements have been taken on an Intel Pentium 4 with 2.8GHz using the
SSE extension with packed words of 4 single precision numbers.

6 Conclusion

We have shown that the 1-D wavelet filter operation is indeed parallelizable
with SIMD extensions of common general purpose processors. Speedups in
the range 1.5 up to 3 can be achieved for packed words of 4 single precision
floating point numbers.

The efficiency of the parallelization depends largely on the filter lengths,
the alignments and even on the coefficients of the filters. Uneven filter lengths
force some words in the SIMD computations to be zero, introducing useless
computations and thus limiting the speedup. If some of the coefficients are
equal, as there are for symmetrical filters, the sequential algorithm can be
optimized by reusing already computed values. To do the same in the SIMD
parallelized algorithm often implies complicated shuffle operations.

Generally, the need for many shuffle operations probably reduces the speedup
most. Another source of speedup limitation is memory access as bottleneck.
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Together with cache issues and data organization problems for 2-D transforms
it can influence the speedup either in a negative or positive way. Investigating
these relations is an issue of future work.

Strikingly, backward transforms always produce lower speedups than for-
ward transforms. The actual reasons for this are not quite clear. However, the
following differences between forward and backward transforms are probably
responsible. Since backward filters are basically equal to forward filters mir-
rored at position 1, backward filters are usually aligned worse, i.e. at positions
that are not divisible by 4. Another difference is that in the forward case two
consecutive words are read from memory and two non-consecutive are written,
while in the backward case the situation is reverse. This may lead to different
cache effects.

Apart from speedup issues, algorithms have to be found to derive optimal
solutions. This is important because each parallelization presented in this
work is one of many possible solutions and it is not at all clear that the shown
solutions could not be improved. Since it would be an almost unaccomplishable
amount of work to hand-code a variety of solutions to find the best, automatic
optimization techniques are required.
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