
 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

C/C++ Language Extensions for Cell
Broadband Engine Architecture

Version 2.5

CBEA JSRE Series
Cell Broadband Engine Architecture
Joint Software Reference Environment
Series

September 14, 2007

���

���®

© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba
Corporation 2002 - 2007

All Rights Reserved
Printed in the United States of America September 2007

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.

IBM PowerPC
IBM Logo PowerPC Architecture
ibm.com

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury or catastrophic property damage. The information contained in this document does
not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or
implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this
document was obtained in specific environments, and is presented as an illustration. The results obtained in other
operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com

The IBM semiconductor solutions home page can be found at ibm.com/chips

September 14, 2007

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table of Contents

List of Tables ix
List of Figures xii
About This Document xiv

Audience xiv
Version History xiv
Related Documentation xix
Conventions Used in This Document xix

1. Data Types and Programming Directives 1
1.1. Data Types 1

1.1.1. Fundamental Data Types 1
1.1.2. Mapping of PPU Data Types to SPU Data Types 1
1.1.3. Mapping of SPU Data Types to PPU Data Types 2

1.2. Header Files 2
1.2.1. Header File Contents 2
1.2.2. Single Token Typedefs 2

1.3. Alignment 3
1.3.1. Default Data Type Alignments 3
1.3.2. __align_hint 3

1.4. Operating on Vector Types 4
1.4.1. sizeof() Operator 4
1.4.2. Assignment Operator 4
1.4.3. Address Operator 4
1.4.4. Pointer Arithmetic and Pointer Dereferencing 4
1.4.5. Type Casting 5
1.4.6. Vector Literals 5

1.5. Restrict Type Qualifier 7
1.6. SPU Programmer Directed Branch Prediction 7
1.7. Inline Assembly 8
1.8. Target Definitions 8

2. SPU Low-Level Specific and Generic Intrinsics 9
2.1. Specific Intrinsics 9

2.1.1. Specific Casting Intrinsics 12
2.2. Generic Intrinsics and Built-ins 13

2.2.1. Mapping Intrinsics with Scalar Operands 13
2.2.2. Implicit Conversion of Arguments of Intrinsics 14
2.2.3. Notations and Conventions 14

2.3. Constant Formation Intrinsics 15
spu_splats: Splat Scalar to Vector 15

2.4. Conversion Intrinsics 16
spu_convtf: Convert Integer Vector to Vector Float 16
spu_convts: Convert Vector Float to Signed Integer Vector 16
spu_convtu: Convert Vector Float to Unsigned Integer Vector 16
spu_extend: Extend Vector 17
spu_roundtf: Round Vector Double to Vector Float 17

2.5. Arithmetic Intrinsics 17
spu_add: Vector Add 17
spu_addx: Vector Add Extended 18
spu_genb: Vector Generate Borrow 18
spu_genbx: Vector Generate Borrow Extended 18
spu_genc: Vector Generate Carry 19
spu_gencx: Vector Generate Carry Extended 19
spu_madd: Vector Multiply and Add 19
spu_mhhadd: Vector Multiply High High and Add 19

iv Table of Contents ���

spu_msub: Vector Multiply and Subtract 20
spu_mul: Vector Multiply 20
spu_mulh: Vector Multiply High 20
spu_mule: Vector Multiply Even 21
spu_mulo: Vector Multiply Odd 21
spu_mulsr: Vector Multiply and Shift Right 21
spu_nmadd: Negative Vector Multiply and Add 22
spu_nmsub: Negative Vector Multiply and Subtract 22
spu_re: Vector Floating-Point Reciprocal Estimate 22
spu_rsqrte: Vector Floating-Point Reciprocal Square Root Estimate 22
spu_sub: Vector Subtract 23
spu_subx: Vector Subtract Extended 23

2.6. Byte Operation Intrinsics 24
spu_absd: Vector Absolute Difference 24
spu_avg: Average of Two Vectors 24
spu_sumb: Sum Bytes into Shorts 24

2.7. Compare, Branch and Halt Intrinsics 24
spu_bisled: Branch Indirect and Set Link if External Data 24
spu_cmpabseq: Vector Compare Absolute Equal 25
spu_cmpabsgt: Vector Compare Absolute Greater Than 25
spu_cmpeq: Vector Compare Equal 26
spu_cmpgt: Vector Compare Greater Than 27
spu_hcmpeq: Halt If Compare Equal 28
spu_hcmpgt: Halt If Compare Greater Than 28
spu_testsv: Vector Test Special Value 28

2.8. Bits and Mask Intrinsics 29
spu_cntb: Vector Count Ones for Bytes 29
spu_cntlz: Vector Count Leading Zeros 29
spu_gather: Gather Bits from Elements 29
spu_maskb: Form Select Byte Mask 30
spu_maskh: Form Select Halfword Mask 30
spu_maskw: Form Select Word Mask 31
spu_sel: Select Bits 31
spu_shuffle: Shuffle Two Vectors of Bytes 31

2.9. Logical Intrinsics 32
spu_and: Vector Bit-Wise AND 32
spu_andc: Vector Bit-Wise AND with Complement 33
spu_eqv: Vector Bit-Wise Equivalent 34
spu_nand: Vector Bit-Wise Complement of AND 34
spu_nor: Vector Bit-Wise Complement of OR 35
spu_or: Vector Bit-Wise OR 35
spu_orc: Vector Bit-Wise OR with Complement 36
spu_orx: OR Word Across 36
spu_xor: Vector Bit-Wise Exclusive OR 37

2.10. Shift and Rotate Intrinsics 37
spu_rl: Vector Rotate Left by Bits 37
spu_rlmask: Vector Rotate Left and Mask by Bits 38
spu_rlmaska: Vector Rotate Left and Mask Algebraic by Bits 39
spu_rlmaskqw: Quadword Rotate Left and Mask by Bits 40
spu_rlmaskqwbyte: Quadword Rotate Left and Mask by Bytes 41
spu_rlmaskqwbytebc: Quadword Rotate Left and Mask by Bytes from Bit Shift Count 41
spu_rlqw: Quadword Rotate Left by Bits 42
spu_rlqwbyte: Quadword Rotate Left by Bytes 43
spu_rlqwbytebc: Quadword Rotate Left by Bytes from Bit Shift Count 44
spu_sl: Vector Shift Left by Bits 44
spu_slqw: Quadword Shift Left by Bits 45
spu_slqwbyte: Quadword Shift Left by Bytes 45
spu_slqwbytebc: Quadword Shift Left by Bytes from Bit Shift Count 46

2.11. Control Intrinsics 47
spu_idisable: Disable Interrupts 47
spu_ienable: Enable Interrupts 47
spu_mffpscr: Move from Floating-Point Status and Control Register 48

 ��� Table of Contents v

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_mfspr: Move from Special Purpose Register 48
spu_mtfpscr: Move to Floating-Point Status and Control Register 48
spu_mtspr: Move to Special Purpose Register 48
spu_dsync: Synchronize Data 49
spu_stop: Stop and Signal 49
spu_sync: Synchronize 49

2.12. Channel Control Intrinsics 50
spu_readch: Read Word Channel 51
spu_readchqw: Read Quadword Channel 51
spu_readchcnt: Read Channel Count 51
spu_writech: Write Word Channel 51
spu_writechqw: Write Quadword Channel 52

2.13. Scalar Intrinsics 52
spu_extract: Extract Vector Element from Vector 52
spu_insert: Insert Scalar into Specified Vector Element 53
spu_promote: Promote Scalar to Vector 54

3. Composite Intrinsics 56
spu_mfcdma32: Initiate DMA to/from 32-Bit Effective Address 56
spu_mfcdma64: Initiate DMA to/from 64-Bit Effective Address 56
spu_mfcstat: Read MFC Tag Status 57

4. Programming Support for MFC Input and Output 58
4.1. Structures 58

mfc_list_element: DMA List Element for MFC List DMA 58
4.2. Effective Address Utilities 58

mfc_ea2h: Extract Higher 32 Bits from Effective Address 58
mfc_ea2l: Extract Lower 32 Bits from Effective Address 58
mfc_hl2ea: Concatenate Higher 32 Bits and Lower 32 Bits 59
mfc_ceil128: Round Up Value to Next Multiple of 128 59

4.3. MFC Tag Manager 59
mfc_tag_reserve: Reserve a Tag for Exclusive Use 59
mfc_tag_release: Release a Tag from Exclusive Use 60
mfc_multi_tag_reserve: Reserve a Group of Tags for Exclusive Use 60
mfc_multi_tag_release: Release a Group of Tags from Exclusive Use 60

4.4. MFC DMA Commands 60
mfc_put: Move Data from Local Storage to Effective Address 60
mfc_putb: Move Data from Local Storage to Effective Address with Barrier 61
mfc_putf: Move Data from Local Storage to Effective Address with Fence 61
mfc_get: Move Data from Effective Address to Local Storage 61
mfc_getf: Move Data from Effective Address to Local Storage with Fence 61
mfc_getb: Move Data from Effective Address to Local Storage with Barrier 62

4.5. MFC List DMA Commands 62
mfc_putl: Move Data from Local Storage to Effective Address Using MFC List 62
mfc_putlb: Move Data from Local Storage to Effective Address Using MFC List with Barrier 63
mfc_putlf: Move Data from Local Storage to Effective Address Using MFC List with Fence 63
mfc_getl: Move Data from Effective Address to Local Storage Using MFC List 63
mfc_getlb: Move Data from Effective Address to Local Storage Using MFC List with Barrier 63
mfc_getlf: Move Data from Effective Address to Local Storage Using MFC List with Fence 64

4.6. MFC Atomic Update Commands 64
mfc_getllar: Get Lock Line and Create Reservation 64
mfc_putllc: Put Lock Line if Reservation for Effective Address Exists 64
mfc_putlluc: Put Lock Line Unconditional 65
mfc_putqlluc: Put Queued Lock Line Unconditional 65

4.7. MFC Synchronization Commands 65
mfc_sndsig: Send Signal 66
mfc_sndsigb: Send Signal with Barrier 66
mfc_sndsigf: Send Signal with Fence 66
mfc_barrier: Enqueue mfc_barrier Command into DMA Queue or Stall When Queue is Full 66
mfc_eieio: Enqueue mfc_eieio Command into DMA Queue or Stall When Queue is Full 67
mfc_sync: Enqueue mfc_sync Command into DMA Queue or Stall When Queue is Full 67

4.8. MFC DMA Status 67

vi Table of Contents ���

mfc_stat_cmd_queue: Check the Number of Available Entries in the MFC DMA Queue 67
mfc_write_tag_mask: Set Tag Mask to Select MFC Tag Groups to be Included in Query

Operation 67
mfc_read_tag_mask: Read Tag Mask Indicating MFC Tag Groups to be Included in Query

Operation 67
mfc_write_tag_update: Request That Tag Status be Updated 68
mfc_write_tag_update_immediate: Request That Tag Status be Immediately Updated 68
mfc_write_tag_update_any: Request That Tag Status be Updated for Any Enabled Completion

with No Outstanding Operation 68
mfc_write_tag_update_all: Request That Tag Status be Updated When All Enabled Tag Groups

Have No Outstanding Operation 68
mfc_stat_tag_update: Check Availability of Tag Status Update Request Channel 68
mfc_read_tag_status: Wait for an Updated Tag Status 69
mfc_read_tag_status_immediate: Wait for the Updated Status of Any Enabled Tag Group 69
mfc_read_tag_status_any: Wait for No Outstanding Operation of Any Enabled Tag Group 69
mfc_read_tag_status_all: Wait for No Outstanding Operation of All Enabled Tag Groups 69
mfc_stat_tag_status: Check Availability of MFC_RdTagStat Channel 69
mfc_read_list_stall_status: Read List DMA Stall-and-Notify Status 70
mfc_stat_list_stall_status: Check Availability of List DMA Stall-and-Notify Status 70
mfc_write_list_stall_ack: Acknowledge Tag Group Containing Stalled DMA List Commands 70
mfc_read_atomic_status: Read Atomic Command Status 70
mfc_stat_atomic_status: Check Availability of Atomic Command Status 70

4.9. MFC Multisource Synchronization Request 71
mfc_write_multi_src_sync_request: Request Multisource Synchronization 71
mfc_stat_multi_src_sync_request: Check the Status of Multisource Synchronization 71

4.10. SPU Signal Notification 71
spu_read_signal1: Atomically Read and Clear Signal Notification 1 Channel 71
spu_stat_signal1: Check if Pending Signals Exist on Signal Notification 1 Channel 71
spu_read_signal2: Atomically Read and Clear Signal Notification 2 Channel 72
spu_stat_signal2: Check if Pending Signals Exist on Signal Notification 2 Channel 72

4.11. SPU Mailboxes 72
spu_read_in_mbox: Read Next Data Entry in SPU Inbound Mailbox 72
spu_stat_in_mbox: Get the Number of Data Entries in SPU Inbound Mailbox 72
spu_write_out_mbox: Send Data to SPU Outbound Mailbox 72
spu_stat_out_mbox: Get Available Capacity of SPU Outbound Mailbox 73
spu_write_out_intr_mbox: Send Data to SPU Outbound Interrupt Mailbox 73
spu_stat_out_intr_mbox: Get Available Capacity of SPU Outbound Interrupt Mailbox 73

4.12. SPU Decrementer 73
spu_read_decrementer: Read Current Value of Decrementer 73
spu_write_decrementer: Load a Value to Decrementer 73

4.13. SPU Event 74
spu_read_event_status: Read Event Status or Stall Until Status is Available 74
spu_stat_event_status: Check Availability of Event Status 74
spu_write_event_mask: Select Events to be Monitored by Event Status 74
spu_write_event_ack: Acknowledge Events 75
spu_read_event_mask: Read Event Status Mask 75

4.14. SPU State Management 75
spu_read_machine_status: Read Current SPU Machine Status 75
spu_write_srr0: Write to SPU SRR0 75
spu_read_srr0: Read SPU SRR0 75

5. SPU and PPU Vector Multimedia Extension Intrinsics 76
5.1. Mapping of PPU VMX Intrinsics to SPU Intrinsics 76

5.1.1. One-to-One Mapped Intrinsics 76
5.1.2. PPU VMX Intrinsics That Are Difficult to Map to SPU Intrinsics 77

5.2. Mapping of SPU Intrinsics to PPU VMX Intrinsics 77
5.2.1. One-to-One Mapped Intrinsics 78
5.2.2. SPU Intrinsics That Are Difficult to Map to PPU VMX Intrinsics 78

6. PPU Specific Intrinsics 80
__cctph: Change Thread Priority to High 80
__cctpl: Change Thread Priority to Low 80

 ��� Table of Contents vii

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__cctpm: Change Thread Priority to Medium 80
__cntlzd: Count Leading Doubleword Zeros 81
__cntlzw: Count Leading Word Zeros 81
__db10cyc: Delay 10 Cycles at Dispatch 81
__db12cyc: Delay 12 Cycles at Dispatch 81
__db16cyc: Delay 16 Cycles at Dispatch 82
__db8cyc: Delay 8 Cycles at Dispatch 82
__dcbf: Data Cache Block Flush 82
__dcbst: Data Cache Block Store 82
__dcbt: Data Cache Block Touch 83
__dcbt_TH1000: Set Up Streaming Data 83
__dcbt_TH1010: Start or Stop Streaming Data 83
__dcbtst: Data Cache Block Touch for Store 84
__dcbz: Data Cache Block Set to Zero 84
__eieio: Enforce In-Order Execution of I/O 84
__fabs: Double Absolute Value 85
__fabsf: Float Absolute Value 85
__fcfid: Convert Doubleword to Double 85
__fctid: Convert Double to Doubleword 85
__fctidz: Convert Double to Doubleword with Round Towards Zero 86
__fctiw: Convert Double to Word 86
__fctiwz: Convert Double to Word with Round Towards Zero 86
__fmadd: Double Fused Multiply and Add 86
__fmadds: Float Fused Multiply and Add 87
__fmsub: Double Fused Multiply and Subtract 87
__fmsubs: Float Fused Multiply and Subtract 87
__fmul: Double Multiply 87
__fmuls: Float Multiply 88
__fnabs: Double Negative 88
__fnabsf: Float Negative 88
__fnmadd: Double Fused Negative Multiply and Add 88
__fnmadds: Float Fused Negative Multiply and Add 89
__fnmsub: Double Fused Negative Multiply and Subtract 89
__fnmsubs: Float Fused Negative Multiply and Subtract 89
__fres: Float Reciprocal Estimate 89
__frsp: Round to Single Precision 90
__frsqrte: Double Reciprocal Square Root Estimate 90
__fsel: Floating-Point Select of Double 90
__fsels: Floating-Point Select of Float 90
__fsqrt: Double Square Root 91
__fsqrts: Float Square Root 91
__icbi: Instruction Cache Block Invalidate 91
__isync: Instruction Sync 91
__ldarx: Load Doubleword with Reserved 92
__ldbrx: Load Reversed Doubleword 92
__lhbrx: Load Reversed Halfword 92
__lwarx: Load Word with Reserved 92
__lwbrx: Load Reversed Word 93
__lwsync: Light Weight Sync 93
__mffs: Move from Floating-Point Status and Control Register 93
__mfspr: Move from Special Purpose Register 93
__mftb: Move from Time Base 94
__mtfsb0: Reset Bit of FPSCR 94
__mtfsb1: Set Bit of FPSCR 94
__mtfsf: Set Fields in FPSCR 94
__mtfsfi: Set Field of FPSCR 95
__mtspr: Move to Special Purpose Register 95
__mulhd: Multiply Doubleword, High Part 95
__mulhdu: Multiply Double Unsigned Word, High Part 95
__mulhw: Multiply Word, High Part 96
__mulhwu: Multiply Unsigned Word, High Part 96
__nop: No Operation 96

viii Table of Contents ���

__protected_stream_count: Set the Number of Blocks to Stream 96
__protected_stream_go: Start All Streams 96
__protected_stream_set: Set Up a Stream 96
__protected_stream_stop: Stop a Stream 97
__protected_stream_stop_all: Stop All Streams 97
__protected_unlimited_stream_set: Set Up an Unlimited Stream 97
__rldcl: Rotate Left Doubleword then Clear Left 97
__rldcr: Rotate Left Doubleword then Clear Right 98
__rldic: Rotate Left Doubleword Immediate then Clear 98
__rldicl: Rotate Left Doubleword Immediate then Clear Left 98
__rldicr: Rotate Left Doubleword Immediate then Clear Right 99
__rldimi: Rotate Left Doubleword Immediate then Mask Insert 99
__rlwimi: Rotate Left Word Immediate then Mask Insert 99
__rlwinm: Rotate Left Word Immediate then AND With Mask 100
__rlwnm: Rotate Left Word then AND With Mask 100
__setflm: Save and Set the FPSCR 100
__stdbrx: Store Reversed Doubleword 100
__stdcx: Store Doubleword Conditional 101
__sthbrx: Store Reversed Halfword 101
__stwbrx: Store Reversed Word 101
__stwcx: Store Word Conditional 102
__sync: Sync 102

7. PPU Vector Multimedia Extension Intrinsics 104
vec_extract: Extract Vector Element from Vector 105
vec_insert: Insert Scalar into Specified Vector Element 106
vec_lvlx: Load Vector Left Indexed 107
vec_lvlxl: Load Vector Left Indexed Last 108
vec_lvrx: Load Vector Right Indexed 109
vec_lvrxl: Load Vector Right Indexed Last 110
vec_stvlx: Store Vector Left Indexed 111
vec_stvlxl: Store Vector Left Indexed Last 112
vec_stvrx: Store Vector Right Indexed 113
vec_stvrxl: Store Vector Right Indexed Last 114
vec_promote: Promote Scalar to Vector 115
vec_splats: Splat Scalar to Vector 115

8. SPU C and C++ Standard Libraries and Language Support 116
8.1. Standard Libraries 116

8.1.1. C Standard Library 116
8.1.2. C++ Standard Library 119

8.2. Non-Supported Language Features 120
9. Floating-Point Arithmetic on the SPU 122

9.1. Properties of Floating-Point Data Type Representations 122
9.2. Floating-Point Environment 123

9.2.1. Rounding Modes 123
9.2.2. Floating-Point Exceptions 123
9.2.3. Other Floating-Point Constants in math.h 125

9.3. Floating-Point Operations 125
9.3.1. Floating-Point Conversions 125
9.3.2. Overall Behavior of C Operators and Standard Library Math Functions 126
9.3.3. Floating-Point Expression Special Cases 127
9.3.4. Specific Behavior of Standard Math Functions 128

10. Operator Overloading for Vector Data Types 130
10.1. Supported Types 130
10.2. Vector Subscripting 130
10.3. Unary Operators 130
10.4. Binary Operators 131
10.5. Relational Operators 131

 ��� Table of Contents ix

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Index 132

List of Tables
Table 1-1: Vector Data Types 1
Table 1-2: Non-identical Mapping of PPU VMX Data Types to SPU Data Types 2
Table 1-3: Non-identical Mapping of SPU Data Types to PPU VMX Data Types 2
Table 1-4: Single Token Vector Data Types 2
Table 1-5: Default Data Type Alignments 3
Table 1-6: Vector Pointer Types and Matching Base Element Pointer Types 5
Table 1-7: Vector Literal Format and Description 6
Table 1-8: Alternate Vector Literal Format and Description 6
Table 2-9: Assembly Instructions for which No Specific Intrinsic Exists 9
Table 2-10: Specific Intrinsics Not Accessible Through Generic Intrinsics 10
Table 2-11: Specific Casting Intrinsics 13
Table 2-12: Possible Uses of Immediate Load Instructions for Various Values of Constant b 14
Table 2-13: Splat Scalar to Vector 15
Table 2-14: Convert Integer Vector to Vector Float 16
Table 2-15: Convert Vector Float to Signed Integer Vector 16
Table 2-16: Convert Vector Float to Unsigned Integer Vector 16
Table 2-17: Extend Vector 17
Table 2-18: Round Vector Double to Vector Float 17
Table 2-19: Vector Add 17
Table 2-20: Vector Add Extended 18
Table 2-21: Vector Generate Borrow 18
Table 2-22: Vector Generate Borrow Extended 18
Table 2-23: Vector Generate Carry 19
Table 2-24: Vector Generate Carry Extended 19
Table 2-25: Vector Multiply and Add 19
Table 2-26: Vector Multiply High High and Add 20
Table 2-27: Vector Multiply and Subtract 20
Table 2-28: Vector Multiply 20
Table 2-29: Vector Multiply High 20
Table 2-30: Vector Multiply Even 21
Table 2-31: Vector Multiply Odd 21
Table 2-32: Vector Multiply and Shift Right 21
Table 2-33: Negative Vector Multiply and Add 22
Table 2-34: Negative Vector Multiply and Subtract 22
Table 2-35: Vector Floating-Point Reciprocal Estimate 22
Table 2-36: Vector Floating-Point Reciprocal Square Root Estimate 22
Table 2-37: Vector Subtract 23
Table 2-38: Vector Subtract Extended 23
Table 2-39: Vector Absolute Difference 24
Table 2-40: Average of Two Vectors 24
Table 2-41: Sum Bytes into Shorts 24
Table 2-42: Branch Indirect and Set Link if External Data 25
Table 2-43: Vector Compare Absolute Equal 25
Table 2-44: Vector Compare Absolute Greater Than 25
Table 2-45: Vector Compare Equal 26
Table 2-46: Vector Compare Greater Than 27
Table 2-47: Halt If Compare Equal 28
Table 2-48: Halt If Compare Greater Than 28
Table 2-49: Vector Test Special Value 28
Table 2-50: Special Value Bit Flag Mnemonics 28
Table 2-51: Vector Count Ones for Bytes 29
Table 2-52: Vector Count Leading Zeros 29
Table 2-53: Gather Bits from Elements 30
Table 2-54: Form Select Byte Mask 30
Table 2-55: Form Select Halfword Mask 30
Table 2-56: Form Select Word Mask 31
Table 2-57: Select Bits 31

x Table of Contents ���

Table 2-58: Shuffle Two Vectors of Bytes 32
Table 2-59: Vector Bit-Wise AND 32
Table 2-60: Vector Bit-Wise AND with Complement 33
Table 2-61: Vector Bit-Wise Equivalent 34
Table 2-62: Vector Bit-Wise Complement of AND 34
Table 2-63: Vector Bit-Wise Complement of OR 35
Table 2-64: Vector Bit-Wise OR 35
Table 2-65: Vector Bit-Wise OR with Complement 36
Table 2-66: OR Word Across 36
Table 2-67: Vector Bit-Wise Exclusive OR 37
Table 2-68: Vector Rotate Left by Bits 37
Table 2-69: Vector Rotate Left and Mask by Bits 38
Table 2-70: Vector Rotate Left and Mask Algebraic by Bits 39
Table 2-71: Quadword Rotate Left and Mask by Bits 40
Table 2-72: Quadword Rotate Left and Mask by Bytes 41
Table 2-73: Quadword Rotate Left and Mask by Bytes from Bit Shift Count 42
Table 2-74: Quadword Rotate Left by Bits 42
Table 2-75: Quadword Rotate Left by Bytes 43
Table 2-76: Quadword Rotate Left by Bytes from Bit Shift Count 44
Table 2-77: Vector Shift Left by Bits 44
Table 2-78: Quadword Shift Left by Bits 45
Table 2-79: Quadword Shift Left by Bytes 45
Table 2-80: Quadword Shift Left by Bytes from Bit Shift Count 46
Table 2-81: Disable Interrupts 47
Table 2-82: Enable Interrupts 47
Table 2-83: Move from Floating-Point Status and Control Register 48
Table 2-84: Move from Special Purpose Register 48
Table 2-85: Move to Floating-Point Status and Control Register 48
Table 2-86: Move to Special Purpose Register 49
Table 2-87: Synchronize Data 49
Table 2-88: Stop and Signal 49
Table 2-89: Synchronize 49
Table 2-90: SPU Channel Numbers 50
Table 2-91: MFC Channel Numbers 50
Table 2-92: Read Word Channel 51
Table 2-93: Read Quadword Channel 51
Table 2-94: Read Channel Count 51
Table 2-95: Write Word Channel 51
Table 2-96: Write Quadword Channel 52
Table 2-97: Extract Vector Element from Vector 52
Table 2-98: Insert Scalar into Specified Vector Element 53
Table 2-99: Promote Scalar to Vector 54
Table 3-100: Initiate DMA to/from 32-Bit Effective Address 56
Table 3-101: Initiate DMA to/from 64-Bit Effective Address 56
Table 3-102: Read MFC Tag Status 57
Table 4-103: MFC Tag Manager Mnemonics 59
Table 4-104: MFC DMA Command Mnemonics 60
Table 4-105: MFC List DMA Command Mnemonics 62
Table 4-106: MFC Atomic Update Command Mnemonics 64
Table 4-107: MFC Synchronization Command Mnemonics 65
Table 4-108: MFC Write Tag Update Conditions 68
Table 4-109: Read Atomic Command Status or Stall Until Status Is Available 70
Table 4-110: MFC Event Bit-Fields 74
Table 5-111: PPU VMX Intrinsics That Map One-to-One with SPU Intrinsics 77
Table 5-112: PPU VMX Intrinsics That Are Difficult to Map to SPU Intrinsics 77
Table 5-113: SPU Intrinsics That Map One-to-One with PPU VMX Intrinsics 78
Table 5-114: SPU Intrinsics That Are Difficult to Map to PPU VMX Intrinsics 78
Table 6-115: Change Thread Priority to High 80
Table 6-116: Change Thread Priority to Low 80
Table 6-117: Change Thread Priority to Medium 80
Table 6-118: Count Leading Doubleword Zeros 81
Table 6-119: Count Leading Word Zeros 81

 ��� Table of Contents xi

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 6-120: Delay 10 Cycles at Dispatch 81
Table 6-121: Delay 12 Cycles at Dispatch 81
Table 6-122: Delay 16 Cycles at Dispatch 82
Table 6-123: Delay 8 Cycles at Dispatch 82
Table 6-124: Data Cache Block Flush 82
Table 6-125: Data Cache Block Store 82
Table 6-126: Data Cache Block Touch 83
Table 6-127: Set Up Streaming Data 83
Table 6-128: Start or Stop Streaming Data 84
Table 6-129: Data Cache Block Touch for Store 84
Table 6-130: Data Cache Block Set to Zero 84
Table 6-131: Enforce In-Order Execution of I/O 84
Table 6-132: Double Absolute Value 85
Table 6-133: Float Absolute Value 85
Table 6-134: Convert Doubleword to Double 85
Table 6-135: Convert Double to Doubleword 85
Table 6-136: Convert Double to Doubleword with Round Towards Zero 86
Table 6-137: Convert Double to Word 86
Table 6-138: Convert Double to Word with Round Towards Zero 86
Table 6-139: Double Fused Multiply and Add 86
Table 6-140: Float Fused Multiply and Add 87
Table 6-141: Double Fused Multiply and Subtract 87
Table 6-142: Float Fused Multiply and Subtract 87
Table 6-143: Double Multiply 87
Table 6-144: Float Multiply 88
Table 6-145: Double Negative 88
Table 6-146: Float Negative 88
Table 6-147: Double Fused Negative Multiply and Add 88
Table 6-148: Float Fused Negative Multiply and Add 89
Table 6-149: Double Fused Negative Multiply and Subtract 89
Table 6-150: Float Fused Negative Multiply and Subtract 89
Table 6-151: Float Reciprocal Estimate 89
Table 6-152: Round to Single Precision 90
Table 6-153: Double Reciprocal Square Root Estimate 90
Table 6-154: Floating-Point Select of Double 90
Table 6-155: Floating-Point Select of Float 90
Table 6-156: Double Square Root 91
Table 6-157: Float Square Root 91
Table 6-158: Instruction Cache Block Invalidate 91
Table 6-159: Instruction Sync 91
Table 6-160: Load Doubleword with Reserved 92
Table 6-161: Load Reversed Doubleword 92
Table 6-162: Load Reversed Halfword 92
Table 6-163: Load Word with Reserved 92
Table 6-164: Load Reversed Word 93
Table 6-165: Light Weight Sync 93
Table 6-166: Move from Floating-Point Status and Control Register 93
Table 6-167: Move from Special Purpose Register 93
Table 6-168: Move from Time Base 94
Table 6-169: Reset Bit of FPSCR 94
Table 6-170: Set Bit of FPSCR 94
Table 6-171: Set Fields in FPSCR 94
Table 6-172: Set Field of FPSCR 95
Table 6-173: Move to Special Purpose Register 95
Table 6-174: Multiply Doubleword, High Part 95
Table 6-175: Multiply Double Unsigned Word, High Part 95
Table 6-176: Multiply Word, High Part 96
Table 6-177: Multiply Unsigned Word, High Part 96
Table 6-178: No Operation 96
Table 6-179: Rotate Left Doubleword then Clear Left 97
Table 6-180: Rotate Left Doubleword then Clear Right 98
Table 6-181: Rotate Left Doubleword Immediate then Clear 98

xii Table of Contents ���

Table 6-182: Rotate Left Doubleword Immediate then Clear Left 98
Table 6-183: Rotate Left Doubleword Immediate then Clear Right 99
Table 6-184: Rotate Left Doubleword Immediate then Mask Insert 99
Table 6-185: Rotate Left Word Immediate then Mask Insert 99
Table 6-186: Rotate Left Word Immediate then AND With Mask 100
Table 6-187: Rotate Left Word then AND With Mask 100
Table 6-188: Save and Set the FPSCR 100
Table 6-189: Store Reversed Doubleword 100
Table 6-190: Store Doubleword Conditional 101
Table 6-191: Store Reversed Halfword 101
Table 6-192: Store Reversed Word 101
Table 6-193: Store Word Conditional 102
Table 6-194: Sync 102
Table 7-195: Stream Control Operators That Have Been Deprecated on the PPU 104
Table 7-196: Extract Vector Element from Vector 105
Table 7-197: Insert Scalar into Specified Vector Element 106
Table 7-198: Load Vector Left Indexed 107
Table 7-199: Load Vector Left Indexed Last 108
Table 7-200: Load Vector Right Indexed 109
Table 7-201: Load Vector Right Indexed Last 110
Table 7-202: Store Vector Left Indexed 111
Table 7-203: Store Vector Left Indexed Last 112
Table 7-204: Store Vector Right Indexed 113
Table 7-205: Store Vector Right Indexed Last 114
Table 7-206: Promote Scalar to Vector 115
Table 7-207: Splat Scalar to Vector 115
Table 8-208: C Library Header Files 116
Table 8-209: Fastest Minimum-Width Integer Types 117
Table 8-210: Vector Formats 118
Table 8-211: C++ Library Header Files 119
Table 8-212: New and Traditional C++ Library Header Files 120
Table 9-213: Values for Floating-Point Type Properties 122
Table 9-214: Rounding Mode for Two Bits of FLT_ROUNDS 123
Table 9-215: Macros for Double Precision Rounding Modes 123
Table 9-216: Macros for Single Precision Floating-Point Exceptions 124
Table 9-217: Macros for Double Precision Floating-Point Exceptions 124
Table 9-218: Floating-Point Constants 125
Table 10-219: Integer Vector Types 130
Table 10-220: Floating-Point Vector Types 130
Table 10-221: Valid Types for Specified Unary Operators 130
Table 10-222: Valid Types for Specified Binary Operators 131
Table 10-223: Valid Types for Specified Relational Operators 131

List of Figures
Figure 1-1: Big-Endian Byte/Element Ordering for Vector Types xx
Figure 2-2: Shuffle Pattern 31

 ��� Table of Contents xiii

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

About This Document

This document describes language extension specifications that allow software developers to access hardware
features that are not easily accessible from a high level language, such as C or C++, in order to obtain the best
performance from a Synergistic Processor Unit (SPU) and a PowerPC® Processor Unit (PPU) of the Cell
Broadband Engine™. This document also includes function specifications to facilitate communication between
SPUs and PPU, and it lists a minimal set of standard library functions that must be provided as part of a standard
SPU programming environment.

Audience
This document is intended for system and application programmers who want to write SPU and PPU programs for a
CBEA-compliant processor.

Version History
This section describes significant changes made to each version of this document.

Version Number & Date Changes

v. 2.5
September 14, 2007

Corrected miscellaneous documentation errors (TWG_RFC00102-1: CORRECTION
NOTICE).
Added six new PPU intrinsics to simplify streaming data prefetch (TWG_RFC00103-0
as amended by TWG_RFC00103-1).
Described special behaviors for some of the missing classification macros
(TWG_RFC00104-0).
Changed the return/argument types of several PPU intrinsics (TWG_RFC00105-0).
Changed the descriptive names of the SPU rotate and shift intrinsics
(TWG_RFC00106-2).
Changed the descriptive names of several intrinsics (TWG_RFC00107-2:
CORRECTION NOTICE).
Added a section describing the MFC tag mananger (TWG_RFC00109-2).
Eliminated unnecessary spaces from several headings (TWG_RFC00111-0:
CORRECTION NOTICE).
Specified the SPU “fastest minimum-width integer” typedefs in a way that conforms
with the implementations for both spu-gcc and spuxlc (TWG_RFC00117-0).
Clarified the mapping of intrinsics between SPU and VMX (TWG_RFC00118-1).
Corrected the implementation specification of the mfc_hl2ea function so that it
matches the implementation in spu_mfcio.h. (TWG_RFC00119-0: CORRECTION
NOTICE).
Made miscellaneous editorial changes.

v. 2.4
March 8, 2007

Added support for enhanced double precision SPU instructions (TWG_RFC00071-0).
Specified use of vector data types with standard C/C++ operators
(TWG_RFC00082-1).
Made it explicit that the vector keyword n the SPU is the same as the vector keyword
on the PPU (TWG_RFC00096-0).
Provided a predefined macro for use by compilers that are targeted to a processor
that supports the SPU’s optional enhanced double precision instructions
(TWG_RFC00097-0).
Attached “volatile” with dmalist arguments in intrinsics (TWG_RFC00100-0).

 ��� About This Document xv

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Version Number & Date Changes

Corrected various organizational, grammatical, and spelling issues
(TWG_RFC00093-0: CORRECTION NOTICE and TWG_RFC00094-0:
CORRECTION NOTICE).
Specified the kinds of variables to which the aligned attribute applies
(TWG_RFC00098-0).
Corrected the specification of isnan() so that it applies only to single precision
(TWG_RFC00099-0: CORRECTION NOTICE).
Corrected various minor errors (TWG_RFC00101-0: CORRECTION NOTICE).

v. 2.3
December 4, 2006

Corrected the function parameter ordering of the PPU __stwbrx instrinsic
(TWG_RFC00074-0: CORRECTION NOTICE)
Corrected the type of element initializers used to initialize a vector of
signed/unsigned char (TWG_RFC00075-0: CORRECTION NOTICE)
Changed to note that the use of double-precision contracted operations is permitted
by default unless prohibited by the FP_CONTRACT pragma or the no-fast-double
compiler option (TWG_RFC00076-0).
Added PPU data types and programming directives to Chapter 1, and changed title
from “SPU Data Types and Program Directives” to “Data Types and Programming
Directives” (TWG_RFC00077-1).
Removed the __fre, __frsqrtes, and __popcntb intrinsics, and added the
__frsqrte intrinsic (TWG_RFC00078-3).
Added that support is provided in the floating-point environment for both double-
precision elements and all four single-precision elements. Also, updated information
for FLT_ROUNDS (TWG_RFC00079-1).
Added a new chapter, “PPU VMX Intrinsics”, that specifies a set of intrinsic functions
making the underlying PPU VMX instruction set accessible from the C programming
language (TWG_RFC00081-1 and TWG_RFC00092-0).
Added 32-bit ABI support to the PPU intrinsic functions, changed function arguments
to provide a consistent high-level interface, and corrected several typographical
errors (TWG_RFC00083-1).
Changed the return type of the __fctiw and __fctiwx PPU intrinsic functions ,
changed the descriptive names of these and other similar conversion intrinsics, and
removed the __stfiwx intrinsic function (TWG_RFC00089-1).
Identified deprecated PPU VMX operations and recommendations for suitable PPU
intrinsic function alternatives (TWG_RFC00090-0).
Identified non-supported language features and specified that C++ exception
handling is not supported on the SPU (TWG_RFC00091-0).

v. 2.2
October 11, 2006

Applied the changes made in the following requests: TWG_RFC00056-0,
TWG_RFC00057-0, TWG_RFC00058-2, TWG_RFC00061-1, TWG_RFC00060-1,
TWG_RFC00062-0, TWG_RFC00066-2, TWG_RFC00067-2, TWG_RFC00068-0,
TWG_RFC00070-1, TWG_RFC00072-0, and TWG_RFC00073-0.
Changed document title because its contents are no longer limited to the SPU.
Changed the sections “About this Document” and “Audience” accordingly. Applied
TWG_RFC00053-0, TWG_RFC00054-1, and TWG_RFC00055-0.
Replaced uses of a protected name by references to the document AltiVec™
Technology Programming Interface Manual per TWG_RFC00050-1 and
TWG_RFC00052-0.
Corrected several operand errors related to spu_sub, which is the arithmetic intrinsic
for vector subtraction (TWG_RFC00046-0: CORRECTION NOTICE).
Corrected various documentation errors; for example, changed sample code
demonstrating how to restore the Stack Pointer Information register as a result of
invoking the longjmp function (TWG_RFC00047-0: CORRECTION NOTICE).
Specified that alternate vector syntax for vector literals is optional rather than

xvi About This Document ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Version Number & Date Changes
mandatory (TWG_RFC00050).

v. 2.1
October 20, 2005

Added a sub-section called “Malloc Heap” to the C library section of the “C and C++
Standard Libraries” chapter. This section is related to an attempt to define a standard
process for memory heap initialization and stack management (TWG_RFC00024-3).
In the “SPU and Vector Multimedia Extension Intrinsics” chapter, clarified which
intrinsic mappings are required according to this specification and which are not
because a straightforward mapping does not exist. Provided additional explanations
regarding the intrinsics that are difficult to map (TWG_RFC00034-1: CORRECTION
NOTICE).
Corrected the description of the si_stqx instruction (TWG_RFC00035-0:
CORRECTION NOTICE).
Corrected various documentation errors; for example, changed several descriptions
in the “Alternate Vector Literal Format and Description” table.
(TWG_RFC00036-0: CORRECTION NOTICE, TWG_RFC00041-0: CORRECTION
NOTICE, TWG_RFC00045-0: CORRECTION NOTICE).
Changed “Broadband Processor Architecture” to “Cell Broadband Engine
Architecture”, and changed “BPA” to “CBEA” (TWG_RFC00037-0: CORRECTION
NOTICE).
Deleted several references to BE revisions DD1.0 and DD2.0 (TWG_RFC00040-0:
CORRECTION NOTICE).
Added a new chapter describing MFC I/O intrinsics; these intrinsics facilitate MFC
programming by defining a common set of utility functions (TWG_RFC00043-2).

v. 2.0
July 11, 2005

Deleted several sections in the “About This Document” chapter. Changed two entries
in the Write Word Channel table from si_wrch(channel, si_to_int(a)) to
si_wrch(channel, si_from_int(a)). Clarified that the syntax for vector type
specifiers does not allow the use of a typedef name as a type specifier. (All changes
per TWG_RFC00032-0: CORRECTION NOTICE.)

v. 1.9
June 10, 2005

Added new chapter describing C and C++ Libraries (TWG_RFC00018-5).
Added new chapter describing SPU floating-point arithmetic (TWG_RFC00027-1).
Changed “Broadband Engine” or “BE” to “a processor compliant with the Broadband
Processor Architecture” or “a processor compliant with BPA”; changed VMX to Vector
Multimedia Extension; changed Synergistic Processing Element to Synergistic
Processor Element; and changed Synergistic Processing Unit to Synergistic
Processor Unit. Defined a PPU as a PowerPC Processor Unit on first major instance.
Corrected several book references and changed copyright page so that trademark
owners were specified. (All changes per TWG_RFC00031-0: CORRECTION
NOTICE.)
Made miscellaneous changes to the “About This Document” section.

v. 1.8
May 12, 2005

Added new channel number for multisource synchronization requests
(TWG_RFC00023-1).
Corrected example describing loading of misaligned vectors.
Changed PU to PPU and SPC to SPE; changed “PU-to-SPU” (mailboxes) and “SPU-
to-PU” to “inbound” and “outbound” respectively (TWG_RFC00028-1: CORRECTION
NOTICE).
Changed the name of spu_mulhh to spu_mule (TWG_RFC00021-0).
Updated channel names to coincide with BPA channel names (TWG_RFC00029-1).

v. 1.7
July 16, 2004

Clarified that channel intrinsics must not be reordered with respect to other channel
commands or volatile local-storage memory accesses (TWG_RFC00007-1).
Warned that compliant compilers may ignore __align_hint intrinsics
(TWG_RFC00008-1).
Added an additional SPU instruction, orx (TWG_RFC00010-0).

 ��� About This Document xvii

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Version Number & Date Changes

Added mnemonics for channels that support reading the event mask and tag mask
(TWG_RFC00011-0).
Specified that spu_ienable and spu_idisable intrinsics do not have return
values (TWG_RFC00013-0).
Moved paragraph beginning “This intrinsic is considered volatile...” from spu_mfspr
intrinsic to spu_mtfpscr (TWG_RFC00014-0).
Changed the descriptions for si_lqd and si_stqd intrinsics (TWG_RFC00015-1).

Provided new descriptions of various rotation-and-mask intrinsics, specifically:
spu_rlmask, spu_rlmaska, spu_rlmaskqw, spu_rlmaskqwbyte, and
spu_rlmaskqwbytebc. These descriptions include pseudo-code examples
(TWG_RFC00016-1).
Made miscellaneous editorial changes.

v. 1.6
March 12, 2004

Made miscellaneous editorial changes.

v. 1.5
February 25, 2004

Changed formatting of document so that it reflects the typographic conventions
mentioned in the “About This Document” section. Made miscellaneous editorial
changes.
Changed some of the parameter types for spu_mfcdma32 and spu_mfcdma64, as
requested in TWG_RFC00002.
Inserted new specifications for the vector literal format, as requested in
TWG_RFC00003.

v. 1.4
January 20, 2004

Changed document to new format, including front matter. Made miscellaneous
editorial changes.

v. 1.3
November 4, 2003

Added enable/disable interrupt intrinsics.

v. 1.2
September 2, 2003

Changed parameter types of spu_sel intrinsic to be compatible with Vector
Multimedia Extension’s vec_sel.
Added si_stopd specific intrinsic.
Corrected tables for spu_genb and spu_genc generic intrinsics.

v. 1.1
June 15, 2003

Made changes to support RFC 24. Added isolation control channel 64.
Made changes to support RFC 33. Removed spu_addc, spu_addsc, spu_subb,
and spu_subsb. Added spu_addx, spu_subx, spu_genc, spu_gencx,
spu_genb, and spu_genbx.

v. 1.0
April 28, 2003

Made minor corrections.

v. 0.9
March 7, 2003

Added new intrinsics to support new or modified instructions. These include: fscrrd,
fscrwr, stop, dfma, mpyhhau, mpyhhu, rotqmbybi, iret, lqr, and stqr. Also
added intrinsics to support new feature bits for iret, bisled, bihnz, and sync.

v. 0.8
January 23, 2003

Improved documentation of specific intrinsics. Completely defined parameter ordering
and immediate sizes.
Defined new global (spu_intrinsics.h) and compiler specific
(spu_internals.h) header files. Specified that single token vector types and
channel enumerants are declared in spu_intrinsics.h.
Added specific pointer casting intrinsics.
Added standardized __SPU__ conditional compilation control.
Changed specific convert intrinsics to unbiased scale parameters, such as generic
intrinsics.
Specified that the bisled target function does not observe the standard calling
convention with respect to volatile registers.

v. 0.7 Specified that gcc-style inline assembly is required.

xviii About This Document ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Version Number & Date Changes
November 18, 2002 Specified that __builtin_expect is required.

Added bisled specific and generic intrinsics.
Added __align_hint intrinsic.
Specified that the restrict type qualifier is required.
Specified that out-of-range scale factors on generic conversion intrinsics return an
error.

v. 0.6
September 24, 2002

Changed document title to include C++.
Made miscellaneous clarifications and typing corrections.
Changed spu_eqv to return the same vector type as its inputs.
Changed spu_and, spu_or, and spu_xor to accept immediate values of the same
type as the elements of parameter a.
Added specific casting intrinsics.
Changed default action on out-of-range immediate values for specific intrinsics to
issuing an error.
Added documentation of the __builtin_expect builtin.
Completed SPU-to-Vector Multimedia Extension intrinsic mapping section.

v. 0.5
August 27, 2002

Edited discussion of Vector Multimedia Extension-to-SPU intrinsic mapping.
Removed appendices.
Added support for 32-bit read and write channel intrinsics. Renamed quadword
channel read and write to readchqw and writechqw.

v. 0.4
August 5, 2002

Corrected the instruction mapping for spu_promote and spu_extract.
Specified that instruction mapping for generic intrinsics spu_re and spu_rsqrte
include the FI (floating-point interpolate) instruction.
Renamed spu_splat to spu_splats (scalar splat) to avoid confusion with
vec_splat.
Added documentation about the size of the immediate intrinsic forms.
Changed all vector signed long to vector signed long long.
Changed count to unsigned for spu_sl, spu_slqw, spu_slqwbyte, and
spu_slqwbytebc.
Changed count to signed for spu_rl, spu_rlmask and spu_rlmaska.
Specified that the return value of spu_cntlz is an unsigned value.
Corrected description of spu_gather intrinsic.
Edited mapping documentation of scalars for spu_and, spu_or, and spu_xor.
Removed vector input forms of spu_hcmpeq and spu_hcmpgt.

v. 0.3
July 16, 2002

Added fsmbi to literal constructor instructions. Added fsmbi (immediate form) to
spu_maskb intrinsic.
Added vector forms to compare and halt (spu_hcmpeq and spu_hcmpgt) intrinsics.
Added qword data type as the only vector type accepted by specific intrinsics.
Added typedefs for the vector types as the basic types used for code portability.
Merged all spu_splat generic intrinsics into a single intrinsic.
Dropped spu_load, spu_store, and spu_insertctl generic intrinsics.

v. 0.2
July 9, 2002

Incorporated changes and suggestions from Peng.
Changed vector long types to vector long long.

v. 0.1
June 21, 2002

First version of the language extension specification. Initial specification based on the
Tobey compiler intrinsics specification.

 ��� About This Document xix

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Related Documentation
The following table provides a list of references and supporting materials for this document:

Document Title Version Date

ISO/IEC Standard 9899:1999 (C Standard)
ISO/IEC Standard 14882:1998 (C++ Standard)
IEEE-754 (Standard for Binary Floating-Point Arithmetic)
Synergistic Processor Unit Instruction Set Architecture 1.2 January 2007
Cell Broadband Engine Architecture 1.01 October 2006

Tool Interface Standard (TIS), Executable and Linking Format (ELF)
Specification

1.2 May 1995

Tool Interface Standard (TIS), DWARF Debugging Information
Format Specification

2.0 May 1995

PowerPC Architecture Book, Book II: PowerPC Virtual Environment
Architecture

2.02 January 2005

AltiVec™ Technology Programming Interface Manual June 1999

Conventions Used in This Document

Bit Notation

Standard bit notation is used throughout this document. Bits and bytes are numbered in ascending order from left to
right. Thus, for a 4-byte word, bit 0 is the most significant bit and bit 31 is the least significant bit, as shown in the
following figure:

M
S

B

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MSB = Most significant bit

LSB = Least significant bit

Notation for bit encoding is as follows:

• Hexadecimal values are preceded by 0x. For example: 0x0A00.

• Binary values in sentences appear in single quotation marks. For example: ‘1010’.

xx About This Document ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Byte Ordering and Element Numbering

Byte ordering and element numbering are always displayed in big-endian order, as shown in Figure 1-1.

Figure 1-1: Big-Endian Byte/Element Ordering for Vector Types

Other Conventions

The following typographic conventions are used throughout this document:

Convention Meaning

courier Indicates programming code and literals, such as processing instructions,
register names, data types, events, and file names. Also indicates function
and macro names. This convention is only used where it facilitates
comprehension, especially in narrative descriptions.

courier +
italics

Indicates arguments, parameters, and variables. This convention is only
used where it facilitates comprehension, especially in narrative
descriptions.

italics (without
courier)

Indicates emphasis. Except when hyperlinked, book references are in
italics. When a term is first defined, it is often in italics.

blue Indicates a hyperlink (color printers or online only).

 ��� About This Document xxi

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

1. Data Types and Programming Directives

This chapter specifies PPU Vector Multimedia Extension (VMX) and SPU vector data types, operations on these
data types, programming directives, and predefined macro target definitions.

Any confict between the requirements described here for PPU VMX data types and the AltiVec™ Technology
Programming Interface Manual is unintentional.

The vector keyword and the __vector keyword have the same properties, defined in the AltiVec™ Technology
Programming Interface Manual. The __vector keyword is preferred for code portability because it is always
defined.

1.1. Data Types
In this section, a set of fundamental vector data types are introduced to the C language, and several mappings are
described that relate PPU and SPU data types to one another.

1.1.1. Fundamental Data Types

The fundamental vector data types that are supported by the PPU and SPU are shown in Table 1-1. All of these
data types are 128-bits long and contain from 2 to 16 elements, depending on the corresponding element data type.

Table 1-1: Vector Data Types

Vector Data Type Content SPU/PPU

vector unsigned char 16 8-bit unsigned chars Both
vector signed char 16 8-bit signed chars Both
vector unsigned short 8 16-bit unsigned halfwords Both
vector signed short 8 16-bit signed halfwords Both
vector unsigned int 4 32-bit unsigned words Both
vector signed int 4 32-bit signed words Both
vector unsigned long long 2 64-bit unsigned doublewords SPU
vector signed long long 2 64-bit signed doublewords SPU
vector float 4 32-bit single-precision floats Both
vector double 2 64-bit double-precision floats SPU
qword quadword (16-byte), used exclusively as an input/output to a

specific intrinsic function. See section “2.1. Specific Intrinsics”
SPU

vector bool char 16 8-bit bools – 0 (false) 255 (true) PPU
vector bool short 8 16-bit bools – 0 (false) 65535 (true) PPU
vector bool int 4 32-bit bools – 0 (false) 232 – 1 (true) PPU
vector pixel 8 16-bit unsigned halfword, 1/5/5/5 pixel PPU

The syntax for vector type specifiers does not allow the use of a typedef name as a type specifier. For example, the
following declaration is not allowed:

typedef signed short int16;
vector int16 data;

1.1.2. Mapping of PPU Data Types to SPU Data Types

Not all PPU vector data types are supported on the SPU. The PPU vector data types that do not map identically to
SPU data types are shown in Table 1-2.

2 Data Types and Programming Directives ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 1-2: Non-identical Mapping of PPU VMX Data Types to SPU Data Types

PPU VMX Data Type Maps to SPU Data Type

vector bool char vector unsigned char
vector bool short vector unsigned short
vector bool int vector unsigned int
vector pixel vector unsigned short1

1 Because vector pixel and vector bool short are mapped to the same base vector type (vector
unsigned short), the overloaded functions for vec_unpackh and vec_unpackl cannot be uniquely resolved.

1.1.3. Mapping of SPU Data Types to PPU Data Types

Not all SPU data types are supported by the PPU VMX. The SPU data types that do not map identically to PPU
vector data types are shown in Table 1-3.

Table 1-3: Non-identical Mapping of SPU Data Types to PPU VMX Data Types

SPU Data Type Maps to PPU VMX Data Type

vector unsigned long long vector bool char
vector signed long long vector bool short
vector double vector bool int

1.2. Header Files
There are separate system header files for the SPU and PPU that include typedefs and other information required
by this specification.

1.2.1. Header File Contents

The SPU system header file, spu_intrinsics.h, defines common enumerations and typedefs. These include the
single token vector types and MFC channel mnemonic enumerations (see Table 1-4 and Table 2-91, respectively).
In addition, spu_intrinsics.h will include a compiler-specific header file, spu_internals.h, that contains any
implementation-specific definitions.

The PPU system header file, altivec.h, defines typedefs and keywords and also includes any implementation-
specific definitions. The PPU system header file, vec_types.h, defines typedefs required by the language
extension features defined in this specification.

1.2.2. Single Token Typedefs

To improve code portability, single token typedefs are provided for the vector keyword data types. These typedefs,
which are shown in Table 1-4 are defined in spu_intrinsics.h on the SPU and in vec_types.h on the PPU.
Besides simplifying type declarations, the single token types serve as class names for extending generic intrinsics or
for mapping between PPU VMX intrinsics and/or SPU intrinsics.

Table 1-4: Single Token Vector Data Types

Vector Keyword Data Type Single Token Typedef SPU/PPU

vector unsigned char vec_uchar16 Both
vector signed char vec_char16 Both
vector unsigned short vec_ushort8 Both
vector signed short vec_short8 Both
vector unsigned int vec_uint4 Both
vector signed int vec_int4 Both
vector unsigned long long vec_ullong2 SPU

 ��� Data Types and Programming Directives 3

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Vector Keyword Data Type Single Token Typedef SPU/PPU

vector signed long long vec_llong2 SPU
vector float vec_float4 Both
vector double vec_double2 SPU
vector bool char vec_bchar16 PPU
vector bool short vec_bshort8 PPU
vector bool int vec_bint4 PPU
vector pixel vec_pixel8 PPU

1.3. Alignment

1.3.1. Default Data Type Alignments

Table 1-5 shows the size and default alignment of the various data types.

Table 1-5: Default Data Type Alignments

Data Type Size Alignment

char 1 byte
short 2 halfword
int 4 word
long 4 word/doubleword
long long 8 doubleword
float 4 word
double 8 doubleword
pointer 4 word
vector 16 quadword

The aligned attribute will be provided by implementations to align static, global, and local variables, as well as static
and non-static data members. The aligned attribute will not guarantee alignment of variables allocated using malloc
or operator new. Implementations will support at least 128-byte alignment.

In the following declaration statement, the floating-point scalar factor will be aligned on a quadword boundary:

float factor __attribute__ ((aligned (16)));

1.3.2. __align_hint

The __align_hint intrinsic is provided to improve data access through pointers and to provide compilers the
additional information that is needed to support auto-vectorization. This built-in function is available only on the
SPU.

Although __align_hint is defined as an intrinsic, it behaves like a directive, because no code is ever specifically
generated. For example:

__align_hint(ptr, base, offset)

The __align_hint intrinsic informs the compiler that the pointer ptr points to data with a base alignment of base
and with an offset from base of offset. The base alignment has to be a power of 2. A base address of zero
implies that the pointer has no known alignment. The alignment offset has to be less than base or zero.

The __align_hint intrinsic is not intended to specify pointers that are not naturally aligned. Specifying pointers
that are not naturally aligned results in data objects straddling quadword boundaries. If a programmer specifies
alignment incorrectly, incorrect programs might result.

4 Data Types and Programming Directives ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Programming Note: Although compliant compiler implementations must provide the __align_hint intrinsic,
compilers may ignore these hints.

1.4. Operating on Vector Types
This section describes the C/C++ operators and operations that are required to act on vector data types. These
operators are the sizeof() operator, the assignment operator (=), and the address operator (&). Many other
standard C/C++ operators are also extended for vector data types. The overloading of these operators for vector
data types is described in “10. Operator Overloading for Vector Data Types”.

The operations on vector data types are pointer operations and type casting operations.

1.4.1. sizeof() Operator

The operation sizeof() on a vector type always returns 16.

1.4.2. Assignment Operator

If either the left or right side of an expression has a vector type, both sides of the expression has to be of the same
vector type. Thus, the expression a = b is valid and represents assignment if a and b are of the same type or if
neither variable is a vector type. Otherwise, the expression is invalid, and the compiler reports the inconsistency as
an error.

1.4.3. Address Operator

The operation &a is valid when a is a vector type. The result of the operation is a pointer to vector a.

1.4.4. Pointer Arithmetic and Pointer Dereferencing

The usual pointer arithmetic involving a pointer to a vector type can be performed. For example, assuming p is a
pointer to a vector type, p+1 is the pointer to the next vector following p.

Dereferencing the vector pointer p implies a 128-bit vector load from or store to the address obtained by masking
the 4 least significant bits of p. When a vector is misaligned, the 4 least significant bits of its address are nonzero.
Although vectors are 16-byte aligned (see section “1.3. Alignment”), it nevertheless might be desirable to load or
store a vector that is misaligned. A misaligned vector can be loaded in several ways using generic intrinsics (see
section “2.2. Generic Intrinsics and Built-ins”).

The following code shows one example of how to load a misaligned floating-point vector on the SPU:

vector float load_misaligned_vector_float (vector float *ptr)
{
 vector float qw0, qw1;
 int shift;

 qw0 = *ptr;
 qw1 = *(ptr+1);
 shift = (unsigned) ptr & 15;

 return spu_or(
 spu_slqwbyte(qw0, shift),
 spu_rlmaskqwbyte(qw1, shift-16));
}

Similarly, this next example shows how to store to a misaligned floating-point vector on the SPU.

void store_misaligned_vector_float (vector float flt, vector float *ptr)
{

vector float qw0, qw1;
vector unsigned int mask;

 ��� Data Types and Programming Directives 5

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 int shift;

 qw0 = *ptr;
 qw1 = *(ptr+1);
 shift = (unsigned)(ptr) & 15;
 mask = (vector unsigned int)

spu_rlmaskqwbyte((vector unsigned char)(0xFF), -shift);

 flt = spu_rlqwbyte(flt, -shift);

 *ptr = spu_sel(qw0, flt, mask);
 *(ptr+1) = spu_sel(flt, qw1, mask);
}

1.4.5. Type Casting

Pointers to vector types and non-vector types may be cast back and forth to each other. For the purpose of aliasing,
a vector type is treated as an array of its corresponding element type, as shown in Table 1-6. If a pointer is cast to
the address of a vector type, it is the programmer’s responsibility to ensure that the address is 16-byte aligned.
Vector types that are applicable only on the PPU do not have an underlying scalar type.

Table 1-6: Vector Pointer Types and Matching Base Element Pointer Types

Vector Pointer Type (vector T*) Base Element Pointer Type (T*) SPU/PPU

vector unsigned char* unsigned char* Both
vector signed char* signed char* Both
vector unsigned short* unsigned short* Both
vector signed short* signed short* Both
vector unsigned int* unsigned int* Both
vector signed int* signed int* Both
vector unsigned long long* unsigned long long* SPU
vector signed long long* signed long long* SPU
vector float* float* Both
vector double* double* SPU

Casts from one vector type to another vector type has to be explicit and are done using normal C-language casts.
None of these casts performs any data conversion. Thus, the bit pattern of the result is the same as the bit pattern
of the argument that is cast.

Casts between vector types and scalar types are illegal. On the SPU, the spu_extract, spu_insert, and
spu_promote generic intrinsics or the specific casting intrinsics may be used to efficiently achieve the same results
(see section “2.1.1. Specific Casting Intrinsics”). On the PPU, the vec_lde and vec_ste intrinsics may be used to
copy between scalar and vector types.

1.4.6. Vector Literals

As shown in Table 1-7, a vector literal is written as a parenthesized vector type followed by a curly braced set of
constant expressions. If a vector literal is used as an argument to a macro, the literal has to be enclosed in
parentheses. In all other cases, the literal can be used without enclosing parentheses. The elements of the vector
are initialized to the corresponding expression. Elements for which no expressions are specified default to 0. Vector
literals may be used either in initialization statements or as constants in executable statements. The syntax for
vector initialization and for vector compound literals is the same as the corresponding array syntax except
designators which do not exist for vector elements. The initializer should act as an array of either 2, 4, 8, or 16
elements depending on the size of the underlying type. For example the following two initializations are valid and
equivalent:

vector signed int v1[] = {{0, 1, 2, 3},{4, 5, 6, 7}};
vector signed int v2[] = {0, 1, 2, 3, 4, 5, 6, 7};

6 Data Types and Programming Directives ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

The following two struct initializers are also valid and equivalent:

struct stypy {
int i;
vector signed int t;

} v3 = {1, {0, 1, 2, 3}}, v4 = {1, 0, 1, 2, 3};

The following types on both the SPU and PPU cannot be initialized using a vector literal: qword, vector bool
char, vector bool short, vector bool int, and vector pixel. They can be created by using the intrinsics
or by casting to these vector types.

Table 1-7: Vector Literal Format and Description

Notation Represents SPU/PPU

(vector unsigned char) {unsigned char, ...} A set of 16 unsigned 8-bit quantities. Both
(vector signed char) {signed char, ...} A set of 16 signed 8-bit quantities. Both
(vector unsigned short) {unsigned short, ...} A set of 8 unsigned 16-bit quantities. Both
(vector signed short) {signed short, ...} A set of 8 signed 16-bit quantities. Both
(vector unsigned int) {unsigned int, ...} A set of 4 unsigned 32-bit quantities. Both
(vector signed int) {signed int, ...} A set of 4 signed 32-bit quantities. Both
(vector unsigned long long) {unsigned long long, ...} A set of 2 unsigned 64-bit quantities. SPU
(vector signed long long) {signed long long, ...} A set of 2 signed 64-bit quantities. SPU
(vector float) {float, ...} A set of 4 32-bit floating-point quantities. Both
(vector double) {double, ...} A set of 2 64-bit floating-point quantities. SPU

An alternate format may also be supported which corresponds to the syntax specified in the AltiVec™ Technology
Programming Interface Manual. This format consists of a parenthesized vector type followed by a parenthesized set
of constant expressions. See Table 1-8.

Table 1-8: Alternate Vector Literal Format and Description

Notation Represents SPU/PPU

(vector unsigned char)(unsigned int) A set of 16 unsigned 8-bit quantities that all
have the value specified by the integer. Both

(vector unsigned char)(unsigned int, ..., unsigned
int)

A set of 16 unsigned 8-bit quantities specified
by the 16 integers. Both

(vector signed char)(signed int) A set of 16 signed 8-bit quantities that all have
the value specified by the integer. Both

(vector signed char)(signed int, ..., signed int) A set of 16 signed 8-bit quantities specified by
the 16 integers. Both

(vector unsigned short)(unsigned int) A set of 8 unsigned 16-bit quantities that all
have the value specified by the integer. Both

(vector unsigned short)(unsigned int, ..., unsigned
int)

A set of 8 unsigned 16-bit quantities specified
by the 8 integers. Both

(vector signed short)(signed int) A set of 8 signed 16-bit quantities that all have
the value specified by the integer. Both

(vector signed short)(signed int, ..., signed int) A set of 8 signed 16-bit quantities specified by
the 8 integers. Both

(vector unsigned int)(unsigned int) A set of 4 unsigned 32-bit quantities that all
have the value specified by the integer. Both

(vector unsigned int)(unsigned int, ..., unsigned int) A set of 4 unsigned 32-bit quantities specified
by the 4 integers. Both

(vector signed int)(signed int) A set of 4 signed 32-bit quantities that all have
the value specified by the integer. Both

 ��� Data Types and Programming Directives 7

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Notation Represents SPU/PPU

(vector signed int)(signed int, ..., signed int) A set of 4 signed 32-bit quantities specified by
the 4 integers. Both

(vector unsigned long long)(unsigned long long) A set of 2 unsigned 64-bit quantities that all
have the value specified by the long integer. SPU

(vector unsigned long long)(unsigned long long,
unsigned long long)

A set of 2 unsigned 64-bit quantities specified
by the 2 long integers. SPU

(vector signed long long)(signed long long) A set of 2 signed 64-bit quantities that all have
the value specified by the long integer. SPU

(vector signed long long)(signed long long,
signed long long)

A set of 2 signed 64-bit quantities specified by
the 2 long integers. SPU

(vector float)(float) A set of 4 32-bit floating-point quantities that all
have the value specified by the float. Both

(vector float)(float, float, float, float) A set of 4 32-bit floating-point quantities
specified by the 4 floats. Both

(vector double)(double) A set of 2 64-bit double-precision quantities
that all have the value specified by the double. SPU

(vector double)(double, double) A set of 2 64-bit quantities specified by the 2
doubles. SPU

1.5. Restrict Type Qualifier
The restrict type qualifier, which is specified in the C99 language specification, is intended to help the compiler
generate better code by ensuring that all access to a given object is obtained through a particular pointer. When a
pointer uses the restrict type qualifier, the pointer is restrict-qualified. For example:

void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

In the above prototype, both pointers, s1 and s2, are restrict-qualified. Therefore, the compiler can safely
assume that the source and destination objects will not overlap, allowing for a more efficient implementation.

1.6. SPU Programmer Directed Branch Prediction
Branch prediction can be significantly improved by using feedback-directed optimization. However, feedback-
directed optimization is not always practical in situations where typical data sets do not exist. Instead, on the SPU,
programmer-directed branch prediction is provided using an enhanced version of GCC’s __builtin_expect
function.

int __builtin_expect(int exp, int value)

Programmers can use __builtin_expect to provide the compiler with branch prediction information. The return
value of __builtin_expect is the value of the exp argument, which has to be an integral expression. For
dynamic prediction, the value argument can be either a compile-time constant or a variable. The
__builtin_expect function assumes that exp equals value.

Static Prediction Example
 if (__builtin_expect(x, 0)) {
 foo(); /* programmer doesn’t expect foo to be called */
 }

Dynamic Prediction Example
 cond2 = ... /* predict a value for cond1 */
 ...
 cond1 = ...
 if (__builtin_expect(cond1, cond2)) {
 foo();

8 Data Types and Programming Directives ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 }
 cond2 = cond1; /* predict that next branch is the same as the
 previous */

Compilers may require limiting the complexity of the expression argument because multiple branches could be
generated. When this situation occurs, the compiler has to issue a warning if the program’s branch expectations are
ignored.

Implementation of this extension is not required for the PPU because the PPU only supports static prediction for
branches

1.7. Inline Assembly
Occasionally, a programmer might not be able to achieve the desired low-level programming result by using only
C/C++ language constructs and intrinsic functions. To handle these situations, the use of inline assembly might be
necessary, and therefore, it has to be provided. The inline assembly syntax have to match the AT&T assembly
syntax implemented by GCC.

The .balignl directive may be used within the inline assembly to ensure the known alignment that is needed to
achieve effective dual-issue by the hardware.

1.8. Target Definitions
Compilers must define __SPU__ when code is being compiled for the SPU, and __PPU__ when code is being
compiled for the PPU. The availability of these definitions enables the development of code that can be conditionally
compiled for either target.

As an example, the following code supports misaligned quadword loads. The __SPU__ and __PPU__ defines are
used to conditionally select which code to use. The code that is selected will be different depending on the
processor target.

vector unsigned char load_qword_unaligned(vector unsigned char *ptr)
{
 vector unsigned char qw0, qw1, qw;
#ifdef __SPU__
 unsigned int shift;
#endif
 qw0 = *ptr;
 qw1 = *(ptr+1);
#ifdef __SPU__
 shift = (unsigned int)(ptr) & 15;
 qw = spu_or(spu_slqwbyte(qw0, shift),
 spu_rlmaskqwbyte(qw1, (signed)(shift - 16)));
#elif defined(__PPU__) /* PPU */
 qw = vec_perm(qw0, qw1, vec_lvsl(0, ptr));
#else
error “This code can only be compiled for PPU or the SPU”
#endif
 return (qw);
}

When compiling for an SPU implementation that supports the optional enhanced double-precision instructions,
__SPU_EDP__ will also be defined. The enhanced double-precision instructions include DFCEQ, DFCGT, DFMCEQ,
DFMCGT, and DFTSV.

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

2. SPU Low-Level Specific and Generic Intrinsics

This chapter describes the minimal set of basic intrinsics and built-ins that make the underlying Instruction Set
Architecture (ISA) and Synergistic Processor Element (SPE) hardware accessible from the C programming
language. There are three types of intrinsics:

• Specific

• Generic

• Built-ins

Intrinsics may be implemented either internally within the compiler or as macros. However, if an intrinsic is
implemented as a macro, restrictions apply with respect to vector literals being passed as arguments. For more
details, see section “1.4.6. Vector Literals”.

The instruction set may vary among SPU implementations. If an instruction is not supported by the SPU
implementation for which the intrinsic is being compiled, special handling shall occur. For specific intrinsics, an error
is generated if the targeted SPU does not support the corresponding instruction. For generic intrinsics, an alternate
instruction mapping will be generated that achieves an equivalent operation.

Throughout this section, intrinsics which may generate special handling are indicated by a dagger (†).

2.1. Specific Intrinsics
Specific intrinsics are specific in the sense that they have a one-to-one mapping with a single SPU assembly
instruction. All specific intrinsics are named using the SPU assembly instruction prefixed by the string si_. For
example, the specific intrinsic that implements the stop assembly instruction is named si_stop.

A specific intrinsic exists for nearly every assembly instruction. However, the functionality provided by several of the
assembly instructions is better provided by the C/C++ language; therefore, for these instructions no specific intrinsic
has been provided. Table 2-9 describes the assembly instructions that have no corresponding specific intrinsic.

Table 2-9: Assembly Instructions for which No Specific Intrinsic Exists

Instruction Type SPU Instructions

Branch Instructions br, bra, brsl, brasl, bi, bid, bie, bisl, bisld, bisle, brnz, brz, brhnz, brhz, biz, bizd,
bize, binz, binzd, binze, bihz, bihzd, bihze, bihnz, bihnzd, and bihnze (excluding
bisled, bisledd, bislede)

Branch Hint Instructions hbr, hbrp, hbra, and hbrr
Interrupt Return Instructions iret, iretd, and irete

All specific intrinsics are accessible through generic intrinsics, except for the specific intrinsics shown in Table 2-10.
The intrinsics that are not accessible fall into three categories:

• Instructions that are generated using basic variable referencing (that is, using vector and scalar loads and
stores)

• Instructions that are used for immediate vector construction

• Instructions that have limited usefulness and are not expected to be used except in rare conditions

10 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 2-10: Specific Intrinsics Not Accessible Through Generic Intrinsics

Instruction/Description Usage Assembly Mapping

Generate Controls for Sub-Quadword Insertion
si_cbd: Generate Controls for Byte Insertion (d-form)
An effective address is computed by adding the value in the signed 7-bit
immediate imm to word element 0 of a. The rightmost 4 bits of the effective
address are used to determine the position of the addressed byte within a
quadword. Based on the position, a pattern is generated that can be used
with the si_shufb intrinsic to insert a byte (byte element 3) at the
indicated position within a quadword. The pattern is returned in quadword
d.

d = si_cbd(a, imm) CBD d, imm(a)

si_cbx: Generate Controls for Byte Insertion (x-form)
An effective address is computed by adding the value of word element 0 of
a to word element 0 of b. The rightmost 4 bits of the effective address are
used to determine the position of the addressed byte within a quadword.
Based on the position, a pattern is generated that can be used with the
si_shufb intrinsic to insert a byte (byte element 3) at the indicated
position within a quadword. The pattern is returned in quadword d.

d = si_cbx(a, b) CBX d, a, b

si_cdd: Generate Controls for Doubleword Insertion (d-form)
An effective address is computed by adding the value in the signed 7-bit
immediate imm to word element 0 of a. The rightmost 4 bits of the effective
address are used to determine the position of the addressed doubleword
within a quadword. Based on the position, a pattern is generated that can
be used with the si_shufb intrinsic to insert a doubleword (doubleword
element 0) at the indicated position within a quadword. The pattern is
returned in quadword d.

d = si_cdd(a, imm) CDD d, imm(a)

si_cdx: Generate Controls for Doubleword Insertion (x-form)
An effective address is computed by adding the value of word element 0 of
a to word element 0 of b. The rightmost 4 bits of the effective address are
used to determine the position of the addressed doubleword within a
quadword. Based on the position, a pattern is generated that can be used
with the si_shufb intrinsic to insert a doubleword (doubleword element 3)
at the indicated position within a quadword. The pattern is returned in
quadword d.

d = si_cdx(a, b) CDX d, a, b

si_chd: Generate Controls for Halfword Insertion (d-form)
An effective address is computed by adding the value in the signed 7-bit
immediate imm to word element 0 of a. The rightmost 4 bits of the effective
address are used to determine the position of the addressed halfword
within a quadword. Based on the position, a pattern is generated that can
be used with the si_shufb intrinsic to insert a halfword (halfword element
1) at the indicated position within a quadword. The pattern is returned in
quadword d.

d = si_chd(a, imm) CHD d, imm(a)

si_chx: Generate Controls for Halfword Insertion (x-form)
An effective address is computed by adding the value of word element 0 of
a to word element 0 of b. The rightmost 4 bits of the effective address are
used to determine the position of the addressed halfword within a
quadword. Based on the position, a pattern is generated that can be used
with the si_shufb intrinsic to insert a halfword (halfword element 1) at the
indicated position within a quadword. The pattern is returned
in quadword d.

d = si_chx(a, b) CHX d, a, b

 ��� SPU Low-Level Specific and Generic Intrinsics 11

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Instruction/Description Usage Assembly Mapping

si_cwd: Generate Controls for Word Insertion (d-form)
An effective address is computed by adding the value in the signed 7-bit
immediate imm to word element 0 of a. The rightmost 4 bits of the effective
address are used to determine the position of the addressed word within a
quadword. Based on the position, a pattern is generated that can be used
with the si_shufb intrinsic to insert a word (word element 0) at the
indicated position within a quadword. The pattern is returned in quadword
d.

d = si_cwd(a, imm) CWD d, imm(a)

si_cwx: Generate Controls for Word Insertion (x-form)
An effective address is computed by adding the value of word element 0 of
a to word element 0 of b. The rightmost 4 bits of the effective address are
used to determine the position of the addressed word within a quadword.
Based on the position, a pattern is generated that can be used with the
si_shufb intrinsic to insert a word (element 0) at the indicated position
within a quadword. The pattern is returned in quadword d.

d = si_cwx(a, b) CWX d, a, b

Constant Formation Intrinsics
si_il: Immediate Load Word
The 16-bit signed immediate value imm is sign-extended to 32 bits and
placed into each of the 4 word elements of quadword d.

d = si_il(imm) IL d, imm

si_ila: Immediate Load Address
The 18-bit immediate value imm is placed in the rightmost bits of each of
the 4 word elements of quadword d. The upper 14 bits of each word is set
to 0.

d = si_ila(imm) ILA d, imm

si_ilh: Immediate Load Halfword
The 16-bit signed immediate value imm is placed in each of the 8 halfword
elements of quadword d.

d = si_ilh(imm) ILH d, imm

si_ilhu: Immediate Load Halfword Upper
The 16-bit signed immediate value imm is placed into the
leftmost 16 bits each of the 4 word elements of quadword d. The rightmost
16 bits are set to 0.

d = si_ilhu(imm) ILHU d, imm

si_iohl: Immediate or Halfword Lower
The 16-bit immediate value imm is prepended with zeros and ORed with
each of the 4 word elements of quadword a. The result is returned in
quadword d.

d = si_iohl(a, imm)
rt <--- a
IOHL rt, imm
d <--- rt

No Operation Intrinsics
si_lnop: No Operation (load)
A no-operation is performed on the load pipeline.

si_lnop() LNOP

si_nop: No Operation (execute)
A no-operation is performed on the execute pipeline.

si_nop() NOP rt1

Memory Load and Store Intrinsics
si_lqa: Load Quadword (a-form)
An effective address is determined by the sign-extended 18-bit value imm,
with the 4 least significant bits forced to zero. The quadword at this
effective address is returned in quadword d.

d = si_lqa(imm) LQA d, imm

si_lqd: Load Quadword (d-form)
An effective address is computed by zeroing the 4 least significant bits of
the sign-extended 14-bit immediate value imm, adding imm to word element
0 of quadword a, and forcing the 4 least significant bits of the result to zero.
The quadword at this effective address is then returned in quadword d.

d = si_lqd(a, imm) LQD d, imm(a)

12 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Instruction/Description Usage Assembly Mapping

si_lqr: Load Quadword Instruction Relative (a-form)
An effective address is computed by forcing the 2 least significant bits of
the signed 18-bit immediate value imm to zero, adding this value to the
address of the instruction, and forcing the 4 least significant bits of the
result to zero. The quadword at this effective address is then returned in
quadword d.

d = si_lqr(imm) LQR, d, imm

si_lqx: Load Quadword (x-form)
An effective address is computed by adding word element 0 of quadword a
to word element 0 of quadword b and forcing the 4 least significant bits to
zero. The quadword at this effective address is then returned in quadword
d.

d = si_lqx(a, b) LQX d, a, b

si_stqa: Store Quadword (a-form)
An effective address is determined by the sign-extended 18-bit value imm,
with the 4 least significant bits forced to zero. The quadword a is stored at
this effective address.

si_stqa(a, imm) STQA a, imm

si_stqd: Store Quadword (d-form)
An effective address is computed by zeroing the 4 least significant bits of
the sign-extended 14-bit immediate value imm, adding imm to word element
0 of quadword b, and forcing the 4 least significant bits to zero. The
quadword a is then stored at this effective address.

si_stqd(a, b, imm) STQD a, imm(b)

si_stqr: Store Quadword Instruction Relative (a-form)
An effective address is computed by forcing the 2 least significant bits of
the signed 18-bit immediate value imm to zero, adding this value to the
address of the instruction, and forcing the 4 least significant bits of the
result to zero. The quadword a is then stored at this effective address.

si_stqr(a, imm) STQR, a, imm

si_stqx: Store Quadword (x-form)
An effective address is computed by adding word element 0 of quadword b
to word element 0 of quadword c and forcing the 4 least significant bits to
zero. The quadword a is then stored at this effective address.

si_stqx(a, b, c) STQX a, b, c

Control Intrinsics
si_stopd: Stop and Signal with Dependencies
Execution of the SPU is stopped and a signal type of 0x3FFF is delivered
after all register dependencies are met. This intrinsic is considered volatile
with respect to all instructions and will not be reordered with any other
instructions.

si_stopd(a, b, c) STOPD a, b, c

1 The false target parameter rt is optimally chosen depending on the register usage of neighboring instructions.

Specific intrinsics accept only the following types of arguments:

• Immediate literals, as an explicit constant expression or as a symbolic address

• Enumerations
• qword arguments

Arguments of other types must be cast to qword.

For complete details on the specific instructions, see the Synergistic Processor Unit Instruction Set Architecture.

2.1.1. Specific Casting Intrinsics

When using specific intrinsics, it may be necessary to cast from scalar types to the qword data type, or from the
qword data type to scalar types. Similar to casting between vector data types, specific cast intrinsics have no effect
on an argument that is stored in a register. All specific casting intrinsics are of the following form:

d=casting_intrinsic(a)

 ��� SPU Low-Level Specific and Generic Intrinsics 13

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

See Table 2-11 for additional details about the specific casting intrinsics.

Table 2-11: Specific Casting Intrinsics

Return/Argument TypesCasting Intrinsic
d a

Description

si_to_char signed char Cast byte element 3 of qword a to signed char d.
si_to_uchar unsigned char Cast byte element 3 of qword a to unsigned char d.
si_to_short short Cast halfword element 1 of qword a to short d.
si_to_ushort unsigned short Cast halfword element 1 of qword a to unsigned short d.
si_to_int int Cast word element 0 of qword a to int d.
si_to_uint unsigned int Cast word element 0 of qword a to unsigned int d.
si_to_ptr void * Cast word element 0 of qword a to a void pointer d.
si_to_llong long long Cast doubleword element 0 of qword a to long long d.

si_to_ullong unsigned long long Cast doubleword element 0 of qword a to unsigned long
long d.

si_to_float float Cast word element 0 of qword a to float d.
si_to_double double

qword

Cast doubleword element 0 of qword a to double d.
si_from_char signed char Cast signed char a to byte element 3 of qword d.
si_from_uchar unsigned char Cast unsigned char a to byte element 3 of qword d.
si_from_short short Cast short a to halfword element 1 of qword d.
si_from_ushort unsigned short Cast unsigned short a to halfword element 1 of qword d.
si_from_int int Cast int a to word element 0 of qword d.
si_from_uint unsigned int Cast unsigned int a to word element 0 of qword d.
si_from_ptr void * Cast void pointer a to word element 0 of qword d.
si_from_llong long long Cast long long a to doubleword element 0 of qword d.
si_from_ullong unsigned long long Cast unsigned long long a to doubleword element 0 of

dsi_from_float float Cast float a to word element 0 of qword d.
si_from_double

qword

double Cast double a to doubleword element 0 of qword d.

Because the casting intrinsics do not perform data conversion, casting from a scalar type to a qword type results in
portions of the quadword being undefined.

2.2. Generic Intrinsics and Built-ins
Generic intrinsics are operations that map to one or more specific intrinsics. The mapping of a generic intrinsic to a
specific intrinsic depends on the input arguments to the intrinsic. Built-ins are similar to generic intrinsics; however,
unlike generic intrinsics, built-ins map to more than one SPU instruction. All generic intrinsics and built-ins are
prefixed by the string spu_. For example, the generic intrinsic that implements the stop assembly instruction is
named spu_stop.

2.2.1. Mapping Intrinsics with Scalar Operands

Intrinsics with scalar arguments are introduced for SPU instructions with immediate fields. For example, the intrinsic
function vector signed int spu_add(vector signed int, int) will translate to an AI assembly instruction.

Depending on the assembly instruction, immediate values are either 7, 10, 16, or 18 bits in length. The action
performed for out-of-range immediate values depends on the type of intrinsic. By default, immediate-form specific
intrinsics with an out-of-range immediate value are flagged as an error. Compilers may provide an option to issue a
warning for out-of-range immediate values and use only the specified number of least significant bits for the
out-of-range argument.

14 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Generic intrinsics support a full range of scalar operands. This support is not dependent on whether the scalar
operand can be represented within the instruction’s immediate field. Consider the following example:

d = spu_and (vector unsigned int a, int b);

Depending on argument b, different instructions are generated:

• If b is a literal constant within the range supported by one of the immediate forms, the immediate instruction
form is generated. For example, if b equals 1, then ANDI d, a, 1 is generated.

• If b is a literal constant and is out-of-range but can be folded and implemented using an alternate immediate
instruction form, the alternate immediate instruction is generated. For example, if b equals 0x30003, then
ANDHI d, a, 3 is generated. In this context, “alternate immediate instruction form” means an immediate
instruction form having a smaller data element size.

• If b is a literal constant that can be constructed using one or two immediate load instructions followed by the
non-immediate form of the instruction, the appropriate instructions will be used. Immediate load instructions
include IL, ILH, ILHU, ILA, IOHL, and FSMBI. Table 2-12 shows possible uses of the immediate load
instructions for various constants b.

Table 2-12: Possible Uses of Immediate Load Instructions for Various Values of Constant b
Constant b Generates Instructions

-6000 IL b, -6000
AND d, a, b

131074 (0x20002) ILH b, 2
AND d, a, b

131072 (0x20000) ILHU b, 2
AND d, a, b

134000 (0x20B70) ILA b, 134000
AND d, a, b

262780 (0x4027C)
ILHU b, 4
IOHL b, 636
AND d, a, b

(0xFFFFFFFF, 0x0, 0x0, 0xFFFFFFFF) FSMBI b, 0xF00F
AND d, a, b

• If b is a variable (non-literal) integer, code to splat the integer across the entire vector is generated followed
by the non-immediate form of the instruction. For example, if b is an integer of unknown value, the constant
area is loaded with the shuffle pattern (0x10203, 0x10203, 0x10203, 0x10203) at “CONST_AREA,
offset” and the following instructions are generated:

LQD pattern, CONST_AREA, offset
SHUFB b, b, b, pattern
AND d, a, b

2.2.2. Implicit Conversion of Arguments of Intrinsics

There is no implicit conversion of arguments that have a vector type. Arguments of scalar type are converted
according to the rules specified in the C/C++ standards. Consider, for example,

d = spu_insert(a, b, element);

Scalar a is inserted into the element of vector b that is specified by the element parameter. When b is a vector
double, a must be converted to double, element must be converted to int, and d must be a vector double.

2.2.3. Notations and Conventions

The remaining documentation describing the generic intrinsics uses the following rules and naming conventions:

• The table associated with each generic intrinsic specifies the supported input types.

 ��� SPU Low-Level Specific and Generic Intrinsics 15

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

• For intrinsics with scalar operands, only the immediate form of the instruction is shown. The other forms can
be deduced in accordance with the rules discussed in section “2.2.1. Mapping Intrinsics with Scalar
Operands”.

• Some intrinsics, whether specific or generic, map to assembly instructions that do not uniquely specify all
input and output registers. Instead, an input register also serves as the output register. Examples of these
assembly instructions include ADDX, DFMS, MPYHHA, and SFX. For these intrinsics, the notation rt <--- c
is used to imply that a register-to-register copy (copy c to rt) might be required to satisfy the semantics of
the intrinsic, depending on the inputs and outputs. No copies will be generated if input c is the same as
output d.

• Generic intrinsics that do not map to specific intrinsics are identified by the acronym “N/A” (not applicable) in
the Specific Intrinsics column of the respective table.

2.3. Constant Formation Intrinsics

spu_splats: Splat Scalar to Vector

d = spu_splats(a)

A single scalar value is replicated across all elements of a vector of the same type. The result is returned in vector
d.

Table 2-13: Splat Scalar to Vector

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

vector unsigned char unsigned char
vector signed char signed char
vector unsigned short unsigned short
vector signed short signed short
vector unsigned int unsigned int
vector signed int signed int
vector unsigned long long unsigned long long
vector signed long long signed long long
vector float float
vector double double

N/A SHUFB d, a, a, pattern

vector unsigned char unsigned char (literal)
vector signed char signed char (literal)
vector unsigned short unsigned short (literal)
vector signed short signed short (literal)
vector unsigned int unsigned int (literal)
vector signed int signed int (literal)
vector unsigned long long unsigned long long (literal)
vector signed long long signed long long (literal)
vector float float (literal)
vector double double (literal)

N/A

IL d, a
 or
ILA d, a
 or
ILH d, a&0xFFFF
 or
ILHU d, a>>16
 or
ILHU d, a>>16;
IOHL d, a
 or
FSMBI d, a

16 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

2.4. Conversion Intrinsics

spu_convtf: Convert Integer Vector to Vector Float

d = spu_convtf(a, scale)

Each element of vector a is converted to a floating-point value and divided by 2scale. The allowable range for scale
is 0 to 127. Values outside this range are flagged as an error and compilation is terminated. The result is returned in
vector d.

Table 2-14: Convert Integer Vector to Vector Float

Return/Argument Types
d a scale

Specific Intrinsics Assembly Mapping

vector float vector unsigned int d = si_cuflt(a, scale) CUFLT d, a, scale
vector float vector signed int

unsigned int (7-bit
literal) d = si_csflt(a, scale) CSFLT d, a, scale

spu_convts: Convert Vector Float to Signed Integer Vector

d = spu_convts(a, scale)

Each element of vector a is scaled by 2scale, and the result is converted to a signed integer. If the intermediate result
is greater than 231-1, the result saturates to 231-1. If the intermediate value is less than -231, the result saturates to -
231. The allowable range for scale is 0 to 127. Values outside this range are flagged as an error and compilation is
terminated. The results are returned in the corresponding elements of vector d.

Table 2-15: Convert Vector Float to Signed Integer Vector

Return/Argument Types
d a scale

Specific Intrinsics Assembly Mapping

vector signed int vector float unsigned int (7-bit literal) d = si_cflts(a, scale) CFLTS d, a, scale

spu_convtu: Convert Vector Float to Unsigned Integer Vector

d = spu_convtu(a, scale)

Each element of vector a is scaled by 2scale and the result is converted to an unsigned integer. If the intermediate
result is greater than 232-1, the result saturates to 232-1. If the intermediate value is negative, the result saturates to
zero. The allowable range for scale is 0 to 127. Values outside this range are flagged as an error and compilation
is terminated. The results are returned in the corresponding elements of vector d.

Table 2-16: Convert Vector Float to Unsigned Integer Vector

Return/Argument Types
d a scale

Specific Intrinsics Assembly Mapping

vector unsigned int vector float unsigned int (7-bit d = si_cfltu(a, scale) CFLTU d, a, scale

 ��� SPU Low-Level Specific and Generic Intrinsics 17

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_extend: Extend Vector

d = spu_extend(a)

For a fixed-point vector a, each odd element of vector a is extended to a double and returned in the corresponding
element of vector d. For a floating-point vector, each even element of a is sign-extended and returned in the
corresponding element of d.

Table 2-17: Extend Vector

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

vector signed short vector signed char d = si_xsbh(a) XSBH d, a
vector signed int vector signed short d = si_xshw(a) XSHW d, a
vector signed long long vector signed int d = si_xswd(a) XSWD d, a
vector double vector float d = si_fesd(a) FESD d, a

spu_roundtf: Round Vector Double to Vector Float

d = spu_roundtf(a)

Each doubleword element of vector a is rounded to a single-precision floating-point value and placed in the even
element of vector d. Zeros are placed in the odd elements of d.

Table 2-18: Round Vector Double to Vector Float

Return/Argument Types
d a

Specific
Intrinsics Assembly Mapping

vector float vector double d = si_frds(a) FRDS d, a

2.5. Arithmetic Intrinsics

spu_add: Vector Add

d = spu_add(a, b)

Each element of vector a is added to the corresponding element of vector b. If b is a scalar, the scalar value is
replicated for each element and then added to a. Overflows and carries are not detected, and no saturation is
performed. The results are returned in the corresponding elements of vector d.

Table 2-19: Vector Add

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed int vector signed int vector signed int
vector unsigned int vector unsigned int vector unsigned int

d = si_a(a, b) A d, a, b

vector signed short vector signed short vector signed short
vector unsigned short vector unsigned short vector unsigned short

d = si_ah(a, b) AH d, a, b

vector signed int vector signed int
vector unsigned int vector unsigned int

10-bit signed int
(literal) d = si_ai(a, b) AI d, a, b

vector signed int vector signed int int
vector unsigned int vector unsigned int unsigned int

See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector signed short vector signed short
vector unsigned short vector unsigned short

10-bit signed short
(literal) d = si_ahi(a, b) AHI d, a, b

18 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed short vector signed short short
vector unsigned short vector unsigned short unsigned short

See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector float vector float vector float d = si_fa(a, b) FA d, a, b
vector double vector double vector double d = si_dfa(a, b) DFA d, a, b

spu_addx: Vector Add Extended

d = spu_addx(a, b, c)

Each element of vector a is added to the corresponding element of vector b and to the least significant bit of the
corresponding element of vector c. The result is returned in the corresponding element of vector d.

Table 2-20: Vector Add Extended

spu_genb: Vector Generate Borrow

d = spu_genb(a, b)

Each element of vector b is subtracted from the corresponding element of vector a. The resulting borrow out is
placed in the least significant bit of the corresponding element of vector d. The remaining bits of d are set to 0.

Table 2-21: Vector Generate Borrow

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed int vector signed int vector signed int
vector unsigned int vector unsigned int vector unsigned int

d = si_bg(b, a) BG rt, b, a

spu_genbx: Vector Generate Borrow Extended

d = spu_genbx(a, b, c)

Each element of vector b is subtracted from the corresponding element of vector b. An additional 1 is subtracted
from the result if the least significant bit of the corresponding element of vector c is 0. If the result is less than 0, a 1
is placed in the corresponding element of vector d; otherwise, a 0 is placed in the corresponding element of d.

Table 2-22: Vector Generate Borrow Extended

Return/Argument Types
d a b c

Specific
Intrinsics

Assembly
Mapping

vector signed int vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int vector unsigned int
d = si_addx(
 a, b, c)

rt <--- c
ADDX rt, a, b
d <--- rt

Return/Argument Types
d a b c

Specific
Intrinsics Assembly Mapping

vector signed int vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int vector unsigned int
d = si_bgx(
 b, a, c)

rt <--- c
BGX rt, b, a
d <--- rt

 ��� SPU Low-Level Specific and Generic Intrinsics 19

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_genc: Vector Generate Carry

d = spu_genc(a, b)

Each element of vector a is added to the corresponding element of vector b. The resulting carry out is placed in the
least significant bit of the corresponding element of vector d. The remaining bits of d are set to 0.

Table 2-23: Vector Generate Carry

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int
d = si_cg(a, b) CG rt, a, b

spu_gencx: Vector Generate Carry Extended

d = spu_gencx(a, b, c)

Each element of vector a is added to the corresponding element of vector b and the least significant bit of the
corresponding element of vector c. The resulting carry out is placed in the least significant bit of the corresponding
element of vector d. The remaining bits of d are set to 0.

Table 2-24: Vector Generate Carry Extended

Return/Argument Types
d a b c

Specific
Intrinsics Assembly Mapping

vector signed int vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

d = si_cgx(
 a, b, c)

rt <--- c
CGX rt, a, b
d <--- rt

spu_madd: Vector Multiply and Add

d = spu_madd(a, b, c)

Each element of vector a is multiplied by vector b and added to the corresponding element of vector c. The result is
returned to the corresponding element of vector d. For integer multiply-and-adds, the odd elements of vectors a and
b are sign-extended to 32-bit integers prior to multiplication.

Table 2-25: Vector Multiply and Add

Return/Argument Types
d a b c

Specific
Intrinsics Assembly Mapping

vector signed int vector signed short vector signed short vector signed int d = si_mpya(
 a, b, c) MPYA d, a, b, c

vector float vector float vector float vector float d = si_fma(
 a, b, c) FMA d, a, b, c

vector double vector double vector double vector double d = si_dfma(
 a, b, c)

rt <--- c
DFMA rt, a, b
d <--- rt

spu_mhhadd: Vector Multiply High High and Add

d = spu_mhhadd(a, b, c)

Each even element of vector a is multiplied by the corresponding even element of vector b, the 32-bit result is
added to the corresponding element of vector c, and the result is returned in the corresponding element of vector d.

20 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 2-26: Vector Multiply High High and Add

Return/Argument Types
d a b c

Specific Intrinsics Assembly Mapping

vector signed int vector signed short vector signed short vector signed int d = si_mpyhha(
 a, b, c)

rt <--- c
MPYHHA rt, a, b
d <--- rt

vector unsigned
int

vector unsigned
short

vector unsigned
short

vector unsigned
int

d = si_mpyhhau(
 a, b, c)

rt <--- c
MPYHHAU rt, a, b
d <--- rt

spu_msub: Vector Multiply and Subtract

d = spu_msub(a, b, c)

Each element of vector a is multiplied by the corresponding element of vector b, and the corresponding element of
vector c is subtracted from the product. The result is returned in the corresponding element of vector d.

Table 2-27: Vector Multiply and Subtract

Return/Argument Types
d a b c

Specific Intrinsics Assembly Mapping

vector float vector float vector float vector float d = si_fms(a, b, c) FMS d, a, b, c

vector double vector double vector double vector double d = si_dfms(a, b, c)
rt <--- c
DFMS rt, a, b
d <--- rt

spu_mul: Vector Multiply

d = spu_mul(a, b)

Each element of vector a is multiplied by the corresponding element of vector b and returned in the corresponding
element of vector d.

Table 2-28: Vector Multiply

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector float vector float vector float d = si_fm(a, b) FM d, a, b
vector double vector double vector double d = si_dfm(a, b) DFM d, a, b

spu_mulh: Vector Multiply High

d = spu_mulh(a, b)

Each even element of vector a is multiplied by the next (odd) element of vector b. The product is shifted left by 16
bits and stored in the corresponding element of vector d. Bits shifted out at the left are discarded. Zeros are shifted
in at the right.

Table 2-29: Vector Multiply High

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed int vector signed short vector signed short d = si_mpyh(a, b) MPYH d, a, b

 ��� SPU Low-Level Specific and Generic Intrinsics 21

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_mule: Vector Multiply Even

d = spu_mule(a, b)

Each even element of vector a is multiplied by the corresponding even element of vector b, and the 32-bit result is
returned to the corresponding element of vector d.

Table 2-30: Vector Multiply Even

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed int vector signed short vector signed short d = si_mpyhh(a, b) MPYHH d, a, b
vector unsigned int vector unsigned short vector unsigned short d = si_mpyhhu(a,

)
MPYHHU d, a, b

spu_mulo: Vector Multiply Odd

d = spu_mulo(a, b)

Each odd element of vector a is multiplied by the corresponding element of vector b. If b is a scalar, the scalar value
is replicated for each element and then multiplied by a. The results are returned in vector d.

Table 2-31: Vector Multiply Odd

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed short d = si_mpy (a, b) MPY d, a, b
10-bit signed short (literal) d = si_mpyi(a, b) MPYI d, a, b vector signed int vector signed short
signed short See section “2.2.1. Mapping Intrinsics

with Scalar Operands”.
vector unsigned short d = si_mpyu(a, b) MPYU d, a, b
10-bit signed short (literal) d = si_mpyui(a, b) MPYUI d, a, b vector unsigned int vector unsigned short
unsigned short See section “2.2.1. Mapping Intrinsics

with Scalar Operands”.

spu_mulsr: Vector Multiply and Shift Right

d = spu_mulsr(a, b)

Each odd element of vector a is multiplied by the corresponding odd element of vector b. The leftmost 16 bits of the
resulting 32-bit product is sign-extended and returned in the corresponding 32-bit element of vector d.

Table 2-32: Vector Multiply and Shift Right

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed int vector signed short vector signed short d = si_mpys(a, b) MPYS d, a, b

22 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_nmadd: Negative Vector Multiply and Add

d = spu_nmadd(a, b, c)

Each element of vector a is multiplied by the corresponding element in vector b and then added to the
corresponding element of vector c. The result is negated and returned in the corresponding element of vector d.

Table 2-33: Negative Vector Multiply and Add

Return/Argument Types
d a b c

Specific Intrinsics Assembly Mapping

vector double vector double vector double vector double d = si_dfnma(a, b, c)
rt <-- c
DFNMA rt, a, b
d <-- rt

spu_nmsub: Negative Vector Multiply and Subtract

d = spu_nmsub(a, b, c)

Each element of vector a is multiplied by the corresponding element in vector b. The result is subtracted from the
corresponding element in c and returned in the corresponding element of vector d.

Table 2-34: Negative Vector Multiply and Subtract

Return/Argument Types
d a b c

Specific Intrinsics Assembly Mapping

vector float vector float vector float vector float d = si_fnms(a, b, c) FNMS d, a, b, c

vector double vector double vector double vector double d = si_dfnms(a, b, c)
rt <--- c
DFNMS rt, a, b
d <--- rt

spu_re: Vector Floating-Point Reciprocal Estimate

d = spu_re(a)

For each element of vector a, an estimate of its floating-point reciprocal is computed, and the result is returned in
the corresponding element of vector d. The resulting estimate is accurate to 12 bits.

Table 2-35: Vector Floating-Point Reciprocal Estimate

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

vector float vector float t = si_frest(a)
d = si_fi(a, t)

FREST d, a
FI d, a, d

spu_rsqrte: Vector Floating-Point Reciprocal Square Root Estimate

d = spu_rsqrte(a)

For each element of vector a, an estimate of its floating-point reciprocal square root is computed, and the result is
returned in the corresponding element of vector d. The resulting estimate is accurate to 12 bits.

Table 2-36: Vector Floating-Point Reciprocal Square Root Estimate

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

vector float vector float t = si_frsqest(a)
d = si_fi(a, t)

FRSQEST d, a
FI d, a, d

 ��� SPU Low-Level Specific and Generic Intrinsics 23

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_sub: Vector Subtract

d = spu_sub(a, b)

Each element of vector b is subtracted from the corresponding element of vector a. If a is a scalar, the scalar value
is replicated for each element of a, and then b is subtracted from the corresponding element of a. Overflows and
carries are not detected. The results are returned in the corresponding elements of vector d.

Table 2-37: Vector Subtract

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed short vector signed short vector signed short
vector unsigned short vector unsigned short vector unsigned short

d = si_sfh(b, a) SFH d, b, a

vector signed int vector signed int vector signed int
vector unsigned int vector unsigned int vector unsigned int

d = si_sf(b, a) SF d, b, a

vector signed int vector signed int
vector unsigned int

10-bit signed int (literal)
vector unsigned int

d = si_sfi(b, a) SFI d, b, a

vector signed int int vector signed int
vector unsigned int unsigned int vector unsigned int

See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector signed short vector signed short
vector unsigned short

10-bit signed short (literal)
vector unsigned short

d = si_sfhi(b, a) SFHI d, b, a

vector signed short short vector signed short
vector unsigned short unsigned short vector unsigned short

See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector float vector float vector float d = si_fs(a, b) FS d, a, b
vector double vector double vector double d = si_dfs(a, b) DFS d, a, b

spu_subx: Vector Subtract Extended

d = spu_subx(a, b, c)

Each element of vector b is subtracted from the corresponding element of vector a. An additional 1 is subtracted
from the result if the least significant bit of the corresponding element of vector c is 0. The final result is returned in
the corresponding element of vector d.

Table 2-38: Vector Subtract Extended

Return/Argument Types
d a b c

Specific
Intrinsics Assembly Mapping

vector signed int vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int vector unsigned int
d = si_sfx(b,a,
c)

rt <--- c
SFX rt, b, a
d <--- rt

24 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

2.6. Byte Operation Intrinsics

spu_absd: Vector Absolute Difference

d = spu_absd(a, b)

Each element of vector a is subtracted from the corresponding element of vector b, and the absolute value of the
result is returned in the corresponding element of vector d.

Table 2-39: Vector Absolute Difference

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char vector unsigned char d = si_absdb(a, b) ABSDB d, a, b

spu_avg: Average of Two Vectors

d = spu_avg(a, b)

Each element of vector a is added to the corresponding element of vector b plus 1. The result is shifted to the right
by 1 bit and placed in the corresponding element of vector d.

Table 2-40: Average of Two Vectors

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char vector unsigned char d = si_avgb(a, b) AVGB d, a, b

spu_sumb: Sum Bytes into Shorts

d = spu_sumb(a, b)

Each four elements of b are summed and returned in the corresponding even elements of vector d. Each four
elements of a are summed and returned in the corresponding odd elements of d.

Table 2-41: Sum Bytes into Shorts

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned short vector unsigned char vector unsigned char d = si_sumb(a,
b) SUMB d, a, b

2.7. Compare, Branch and Halt Intrinsics

spu_bisled: Branch Indirect and Set Link if External Data

(void) spu_bisled(func)
(void) spu_bisled_d(func)
(void) spu_bisled_e(func)

The count value of channel 0 (event status) is examined. If it is zero, execution continues with the next sequential
instruction. If it is nonzero, the function func is called. The parameter func is the name of, or pointer to, a
parameter-less function with no return value. If func is called, the spu_bisled_d and spu_bisled_e forms of
the intrinsic do one of the following actions:

• Disable interrupts – use spu_bisled_d

• Enable interrupts – use spu_bisled_e

 ��� SPU Low-Level Specific and Generic Intrinsics 25

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Because the bisled instruction is assumed to behave as a synchronous software interrupt, and because all volatile
registers must be considered non-volatile by the bisled target function, func, standard calling conventions are not
observed. See the SPU Application Binary Interface Specification for additional details about standard calling
conventions.

With respect to branch prediction, it is assumed that func is not called. Therefore, a branch hint instruction will not
be inserted as a result of the spu_bisled() intrinsic.

Table 2-42: Branch Indirect and Set Link if External Data

Generic Intrinsic Form func Specific Intrinsics Assembly Mapping

spu_bisled si_bisled(func) BISLED $LR, func
spu_bisled_d si_bisledd(func) BISLEDD $LR, func
spu_bisled_e

void (*func) ()
si_bislede(func) BISLEDE $LR, func

spu_cmpabseq: Vector Compare Absolute Equal

d = spu_cmpabseq(a, b)

The absolute value of each element of vector a is compared with the absolute value of the corresponding element of
vector b. If the absolute values are equal, all bits of the corresponding element of vector d are set to one; otherwise,
all bits of the corresponding element of d are set to zero.

Table 2-43: Vector Compare Absolute Equal

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned int vector float vector float d = si_fcmeq(a, b) FCMEQ d, a, b
vector unsigned long long vector double vector double d = si_dfcmeq(a, b) DFCMEQ d, a, b †

spu_cmpabsgt: Vector Compare Absolute Greater Than

d = spu_cmpabsgt(a, b)

The absolute value of each element of vector a is compared with the absolute value of the corresponding element of
vector b. If the element of a is greater than the element of b, all bits of the corresponding element of vector d are set
to one; otherwise, all bits of the corresponding element of d are set to zero.

Table 2-44: Vector Compare Absolute Greater Than

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned int vector float vector float d = si_fcmgt(a, b) FCMGT d, a, b

vector unsigned long long vector double vector double d = si_dfcmgt(a,
b) DFCMGT d, a, b †

26 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_cmpeq: Vector Compare Equal

d = spu_cmpeq(a, b)

Each element of vector a is compared with the corresponding element of vector b. If b is a scalar, the scalar value is
first replicated for each element, and then a and b are compared. If the operands are equal, all bits of the
corresponding element of vector d are set to one. If they are unequal, all bits of the corresponding element of d are
set to zero.

Table 2-45: Vector Compare Equal

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed char vector signed char
vector unsigned char

vector unsigned char vector unsigned char
d = si_ceqb(a, b) CEQb d, a, b

vector signed short vector signed short
vector unsigned short

vector unsigned short vector unsigned short
d = si_ceqh(a, b) CEQH d, a, b

vector signed int vector signed int
vector unsigned int vector unsigned int

d = si_ceq(a, b) CEQ d, a, b
vector unsigned int

vector float vector float d = si_fceq(a, b) FCEQ d, a, b
vector signed char
vector unsigned char

10-bit signed int (literal) d = si_ceqbi(a, b) CEQBI d, a, b

vector signed char signed char
vector unsigned char

vector unsigned char unsigned char
See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector signed short
vector unsigned short

10-bit signed int (literal) d = si_ceqhi(a, b) CEQHI d, a, b

vector signed short signed short
vector unsigned short

vector unsigned short unsigned short
See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector signed int
vector unsigned int

10-bit signed int (literal) d = si_ceqi(a, b) CEQI d, a, b

vector signed int signed int
vector unsigned int

vector unsigned int unsigned int
See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned long long vector double vector double d = si_dfceq(a, b) DFCEQ d, a, b
†

 ��� SPU Low-Level Specific and Generic Intrinsics 27

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_cmpgt: Vector Compare Greater Than

d = spu_cmpgt(a, b)

Each element of vector a is compared with the corresponding element of vector b. If b is a scalar, the scalar value is
replicated for each element and then a and b are compared. If the element of a is greater than the corresponding
element of b, all bits of the corresponding element of vector d are set to one; otherwise, all bits of the corresponding
element of d are set to zero.

Table 2-46: Vector Compare Greater Than

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector signed char d = si_cgtb(a, b) CGTB d, a, b

10-bit signed int (literal) d = si_cgtbi(a, b) CGTBI d, a, b vector signed char

signed char See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned char d = si_clgtb(a, b) CLGTB d, a, b

10-bit signed int (literal) d = si_clgtbi(a, b) CLGTBI d, a, b

vector unsigned char

vector unsigned char

unsigned char See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector signed short d = si_cgth(a, b) CGTH d, a, b

10-bit signed int (literal) d = si_cgthi(a, b) CGTHI d, a, b vector signed short

signed short See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned short d = si_clgth(a, b) CLGTH d, a, b

10-bit signed int (literal) d = si_clgthi(a, b) CLGTHI d, a, b

vector unsigned short

vector unsigned short

unsigned short See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector signed int d = si_cgt(a, b) CGT d, a, b

10-bit signed int (literal) d = si_cgti(a, b) CGTI d, a, b vector signed int

signed int See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned int d = si_clgt(a, b) CLGT d, a, b

10-bit signed int (literal) d = si_clgti(a, b) CLGTI d, a, b vector unsigned int

unsigned int See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned int

vector float vector float d = si_fcgt(a, b) FCGT d, a, b
vector unsigned long long vector double vector double d = si_dfcgt(a, b) DFCGT d, a, b †

28 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_hcmpeq: Halt If Compare Equal

(void) spu_hcmpeq(a, b)

The contents of a and b are compared. If they are equal, execution is halted.

Table 2-47: Halt If Compare Equal

Return/Argument Types
a b

Specific Intrinsics Assembly Mapping1,2

int int (non-literal)
unsigned int unsigned int (non-literal)

si_heq(a, b) HEQ rt, a, b

int
unsigned int

10-bit signed int (literal) si_heqi(a, b) HEQI rt, a, b

1 Immediate values that cannot be represented as a 10-bit signed value are constructed similar to the method described in
section “2.2.1. Mapping Intrinsics with Scalar Operands”.
2 The false target parameter rt is optimally chosen depending on the register usage of neighboring instructions.

spu_hcmpgt: Halt If Compare Greater Than

(void) spu_hcmpgt(a, b)

The contents of a and b are compared. If a is greater than b, execution is halted.

Table 2-48: Halt If Compare Greater Than

Return/Argument Types
a b

Specific Intrinsics Assembly Mapping1,2

int int (non-literal) si_hgt(a, b) HGT rt, a, b
unsigned int unsigned int (non-literal) si_hlgt(a, b) HLGT rt, a, b
int 10-bit signed int (literal) si_hgti(a, b) HGTI rt, a, b
unsigned int 10-bit signed int (literal) si_hlgti(a, b) HLGTI rt, a, b

1 Immediate values that cannot be represented as 10-bit signed values are constructed in a way similar to the method
described in section “2.2.1. Mapping Intrinsics with Scalar Operands”.
2 The false target parameter rt is optimally chosen depending on the register usage of neighboring instructions.

spu_testsv: Vector Test Special Value

d = spu_testsv(a, values)

Each element of vector a is compared with the set of special values specified by values. If any one of the specified
comparisons is true all ones are placed in the corresponding element of vector d. If none of the tests are true, zeros
are placed in the corresponding element of vector d.

Table 2-49: Vector Test Special Value

Return/Argument Types
d a values

Specific Intrinsics Assembly Mapping

vector unsigned long
long vector double 7-bit unsigned int

(literal)
d = si_dftsv(a, values) DFTSV d, a, values

†

The set of bit flag mnemonics that can be used to specify a set of special values to be tested is shown in Table
2-50. These mnemonics are defined in spu_intrinsics.h.

Table 2-50: Special Value Bit Flag Mnemonics

Mnemonic Value Description

 ��� SPU Low-Level Specific and Generic Intrinsics 29

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Mnemonic Value Description

SPU_SV_NEG_DENORM 0x01 Test for a negative denormalized number
SPU_SV_POS_DENORM 0x02 Test for a positive denormalized number
SPU_SV_NEG_ZERO 0x04 Test for a negative zero
SPU_SV_POS_ZERO 0x08 Test for a positive zero
SPU_SV_NEG_INFINITY 0x10 Test for a negative infinity
SPU_SV_POS_INFINITY 0x20 Test for a positive infinity
SPU_SV_NAN 0x40 Test for a Not-a-Number, both signalling and quiet

2.8. Bits and Mask Intrinsics

spu_cntb: Vector Count Ones for Bytes

d = spu_cntb(a)

For each element of vector a, the number of ones are counted, and the count is placed in the corresponding
element of vector d.

Table 2-51: Vector Count Ones for Bytes

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned
char vector signed char

si_cntb CNTB d, a

spu_cntlz: Vector Count Leading Zeros

d = spu_cntlz(a)

For each element of vector a, the number of leading zeros is counted, and the resulting count is placed in the
corresponding element of vector d.

Table 2-52: Vector Count Leading Zeros

Return/Argument Types
d a

Specific
Intrinsics Assembly Mapping

vector signed int
vector unsigned int vector unsigned int

vector float

d = si_clz(a) CLZ d, a

spu_gather: Gather Bits from Elements

d = spu_gather(a)

The rightmost bit (LSB) of each element of vector a is gathered, concatenated, and returned in the rightmost bits of
element 0 of vector d. For a byte vector, 16 bits are gathered; for a halfword vector, 8 bits are gathered; and for a
word vector, 4 bits are gathered. The remaining bits of element 0 of d and all other elements of that vector are
zeroed.

30 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 2-53: Gather Bits from Elements

Return/Argument Types
d a

Specific
Intrinsics Assembly Mapping

vector unsigned char
vector signed char

d = si_gbb(a) GBB d, a

vector unsigned short
vector signed short

d = si_gbh(a) GBH d, a

vector unsigned int
vector signed int

vector unsigned int

vector float
d = si_gb(a) GB d, a

spu_maskb: Form Select Byte Mask

d = spu_maskb(a)

For each of the least significant 16 bits of a, each bit is replicated 8 times, producing a 128-bit vector mask that is
returned in vector d.

Table 2-54: Form Select Byte Mask

Return/Argument Types
d a

Specific
Intrinsics Assembly Mapping

unsigned short
signed short
unsigned int
signed int

d = si_fsmb(a) FSMB d, a
vector unsigned char

16-bit unsigned int (literal) d = si_fsmbi(a) FSMBI d, a

spu_maskh: Form Select Halfword Mask

d = spu_maskh(a)

For each of the least significant 8 bits of a, each bit is replicated 16 times, producing a 128-bit vector mask that is
returned in vector d.

Table 2-55: Form Select Halfword Mask

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

unsigned char
signed char
unsigned short
signed short
unsigned int

vector unsigned short

signed int

d = si_fsmh(a) FSMH d, a

 ��� SPU Low-Level Specific and Generic Intrinsics 31

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_maskw: Form Select Word Mask

d = spu_maskw(a)

For each of the least significant 4 bits of a, each bit is replicated 32 times, producing a 128-bit vector mask that is
returned in vector d.

Table 2-56: Form Select Word Mask

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

unsigned char
signed char
unsigned short
signed short
unsigned int

vector unsigned int

signed int

d = si_fsm(a) FSM d, a

spu_sel: Select Bits

d = spu_sel(a, b, pattern)

For each bit in the 128-bit vector pattern, the corresponding bit from either vector a or vector b is selected. If the
bit is 0, the bit from a is selected; otherwise, the bit from b is selected. The result is returned in vector d.

Table 2-57: Select Bits

Return/Argument Types
d a b pattern

Specific
Intrinsics

Assembly
Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char

vector unsigned
char

vector unsigned short vector unsigned short vector unsigned
short

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned int vector unsigned int vector unsigned int
vector signed int vector signed int vector signed int
vector float vector float vector float

vector unsigned int

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector signed long long vector signed long
long

vector signed long
long

vector double vector double vector double

vector unsigned
long long

d = si_selb(
 a, b,
 pattern)

SELB d, a,
b, pattern

spu_shuffle: Shuffle Two Vectors of Bytes

d = spu_shuffle(a, b, pattern)

For each byte of pattern, the byte is examined, and a byte is produced, as shown in Figure 2-2. The result is
returned in the corresponding byte of vector d.

Figure 2-2: Shuffle Pattern

Value in the Byte of pattern (in binary) Resulting Byte

10xxxxxx 0x00
110xxxxx 0xFF

32 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Value in the Byte of pattern (in binary) Resulting Byte

111xxxxx 0x80
otherwise The byte of (a||b) addressed by the rightmost 5 bits of pattern

Table 2-58: Shuffle Two Vectors of Bytes

Return/Argument Types
d a b pattern

Specific Intrinsics Assembly
Mapping

vector unsigned
char vector unsigned char vector unsigned

char

vector signed char vector signed char vector signed char

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector signed short vector signed short vector signed short

vector unsigned int vector unsigned int vector unsigned int

vector signed int vector signed int vector signed int

vector unsigned
long long

vector unsigned
long long

vector unsigned
long long

vector signed
long long

vector signed
long long

vector signed
long long

vector float vector float vector float

vector double vector double vector double

vector
unsigned
char

d = si_shufb(
 a, b, pattern)

SHUFB d, a, b,
pattern

2.9. Logical Intrinsics

spu_and: Vector Bit-Wise AND

d = spu_and(a, b)

Each bit of vector a is logically ANDed with the corresponding bit of vector b. If b is a scalar, the scalar value is
first replicated for each element, and then a and b are ANDed. The results are returned in the corresponding bit of
vector d.

Table 2-59: Vector Bit-Wise AND

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char
vector unsigned short vector unsigned short vector unsigned short
vector signed short vector signed short vector signed short
vector unsigned int vector unsigned int vector unsigned int
vector signed int vector signed int vector signed int

vector unsigned long long vector unsigned long
long

vector unsigned long
long

vector signed long long vector signed long
long vector signed long long

vector float vector float vector float
vector double vector double vector double

d = si_and(a, b) AND d, a, b

 ��� SPU Low-Level Specific and Generic Intrinsics 33

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char

10-bit signed int
(literal)

d = si_andbi(a,
b) ANDBI d, a, b

vector unsigned char vector unsigned char unsigned char
vector signed char vector signed char signed char

See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned short vector unsigned short
vector signed short vector signed short

10-bit signed int
(literal)

d = si_andhi(a,
b) ANDHI d, a, b

vector unsigned short vector unsigned short unsigned short
vector signed short vector signed short signed short

See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned int vector unsigned int
vector signed int vector signed int

10-bit signed int
(literal)

d = si_andi(a, b) ANDI d, a, b

vector unsigned int vector unsigned int unsigned int
vector signed int vector signed int signed int

See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

spu_andc: Vector Bit-Wise AND with Complement

d = spu_andc(a, b)

Each bit of vector a is ANDed with the complement of the corresponding bit of vector b. The result is returned in the
corresponding bit of vector d.

Table 2-60: Vector Bit-Wise AND with Complement

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char vector unsigned char

vector signed char vector signed char vector signed char

vector unsigned short vector unsigned short vector unsigned short

vector signed short vector signed short vector signed short

vector unsigned int vector unsigned int vector unsigned int

vector signed int vector signed int vector signed int

vector unsigned long vector unsigned long vector unsigned long

vector signed long long vector signed long long vector signed long long

vector float vector float vector float

vector double vector double vector double

d = si_andc(
 a, b) ANDC d, a, b

34 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_eqv: Vector Bit-Wise Equivalent

d = spu_eqv(a, b)

Each bit of vector a is compared with the corresponding bit of vector b. The corresponding bit of vector d is set to 1
if the bits in a and b are equivalent; otherwise, the bit is set to 0.

Table 2-61: Vector Bit-Wise Equivalent

Return/Argument Types
d a b

Specific Intrinsics Assembly
Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char
vector unsigned short vector unsigned short vector unsigned short
vector signed short vector signed short vector signed short
vector unsigned int vector unsigned int vector unsigned int
vector signed int vector signed int vector signed int

vector unsigned long long vector unsigned long long vector unsigned long long

vector signed long long vector signed long long vector signed long long
vector float vector float vector float
vector double vector double vector double

d = si_eqv(a, b) EQV d, a, b

spu_nand: Vector Bit-Wise Complement of AND

d = spu_nand(a, b)

Each bit of vector a is ANDed with the corresponding bit of vector b. The complement of the result is returned in the
corresponding bit of vector d.

Table 2-62: Vector Bit-Wise Complement of AND

Return/Argument Types

d a b
Specific
Intrinsics

Assembly
Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char

vector unsigned short vector unsigned short vector unsigned short

vector signed short vector signed short vector signed short

vector unsigned int vector unsigned int vector unsigned int

vector signed int vector signed int vector signed int

vector unsigned long long vector unsigned long long vector unsigned long long

vector signed long long vector signed long long vector signed long long

vector float vector float vector float

vector double vector double vector double

d = si_nand(a,
b) NAND d, a, b

 ��� SPU Low-Level Specific and Generic Intrinsics 35

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_nor: Vector Bit-Wise Complement of OR

d = spu_nor(a, b)

Each bit of vector a is ORed with the corresponding bit of vector b. The complement of the result is returned in the
corresponding bit of vector d.

Table 2-63: Vector Bit-Wise Complement of OR

Return/Argument Types
d a b

Specific Intrinsics Assembly
Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char

vector unsigned short vector unsigned short vector unsigned short

vector signed short vector signed short vector signed short

vector unsigned int vector unsigned int vector unsigned int

vector signed int vector signed int vector signed int

vector unsigned long long vector unsigned long long vector unsigned long long

vector signed long long vector signed long long vector signed long long

vector float vector float vector float

vector double vector double vector double

d = si_nor(a, b) NOR d, a, b

spu_or: Vector Bit-Wise OR

d = spu_or(a, b)

Each bit of vector a is logically ORed with the corresponding bit of vector b. If b is a scalar, the scalar value is first
replicated for each element, and then a and b are ORed. The result is returned in the corresponding bit of vector d.

Table 2-64: Vector Bit-Wise OR

Return/Argument Types
d a b

Specific
Intrinsics

Assembly
Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char

vector unsigned short vector unsigned short vector unsigned short

vector signed short vector signed short vector signed short

vector unsigned int vector unsigned int vector unsigned int

vector signed int vector signed int vector signed int

vector unsigned long long vector unsigned long long vector unsigned long

vector signed long long vector signed long long vector signed long long

vector float vector float vector float

vector double vector double vector double

d = si_or(a, b) OR d, a, b

vector unsigned char vector unsigned char

vector signed char vector signed char
10-bit signed int (literal) d = si_orbi(a, b) ORBI d, a, b

vector unsigned char vector unsigned char unsigned char

vector signed char vector signed char signed char
See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned short vector unsigned short 10-bit signed int (literal) d = si_orhi(a, b) ORHI d, a, b

36 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a b

Specific
Intrinsics

Assembly
Mapping

vector signed short vector signed short

vector unsigned short vector unsigned short unsigned short

vector signed short vector signed short signed short
See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

vector unsigned int vector unsigned int

vector signed int vector signed int
10-bit signed int (literal) d = si_ori(a, b) ORI d, a, b

vector unsigned int vector unsigned int unsigned int

vector signed int vector signed int signed int
See section “2.2.1. Mapping Intrinsics
with Scalar Operands”.

spu_orc: Vector Bit-Wise OR with Complement

d = spu_orc(a, b)

Each bit of vector a is ORed with the complement of the corresponding bit of vector b. The result is returned in the
corresponding bit of vector d.

Table 2-65: Vector Bit-Wise OR with Complement

Return/Argument Types
d a b

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char
vector unsigned short vector unsigned short vector unsigned short
vector signed short vector signed short vector signed short
vector unsigned int vector unsigned int vector unsigned int
vector signed int vector signed int vector signed int
vector unsigned long long vector unsigned long long vector unsigned long long
vector signed long long vector signed long long vector signed long long
vector float vector float vector float
vector double vector double vector double

d = si_orc(a,
b) ORC d,a, b

spu_orx: OR Word Across

d = spu_orx(a)

The four word elements of vector a are logically ORed. The result is returned in word element 0 of vector d. All other
elements (1,2,3) of d are assigned a value of zero.

Table 2-66: OR Word Across

Return/Argument Types
d a

Specific Intrinsics Assembly Mapping

vector unsigned int vector unsigned int
vector signed int vector signed int

d = si_orx(a) ORX d, a

 ��� SPU Low-Level Specific and Generic Intrinsics 37

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_xor: Vector Bit-Wise Exclusive OR

d = spu_xor(a, b)

Each element of vector a is exclusive-ORed with the corresponding element of vector b. If b is a scalar, the scalar
value is first replicated for each element. The result is returned in the corresponding bit of vector d.

Table 2-67: Vector Bit-Wise Exclusive OR
Return/Argument Types

d a b
Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char vector unsigned char
vector signed char vector signed char vector signed char
vector unsigned short vector unsigned short vector unsigned short
vector signed short vector signed short vector signed short
vector unsigned int vector unsigned int vector unsigned int
vector signed int vector signed int vector signed int
vector unsigned long long vector unsigned long

l
vector unsigned long long

vector signed long long vector signed long long vector signed long long
vector float vector float vector float
vector double vector double vector double

d = si_xor(
 a, b) XOR d, a, b

vector unsigned char vector unsigned char
vector signed char vector signed char

10-bit signed int (literal) d = si_xorbi(
 a, b) XORBI d, a, b

vector unsigned char vector unsigned char unsigned char
vector signed char vector signed char signed char

See section “2.2.1. Mapping
Intrinsics with Scalar Operands”.

vector unsigned short vector unsigned short
vector signed short vector signed short

10-bit signed int (literal) d = si_xorhi(
 a, b) XORHI d, a, b

vector unsigned short vector unsigned short unsigned short
vector signed short vector signed short signed short

See section “2.2.1. Mapping
Intrinsics with Scalar Operands”.

vector unsigned int vector unsigned int
vector signed int vector signed int

10-bit signed int (literal) d = si_xori(
 a, b) XORI d, a, b

vector unsigned int vector unsigned int unsigned int
vector signed int vector signed int signed int

See section “2.2.1. Mapping
Intrinsics with Scalar Operands”.

2.10. Shift and Rotate Intrinsics

spu_rl: Vector Rotate Left by Bits

d = spu_rl(a, count)

Each element of vector a is rotated left by the number of bits specified by the corresponding element in vector
count. Bits rotated out of the left end of the element are rotated in at the right end. A limited number of count bits
are used depending on the size of the element. For halfword elements, the 4 least significant bits of count are
used. For word elements, the 5 least significant bits of count are used.

The results are returned in the corresponding elements of vector d.

Table 2-68: Vector Rotate Left by Bits

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned short vector unsigned short
vector signed short vector signed short

vector signed short d = si_roth(a, count) ROTH d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

vector signed int d = si_rot(a, count) ROT d, a, count

38 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned short vector unsigned short
vector signed short vector signed short

7-bit signed int (literal) d = si_rothi(a, count) ROTHI d, a, count

vector unsigned short vector unsigned short
vector signed short vector signed short

int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

vector unsigned int vector unsigned int
vector signed int vector signed int

7-bit signed int (literal) d = si_roti(a, count) ROTI d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

spu_rlmask: Vector Rotate Left and Mask by Bits

d = spu_rlmask(a, count)

This function uses an element-wise rotate left and mask operation to perform a logical shift right (LSR) by bits of
each element of vector a, where count represents the negated value, or values, of the desired corresponding right-
shift amounts. (The count parameter can be either a vector or a scalar, as shown in Table 2-69.) For example, if
scalar count is –5, each element of a is shifted right by 5 bits. The effect of this function is more precisely shown by
the following code:

For (each halfword element h in vector a){
 int bitshift = -count & 0x1F;
 h = (bitshift & 0x10)? 0: LSR(h,bitshift);
}

For (each word element w in vector a){
 int bitshift = -count & 0x3F;
 w = (bitshift & 0x20)? 0: LSR(w,bitshift);
}

The results are returned in the corresponding elements of vector d.

Table 2-69: Vector Rotate Left and Mask by Bits
Return/Argument Types

d a count
Specific Intrinsics Assembly Mapping

vector unsigned short vector unsigned short
vector signed short vector signed short

vector signed short d = si_rothm(a, count) ROTHM d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

vector signed int d = si_rotm(a, count) ROTM d, a, count

vector unsigned short vector unsigned short
vector signed short vector signed short

7-bit signed int (literal) d = si_rothmi(a, count) ROTHMI d, a, count

vector unsigned short vector unsigned short
vector signed short vector signed short

int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

vector unsigned int vector unsigned int
vector signed int vector signed int

7-bit signed int (literal) d = si_rotmi(a, count) ROTMI d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

 ��� SPU Low-Level Specific and Generic Intrinsics 39

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_rlmaska: Vector Rotate Left and Mask Algebraic by Bits

d = spu_rlmaska(a, count)

This function uses an element-wise rotate left and mask operation to perform an arithmetical shift right (ASR) of
each element of vector a, where count represents the negated value, or values, of the desired corresponding right-
shift amounts. (The count parameter can be either a vector or a scalar, as shown in Table 2-70.) For example, if
scalar count is –5, each element of a is shifted right by 5 bits. The effect of this function is more precisely shown by
the following code:

For (each halfword element h in vector a){
 int bitshift = -count & 0x1F;
 h = (bitshift & 0x10)? 0: ASR(h,bitshift);
}

For (each word element w in vector a){
 int bitshift = -count & 0x3F;
 w = (bitshift & 0x20)? 0: ASR(w,bitshift);
}

The results are returned in the corresponding elements of vector d.

Table 2-70: Vector Rotate Left and Mask Algebraic by Bits

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned short vector unsigned short
vector signed short vector signed short

vector signed short d = si_rotmah(a, count) ROTMAH d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

vector signed int d = si_rotma(a, count) ROTMA d, a, count

vector unsigned short vector unsigned short
vector signed short vector signed short

7-bit signed int
(literal)

d = si_rotmahi(a,
count) ROTMAHI d, a, count

vector unsigned short vector unsigned short
vector signed short vector signed short

int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

vector unsigned int vector unsigned int
vector signed int vector signed int

7-bit signed int
(literal)

d = si_rotmai(a, count) ROTMAI d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

40 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_rlmaskqw: Quadword Rotate Left and Mask by Bits

d = spu_rlmaskqw(a, count)

This function uses a rotate and mask quadword by bits operation to perform a quadword logical shift right (LSR) of
up to 7 bits, where count represents the negated value of the desired right-shift amount. For example, if count is –
5, vector a is shifted right by 5 bits. The effect of this function is more precisely shown by the following code:

qword spu_rlmaskqw(qword a, int count)
{ int bitshift = -count & 0x7;
 return LSR(a,bitshift);
}

The resulting quadword is returned in vector d.

Table 2-71: Quadword Rotate Left and Mask by Bits

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int
(literal)

d = si_rotqmbii(a, count)

(count = 7-bit immediate)

ROTQMBII d, a, count

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int
(non-
literal)

d = si_rotqmbi(a, count) ROTQMBI d, a, count

 ��� SPU Low-Level Specific and Generic Intrinsics 41

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_rlmaskqwbyte: Quadword Rotate Left and Mask by Bytes

d = spu_rlmaskqwbyte(a, count)

This function uses a rotate and mask quadword by bytes operation to perform a quadword logical shift right (LSR)
by bytes, where count represents the negated value of the desired byte right-shift amount. For example, if count
is –5, vector a is shifted right by 5 bytes. The effect of this function is more precisely shown by the following code:

qword spu_rlmaskqwbyte(qword a, int count)
{ int bitshift = (-count << 3) & 0xF8;
 return LSR(a,bitshift);
}

The resulting quadword is returned in vector d.

Table 2-72: Quadword Rotate Left and Mask by Bytes
Return/Argument Types

d a count
Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int
(literal)

d = si_rotqmbyi(a, count)

(count = 7-bit immediate)

ROTQMBYI d, a, count

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int
(non-literal) d = si_rotqmby(a, count) ROTQMBY d, a, count

spu_rlmaskqwbytebc: Quadword Rotate Left and Mask by Bytes from Bit Shift Count

d = spu_rlmaskqwbytebc(a, count)

This function uses a rotate and mask quadword by bytes from bit shift count operation to perform a quadword logical
shift right (LSR) by bytes, where bits 24-28 of count represent the negated value of the desired byte right-shift
amount. For example, if the bit shift count is –10, vector a is shifted right by 2 bytes. The effect of this function is
more precisely shown by the following code:

qword spu_rlmaskqwbytebc(qword a, int count)
{ int bitshift = -(count & 0xF8) & 0xF8;
 return LSR(a,bitshift);
}

The resulting quadword is returned in vector d.

42 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

The following example code shows typical usage of this function; it computes a vector d that is the value of vector a
logically shifted right by n bits:

d = spu_rlmaskqwbytebc(a,7-n);
d = spu_rlmaskqw(d,-n);

Table 2-73: Quadword Rotate Left and Mask by Bytes from Bit Shift Count
Return/Argument Types

d a count
Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long

lvector signed long long vector signed long long
vector float vector float
vector double vector double

int d = si_rotqmbybi(a, count) ROTQMBYBI d, a, count

spu_rlqw: Quadword Rotate Left by Bits

d = spu_rlqw(a, count)

Vector a is rotated to the left by the number of bits specified by the 3 least significant bits of count. Bits rotated out
of the left end of the vector are rotated in on the right. The result is returned in vector d.

Table 2-74: Quadword Rotate Left by Bits
Return/Argument Types

d a count
Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int
(literal)

d = si_rotqbii(a, count)

(count = 7-bit immediate)

ROTQBII d, a, count

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float

int
(non-literal)

d = si_rotqbi(a, count) ROTQBI d, a, count

 ��� SPU Low-Level Specific and Generic Intrinsics 43

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector double vector double

spu_rlqwbyte: Quadword Rotate Left by Bytes

d = spu_rlqwbyte(a, count)

Vector a is rotated to the left by the number of bytes specified by the 4 least significant bits of count. Bytes rotated
out of the left end of the vector are rotated in on the right. The result is returned in vector d.

Table 2-75: Quadword Rotate Left by Bytes

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int
(literal)

d = si_rotqbyi(a, count)

(count = 7-bit immediate)

ROTQBYI d, a, count

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int
(non-literal) d = si_rotqby(a, count) ROTQBY d, a, count

44 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_rlqwbytebc: Quadword Rotate Left by Bytes from Bit Shift Count

d = spu_rlqwbytebc(a, count)

Vector a is rotated to the left by the number of bytes specified by bits 24-28 of count. Bytes rotated out of the left
end of the vector are rotated in at the right. The result is returned in vector d.

Table 2-76: Quadword Rotate Left by Bytes from Bit Shift Count

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

int d = si_rotqbybi(a, count) ROTQBYBI d, a,
count

spu_sl: Vector Shift Left by Bits

d = spu_sl(a, count)

Each element of vector a is shifted left by the number of bits specified by the corresponding element in vector
count. If count is a scalar, the scalar value is first replicated for each element, and then a is shifted.

Bits shifted out of the left end of the element are discarded, and zeros are shifted in at the right. A limited number of
count bits are used depending on the size of the element. For halfword elements, the 5 least significant bits of
count are used, and for word elements, the 6 least significant bits are used. The result is returned in the
corresponding bit of vector d.

Table 2-77: Vector Shift Left by Bits
Return/Argument Types

d a count
Specific Intrinsics Assembly Mapping

vector unsigned short vector unsigned short
vector signed short vector signed short

vector unsigned short d = si_shlh(a, count) SHLH d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

vector unsigned int d = si_shl(a, count) SHL d, a, count

vector unsigned short vector unsigned short
vector signed short vector signed short

7-bit unsigned int
(literal) d = si_shlhi(a, count) SHLHI d, a, count

vector unsigned short vector unsigned short
vector signed short vector signed short

unsigned int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

vector unsigned int vector unsigned int
vector signed int vector signed int

7-bit unsigned int
(literal) d = si_shli(a, count) SHLI d, a, count

vector unsigned int vector unsigned int
vector signed int vector signed int

unsigned int See section “2.2.1. Mapping Intrinsics with
Scalar Operands”.

 ��� SPU Low-Level Specific and Generic Intrinsics 45

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_slqw: Quadword Shift Left by Bits

d = spu_slqw(a, count)

Vector a is shifted left by the number of bits specified by the 3 least significant bits of count. Bits shifted out of the
left end of the vector are discarded, and zeros are shifted in at the right. The result is returned in vector d.

Table 2-78: Quadword Shift Left by Bits
Return/Argument Types

d a count
Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

unsigned int
(literal)

d = si_shlqbii(a, count)

(count = 7-bit immediate)

SHLQBII d, a, count

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

unsigned int
(non-literal) d = si_shlqbi(a, count) SHLQBI d, a, count

spu_slqwbyte: Quadword Shift Left by Bytes

d = spu_slqwbyte(a, count)

Vector a is shifted left by the number of bytes specified by the 5 least significant bits of count. Bytes shifted out of
the left end of the vector are discarded, and zeros are shifted in at the right. The result is returned in vector d.

Table 2-79: Quadword Shift Left by Bytes

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float

unsigned int
(literal)

d = si_shlqbyi(a, count)

(count = 7-bit immediate)

SHLQBYI d, a, count

46 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector double vector double

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

unsigned int
(non-literal)

d = si_shlqby(a, count) SHLQBY d, a, count

spu_slqwbytebc: Quadword Shift Left by Bytes from Bit Shift Count

d = spu_slqwbytebc(a, count)

Vector a is shifted left by the number of bytes specified by bits 24-28 of count. Bytes shifted out of the left end of
the vector are discarded, and zeros are shifted in at the right. The result is returned in vector d.

Table 2-80: Quadword Shift Left by Bytes from Bit Shift Count

Return/Argument Types
d a count

Specific Intrinsics Assembly Mapping

vector unsigned char vector unsigned char
vector signed char vector signed char
vector unsigned short vector unsigned short
vector signed short vector signed short
vector unsigned int vector unsigned int
vector signed int vector signed int
vector unsigned long long vector unsigned long long
vector signed long long vector signed long long
vector float vector float
vector double vector double

unsigned int
d = si_shlqbybi(a,
count) SHLQBYBI d, a, count

 ��� SPU Low-Level Specific and Generic Intrinsics 47

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

2.11. Control Intrinsics

spu_idisable: Disable Interrupts

(void) spu_idisable()

Asynchronous interrupts are disabled.

This intrinsic is considered volatile with respect to all other instructions; thus, the BID instruction will not be
reordered with any other instructions.

Table 2-81: Disable Interrupts
Specific Intrinsics Assembly Mapping

N/A

position dependent:
 ILA t, next_inst
 BID t
next_inst:

position independent:
 BRSL t, next_inst
next_inst:
 AI t, t, 8
 BID t

spu_ienable: Enable Interrupts

(void) spu_ienable()

Asynchronous interrupts are enabled.

This intrinsic is considered volatile with respect to all other instructions; thus, the BIE instruction will not be
reordered with any other instructions.

Table 2-82: Enable Interrupts

Specific Intrinsics Assembly Mapping

N/A

position dependent:
 ILA t, next_inst
 BIE t
next_inst:

position independent:
 BRSL t, next_inst
next_inst:
 AI t, t, 8
 BIE t

48 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_mffpscr: Move from Floating-Point Status and Control Register

d = spu_mffpscr()

The floating-point status and control register (FPSCR) Special Purpose Register is read, and the contents are
returned in d. Unused bits of the FPSCR are forced to zero.

This intrinsic is considered volatile with respect to the floating-point instructions and will not be reordered with
respect to these instructions. The floating-point instructions include: cflts, cfltu, csflt, cuflt, dfa, dfm,
dfma, dfms, dfnma, dfnms, dfs, fa, fceq, fcgt, fcmeq, fcmgt, fesd, fi, fm, fma, fms, fnms, frds, frest,
frsqest, and fscrwr.

Table 2-83: Move from Floating-Point Status and Control Register

Return/Argument Types
d

Specific Intrinsics Assembly Mapping

vector unsigned int d = si_fscrrd() FSCRRD d

spu_mfspr: Move from Special Purpose Register

d = spu_mfspr(register)

The Specal Purpose Register specified by enumeration constant register is read, and the contents are returned
in d.

Table 2-84: Move from Special Purpose Register

Return/Argument Types
d register

Specific Intrinsics Assembly Mapping

unsigned int enumeration d = si_to_uint(si_mfspr(register)) MFSPR d, register

spu_mtfpscr: Move to Floating-Point Status and Control Register

(void) spu_mtfpscr(a)

The argument a is written to the floating-point status and control register (FPSCR).

This intrinsic is considered volatile with respect to the floating-point instructions, and it will not be reordered with
respect to these instructions.

Table 2-85: Move to Floating-Point Status and Control Register
Return/Argument Types

a
Specific Intrinsics Assembly Mapping

vector unsigned int si_fscrwr(a) FSCRWR rt1, a

1 The false target parameter rt is optimally chosen depending on register usage of neighboring instructions.

spu_mtspr: Move to Special Purpose Register

(void) spu_mtspr(register, a)

The argument a is written to the Special Purpose Register specified by the enumeration constant register.

 ��� SPU Low-Level Specific and Generic Intrinsics 49

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 2-86: Move to Special Purpose Register
Return/Argument Types
register a

Specific Intrinsics Assembly Mapping

enumeration unsigned int si_mtspr(register, si_from_uint(a)) MTSPR register, a

spu_dsync: Synchronize Data

(void) spu_dsync()

All earlier store instructions are forced to complete before proceeding. This function ensures that all stores to local
storage are visible to the MFC or PPU.

This intrinsic is considered volatile with respect to the store and MFC write instructions, and it will not be reordered
with respect to these instructions. The store and MFC instructions include: stqa, stqd, stqr, stqx, and wrch.

Table 2-87: Synchronize Data
Specific Intrinsics Assembly Mapping

si_dsync() DSYNC

spu_stop: Stop and Signal

(void) spu_stop(type)

Execution of the SPU program is stopped. The address of the stop instruction is placed into the least significant
bits of the SPU NPC register. The signal type is written to the SPU status register, and the PPU is interrupted.

This intrinsic is considered volatile with respect to all instructions, and it will not be reordered with any other
instructions.

Table 2-88: Stop and Signal
Specific Intrinsics type Assembly Mapping

si_stop(type) unsigned int (14-bit literal) STOP type

spu_sync: Synchronize

(void) spu_sync()
(void) spu_sync_c()

The processor waits until all pending store instructions have been completed before fetching the next sequential
instruction. The spu_sync_c form of the intrinsic also performs channel synchronization prior to the instruction
synchronization. This operation must be used following a store instruction that modifies the instruction stream.

These synchronization intrinsics are considered volatile with respect to all instructions, and they will not be
reordered with any other instructions.

Table 2-89: Synchronize
Generic Intrinsic Form Specific Intrinsics Assembly Mapping

spu_sync si_sync() SYNC
spu_sync_c si_syncc() SYNCC

50 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

2.12. Channel Control Intrinsics
The channel control intrinsics each take a channel number as an input. Channel numbers are literal unsigned
integer values in the range from 0 to 127. Table 2-90 and Table 2-91 show the respective SPU and MFC channel
numbers and their associated mnemonics. For additional details on the channels, see the Cell Broadband Engine
Architecture.

The channel intrinsics must never be reordered with respect to other channel commands or volatile local-storage
memory accesses.

The MFC channels are only valid for SPUs within a CBEA-compliant system. MFC and SPU channel enumerants
are defined in spu_intrinsics.h

Table 2-90: SPU Channel Numbers

Channel Number Mnemonic Description

0 SPU_RdEventStat Read event status with mask applied.
1 SPU_WrEventMask Write event mask.
2 SPU_WrEventAck Write End of event processing.
3 SPU_RdSigNotify1 Signal notification 1.
4 SPU_RdSigNotify2 Signal notification 2.
7 SPU_WrDec Write decrementer count.
8 SPU_RdDec Read decrementer count.
11 SPU_RdEventMask Read event mask.
13 SPU_RdMachStat Read SPU run status.
14 SPU_WrSRR0 Write SPU machine state save/restore register 0 (SRR0).
15 SPU_RdSRR0 Read SPU machine state save/restore register 0 (SRR0).
28 SPU_WrOutMbox Write outbound mailbox contents.
29 SPU_RdInMbox Read inbound mailbox contents.
30 SPU_WrOutIntrMbox Write outbound interrupt mailbox contents (interrupting PPU).

Table 2-91: MFC Channel Numbers
Channel Number Mnemonic Description
9 MFC_WrMSSyncReq Write multisource synchronization request.
12 MFC_RdTagMask Read tag mask.
16 MFC_LSA Write local memory address command parameter.
17 MFC_EAH Write high order DMA effective address command parameter.
18 MFC_EAL Write low order DMA effective address command parameter.
19 MFC_Size Write DMA transfer size command parameter.
20 MFC_TagID Write tag identifier command parameter.
21 MFC_Cmd Write and enqueue DMA command with associated class ID.
22 MFC_WrTagMask Write tag mask.
23 MFC_WrTagUpdate Write request for conditional/unconditional tag status update.
24 MFC_RdTagStat Read tag status with mask applied.
25 MFC_RdListStallStat Read DMA list stall-and-notify status.
26 MFC_WrListStallAck Write DMA list stall-and-notify acknowledge.
27 MFC_RdAtomicStat Read completion status of last completed immediate MFC atomic

update command.

 ��� SPU Low-Level Specific and Generic Intrinsics 51

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_readch: Read Word Channel

d = spu_readch(channel)

The word channel that is specified by channel is read, and the contents are placed in d. If the channel does not
exist, a value of zero is returned.

Table 2-92: Read Word Channel
Return/Argument Types

d channel
Specific Intrinsics Assembly Mapping

unsigned int enumeration d =
si to uint(si rdch(channel))

RDCH d, channel

spu_readchqw: Read Quadword Channel

d = spu_readchqw(channel)

The quadword channel that is specified by channel is read, and the contents are placed in vector d. If the channel
does not exist, a value of zero is returned.

Table 2-93: Read Quadword Channel

Return/Argument Types
d channel

Specific Intrinsics Assembly Mapping

vector unsigned int enumeration d = si_rdch(channel) RDCH d, channel

spu_readchcnt: Read Channel Count

d = spu_readchcnt(channel)

A Read Count operation is performed on thes channel that is specified by channel, and the count is placed in d. If
the channel does not exist, a value of zero is returned in d.

Table 2-94: Read Channel Count
Return/Argument Types
d channel

Specific Intrinsics Assembly Mapping

unsigned int enumeration d = si_rchcnt(channel) RCHCNT d, channel

spu_writech: Write Word Channel

(void) spu_writech(channel, a)

The contents of scalar a are written to the channel that is specified by the enumeration constant channel.

Table 2-95: Write Word Channel
Return/Argument Types
channel a

Specific Intrinsics Assembly Mapping

int si_wrch(channel, si_from_int(a))
enumeration

unsigned int si_wrch(channel, si_from_uint(a))
WRCH channel, a

52 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_writechqw: Write Quadword Channel

(void) spu_writechqw(channel, a)

The contents of vector a are written to the channel that is specified by the enumeration constant channel.

Table 2-96: Write Quadword Channel
Return/Argument Types

channel a
Specific Intrinsics Assembly Mapping

vector unsigned char
vector signed char
vector unsigned short
vector signed short
vector unsigned int
vector signed int
vector unsigned long long
vector signed long long
vector float

enumeration

vector double

si_wrch(channel, a) WRCH channel, a

2.13. Scalar Intrinsics
All of the previous intrinsic functions perform operations only on vector data types. This section describes special
utility intrinsics that allow programmers to efficiently coerce scalars to vectors, or vectors to scalars. With the aid of
these intrinsics, programmers can use intrinsic functions to perform operations between vectors and scalars without
having to revert to assembly language. This is especially important when there is a need is to perform an operation
that cannot be conveniently expressed in C, such as shuffling bytes.

spu_extract: Extract Vector Element from Vector

d = spu_extract(a, element)

The element that is specified by element is extracted from vector a and returned in d. Depending on the size of the
element, only a limited number of the least significant bits of the element index are used. For 1-, 2-, 4-, and 8-byte
elements, only 4, 3, 2, and 1 of the least significant bits of the element index are used, respectively.

Table 2-97: Extract Vector Element from Vector
Return/Argument Types

d a element
Specific Intrinsics Assembly Mapping1

unsigned char vector unsigned char N/A ROTQBY d, a, element

signed char vector signed char N/A ROTQBY d, a, element

unsigned short vector unsigned short N/A SHLI t, element, 1

signed short vector signed short N/A SHLI t, element, 1

unsigned int vector unsigned int N/A SHLI t, element, 2

signed int vector signed int N/A SHLI t, element, 2

unsigned long long vector unsigned long long N/A SHLI t, element, 3

signed long long vector signed long long N/A SHLI t, element, 3

float vector float N/A SHLI t, element, 2

double vector double

int (non-literal)

N/A SHLI t, element, 3

 ��� SPU Low-Level Specific and Generic Intrinsics 53

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a element

Specific Intrinsics Assembly Mapping1

unsigned char vector unsigned char N/A

signed char vector signed char N/A
ROTQBYI d, a, element-3

unsigned short vector unsigned short N/A

signed short vector signed short N/A
ROTQBYI d, a, 2*(element-
1)

unsigned int vector unsigned int N/A

signed int vector signed int N/A
ROTQBYI d, a, 4*element

unsigned long long vector unsigned long long N/A

signed long long vector signed long long N/A
ROTQBYI d, a, 8*element

float vector float N/A ROTQBYI d, a, 4*element

double vector double

int (literal)

N/A ROTQBYI d, a, 8*element

1 If the specified element is a known value (literal) and specifies the preferred (scalar) element, no instructions are produced. For 1
byte elements, the scalar element is 3. For 2 byte elements, the scalar element is 1. For 4 and 8 byte elements, the scalar element is
0. Sign extension may still be performed if a subsequent operation requires the resulting scalar to be cast to a larger data type. This
sign extension may be deferred until the subsequent operation.

spu_insert: Insert Scalar into Specified Vector Element

d = spu_insert(a, b, element)

Scalar a is inserted into the element of vector b that is specified by the element parameter, and the modified
vector is returned. All other elements of b are unmodified. Depending on the size of the element, only a limited
number of the least significant bits of the element index are used. For 1-, 2-, 4-, and 8-byte elements, only 4, 3, 2,
and 1 of the least significant bits of the element index are used, respectively.

Table 2-98: Insert Scalar into Specified Vector Element
Return/Argument Types

d a b element
Specific
Intrinsics Assembly Mapping

vector unsigned char unsigned char vector unsigned char N/A
vector signed char signed char vector signed char N/A

CBD t, 0(element)
SHUFB d, a, b, t

vector unsigned short unsigned short vector unsigned short N/A

vector signed short signed short vector signed short N/A

SHLI t, element, 1
CHD t, 0(t)
SHUFB d, a, b, t

vector unsigned int unsigned int vector unsigned int N/A
vector signed int signed int vector signed int N/A
vector float float vector float N/A

SHLI t, element, 2
CWD t, 0(t)
SHUFB d, a, b, t

vector unsigned long long unsigned long long vector unsigned long long N/A
vector signed long long signed long long vector signed long long N/A
vector double double vector double

int
(non-
literal)

N/A

SHLI t, element, 3
CDD t, 0(t)
SHUFB d, a, b, t

54 SPU Low-Level Specific and Generic Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a b element

Specific
Intrinsics Assembly Mapping

vector unsigned char unsigned char vector unsigned char N/A

vector signed char signed char vector signed char N/A

LQD pat,
CONST_AREA
SHUFB d, a, b, pat

vector unsigned short unsigned short vector unsigned short N/A

vector signed short signed short vector signed short N/A

LQD pat,
CONST_AREA
SHUFB d, a, b, pat

vector unsigned int unsigned int vector unsigned int N/A
vector signed int signed int vector signed int N/A
vector float float vector float N/A

LQD pat,
CONST_AREA
SHUFB d, a, b, pat

vector unsigned long long unsigned long long vector unsigned long long N/A
vector signed long long signed long long vector signed long long N/A
vector double double vector double

int
(literal)

N/A

LQD pat,
CONST_AREA
SHUFB d, a, b, pat

1 If the specified element is a known value (literal), a shuffle pattern can be loaded from the constant area. The contents of the pattern
depend on the size of the element and the element being replaced.

spu_promote: Promote Scalar to Vector

d = spu_promote(a, element)

Scalar a is promoted to a vector containing a in the element that is specified by the element parameter, and the
vector is returned in d. All other elements of the vector are undefined. Depending on the size of the element/scalar,
only a limited number of the least significant bits of the element index are used. For 1-, 2-, 4-, and 8-byte elements,
only 4, 3, 2, and 1 of the least significant bits of the element index are used, respectively.

Table 2-99: Promote Scalar to Vector
Return/Argument Types

d a element
Specific
Intrinsics Assembly Mapping1

vector unsigned char unsigned char N/A
vector signed char signed char N/A

SFI t, element, 3
ROTQBY d, a, t

vector unsigned short unsigned short N/A

vector signed short signed short N/A

SFI t, element, 1
SHLI t, t, 1
ROTQBY d, a, t

vector unsigned int unsigned int N/A
vector signed int signed int N/A
vector float float N/A

SFI t, element, 0
SHLI t, t, 2
ROTQBY d, a, t

vector unsigned long long unsigned long long N/A
vector signed long long signed long long N/A
vector double double

int (non-literal)

N/A

SHLI t, element, 3
ROTQBY d, a, t

 ��� SPU Low-Level Specific and Generic Intrinsics 55

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Return/Argument Types
d a element

Specific
Intrinsics Assembly Mapping1

vector unsigned char unsigned char N/A
vector signed char signed char N/A

ROTQBYI d, a,
(3-element)

vector unsigned short unsigned short N/A
vector signed short signed short N/A

ROTQBYI d, a, 2*
(1-element)

vector unsigned int unsigned int N/A
vector signed int signed int N/A
vector float float N/A

ROTQBYI d, a, -4*element

vector unsigned long long unsigned long long N/A
vector signed long long signed long long N/A
vector double double

int (literal)

N/A
ROTQBYI d, a, -8*element

1 If the specified element is of known value (literal) and specifies the preferred (scalar) element, no instructions are produced. For 1
byte elements, the scalar element is 3. For 2 byte elements, the scalar element is 1. For 4 and 8 byte elements, the scalar element is
0.

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

3. Composite Intrinsics

This chapter describes several composite intrinsics that have practical use for a wide variety of SPU programs.
Composite intrinsics are those intrinsics that can be constructed from a series of low-level intrinsics. In this context,
“low-level” means generic or specific. Because of the complexity of these operations, frequency of use, and
scheduling constraints, the particular services are provided as intrinsics.

Composite intrinsics are DMA intrinsics. The DMA intrinsics rely heavily on the channel control intrinsics.

spu_mfcdma32: Initiate DMA to/from 32-Bit Effective Address

spu_mfcdma32(ls, ea, size, tagid, cmd)

A DMA transfer of size bytes is initiated from local to system memory or from system memory to local storage. The
effective address that is specified by ea is a 32-bit virtual memory address. The local-storage address is specified
by the ls parameter. The DMA request is issued using the specified tagid. The type and direction of DMA,
bandwidth reservation, and class ID are encoded in the cmd parameter. For additional details about the commands
and restrictions on the size of supported DMA operations, see the Cell Broadband Engine Architecture.

Table 3-100: Initiate DMA to/from 32-Bit Effective Address
Return/Argument Types

ls ea size tagid cmd
Assembly Mapping

volatile void * unsigned
int unsigned int unsigned int unsigned int

spu_writech(MFC_LSA, ls)
spu_writech(MFC_EAL, ea)
spu_writech(MFC_Size, size)
spu_writech(MFC_TagID, tagid)
spu_writech(MFC_Cmd, cmd)

spu_mfcdma64: Initiate DMA to/from 64-Bit Effective Address

spu_mfcdma64(ls, eahi, ealow, size, tagid, cmd)

A DMA transfer of size bytes is initiated from local to system memory or from system memory to local storage. The
effective address that is specified by the concatenation of eahi and ealow is a 64-bit virtual memory address. The
local-storage address is specified by the ls parameter. The DMA request is issued using the specified tagid. The
type and direction of DMA, bandwidth reservation, and class ID are encoded in the cmd parameter. For additional
details about the commands and restrictions on the size of supported DMA operations, see the Cell Broadband
Engine Architecture.

Table 3-101: Initiate DMA to/from 64-Bit Effective Address
Return/Argument Types

ls eahi ealow size tagid cmd
Assembly Mapping

volatile void * unsigned int unsigned
int unsigned int unsigned

int unsigned int

spu_writech(MFC_LSA, ls)
spu_writech(MFC_EAH, eahi)
spu_writech(MFC_EAL, ealow)
spu_writech(MFC_Size, size)
spu_writech(MFC_TagID,
tagid)
spu_writech(MFC_CMD, cmd)

 ��� Composite Intrinsics 57

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Error! Reference source not found.

spu_mfcstat: Read MFC Tag Status

d = spu_mfcstat(type)

The current MFC tag status is read and logically ANDed with the current tag mask, and the result is returned in d.
The type of read to be performed is specified by the type parameter. If the type is 0, the function reads and
immediately returns the current MFC tag status. If the type is 1, the function reads and blocks for any outstanding
MFC tags to complete, and if the type is 2, the function reads and blocks for all outstanding MFC tags to complete.

Table 3-102: Read MFC Tag Status

Return/Argument Types
d type

Assembly Mapping

unsigned int unsigned int spu_writech(MFC_WrTagUpdate, type)
d = spu_readch(MFC_RdTagStat)

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

4. Programming Support for MFC Input and Output

Several MFC utility functions are described in this chapter. These functions may be provided as a programming
convenience; none of them are required. The functions that are described can be implemented either as macro
definitions or as built-in functions within the compiler. To access these functions, programmers must include the
header file spu_mfcio.h.

For each function listed in the sections below, the function usage is shown, followed by a brief description and the
function implementation.

4.1. Structures
A principal data structure is the MFC List DMA. The elements in this list are described below.

mfc_list_element: DMA List Element for MFC List DMA

typedef struct mfc_list_element {
 uint64_t notify : 1;
 uint64_t reserved : 16;
 uint64_t size : 15;
 uint64_t eal : 32;
} mfc_list_element_t;

The mfc_list_element is an element in the array MFC List DMA. The structure is comprised of several bit-fields:
notify is the stall-and-notify bit, reserved is set to zero. size is the list element transfer size, and eal is the low
word of the 64-bit effective address.

4.2. Effective Address Utilities
A frequent requirement for MFC programming is to manipulate effective addresses. This section describes several
functions for performing the most common operations.

mfc_ea2h: Extract Higher 32 Bits from Effective Address

(uint32_t) mfc_ea2h(uint64_t ea)

The higher 32 bits are extracted from the 64-bit effective address ea.

Implementation
(uint32_t)((uint64_t)(ea)>>32)

mfc_ea2l: Extract Lower 32 Bits from Effective Address

(uint32_t) mfc_ea2l(uint64_t ea)

The lower 32 bits are extracted from the 64-bit effective address ea.

Implementation
(uint32_t)(ea)

 ��� Programming Support for MFC Input and Output 59

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

mfc_hl2ea: Concatenate Higher 32 Bits and Lower 32 Bits

(uint64_t) mfc_hl2ea(uint32_t high, uint32_t low)

The higher 32 bits of a 64-bit address high and the lower 32 bits low are concatenated.

Implementation
si_to_ullong(si_selb(si_from_uint(high),
 si_rotqbyi(si_from_uint(low), -4), si_fsmbi(0x0f0f)))

mfc_ceil128: Round Up Value to Next Multiple of 128

(uint32_t) mfc_ceil128(uint32_t value)
(uint64_t) mfc_ceil128(uint64_t value)
(uintptr_t) mfc_ceil128(uintptr_t value)

The argument value is rounded to the next higher multiple of 128.

Implementation
(value + 127) & ~127

Example
volatile char buf[256];
volatile void *ptr = (volatile void*)mfc_ceil128((uintptr_t)buf);

4.3. MFC Tag Manager
This section describes functions that facilitate interoperability through a cooperative use of tag identifiers.
Applications, libraries, and tools that initiate DMAs should use these functions to reserve a tag ID or a set of IDs.

An implementation of the tag manager is not required to make all 32 architected tag IDs available for user allocation.
Some tags may be pre-allocated and used by the operating environment.

These functions are provided in a system library; therefore, they do not require explicit library linking by the
programmer.

MFC tag manager mnemonics are listed in Table 4-103. These mnemonics are defined in spu_mfcio.h.

Table 4-103: MFC Tag Manager Mnemonics

Mnemonic Value Description

MFC_TAG_VALID 0x00000000 The specified tag or tag group release was
successful.

MFC_TAG_INVALID 0xFFFFFFFF The tag or tag group reservation or tag
release failed.

mfc_tag_reserve: Reserve a Tag for Exclusive Use

(uint32_t) mfc_tag_reserve(void)

Reserve a tag for exclusive use. This routine returns an available tag ID in the range 0 to 31 and marks the tag as
reserved. If no tags are available, MFC_TAG_INVALID is returned, indicating that all tags have already been
reserved.

60 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

mfc_tag_release: Release a Tag from Exclusive Use

(uint32_t) mfc_tag_release(uint32_t tag)

Release the specified tag from exclusive use. After it is released, it is available for future reservation. Upon
successful release, MFC_TAG_VALID is returned. If the specified tag is not in the range 0 to 31 or if it was not
reserved, no action is taken and MFC_TAG_INVALID is returned.

mfc_multi_tag_reserve: Reserve a Group of Tags for Exclusive Use

(uint32_t) mfc_multi_tag_reserve(uint32_t number_of_tags)

Reserve a sequential group of tags for exclusive use. The number of tags to be reserved is specified by the
number_of_tags parameter. This routine returns the first tag ID in a sequential list of available tags and marks
them as reserved. The reserved group of tags is in the range of IDs starting from the returned tag ID through the
returned tag ID + number_of_tags - 1.

If the number of tags requested exceeds the number of available sequential tags, MFC_TAG_INVALID is returned,
indicating that the request could not be performed.

mfc_multi_tag_release: Release a Group of Tags from Exclusive Use

(uint32_t) mfc_multi_tag_release(uint32_t first_tag, uint32_t number_of_tags)

Release a sequential group of tags from exclusive use. The sequential group of tags is the range of tag IDs starting
from first_tag through first_tag + number_of_tags - 1. Upon successful release, the tags become
available for future reservation, and MFC_TAG_VALID is returned. If the specified tags were not previously reserved,
no action is taken, and MFC_TAG_INVALID is returned.

4.4. MFC DMA Commands
This section describes functions that implement the various MFC DMA commands. See the Cell Broadband Engine
Architecture for a description of the DMA commands, including restrictions on the size of the supported operations.

MFC DMA command mnemonics are listed in Table 4-104. MFC command enumerants are defined in
spu_mfcio.h.

Table 4-104: MFC DMA Command Mnemonics
Mnemonic Opcode Command

MFC_PUT_CMD 0x0020 put
MFC_PUTB_CMD 0x0021 putb
MFC_PUTF_CMD 0x0022 putf
MFC_GET_CMD 0x0040 get
MFC_GETB_CMD 0x0041 getb
MFC_GETF_CMD 0x0042 getf

mfc_put: Move Data from Local Storage to Effective Address

(void) mfc_put(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
 uint32_t tid, uint32_t rid)

Data is moved from local storage to system memory. The arguments to this function correspond to the arguments of
the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in system memory,
size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement
class identifier.

 ��� Programming Support for MFC Input and Output 61

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), size, tag,
 ((tid<<24)|(rid<<16)|MFC_PUT_CMD))

mfc_putb: Move Data from Local Storage to Effective Address with Barrier

(void) mfc_putb(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
 uint32_t tid, uint32_t rid)

Data is moved from local storage to system memory. The arguments to this function correspond to the arguments of
the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in system memory,
size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement
class identifier. This command and all subsequent commands with the same tag ID as this command are locally
ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), size, tag,
 ((tid<<24)|(rid<<16)|MFC_PUTB_CMD))

mfc_putf: Move Data from Local Storage to Effective Address with Fence

(void) mfc_putf(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
 uint32_t tid, uint32_t rid)

Data is moved from local storage to system memory. The arguments to this function correspond to the arguments of
the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in system memory,
size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement
class identifier. This command is locally ordered with respect to all previously issued commands within the same tag
group and command queue.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), size, tag,
 ((tid<<24)|(rid<<16)|MFC_PUTF_CMD))

mfc_get: Move Data from Effective Address to Local Storage

(void) mfc_get(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
 uint32_t tid, uint32_t rid)

Data is moved from system memory to local storage. The arguments to this function correspond to the arguments of
the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in system memory,
size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement
class identifier.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), size, tag,
 ((tid<<24)|(rid<<16)|MFC_GET_CMD))

mfc_getf: Move Data from Effective Address to Local Storage with Fence

(void) mfc_getf(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
 uint32_t tid, uint32_t rid)

Data is moved from system memory to local storage. The arguments to this function correspond to the arguments of
the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in system memory,
size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement
class identifier. This command is locally ordered with respect to all previously issued commands within the same tag
group and command queue.

62 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), size,
 tag,((tid<<24)|(rid<<16)|MFC_GETF_CMD))

mfc_getb: Move Data from Effective Address to Local Storage with Barrier

(void) mfc_getb (volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
 uint32_t tid, uint32_t rid)

Data is moved from system memory to local storage. The arguments to this function correspond to the arguments of
the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in system memory,
size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement
class identifier. This command and all subsequent commands with the same tag ID as this command are locally
ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), size,tag,
 ((tid<<24)|(rid<<16)|MFC_GETB_CMD))

4.5. MFC List DMA Commands
This section describes utility functions that can be used to manage the MFC List DMA. See the Cell Broadband
Engine Architecture for a description of the DMA commands, including restrictions on the size of the supported
operations.

MFC List DMA command mnemonics are listed in Table 4-105. MFC command enumerants are defined in spu_mfcio.h.

Table 4-105: MFC List DMA Command Mnemonics

Mnemonic Opcode Command

MFC_PUTL_CMD 0x0024 putl
MFC_PUTLB_CMD 0x0025 putlb
MFC_PUTLF_CMD 0x0026 putlf
MFC_GETL_CMD 0x0044 getl
MFC_GETLB_CMD 0x0045 getlb
MFC_GETLF_CMD 0x0046 getlf

mfc_putl: Move Data from Local Storage to Effective Address Using MFC List

(void) mfc_putl(volatile void *ls, uint64_t ea, volatile mfc_list_element_t *list,
 uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)

Data is moved from local storage to system memory using the MFC list. The arguments to this function correspond
to the arguments of the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in
system memory, list is the DMA list address, list_size is the DMA list size, tag is the DMA tag, tid is the
transfer class identifier, and rid is the replacement class identifier.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), (unsigned int)(list), list_size, tag,
 ((tid<<24)|(rid<<16)|MFC_PUTL_CMD))

 ��� Programming Support for MFC Input and Output 63

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

mfc_putlb: Move Data from Local Storage to Effective Address Using MFC List with Barrier

(void) mfc_putlb(volatile void *ls, uint64_t ea, volatile mfc_list_element_t *list,
 uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)

Data is moved from local storage to system memory using the MFC list. The arguments to this function correspond
to the arguments of the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in
system memory, list is the DMA list address, list_size is the DMA list size, tag is the DMA tag, tid is the
transfer class identifier, and rid is the replacement class identifier. This command and all subsequent commands
with the same tag ID as this command are locally ordered with respect to all previously issued commands within the
same tag group and command queue.

Implementation
spu_mfcdma64(ls,mfc_ea2h(ea),(unsigned int)(list), list_size, tag,
 ((tid<<24)|(rid<<16)|MFC_PUTLB_CMD))

mfc_putlf: Move Data from Local Storage to Effective Address Using MFC List with Fence

(void) mfc_putlf(volatile void *ls, uint64_t ea, volatile mfc_list_element_t *list,
 uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)

Data is moved from local storage to system memory using the MFC list. The arguments to this function correspond
to the arguments of the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in
system memory, list is the DMA list address, list_size is the DMA list size, tag is the DMA tag, tid is the
transfer class identifier, and rid is the replacement class identifier. This command is locally ordered with respect to
all previously issued commands within the same tag group and command queue.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea),(unsigned int)(list), list_size, tag,
 ((tid<<24)|(rid<<16)|MFC_PUTLF_CMD))

mfc_getl: Move Data from Effective Address to Local Storage Using MFC List

(void) mfc_getl (volatile void *ls, uint64_t ea, volatile mfc_list_element_t *list,
 uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)

Data is moved from system memory to local storage using the MFC list. The arguments to this function correspond
to the arguments of the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in
system memory, list is the DMA list address, list_size is the DMA list size, tag is the DMA tag, tid is the
transfer class identifier, and rid is the replacement class identifier.

Implementation
spu_mfcdma64(ls,mfc_ea2h(ea),(unsigned int)(list), list_size, tag,
 ((tid<<24)|(rid<<16)|MFC_GETL_CMD))

mfc_getlb: Move Data from Effective Address to Local Storage Using MFC List with Barrier

(void) mfc_getlb(volatile void *ls, uint64_t ea, volatile mfc_list_element_t *list,
 uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)

Data is moved from system memory to local storage using the MFC list. The arguments to this function correspond
to the arguments of the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in
system memory, list is the DMA list address, list_size is the DMA list size, tag is the DMA tag, tid is the
transfer class identifier, and rid is the replacement class identifier. This command and all subsequent commands
with the same tag ID as this command are locally ordered with respect to all previously issued commands within the
same tag group and command queue.

Implementation
spu_mfcdma64(ls,mfc_ea2h(ea),(unsigned int)(list), list_size, tag,
 ((tid<<24)|(rid<<16)|MFC_GETLB_CMD))

64 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

mfc_getlf: Move Data from Effective Address to Local Storage Using MFC List with Fence

(void) mfc_getlf(volatile void *ls, uint64_t ea, volatile mfc_list_element_t *list,
 uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)

Data is moved from system memory to local storage using the MFC list. The arguments to this function correspond
to the arguments of the spu_mfcdma64 command: ls is the local-storage address, ea is the effective address in
system memory, list is the DMA list address, list_size is the DMA list size, tag is the DMA tag, tid is the
transfer class identifier, and rid is the replacement class identifier. This command is locally ordered with respect to
all previously issued commands within the same tag group and command queue.

Implementation
spu_mfcdma64(ls,mfc_ea2h(ea),(unsigned int)(list), list_size, tag,
 ((tid<<24)|(rid<<16)|MFC_GETLF_CMD))

4.6. MFC Atomic Update Commands
This section describes utility functions that can be used to manage the MFC Atomic DMA. See the Cell Broadband
Engine Architecture for a description of the DMA commands, including restrictions on the size of the supported
operations.

MFC Atomic DMA command mnemonics are listed in Table 4-106. MFC command enumerants are defined in
spu_mfcio.h.

Table 4-106: MFC Atomic Update Command Mnemonics

Mnemonic Opcode Command

MFC_GETLLAR_CMD 0x00D0 getllar
MFC_PUTLLC_CMD 0x00B4 putllc
MFC_PUTLLUC_CMD 0x00B0 putlluc
MFC_PUTQLLUC_CMD 0x00B8 putqlluc

mfc_getllar: Get Lock Line and Create Reservation

(void) mfc_getllar(volatile void *ls, uint64_t ea, uint32_t tid, uint32_t rid)

The lock line is obtained and a reservation is created. The arguments to this function correspond to the arguments
of the spu_mfcdma64 command: ls is the 128-byte-aligned local-storage address, ea is the effective address in
system memory, tid is the transfer class identifier, and rid is the replacement class identifier.

The mfc_getllar command does not have a tag ID. The command is immediately executed by the MFC. The
transfer size is fixed at 128 bytes. An mfc_read_atomic_status() must follow this function to verify completion
of the command.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea),128, 0,
 ((tid<<24)|(rid<<16)|MFC_GETLLAR_CMD))

mfc_putllc: Put Lock Line if Reservation for Effective Address Exists

(void) mfc_putllc(volatile void *ls, uint64_t ea, uint32_t tid, uint32_t rid)

The lock line is put if a reservation for effective address exists. The arguments to this function correspond to the
arguments of the spu_mfcdma64 command: ls is the 128-byte-aligned local-storage address, ea is the effective
address in system memory, tid is the transfer class identifier, and rid is the replacement class identifier.

The mfc_putllc command does not have a tag ID and is immediately executed by MFC. Transfer size is fixed at
128 bytes. An mfc_read_atomic_status() must follow this command to verify completion of the command.

 ��� Programming Support for MFC Input and Output 65

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea),128, 0,
 ((tid<<24)|(rid<<16)|MFC_PUTLLC_CMD))

mfc_putlluc: Put Lock Line Unconditional

(void) mfc_putlluc(volatile void *ls, uint64_t ea, uint32_t tid, uint32_t rid)

The lock line is put regardless of the existence of a previously made reservation. The arguments to this function
correspond to the arguments of the spu_mfcdma64 command: ls is the 128-byte-aligned local-storage address,
ea is the effective address in system memory, tid is the transfer class identifier, and rid is the replacement class
identifier.

This command does not have a tag ID and is immediately executed by MFC. The transfer size is fixed at 128 bytes.
The mfc_read_atomic_status() must follow this function to verify completion of the command.

Implementation
spu_mfcdma64(ls,mfc_ea2h(ea),mfc_ea2l(ea), 128, 0,
 ((tid<<24)|(rid<<16)|MFC_PUTLLUC_CMD))

mfc_putqlluc: Put Queued Lock Line Unconditional

(void) mfc_putqlluc(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
 uint32_t rid)

The lock line is put in the queue regardless of the existence of a previously made reservation. The arguments to this
function correspond to the arguments of the spu_mfcdma64 command: ls is the 128-byte-aligned local-storage
address, ea is the effective address in system memory, tid is the transfer class identifier, and rid is the
replacement class identifier.

Transfer size is fixed at 128 bytes. This command is functionally equivalent to the mfc_putlluc command. The
difference between the two commands is the order in which the commands are executed and the way that
completion is determined. mfc_putlluc is performed immediately; in contrast, mfc_putqlluc is placed into the
MFC command queue, along with other MFC commands. Because this command is queued, it is executed
independently of any pending immediate mfc_getllar, mfc_putllc, or mfc_putlluc commands. To determine
if this command has been performed, a program must wait for a tag-group completion.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), 128, tag,
 ((tid<<24)|(rid<<16)|MFC_PUTQLLUC_CMD))

4.7. MFC Synchronization Commands
This section describes functions that implement the MFC synchronization commands, including signal notification
and storage ordering. See the Cell Broadband Engine Architecture for a description of the DMA commands,
including restrictions on the size of the supported operations.

MFC synchronization command mnemonics are listed in Table 4-107. MFC command enumerants are defined in
spu_mfcio.h.

Table 4-107: MFC Synchronization Command Mnemonics
Mnemonic Opcode Command

MFC_SNDSIG_CMD 0x00A0 sndsig
MFC_SNDSIGB_CMD 0x00A1 sndsigb
MFC_SNDSIGF_CMD 0x00A2 sndsigf
MFC_BARRIER_CMD 0x00C0 barrier
MFC_EIEIO_CMD 0x00C8 mfceieio

66 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Mnemonic Opcode Command

MFC_SYNC_CMD 0x00CC mfcsync

mfc_sndsig: Send Signal

(void) mfc_sndsig(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
 uint32_t rid)

An mfc_sndsig command is enqueued into the DMA queue, or is stalled when the DMA queue is full. The
arguments to this function correspond to the arguments of the spu_mfcdma64 command: ls is the local-storage
address, ea is the effective address in system memory, tag is the DMA tag, tid is the transfer class identifier, and
rid is the replacement class identifier. Transfer size is fixed at 4 bytes.

Implementation
spu_mfcdma64(ls,mfc_ea2h(ea),mfc_ea2l(ea),4,tag,
 ((tid<<24)|(rid<<16)|MFC_SNDSIG_CMD))

mfc_sndsigb: Send Signal with Barrier

(void) mfc_sndsigb(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
 uint32_t rid)

An mfc_sndsigb command is enqueued into the DMA queue, or is stalled when the DMA queue is full. The
arguments to this function correspond to the arguments of the spu_mfcdma64 command: ls is the local-storage
address, ea is the effective address in system memory, tag is the DMA tag, tid is the transfer class identifier, and
rid is the replacement class identifier. Transfer size is fixed at 4 bytes. This command and all subsequent
commands with the same tag ID as this command are locally ordered with respect to all previously issued
commands within the same tag group and command queue.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), 4, tag,
 ((tid<<24)|(rid<<16)|MFC_SNDSIGB_CMD))

mfc_sndsigf: Send Signal with Fence

(void) mfc_sndsigf(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
 uint32_t rid)

An mfc_sndsigf command is enqueued into the DMA queue, or is stalled when the DMA queue is full. The
arguments to this function correspond to the arguments of the spu_mfcdma64 command: ls is the local-storage
address, ea is the effective address in system memory, tag is the DMA tag, tid is the transfer class identifier, and
rid is the replacement class identifier. Transfer size is fixed at 4 bytes. This command is locally ordered with
respect to all previously issued commands within the same tag group and command queue.

Implementation
spu_mfcdma64(ls, mfc_ea2h(ea), mfc_ea2l(ea), 4, tag,
 ((tid<<24)|(rid<<16)|MFC_SNDSIGF_CMD))

mfc_barrier: Enqueue mfc_barrier Command into DMA Queue or Stall When Queue is Full

(void) mfc_barrier(uint32_t tag)

An mfc_barrier command is enqueued into the DMA queue, or the command is stalled when the DMA queue is
full. tag is the DMA tag. An mfc_barrier command guarantees that MFC commands preceding the barrier will be
executed before the execution of MFC commands following it, regardless of the tag of preceding or subsequent
MFC commands.

 ��� Programming Support for MFC Input and Output 67

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_mfcdma32(0, 0, 0, tag, MFC_BARRIER_CMD)

mfc_eieio: Enqueue mfc_eieio Command into DMA Queue or Stall When Queue is Full

(void) mfc_eieio (uint32_t tag, uint32_t tid, uint32_t rid)

An mfc_eieio command is enqueued into the DMA queue, or the command is stalled when the DMA queue is full.
tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. Do not use this
command to maintain the order of commands immediately inside a single SPE. The mfc_eieio command is
designed to use inter-processor/device synchronization. This command creates a large load on the memory system.

Implementation
spu_mfcdma32(0, 0, 0, tag, ((tid<<24)|(rid<<16)|MFC_EIEIO_CMD))

mfc_sync: Enqueue mfc_sync Command into DMA Queue or Stall When Queue is Full

(void) mfc_sync (uint32_t tag)

An mfc_sync command is enqueued into the DMA queue, where tag is the DMA tag, or the command is stalled
when the DMA queue is full. This function must not be used to maintain the order of commands immediately inside
a single SPE. The mfc_sync command is designed to use inter-processor/device synchronization. This command
creates a large load on the memory system.

Implementation
spu_mfcdma32(0, 0, 0, tag, MFC_SYNC_CMD)

4.8. MFC DMA Status
This section describes functions that can be used to check the completion of MFC commands or the status of
entries in the MFC DMA queue.

mfc_stat_cmd_queue: Check the Number of Available Entries in the MFC DMA Queue

(uint32_t) mfc_stat_cmd_queue(void)

The number of available entries in the MFC DMA queue is checked. This information can be used to avoid stalling
the execution of an SPU program if a DMA command is issued to a full queue. A full queue is 16 entries.

Implementation
spu_readchcnt(MFC_Cmd)

mfc_write_tag_mask: Set Tag Mask to Select MFC Tag Groups to be Included in Query Operation

(void) mfc_write_tag_mask (uint32_t mask)

A tag mask is set to select the MFC tag groups to be included in the query operation, where mask is the DMA tag-
group query mask. Each bit of mask indicates each tag group; tag 0 is mapped to LSB.

Implementation
spu_writech(MFC_WrTagMask, mask)

mfc_read_tag_mask: Read Tag Mask Indicating MFC Tag Groups to be Included in Query Operation

(uint32_t) mfc_read_tag_mask(void)

The tag mask is read to identify MFC tag groups to be included in the query operation. Each bit of the mask
indicates each tag group; tag 0 is mapped to LSB. The result represents a DMA tag-group query mask.

68 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_readch(MFC_RdTagMask)

mfc_write_tag_update: Request That Tag Status be Updated

(void) mfc_write_tag_update(uint32_t ts)

A request is sent to the MFC to update tag status, where ts specifies a tag-status update condition shown in
Table 4-108. Condition enumerants are defined in spu_mfcio.h.

This function must precede a tag-status read with the mfc_read_tag_status() function. A tag-status update
request should be performed after setting the tag-group mask with the mfc_write_tag_mask() function.

Table 4-108: MFC Write Tag Update Conditions
Number Mnemonic Description

0 MFC_TAG_UPDATE_IMMEDIATE Update immediately, unconditionally.

1 MFC_TAG_UPDATE_ANY Update tag status if or when any enabled tag group has
“no outstanding operation” status.

2 MFC_TAG_UPDATE_ALL Update tag status if or when all enabled tag groups have
“no outstanding operation” status.

Implementation
spu_writech(MFC_WrTagUpdate, ts)

mfc_write_tag_update_immediate: Request That Tag Status be Immediately Updated

(void) mfc_write_tag_update_immediate(void)

A request is sent to immediately update tag status.

Implementation
spu_writech(MFC_WrTagUpdate, MFC_TAG_UPDATE_IMMEDIATE)

mfc_write_tag_update_any: Request That Tag Status be Updated for Any Enabled Completion with No
Outstanding Operation

(void) mfc_write_tag_update_any(void)

A request is sent to update tag status when any enabled MFC tag-group completion has a “no operation
outstanding” status.

Implementation
spu_writech(MFC_WrTagUpdate, MFC_TAG_UPDATE_ANY)

mfc_write_tag_update_all: Request That Tag Status be Updated When All Enabled Tag Groups Have No
Outstanding Operation

(void) mfc_write_tag_update_all(void)

A request is sent to update tag status when all enabled MFC tag groups have a “no operation outstanding” status.

Implementation
spu_writech(MFC_WrTagUpdate, MFC_TAG_UPDATE_ALL)

mfc_stat_tag_update: Check Availability of Tag Status Update Request Channel

(uint32_t) mfc_stat_tag_update(void)

The availability of the Tag Status Update Request channel is checked. The result has one of the following values:

 ��� Programming Support for MFC Input and Output 69

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

• 0: The Tag Status Update Request channel is not yet available.

• 1: The Tag Status Update Request channel is available.

Implementation
spu_readchcnt(MFC_WrTagUpdate)

mfc_read_tag_status: Wait for an Updated Tag Status

(uint32_t) mfc_read_tag_status(void)

The status of the tag groups is requested. Unless the tag update is set to MFC_TAG_UPDATE_IMMEDIATE, this call
could be blocked. Each bit of a returned value indicates the status of each tag group; tag 0 is mapped to LSB. If set,
the tag group has no outstanding operation (that is, commands completed) and is not masked by the query.

Only the status of the enabled tag groups at the time of the tag-group status update are valid. The bit positions that
correspond to the tag groups that are disabled at the time of the tag-group status update are set to 0.

Implementation
spu_readch(MFC_RdTagStat)

mfc_read_tag_status_immediate: Wait for the Updated Status of Any Enabled Tag Group

(uint32_t) mfc_read_tag_status_immediate(void)

A request is sent to immediately update tag status. The processor waits for the status to be updated.

Implementation
spu_mfcstat(MFC_TAG_UPDATE_IMMEDIATE)

mfc_read_tag_status_any: Wait for No Outstanding Operation of Any Enabled Tag Group

(uint32_t) mfc_read_tag_status_any(void)

A request is sent to update tag status when any enabled MFC tag-group completion has a “no operation
outstanding” status. The processor waits for the status to be updated.

Implementation
spu_mfcstat(MFC_TAG_UPDATE_ANY)

mfc_read_tag_status_all: Wait for No Outstanding Operation of All Enabled Tag Groups

(uint32_t) mfc_read_tag_status_all(void)

A request is sent to update tag status when all enabled MFC tag groups have a “no operation outstanding” status.
The processor waits for the status to be updated.

Implementation
spu_mfcstat(MFC_TAG_UPDATE_ALL)

mfc_stat_tag_status: Check Availability of MFC_RdTagStat Channel

(uint32_t) mfc_stat_tag_status(void)

The availability of MFC_RdTagStat channel is checked, and one of the following values is returned:

• 0: The status is not yet available.

• 1: The status is available.

This function is used to avoid a channel stall caused by reading the MFC_RdTagStat channel when a status is not
available.

70 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_readchcnt(MFC_RdTagStat)

mfc_read_list_stall_status: Read List DMA Stall-and-Notify Status

(uint32_t) mfc_read_list_stall_status(void)

The List DMA stall-and-notify status is read and returned, or the program is stalled until the status is available.

Implementation
spu_readch(MFC_RdListStallStat)

mfc_stat_list_stall_status: Check Availability of List DMA Stall-and-Notify Status

(uint32_t) mfc_stat_list_stall_status(void)

The availability of the List DMA stall-and-notify status is checked, and one of the following values is returned:

• 0: The status is not yet available.

• 1: The status is available.

Implementation
spu_readchcnt(MFC_RdListStallStat)

mfc_write_list_stall_ack: Acknowledge Tag Group Containing Stalled DMA List Commands

(void) mfc_write_list_stall_ack(uint32_t tag)

An acknowledgement is sent with respect to a prior stall-and-notify event. (See mfc_read_list_status and
mfc_stat_list_stall_status.) The argument tag is the DMA tag.

Implementation
spu_writech(MFC_WrListStallAck, tag)

mfc_read_atomic_status: Read Atomic Command Status

(uint32_t) mfc_read_atomic_status(void)

The atomic command status is read, or the program is stalled until the status is available. As shown in Table 4-109,
one of the following atomic command status results (binary value of bits 29 through 31) is returned. Status
enumerants are defined in spu_mfcio.h.

Table 4-109: Read Atomic Command Status or Stall Until Status Is Available

Status Mnemonic Description

1 MFC_PUTLLC_STATUS The mfc_putllc command failed (reservation lost).
2 MFC_PUTLLUC_STATUS The mfc_putlluc command was completed successfully.
4 MFC_GETLLAR_STATUS The mfc_getllar command was completed successfully.

Implementation
spu_readch(MFC_RdAtomicStat)

mfc_stat_atomic_status: Check Availability of Atomic Command Status

(uint32_t) mfc_stat_atomic_status(void)

The availability of the atomic command status is checked, and one of the following values is returned:

• 0: An atomic DMA command has not yet completed.

• 1: An atomic DMA command has completed and the status is available.

 ��� Programming Support for MFC Input and Output 71

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_readchcnt(MFC_RdAtomicStat)

4.9. MFC Multisource Synchronization Request
The Cell Broadband Engine Architecture describes the MFC Multisource Synchronization Facility. In that document,
a cumulative ordering is broadly defined as an ordering of storage accesses performed by multiple processors or
units with respect to another processor or unit. In this section, several functions are described that can be used to
achieve a cumulative ordering across local and main storage address domains.

mfc_write_multi_src_sync_request: Request Multisource Synchronization

(void) mfc_write_multi_src_sync_request(void)

A request is sent to start tracking outstanding transfers sent to the associated MFC. When the requested
synchronization is complete, the channel count of the MFC Multisource Synchronization Request channel is reset to
one.

Implementation
spu_writech(MFC_WrMSSyncReq,0)

mfc_stat_multi_src_sync_request: Check the Status of Multisource Synchronization

(uint32_t) mfc_stat_multi_src_sync_request(void)

The channel count of the MFC Multisource Synchronization Request channel is read, and one of the following
values is returned:

• 0: Outstanding transfers are being tracked.
• 1: The synchronization requested by mfc_write_multi_src_sync_request is complete.

Implementation
spu_readchcnt(MFC_WrMSSyncReq)

4.10. SPU Signal Notification
In this section, functions are described that can be used to read signals from other processors and other devices in
the system.

spu_read_signal1: Atomically Read and Clear Signal Notification 1 Channel

(uint32_t) spu_read_signal1(void)

The Signal Notification 1 channel is read, and any bits that are set are atomically reset. A signal is returned. If no
signals are pending, this function will stall the SPU until a signal is issued.

Implementation
spu_readch(SPU_RdSigNotify1)

spu_stat_signal1: Check if Pending Signals Exist on Signal Notification 1 Channel

(uint32_t) spu_stat_signal1(void)

A check is made to determine whether any pending signals exist on the Signal Notification 1 channel. One of the
following values is returned:

• 0: No signals are pending.

• 1: Signals are pending.

72 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Implementation
spu_readchcnt(SPU_RdSigNotify1)

spu_read_signal2: Atomically Read and Clear Signal Notification 2 Channel

(uint32_t) spu_read_signal2(void)

The Signal Notification 2 channel is read, and any bits that are set are atomically reset. A signal is returned. If no
signals are pending, a call of this function stalls the SPU until a signal is issued.

Implementation
spu_readch(SPU_RdSigNotify2)

spu_stat_signal2: Check if Pending Signals Exist on Signal Notification 2 Channel

(uint32_t) spu_stat_signal2(void)

A check is made to determine whether pending signals exist on the Signal Notification 2 channel. One of the
following values is returned:

• 0: No signals are pending.

• 1: Signals are pending.

Implementation
spu_readchcnt(SPU_RdSigNotify2)

4.11. SPU Mailboxes
This section describes functions that can be used to manage SPU Mailboxes.

spu_read_in_mbox: Read Next Data Entry in SPU Inbound Mailbox

(uint32_t) spu_read_in_mbox(void)

The next data entry in the SPU Inbound Mailbox queue is read. The command stalls when the queue is empty. The
application-specific mailbox data is returned. Each application can uniquely define the mailbox data.

Implementation
spu_readch(SPU_RdInMbox)

spu_stat_in_mbox: Get the Number of Data Entries in SPU Inbound Mailbox

(uint32_t) spu_stat_in_mbox(void)

The number of data entries in the SPU Inbound Mailbox is returned. If the returned value is nonzero, the mailbox
contains data entries that have not been read by the SPU.

Implementation
spu_readchcnt(SPU_RdInMbox)

spu_write_out_mbox: Send Data to SPU Outbound Mailbox

(void) spu_write_out_mbox (uint32_t data)

Data is sent to the SPU Outbound Mailbox, where data is application-specific mailbox data, or the command stalls
when the SPU Outbound Mailbox is full.

Implementation
spu_writech(SPU_WrOutMbox, data)

 ��� Programming Support for MFC Input and Output 73

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_stat_out_mbox: Get Available Capacity of SPU Outbound Mailbox

(uint32_t) spu_stat_out_mbox(void)

The available capacity of the SPU Outbound Mailbox is returned. A value of zero indicates that the mailbox is full.

Implementation
spu_readchcnt(SPU_WrOutMbox)

spu_write_out_intr_mbox: Send Data to SPU Outbound Interrupt Mailbox

(void) spu_write_out_intr_mbox (uint32_t data)

Data is sent to the SPU Outbound Interrupt Mailbox, where data is application-specific mailbox data. The command
stalls when the SPU Outbound Interrupt Mailbox is full.

Implementation
spu_writech(SPU_WrOutIntrMbox, data)

spu_stat_out_intr_mbox: Get Available Capacity of SPU Outbound Interrupt Mailbox

(uint32_t) spu_stat_out_intr_mbox(void)

The available capacity of the SPU Outbound Interrupt Mailbox is returned. A value of zero indicates that the mailbox
is full.

Implementation
spu_readchcnt(SPU_WrOutIntrMbox)

4.12. SPU Decrementer
This section describes functions that use the SPU 32-bit decrementer.

spu_read_decrementer: Read Current Value of Decrementer

(uint32_t) spu_read_decrementer(void)

The current value of the decrementer is read and returned.

Implementation
spu_readch(SPU_RdDec)

spu_write_decrementer: Load a Value to Decrementer

(void) spu_write_decrementer (uint32_t count)

A count is loaded to the decrementer.

Implementation
spu_writech(SPU_WrDec, count)

74 Programming Support for MFC Input and Output ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

4.13. SPU Event
This section describes several functions that can be used to monitor SPU events. See the Cell Broadband Engine
Architecture for a description of the SPU Event Facility.

The bit-fields of the Event Status, the Event Mask, and the Event Ack are shown in Table 4-110. Bit-field names are
defined in spu_mfcio.h.

Table 4-110: MFC Event Bit-Fields

Bits Field Name Description

0x1000 MFC_MULTI_SRC_SYNC_EVENT Multisource synchronization event
0x0800 MFC_PRIV_ATTN_EVENT SPU privileged attention event
0x0400 MFC_LLR_LOST_EVENT Lock-line reservation lost event
0x0200 MFC_SIGNAL_NOTIFY_1_EVENT SPU Signal Notification 1 available event
0x0100 MFC_SIGNAL_NOTIFY_2_EVENT SPU Signal Notification 2 available event
0x0080 MFC_OUT_MBOX_AVAILABLE_EVENT SPU Outbound Mailbox available event
0x0040 MFC_OUT_INTR_MBOX_AVAILABLE_EVENT SPU Outbound Interrupt Mailbox available event
0x0020 MFC_DECREMENTER_EVENT SPU decrementer event
0x0010 MFC_IN_MBOX_AVAILABLE_EVENT SPU Inbound Mailbox available event
0x0008 MFC_COMMAND_QUEUE_AVAILABLE_EVENT MFC SPU command queue available event
0x0002 MFC_LIST_STALL_NOTIFY_EVENT MFC DMA List command stall-and-notify event
0x0001 MFC_TAG_STATUS_UPDATE_EVENT MFC tag-group status update event

spu_read_event_status: Read Event Status or Stall Until Status is Available

(uint32_t) spu_read_event_status(void)

The event status is read and returned. The command stalls until the status is available. Events that have been
reported but not acknowledged will continue to be reported until acknowledged.

The return value is the value of the SPU Read Event Status channel.

Implementation
spu_readch(SPU_RdEventStat)

spu_stat_event_status: Check Availability of Event Status

(uint32_t) spu_stat_event_status(void)

The event status is checked, and one of the following values is returned:

• 0: No enabled events occurred.

• 1: Enabled events are pending.

Implementation
spu_readchcnt(SPU_RdEventStat)

spu_write_event_mask: Select Events to be Monitored by Event Status

(void) spu_write_event_mask (uint32_t mask)

Events are selected to be monitored by event status. The argument, mask, is the event mask.

Implementation
spu_writech(SPU_WrEventMask, mask)

 ��� Programming Support for MFC Input and Output 75

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

spu_write_event_ack: Acknowledge Events

(void) spu_write_event_ack (uint32_t ack)

This function acknowledges that the corresponding events are being serviced by the software. The status of
acknowledged events is reset, and the events are resampled. The argument, ack, represents events
acknowledgment.

Implementation
spu_writech(SPU_WrEventAck, ack)

spu_read_event_mask: Read Event Status Mask

(uint32_t) spu_read_event_mask(void)

The current Event Status Mask is read, and the mask is returned.

Implementation
spu_readch(SPU_RdEventMask)

4.14. SPU State Management
This section describes functions that relate to interrupts. See the Cell Broadband Engine Architecture for a
description of the SPU Machine Status channel and the SPU interrupt-related channels.

spu_read_machine_status: Read Current SPU Machine Status

(uint32_t) spu_read_machine_status(void)

The current SPU machine status is read, and the status is returned.

Implementation
spu_readch(SPU_RdMachStat)

spu_write_srr0: Write to SPU SRR0

(void) spu_write_srr0(uint32_t srr0)

The value of srr0 is written to the SPU state save/restore register 0 (SRR0).

Implementation
spu_writech(SPU_WrSRR0,srr0)

spu_read_srr0: Read SPU SRR0

(uint32_t) spu_read_srr0(void)

The SPU state save/restore register 0 (SRR0) is read, and the state is returned.

Implementation
spu_readch(SPU_RdSRR0)

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

5. SPU and PPU Vector Multimedia Extension Intrinsics

Function mapping techniques can be used to increase the portability of source code written with SPU intrinsics or
PPU Vector Multimedia Extension (VMX) intrinsics. By including the appropriate portability headers, SPU intrinsics
can be used on the PPU, or VMX intrinsics can be used on the SPU. This chapter describes a minimal mapping
between the two sets of intrinsics.

For many intrinsic functions, an efficient one-to-one mapping between architectures will exist. For some functions,
there could be a less efficient one-to-many instruction mapping; and for other functions, no straightforward mapping
will exist because a mapping is either impractical or impossible to implement. In this document, only one-to-one
mappings are identified for the SPU and PPU. For those SPU and PPU intrinsic functions for which there is no
straightforward mapping, an explanation of the difficulty in mapping is provided.

The mappings between SPU and PPU VMX intrinsics are defined in two header files: vmx2spu.h and spu2vmx.h.
The former maps PPU VMX intrinsics to generic SPU intrinsics, and the latter maps generic SPU intrinsics to PPU
VMX intrinsics. The functions that are defined in these two header files may be implemented as overloaded inline
functions. To facilitate implementation, the vector data types are also mapped.

On the SPU, the header file vec_types.h defines the single token vector data types that are available on the PPU.
These data types are listed in Table 1-4. The actual PPU VMX types of vec_bchar16, vec_bshort8,
vec_bint4, and vec_pixel8 will be as described in Table 1-2. On the PPU, the header file spu2vmx.h defines
the single token vector data types that are available on the SPU. These data types are also listed in Table 1-4. The
actual PPU VMX types of vec_llong2, vec_ullong2, and vec_double2 will be as described in Table 1-3.

The following guidelines describe how to write code that uses these intrinsics and that is portable between the SPU
and PPU:

• Always use the single vector token typedefs described in Table 1-4.
• Only use the intrinsics that are mapped in spu2vmx.h or vmx2spu.h.

• When using SPU intrinsics, include the headers in the following way:
#ifdef __SPU__
#include <spu_intrinsics.h>
#else
#include <spu2vmx.h>
#endif

• When using PPU VMX intrinsics, include the headers in the following way:
#include <vec_types.h>
#ifdef __PPU__
#include <altivec.h>
#else
#include <vmx2spu.h>
#endif

5.1. Mapping of PPU VMX Intrinsics to SPU Intrinsics
This section lists the one-to-one mapping of PPU VMX intrinsics to SPU intrinsics. It also lists those PPU VMX
intrinsics that are difficult to map to SPU intrinsics.

5.1.1. One-to-One Mapped Intrinsics

The PPU VMX intrinsics that map one-to-one with the generic SPU intrinsics are shown in Table 5-111.

 ��� SPU and PPU Vector Multimedia Extension Intrinsics 77

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 5-111: PPU VMX Intrinsics That Map One-to-One with SPU Intrinsics
Generic PPU VMX Intrinsic Maps to SPU Intrinsic Applicable Data Type(s)
vec_add spu_add halfword, word, and float (not byte)
vec_addc spu_genc All
vec_and spu_and All
vec_andc spu_andc All
vec_avg spu_avg unsigned char
vec_cmpeq spu_cmpeq All
vec_cmpgt spu_cmpgt All
vec_cmplt spu_cmpgt All (requires parameter reordering)
vec_ctf spu_convtf All
vec_cts spu_convts All
vec_ctu spu_convtu All
vec_madd spu_madd all
vec_mule spu_mule halfword (not byte)
vec_mulo spu_mulo halfword (not byte)
vec_nmusb spu_nmsub All
vec_nor spu_nor All
vec_or spu_or All
vec_re spu_re All
vec_rl spu_rl halfword, word (not byte)
vec_rsqrte spu_rsqrte All
vec_sel spu_sel All
vec_sub spu_sub halfword, word, float
vec_subc spu_genb All
vec_xor spu_xor all

5.1.2. PPU VMX Intrinsics That Are Difficult to Map to SPU Intrinsics

The PPU VMX intrinsics that are shown in Table 5-112 are not likely to be mapped to generic SPU intrinsics
because a straightforward mapping does not exist.

Table 5-112: PPU VMX Intrinsics That Are Difficult to Map to SPU Intrinsics
Generic PPU VMX Intrinsic(s) Explanation

vec_unpackh, vec_unpackl These functions cannot be mapped without creating additional SPU data types. A
mapping of pixel and bool short vector types to an unsigned short (as
described in Table 1-2) will cause an overloaded function selection conflict.

vec_mfvscr, vec_mtvscr Support of the VSCR register is difficult because the SPU does not support IEEE
rounding modes on single-precision floating-point operations.

vec_step Mapping requires specific compiler support that is not mandated by this
specification.

5.2. Mapping of SPU Intrinsics to PPU VMX Intrinsics
This section lists the one-to-one mapping of SPU intrinsics to PPU VMX intrinsics. It also lists those SPU intrinsics
that are difficult to map to PPU VMX intrinsics.

78 SPU and PPU Vector Multimedia Extension Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

5.2.1. One-to-One Mapped Intrinsics

Many of the generic SPU intrinsics map one-to-one with PPU VMX intrinsics. These mappings are shown in Table
5-113.

Table 5-113: SPU Intrinsics That Map One-to-One with PPU VMX Intrinsics
Generic SPU Intrinsic Maps to PPU VMX Intrinsic Applicable Data Type(s)
spu_add vec_add vector/vector (no scalar operands)
spu_and vec_and vector/vector (no scalar operands)
spu_andc vec_andc All
spu_avg vec_avg All
spu_cmpeq vec_cmpeq vector/vector (no scalar operands)
spu_cmpgt vec_cmpgt vector/vector (no scalar operands)
spu_convtf vec_ctf Limited scale range (5 bits)
spu_convts vec_cts Limited scale range (5 bits)
spu_convtu vec_ctu Limited scale range (5 bits)
spu_genb vec_subc All
spu_genc vec_addc All
spu_madd vec_madd float
spu_mule vec_mule All
spu_mulo vec_mulo Halfword vector/vector (no scalar operands)
spu_nmsub vec_nmsub float
spu_nor vec_nor All
spu_or vec_or vector/vector (no scalar operands)
spu_re vec_re All
spu_rl vec_rl vector/vector (no scalar operands)
spu_rsqrte vec_rsqrte all
spu_sel vec_sel All
spu_sub vec_sub vector/vector (no scalar operands)
spu_xor vec_xor vector/vector (no scalar operands)

5.2.2. SPU Intrinsics That Are Difficult to Map to PPU VMX Intrinsics

The generic SPU intrinsics that are shown in Table 5-114 are not likely to be mapped to PPU VMX intrinsics
because a straightforward mapping does not exist.

Table 5-114: SPU Intrinsics That Are Difficult to Map to PPU VMX Intrinsics
Generic SPU Intrinsic(s) Explanation

spu_bisled, spu_bislede, spu_bisledi
spu_idisable, spu_ienable

Event handling and interrupt handling on the SPU cannot be
precisely mapped.

spu_readch, spu_readchqw, spu_readchcnt

spu_writech, spu_writechqw

Specific channel functionality cannot be easily supported on the PPU,
nor would it generally be desirable to do so. Whereas some channel
sequences could be mapped, most would require special
programmer insight and direction.

spu_mfcdma32, spu_mfcdma64, spu_mfcstat

The mapping of DMA transactions typically is not needed because
the PPU has full memory access. Nevertheless, these intrinsics could
be used to perform memory synchronization that might not be
precisely mappable.

spu_sync, spu_sync_c

spu_dsync
These intrinsics could be mapped to one of the PPU sync
instructions, but the results might not be what was intended.

 ��� SPU and PPU Vector Multimedia Extension Intrinsics 79

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Generic SPU Intrinsic(s) Explanation

spu_convts, spu_convtu, spu_convtf

The full dynamic range of scale factors is not easily supported.
Vector Multimedia Extension provides a 5-bit scale factor; the SPU
has an 8-bit scale factor. Some implementations might support only
the 5-bit range provided by the direct mapping of the equivalent
intrinsics.

spu_hcmpeq, spu_hcmpgt The halt instruction might be mappable to an exit function, but this
will not work in all environments.

spu_stop, spu_stopd It is not always appropriate to stop execution of the PPU.

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

6. PPU Specific Intrinsics

This chapter specifies a minimal set of specific intrinsics to make the underlying PPU instruction set accessible from
the C programming language. Except for __setflm, each of these intrinsics has a one-to-one assembly language
mapping, unless compiled for a 32-bit ABI in which the high and low halves of a 64-bit doubleword are maintained in
separate registers. In this latter situation, the corresponding 32-bit intrinsic might generate a sequence of
instructions. In other instances, a corresponding 32-bit implementation cannot be supported.

The PPU intrinsics will be declared in the system header file, ppu_intrinsics.h. They may be either defined
within this header as macros or implemented internally within the compiler.

Some intrinsics take a literal value of either 3, 4, 5, 6, 8, or 10 bits in length. By default, a call to an intrinsic with an
out-of-range literal is reported by the compiler as an error. Compilers may provide an option to issue a warning for
out-of-range literal values and use only the specified number of least significant bits for the out-of-range argument.

The intrinsics do not have a specific ordering unless otherwise noted. The intrinsics can be optimized by the
compiler and be scheduled like normal operations.

__cctph: Change Thread Priority to High

(void) __cctph()

The current thread priority is changed to high priority. This intrinsic will not be reordered by the compiler.

Table 6-115: Change Thread Priority to High

Return/Argument Types Assembly Mapping

none cctph

__cctpl: Change Thread Priority to Low

(void) __cctpl()

The current thread priority is changed to low priority. This intrinsic will not be reordered by the compiler.

Table 6-116: Change Thread Priority to Low

Return/Argument Types Assembly Mapping

none cctpl

__cctpm: Change Thread Priority to Medium

(void) __cctpm()

The current thread priority is changed to medium priority. This intrinsic will not be reordered by the compiler.

Table 6-117: Change Thread Priority to Medium

Return/Argument Types Assembly Mapping

none cctpm

 ��� PPU Specific Intrinsics 81

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__cntlzd: Count Leading Doubleword Zeros

d = __cntlzd(a)

The number of leading zeros in the doubleword a is returned in d.

Table 6-118: Count Leading Doubleword Zeros

Return/Argument Types Assembly Mapping
d a 64-bit ABI 32-bit ABI

unsigned int unsigned long long cntlzd d, a

cntlzw hi_cnt, a_hi
cntlzw lo_cnt, a_lo
rlwinm mask, hi_cnt, 26, 0, 5
srawi mask, mask, 31
and lo_cnt, lo_cnt, mask
add d, hi_cnt, lo_cnt

__cntlzw: Count Leading Word Zeros

d = __cntlzw(a)

The number of leading zeros in the word a is returned in d.

Table 6-119: Count Leading Word Zeros
Return/Argument Types

d a
Assembly Mapping

unsigned int unsigned int cntlzw d, a

__db10cyc: Delay 10 Cycles at Dispatch

(void) __db10cyc()

The current thread is blocked at dispatch for 10 cycles. This intrinsic will not be reordered by the compiler.

Table 6-120: Delay 10 Cycles at Dispatch

Return/Argument Types Assembly Mapping

none db10cyc

__db12cyc: Delay 12 Cycles at Dispatch

(void) __db12cyc()

The current thread is blocked at dispatch for 12 cycles. This intrinsic will not be reordered by the compiler.

Table 6-121: Delay 12 Cycles at Dispatch

Return/Argument Types Assembly Mapping

none db12cyc

82 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__db16cyc: Delay 16 Cycles at Dispatch

(void) __db16cyc()

The current thread is blocked at dispatch for 16 cycles. This intrinsic will not be reordered by the compiler.

Table 6-122: Delay 16 Cycles at Dispatch

Return/Argument Types Assembly Mapping

none db16cyc

__db8cyc: Delay 8 Cycles at Dispatch

(void) __db8cyc()

The current thread is blocked at dispatch for 8 cycles. This intrinsic will not be reordered by the compiler.

Table 6-123: Delay 8 Cycles at Dispatch

Return/Argument Types Assembly Mapping

none db8cyc

__dcbf: Data Cache Block Flush

(void) __dcbf(pointer)

The cache block that contains the argument pointer is flushed and removed from the cache.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-124: Data Cache Block Flush

Return/Argument Types

pointer
Assembly Mapping

void* dcbf base, index

__dcbst: Data Cache Block Store

(void) __dcbst(pointer)

The cache block that contains the argument pointer is written to main memory. This intrinsic will not be reordered
by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-125: Data Cache Block Store

Return/Argument Types

pointer
Assembly Mapping

void* dcbst base, index

 ��� PPU Specific Intrinsics 83

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__dcbt: Data Cache Block Touch

(void) __dcbt(pointer)

The processor receives a hint that the cache block which contains the argument pointer will soon be loaded. This
intrinsic will not be reordered by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-126: Data Cache Block Touch

Return/Argument Types

pointer
Assembly Mapping

void* dcbt base, index

__dcbt_TH1000: Set Up Streaming Data

(void) __dcbt_TH1000(eatrunc, d, ug, id)

A stream is set up with an id of id and an effective address of eatrunc. The argument d describes which direction
the stream is going: true for forwards and false for backwards. The argument ug says if the stream is unlimited
in bounds or not. This intrinsic will not be reordered by the compiler.

The effective address for this instruction is calculated as:

((unsigned long long) eatrunc) & ~0x7F) | (((d & 1) << 6) | ((ug & 1) << 5) | (id & 0xF)

The base and index arguments for the assembly mapping are calculated from the above effective address.

Table 6-127: Set Up Streaming Data

Return/Argument Types
eatrunc d ug id

Assembly Mapping

void* bool bool int dcbt base, index, 8

__dcbt_TH1010: Start or Stop Streaming Data

(void) __dcbt_TH1010(go, s, unitcnt, t, u, id)

The processor receives a hint that the stream identified by id will no longer be needed. If go is set, the program will
soon load from all nascent data streams that have been completely described, and it will probably no longer load
from any other nascent data streams; all the rest of the arguments are ignored in this case. If s is ‘10’, the stream
associated with id will stop and all other arguments except for id are ignored. If s is ‘11’, all streams IDs are
stopped and all other arguments are ignored. unitcnt specifies the number of units in a data stream. t tells if the
program’s need for each block of the data stream is likely to be transient. u tells if the data stream is unlimited and
the unitcnt argument is ignored. This intrinsic will not be reordered by the compiler.

The effective address for this instruction is calculated as:

(((unsigned long long) go & 1) << 31)

 | ((s & 0x3) << 29)

 | ((unitcnt & 0x3FF) << 7)

 | ((t & 1) << 6)

 | ((u & 1) << 5)

 | (id & 0xF)

The base and index arguments for the assembly mapping are calculated from the above effective address.

84 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Table 6-128: Start or Stop Streaming Data

Return/Argument Types
go s unitcnt t u id

Assembly Mapping

bool int int bool bool int dcbt base, index, 10

__dcbtst: Data Cache Block Touch for Store

(void) __dcbtst(pointer)

The processor receives a hint that the cache block that contains the argument pointer will soon be stored. This
intrinsic will not be reordered by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-129: Data Cache Block Touch for Store

Return/Argument Types
pointer

Assembly Mapping

void* dcbtst base, index

__dcbz: Data Cache Block Set to Zero

(void) __dcbz(pointer)

The cache block that contains the argument pointer is zeroed out. If the address is already in cache, the cache
block containing it is zeroed. If the address was not already in a cache block, a cache block for it is created with all
zeros. This intrinsic will not be reordered by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-130: Data Cache Block Set to Zero

Return/Argument Types
pointer

Assembly Mapping

void* dcbz base, index

__eieio: Enforce In-Order Execution of I/O

(void) __eieio()

A memory barrier is created, which provides an ordering function for the storage accesses caused by Load, Store,
__dcbz(), __eciwx(), and __ecowx() instructions executed by the processor executing the __eieio()
instruction. The memory barrier and ordering function are described in section 1.7.1 of PowerPC Architecture Book,
Book II: PowerPC Virtual Environment Architecture, version 2.02.

Table 6-131: Enforce In-Order Execution of I/O

Return/Argument Types Assembly Mapping

none eieio

 ��� PPU Specific Intrinsics 85

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__fabs: Double Absolute Value

d = __fabs(a)

The absolute value of the argument a is returned in d with the sign bit set to zero.

Table 6-132: Double Absolute Value
Return/Argument Types

d a
Assembly Mapping

double double fabs d, a

__fabsf: Float Absolute Value

d = __fabsf(a)

The absolute value of the argument a is returned in d with the sign bit set to zero.

Table 6-133: Float Absolute Value

Return/Argument Types
d a

Assembly Mapping

float float fabs d, a

__fcfid: Convert Doubleword to Double

d = __fcfid(a)

The doubleword in a is converted to a floating-point and returned in d.

Table 6-134: Convert Doubleword to Double

Return/Argument Types
d a

Assembly Mapping

double long long fcfid d, a

__fctid: Convert Double to Doubleword

d = __fctid(a)

The double a is converted to a doubleword integer and returned in d. This function takes into account the current
rounding mode.

Table 6-135: Convert Double to Doubleword

Return/Argument Types
d a

Assembly Mapping

long long double fctid d, a

86 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__fctidz: Convert Double to Doubleword with Round Towards Zero

d = __fctidz(a)

The double a is converted to a doubleword integer and returned in d. This function always rounds towards zero.

Table 6-136: Convert Double to Doubleword with Round Towards Zero

Return/Argument Types
d a

Assembly Mapping

long long double fctidz d, a

__fctiw: Convert Double to Word

d = __fctiw(a)

The double a is converted to a word integer and returned in d. This function takes into account the current
rounding mode.

Table 6-137: Convert Double to Word

Return/Argument Types
d a

Assembly Mapping

int double
fctiw tmp, a
stfiwx tmp, r1, tempspace
lwzx d, r1, tempspace

__fctiwz: Convert Double to Word with Round Towards Zero

d = __fctiwz(a)

The double a is converted to a word integer and returned in d. This function always rounds towards zero.

Table 6-138: Convert Double to Word with Round Towards Zero

Return/Argument Types
 d a

Assembly Mapping

int double
fctiwz tmp, a
stfiwx tmp, r1, tempspace
lwzx d, r1, tempspace

__fmadd: Double Fused Multiply and Add

d = __fmadd(a, b, c)

The argument a is multiplied by the argument b, and the argument c is added to that product. The resulting value
(a×b+c) is returned in d.

Table 6-139: Double Fused Multiply and Add

Return/Argument Types
d a b c

Assembly Mapping

double double double double fmadd d, a, b, c

 ��� PPU Specific Intrinsics 87

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__fmadds: Float Fused Multiply and Add

d = __fmadds(a, b, c)

The argument a is multiplied by the argument b, and the argument c is added to that product. The resulting value
(a×b+c) is returned in d.

Table 6-140: Float Fused Multiply and Add

Return/Argument Types
d a b c

Assembly Mapping

float float float float fmadds d, a, b, c

__fmsub: Double Fused Multiply and Subtract

d = __fmsub(a, b, c)

The argument a is multiplied by the argument b, and the argument c is subtracted from that product. The resulting
value (a×b-c) is returned in d.

Table 6-141: Double Fused Multiply and Subtract

Return/Argument Types
d a b c

Assembly Mapping

double double double double fmsub d, a, b, c

__fmsubs: Float Fused Multiply and Subtract

d = __fmsubs(a, b, c)

The argument a is multiplied by the argument b, and the argument c is subtracted from that product. The resulting
value (a×b-c) is returned in d.

Table 6-142: Float Fused Multiply and Subtract

Return/Argument Types
d a b c

Assembly Mapping

float float float float fmsubs d, a, b, c

__fmul: Double Multiply

d = __fmul(a, b)

The doubles a and b are multiplied, and their product (a×b) is returned in d.

Table 6-143: Double Multiply

Return/Argument Types
d a b

Assembly Mapping

double double double fmul d, a, b

88 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__fmuls: Float Multiply

d = __fmuls(a, b)

The floats a and b are multiplied, and their product (a×b) is returned in d.

Table 6-144: Float Multiply

Return/Argument Types
d a b

Assembly Mapping

float float float fmuls d, a, b

__fnabs: Double Negative

d = __fnabs(a)

The negative absolute value of the argument a is returned in d. The sign bit is set to 1.

Table 6-145: Double Negative

Return/Argument Types
d a

Assembly Mapping

double double fnabs d, a

__fnabsf: Float Negative

d = __fnabsf(a)

The negative absolute value of the argument a is returned in the d. The sign bit is set to 1.

Table 6-146: Float Negative

Return/Argument Types
d a

Assembly Mapping

float float fnabs d, a

__fnmadd: Double Fused Negative Multiply and Add

d = __fnmadd(a, b, c)

The arguments a and b are multiplied, and the argument c is added to their product. The sum is negated, and the
resulting value -(a×b+c) is returned in d.

Table 6-147: Double Fused Negative Multiply and Add

Return/Argument Types
d a b c

Assembly Mapping

double double double double fnmadd d, a, b, c

 ��� PPU Specific Intrinsics 89

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__fnmadds: Float Fused Negative Multiply and Add

d = __fnmadds(a, b, c)

The arguments a and b are multiplied, and the argument c is added to their product. The sum is negated, and the
resulting value -(a×b+c) is returned in d.

Table 6-148: Float Fused Negative Multiply and Add

Return/Argument Types

d a b c
Assembly Mapping

float float float float fnmadds d, a, b, c

__fnmsub: Double Fused Negative Multiply and Subtract

d = __fnmsub(a, b, c)

The arguments a and b are multiplied, and the argument c is subtracted from their product. The sum is negated,
and the resulting value -(a×b-c) is returned in d.

Table 6-149: Double Fused Negative Multiply and Subtract

Return/Argument Types
d a b c

Assembly Mapping

double double double double fnmsub d, a, b, c

__fnmsubs: Float Fused Negative Multiply and Subtract

d = __fnmsubs(a, b, c)

The arguments a and b are multiplied, and the argument c is subtracted from their product. The sum is negated,
and the resulting value -(a×b-c) is returned in d.

Table 6-150: Float Fused Negative Multiply and Subtract

Return/Argument Types
d a b c

Assembly Mapping

float float float float fnmsubs d, a, b, c

__fres: Float Reciprocal Estimate

d = __fres(a)

An estimate of the reciprocal of the argument a is returned in d. The estimate is correct to a precision of one part in
256 of the reciprocal.

Beyond this precision, the value is indeterminate; the results of executing this instruction may vary between
implementations and between different executions on the same implementation.

Table 6-151: Float Reciprocal Estimate

Return/Argument Types
d a

Assembly Mapping

float float fres d, a

90 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__frsp: Round to Single Precision

d = __frsp(a)

The argument a is rounded to single precision and returned in d.

Table 6-152: Round to Single Precision

Return/Argument Types
d a

Assembly Mapping

float double frsp d, a

__frsqrte: Double Reciprocal Square Root Estimate

d = __frsqrte(a)

An estimate of the reciprocal of the square root of the argument a is returned in d.

The estimate is correct to a precision of one part in 32 of the reciprocal of the square root. Beyond this precision,
the value is indeterminate; the results of executing this instruction may vary between implementations and between
different executions on the same implementation.

Table 6-153: Double Reciprocal Square Root Estimate

Return/Argument Types
d a

Assembly Mapping

double double frsqrte d, a

__fsel: Floating-Point Select of Double

d = __fsel(a, b, c)

The argument b is returned in d if the argument a is greater than or equal to 0.0; otherwise c is returned.

Table 6-154: Floating-Point Select of Double

Return/Argument Types
d a b c

Assembly Mapping

double double double double fsel d, a, b, c

__fsels: Floating-Point Select of Float

d = __fsels(a, b, c)

The argument b is returned in d if the argument a is greater than or equal to 0.0; otherwise c is returned.

Table 6-155: Floating-Point Select of Float

Return/Argument Types
d a b c

Assembly Mapping

float float float float fsel d, a, b, c

 ��� PPU Specific Intrinsics 91

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__fsqrt: Double Square Root

d = __fsqrt(a)

The square root of the argument a is returned in d.

Table 6-156: Double Square Root

Return/Argument Types
d a

Assembly Mapping

double double fsqrt d, a

__fsqrts: Float Square Root

d = __fsqrts(a)

The square root of the argument a is returned in d.

Table 6-157: Float Square Root

Return/Argument Types
d a

Assembly Mapping

float float fsqrts d, a

__icbi: Instruction Cache Block Invalidate

(void) __icbi(pointer)

The instruction cache block that contains the argument pointer is invalidated, if such a block is in the cache. This
intrinsic will not be reordered by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-158: Instruction Cache Block Invalidate

Return/Argument Types
pointer

Assembly Mapping

void* icbi base, index

__isync: Instruction Sync

(void) __isync()

The processor waits until all previous instructions have finished. The __isync() function ensures that all icbi
have been performed.

Table 6-159: Instruction Sync

Return/Argument Types Assembly Mapping

none isync

92 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__ldarx: Load Doubleword with Reserved

d = __ldarx(pointer)

The reserved address of the processor is set to the value of pointer. A doubleword from the address in pointer
is returned in d.

The base and index arguments for the assembly mapping are calculated from pointer.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-160: Load Doubleword with Reserved

Return/Argument Types
d pointer

Assembly Mapping

unsigned long long void* ldarx d, base, index

__ldbrx: Load Reversed Doubleword

d = __ldbrx(pointer)

A doubleword from the address in pointer is loaded in reversed endian order into d and returned.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-161: Load Reversed Doubleword

Return/Argument Types Assembly Mapping
d pointer 64-bit ABI 32-bit ABI

unsigned long long void* ldbrx d, base, index lwbrx d_lo, base, index
lwbrx d_hi, base, index+4

__lhbrx: Load Reversed Halfword

d = __lhbrx(pointer)

A halfword from the address in pointer is loaded in reversed endian order into d and returned.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-162: Load Reversed Halfword

Return/Argument Types
d pointer

Assembly Mapping

unsigned short void* lhbrx d, base, index

__lwarx: Load Word with Reserved

d = __lwarx(pointer)

The reserved address of the processor is set to the value of pointer. A word from the address in pointer is
returned in d.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-163: Load Word with Reserved

Return/Argument Types
d pointer

Assembly Mapping

unsigned void* lwarx d, base, index

 ��� PPU Specific Intrinsics 93

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__lwbrx: Load Reversed Word

d = __lwbrx(pointer)

A word from the address in pointer is loaded in reversed endian order into d.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-164: Load Reversed Word
Return/Argument Types

d pointer
Assembly Mapping

unsigned void* lwbrx d, base, index

__lwsync: Light Weight Sync

(void) __lwsync()

A memory barrier is created, providing an ordering function for the storage accesses caused by prior Load, Store,
and __dcbz() instructions that are executed by the processor executing __lwsync(). The memory barrier and
ordering function are described in section 1.7.1 of PowerPC Architecture Book, Book II: PowerPC Virtual
Environment Architecture, version 2.02.

Table 6-165: Light Weight Sync

Return/Argument Types Assembly Mapping

none lwsync

__mffs: Move from Floating-Point Status and Control Register

d = __mffs()

The current Floating-Point Status and Control Register is returned in d. This intrinsic will not be reordered by the
compiler.

Table 6-166: Move from Floating-Point Status and Control Register

Return/Argument Types
d

Assembly Mapping

double mffs d

__mfspr: Move from Special Purpose Register

d = __mfspr(spr)

The contents of the special purpose register specified by spr are returned in d. This intrinsic will not be reordered
by the compiler.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-167: Move from Special Purpose Register
Return/Argument Types

d spr
Assembly Mapping

unsigned long long 10-bit literal unsigned int mfspr d, spr

94 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__mftb: Move from Time Base

d = __mftb()

The time base register is returned in d. This intrinsic will not be reordered by the compiler.

Table 6-168: Move from Time Base
Return/Argument Types Assembly Mapping

d 64-bit ABI 32-bit ABI

unsigned long long mftb d

retry:
 mftbu d_hi
 mftb d_lo
 mftbu tmp
 cmp d_hi, tmp
 bne retry

__mtfsb0: Reset Bit of FPSCR

(void) __mtfsb0(bt)

Bit bt of Floating-Point Status and Control Register (FPSCR) is set to 0. This intrinsic will not be reordered by the
compiler. It will also cause a barrier for floating-point operations.

Table 6-169: Reset Bit of FPSCR
Return/Argument Types

bt
Assembly Mapping

5-bit unsigned int (literal) mtfsb0 bt

__mtfsb1: Set Bit of FPSCR

(void) __mtfsb1(bt)

Bit bt of Floating-Point Status and Control Register is set to 1. This intrinsic will not be reordered by the compiler. It
will also cause a barrier for floating-point operations.

Table 6-170: Set Bit of FPSCR
Return/Argument Types

bt
Assembly Mapping

5-bit unsigned int (literal) mtfsb1 bt

__mtfsf: Set Fields in FPSCR

(void) __mtfsf(flm, b)

The fields of Floating-Point Status and Control Register are set to b masked by the argument flm. This intrinsic will
not be reordered by the compiler. It will also cause a barrier for floating-point operations.

Table 6-171: Set Fields in FPSCR
Return/Argument Types

flm b
Assembly Mapping

8-bit unsigned int (literal) double mtfsf flm, b

 ��� PPU Specific Intrinsics 95

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__mtfsfi: Set Field of FPSCR

(void) __mtfsfi(bf, u)

The bf field of FPSCR is set to the argument u. This intrinsic will not be reordered by the compiler. It will also cause
a barrier for floating-point operations.

Table 6-172: Set Field of FPSCR
Return/Argument Types

bf u
Assembly Mapping

3-bit unsigned int (literal) 4-bit unsigned int (literal) mtfsfi bf, u

__mtspr: Move to Special Purpose Register

(void) __mtspr(spr, value)

The special purpose register specified by spr is set to the argument value. This intrinsic will not be reordered by
the compiler.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-173: Move to Special Purpose Register
Return/Argument Types

spr value
Assembly Mapping

10-bit unsigned int (literal) unsigned long long mtspr spr, value

__mulhd: Multiply Doubleword, High Part

d = __mulhd(a, b)

The high part of the signed product of the doubleword arguments a and b is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-174: Multiply Doubleword, High Part
Return/Argument Types

d a b
Assembly Mapping

long long long long long long mulhd d, a, b

__mulhdu: Multiply Double Unsigned Word, High Part

d = __mulhdu(a, b)

The high part of the unsigned product of the doubleword arguments a and b is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-175: Multiply Double Unsigned Word, High Part
Return/Argument Types

d a b
Assembly Mapping

unsigned long long unsigned long long unsigned long long mulhdu d, a, b

96 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__mulhw: Multiply Word, High Part

d = __mulhw(a, b)

The high part of the signed product of the word arguments a and b is returned in d.

Table 6-176: Multiply Word, High Part
Return/Argument Types
d a b

Assembly Mapping

int int int mulhw d, a, b

__mulhwu: Multiply Unsigned Word, High Part

d = __mulhwu(a, b)

The high part of the unsigned product of the word arguments a and b is returned in d.

Table 6-177: Multiply Unsigned Word, High Part
Return/Argument Types

d a b
Assembly Mapping

unsigned int unsigned int unsigned int mulhwu d, a, b

__nop: No Operation

(void) __nop()

The preferred nop instruction is generated. This intrinsic will not be reordered by the compiler.

Table 6-178: No Operation
Return/Argument Types Assembly Mapping
none nop

__protected_stream_count: Set the Number of Blocks to Stream

(void) __protected_stream_count(COUNT, ID)

Set the number of units in the data stream corresponding to stream ID. This intrinsic is an alias for
__dcbt_TH1010(0, 0, COUNT, 0, 0, ID). The compiler will not reorder this intrinsic.

__protected_stream_go: Start All Streams

(void) __protected_stream_go()

Start all of the completely described streams. This intrinsic is an alias for __dcbt_TH1010(1, 0, 0, 0, 0, 0).
The compiler will not reorder this intrinsic.

__protected_stream_set: Set Up a Stream

(void) __protected_stream_set(D, ADDR, ID)

Set up the ID stream to start at ADDR and run in the direction of D. When D is 1, the direction is backwards
(decrementing), and when D is 3, the direction is forwards (incrementing). The stream is started by setting the count

 ��� PPU Specific Intrinsics 97

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

and then calling __protected_stream_go. This intrinsic is an alias for __dcbt_TH1000(ADDR, (D>>1), 0,
ID). The compiler will not reorder this intrinsic.

__protected_stream_stop: Stop a Stream

(void) __protected_stream_stop(ID)

Stop the ID stream. This intrinsic is an alias for __dcbt_TH1010(0, 2, 0, 0, 0, ID). The compiler will not
reorder this intrinsic.

__protected_stream_stop_all: Stop All Streams

(void) __protected_stream_stop_all()

Stop all data streams. This intrinsic is an alias for __dcbt_TH1010(0, 3, 0, 0, 0, 0). The compiler will not
reorder this intrinsic.

__protected_unlimited_stream_set: Set Up an Unlimited Stream

(void) __protected_unlimited_stream_set(D, ADDR, ID)

Set up the ID stream to start at ADDR and run for an unlimited count in the direction of D. When D is 1, the direction
is backwards (decrementing), and when D is 3, the direction is forwards (incrementing). The stream is started by
calling __protected_stream_go. This intrinsic is an alias for __dcbt_TH1000(ADDR, (D>>1), 1, ID). The
compiler will not reorder this intrinsic.

__rldcl: Rotate Left Doubleword then Clear Left

d = __rldcl(a, b, mb)

The value in the argument a is rotated leftwards by the number of bits specified by the argument b. A mask is
generated having 1-bits from bit mb through bit 63, and 0-bits elsewhere. The rotated data ANDed with the
generated mask is returned into d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-179: Rotate Left Doubleword then Clear Left
Return/Argument Types

d a b mb
Assembly Mapping

unsigned long long unsigned long long unsigned long long 6-bit unsigned int (literal) rldcl d, a, b, mb

98 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__rldcr: Rotate Left Doubleword then Clear Right

d = __rldcr(a, b, me)

The value in the argument a is rotated leftwards by the number of bits specified by the argument b. A mask is
generated having 1-bits from bit 0 though bit me and 0-bits elsewhere. The rotated data ANDed with the generated
mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-180: Rotate Left Doubleword then Clear Right
Return/Argument Types

d a b me
Assembly Mapping

unsigned long long unsigned long long unsigned long long 6-bit unsigned int (literal) rldcr d, a, b, me

__rldic: Rotate Left Doubleword Immediate then Clear

d = __rldic(a, sh, mb)

The value in the argument a is rotated leftwards by the number of bits specified by the argument sh. A mask is
generated having 1-bits from bit mb through bit 63-sh and 0-bits elsewhere. The rotated data ANDed with the
generated mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-181: Rotate Left Doubleword Immediate then Clear
Return/Argument Types

d a sh mb
Assembly Mapping

unsigned long long unsigned long long 6-bit unsigned int (literal) 6-bit unsigned int (literal) rldic d, a, sh, mb

__rldicl: Rotate Left Doubleword Immediate then Clear Left

d = __rldicl(a, sh, mb)

The value in the argument a is rotated leftwards by the number of bits specified by the argument sh. A mask is
generated having 1-bits from bit mb through bit 63 and 0-bits elsewhere. The rotated data ANDed with the generated
mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-182: Rotate Left Doubleword Immediate then Clear Left
Return/Argument Types

d a sh mb
Assembly Mapping

unsigned long long unsigned long long 6-bit unsigned int (literal) 6-bit unsigned int (literal) rldicl d, a, sh, mb

 ��� PPU Specific Intrinsics 99

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__rldicr: Rotate Left Doubleword Immediate then Clear Right

d = __rldicr(a, sh, me)

The value in the argument a is rotated leftwards by the number of bits specified by the argument sh. A mask is
generated having 1-bits from bit 0 though bit me and 0-bits elsewhere. The rotated data ANDed with the generated
mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-183: Rotate Left Doubleword Immediate then Clear Right
Return/Argument Types

d a sh me
Assembly Mapping

unsigned long long unsigned long long 6-bit unsigned int (literal) 6-bit unsigned int (literal) rldicr d, a, sh, me

__rldimi: Rotate Left Doubleword Immediate then Mask Insert

d = __rldimi(a, b, sh, mb)

A mask is generated with 1-bits from bit mb through bit 63-sh, and 0-bits elsewhere. The value in a is ANDed with
the complement of this mask, zeroing out just the bits inside the range mb through 63-sh. The argument b is rotated
left by sh bits and ANDs the result with the mask, zeroing out all bits outside the range mb through 63-sh. The two
masked values are combined together with inclusive OR, and returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-184: Rotate Left Doubleword Immediate then Mask Insert
Return/Argument Types

d a b sh mb
Assembly Mapping

unsigned long long unsigned long long unsigned long
long

6-bit unsigned int
(literal)

6-bit unsigned int
(literal)

mr d, a
rldimi d, b, sh, mb

__rlwimi: Rotate Left Word Immediate then Mask Insert

d = __rlwimi(a, b, sh, mb, me)

A mask is generated with 1-bits from bit mb through bit me, and 0-bits elsewhere. The value in a is ANDed with the
complement of this mask, zeroing out just the bits inside the range mb through me. The argument b is rotated left by
sh bits and ANDs the result with the mask, zeroing out all bits outside the range mb through me. The two masked
values are combined together with inclusive OR, and returned in d.

Table 6-185: Rotate Left Word Immediate then Mask Insert
Return/Argument Types

d a b sh mb me
Assembly Mapping

unsigned int unsigned int unsigned
int

5-bit unsigned int
(literal)

5-bit unsigned int
(literal)

5-bit unsigned int
(literal)

mr d, a
rlwimi d, b, sh, mb, me

100 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__rlwinm: Rotate Left Word Immediate then AND With Mask

d = __rlwinm(a, sh, mb, me)

A mask is generated with 1-bits from mb through bit me, and 0-bits elsewhere. The value in a is rotated left by sh
bits, then ANDed with this mask, and returned in d.

Table 6-186: Rotate Left Word Immediate then AND With Mask
Return/Argument Types

d a sh mb me
Assembly Mapping

unsigned int unsigned int 5-bit unsigned int
(literal)

5-bit unsigned int
(literal)

5-bit unsigned int
(literal) rlwinm d, a, sh, mb, me

__rlwnm: Rotate Left Word then AND With Mask

d = __rlwnm(a, b, mb, me)

The argument a is rotated leftwards by the argument b. A mask is generated having 1-bits from bit mb through bit
me, and 0-bits elsewhere. The rotated data ANDed with the generated mask is returned in d.

Table 6-187: Rotate Left Word then AND With Mask
Return/Argument Types
d a b mb me

Assembly Mapping

unsigned int unsigned int unsigned int 5-bit unsigned int
(literal)

5-bit unsigned int
(literal) rlwnm d, a, b, mb, me

__setflm: Save and Set the FPSCR

d = __setflm(a)

The Floating-Point Status and Control Register is set to a, and the context of that register is returned in d. This
intrinsic will not be reordered by the compiler. It will also cause a barrier for floating-point operations.

Table 6-188: Save and Set the FPSCR
Return/Argument Types

d a
Assembly Mapping

double double mffs d;
mtfsf 0xFF, a

__stdbrx: Store Reversed Doubleword

(void) __stdbrx(pointer, b)

The argument b is stored in reversed endian order into the doubleword located at the argument pointer.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-189: Store Reversed Doubleword

Return/Argument Types Assembly Mapping
pointer b 64-bit ABI 32-bit ABI

void* unsigned long long stdbrx b, base, index
stwbrx b_lo, base, index
stwbrx b_hi, base,
index+4

 ��� PPU Specific Intrinsics 101

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__stdcx: Store Doubleword Conditional

d = __stdcx(pointer, b)

If the reserved address of the processor is the value in the argument pointer, b is stored into the doubleword at
the argument pointer, and the value of 1 is returned in d. Otherwise, the store is not performed, and the value of 0
is returned in d.

The base and index arguments for the assembly mapping are calculated from pointer.

The instruction stdcx. returns its value in cr0.eq, the equals field of conditional register 0.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in
two separate registers.

Table 6-190: Store Doubleword Conditional

Return/Argument Types
d pointer b

Assembly Mapping

bool void* unsigned long long stdcx. b, base, index; d = cr0.eq

__sthbrx: Store Reversed Halfword

(void) __sthbrx(pointer, b)

The argument b is stored in reversed endian order into the halfword located at the argument pointer.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-191: Store Reversed Halfword

Return/Argument Types
pointer b

Assembly Mapping

void* unsigned short sthbrx b, base, index

__stwbrx: Store Reversed Word

(void) __stwbrx(pointer, b)

The argument b is stored in reversed endian order into the word located at the argument pointer.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 6-192: Store Reversed Word
Return/Argument Types

pointer b
Assembly Mapping

void* unsigned stwbrx b, base, index

102 PPU Specific Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

__stwcx: Store Word Conditional

d = __stwcx(pointer, b)

If the reserved address of the processor is the value in the argument pointer, b is stored into the word at the
argument pointer, and the value of 1 is returned in d. Otherwise, the store is not performed, and the value of 0 is
returned in d.

The base and index arguments for the assembly mapping are calculated from pointer.

The instruction stwcx. returns its value in cr0.eq, the equals field of conditional register 0.

Table 6-193: Store Word Conditional

Return/Argument Types
d pointer b

Assembly Mapping

bool void* unsigned stwcx. b, base, index; d = cr0.eq

__sync: Sync

(void) __sync()

A memory barrier is created, providing an ordering function for all instructions executing on the same processor.
The memory barrier and ordering function are described in section 1.7.1 of PowerPC Architecture Book, Book II:
PowerPC Virtual Environment Architecture, version 2.02.

Table 6-194: Sync

Return/Argument Types Assembly Mapping

none sync

 ��� PPU Specific Intrinsics 103

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

7. PPU Vector Multimedia Extension Intrinsics

This chapter describes intrinsics which make the underlying PPU Vector Multimedia Extension (VMX) instruction set
accessible from the C and C++ programming languages. The AltiVec™ Technology Programming Interface Manual,
Section 4.4, defines most of the generic intrinsics for the PPU VMX instruction set, except for a few new instructions
which are specified in this chapter. The new intrinsics are in two different categories: intrinsics for extracting vector
elements and intrinsics for inserting vector elements.

The PPU VMX intrinsics will be declared in the system header file altivec.h. These intrinsics may be either
defined as macros within this header or implemented internally within the compiler.

For data prefetches, the __dcbt, __dcbtst, __dcbt_TH1000, and __dcbt_TH1010 intrinsics should be used.
The related stream control operations that are defined in the AltiVec™ Technology Programming Interface Manual,
which are listed below, have been deprecated on the PPU and will execute as a NOP.

Table 7-195: Stream Control Operators That Have Been Deprecated on the PPU
Stream Control Operator Description

vec_dss(a) Vector Data Stream Stop
vec_dssall() Vector Stream Stop All
vec_dst(a,b,c) Vector Stream Touch
vec_dstst(a,b,c) Vector Data Stream Touch for Store Transient

 ��� PPU Vector Multimedia Extension Intrinsics 105

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_extract: Extract Vector Element from Vector

d = vec_extract(a, element)

The element that is specified by element is extracted from vector a and returned in scalar d. Depending on the
size of the element, only a limited number of the least significant bits of the element index are used. Specifically for
1-, 2-, and 4-byte elements, only four, three, and two of the least significant bits are used, respectively.

Table 7-196: Extract Vector Element from Vector
Return/Argument Types

d a element
Assembly Mapping1

unsigned char vector unsigned char
EA=memaddr + (element&0xF)
stvebx a, 0, EA
lbzx d, 0, EA

signed char vector signed char

EA=memaddr + (element&0xF)
stvebx a, 0, EA
lbzx d, 0, EA
extsb d, d

unsigned short vector unsigned short
EA=memaddr + (element&0x7)<<2
stvehx a, 0, EA
lhzx d, 0, EA

signed short vector signed short

EA=memaddr + (element&0x7)<<2
stvehx a, 0, EA
lhzx d, 0, EA
extsh d, d

unsigned int vector unsigned int
EA=memaddr + (element&0x3)<<3
stvewx a, 0, EA
lwzx a, 0, EA

signed int vector signed int

EA=memaddr + (element&0x3)<<3
stvewx a, 0, EA
lwzx a, 0, EA
extsw d, d 2

float vector float

int

EA=memaddr + (element&0x3)<<3
stvewx a, 0, EA
lfsx a, 0, EA

1 memaddr is the address of a temporary memory location which is 16-byte aligned.
2 The sign extend from word to doubleword can be omitted if the processor is running in 32-bit mode.

106 PPU Vector Multimedia Extension Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_insert: Insert Scalar into Specified Vector Element

d = vec_insert(a, b, element)

Scalar a is inserted into the element of vector b that is specified by the element parameter, and the modified
vector is returned. All other elements of b are unmodified. Depending on the size of the element, only a limited
number of the least significant bits of the element index are used. Specifically for 1-, 2-, and 4-byte elements, only
four, three, and two of the least significant bits are used, respectively.

Table 7-197: Insert Scalar into Specified Vector Element
Return/Argument Types

d a b element
Assembly Mapping1

vector unsigned char unsigned char vector unsigned char

vector signed char signed char vector signed char

EA=memaddr + (element&0xF)
stbx a, 0, EA
lvebx d, 0, EA
vperm d, d, a, pattern

vector unsigned short unsigned short vector unsigned short

vector signed short signed short vector signed short

EA=memaddr + (element&0x7)<<2
sthx a, 0, EA
lvehx d, 0, EA
vperm d, d, a, pattern

vector unsigned int unsigned int vector unsigned int

vector signed int signed int vector signed int

EA=memaddr + (element&0x3)<<3
stwx a, 0, EA
lvewx d, 0, EA
vperm d, d, a, pattern

vector float float vector float

int

EA=memaddr + (element&0x3)<<3
stfsx a, EA
lvewx d, 0, EA
vperm d, d, a, pattern

1 memaddr is the address of a temporary memory location which is 16-byte aligned.

 ��� PPU Vector Multimedia Extension Intrinsics 107

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_lvlx: Load Vector Left Indexed

d = vec_lvlx(a, b)

Let EA be the effective address formed from the sum of the contents of a and the contents of b and let eb be the
value of the four least significant bits of EA. The (16 - eb) bytes addressed by EA are loaded into the leftmost (16 -
eb) byte elements of d and the rightmost eb byte of d are set to zero.

Table 7-198: Load Vector Left Indexed

Return/Argument Types
d a b

Assembly Mapping

unsigned char * vector unsigned char any integral type
vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

lvlx d, a, b

108 PPU Vector Multimedia Extension Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_lvlxl: Load Vector Left Indexed Last

d = vec_lvlxl(a, b)

Let EA be the effective address formed from the sum of the contents of a and the contents of b and let eb be the
value of the four least significant bits of EA. The (16 - eb) bytes addressed by EA are loaded into the leftmost (16 -
eb) bytes of d and the rightmost eb bytes of d are set to zero. vec_lvlxl provides a hint that the quadword in
memory addressed by EA will probably not be needed again by the program in the near future.

Table 7-199: Load Vector Left Indexed Last
Return/Argument Types

d a b
Assembly Mapping

unsigned char *
vector unsigned char any integral type

vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

lvlxl d, a, b

 ��� PPU Vector Multimedia Extension Intrinsics 109

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_lvrx: Load Vector Right Indexed

d = vec_lvrx(a, b)

Let EA be the effective address formed from the sum of the contents of a and the contents of b and let eb be the
value of the four least significant bits of EA. If eb is not equal to zero (for example, EA is not quadword-aligned), then
eb bytes in memory addressed by (EA - eb) are loaded into the rightmost eb bytes of d and the leftmost (16 - eb)
bytes of d are set to zero. If eb is equal to zero (for example, EA is quadword-aligned), then the contents of d are
set to zero.

Table 7-200: Load Vector Right Indexed

Return/Argument Types
d a b

Assembly Mapping

unsigned char * vector unsigned char any integral type
vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

lvrx d, a, b

110 PPU Vector Multimedia Extension Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_lvrxl: Load Vector Right Indexed Last

d = vec_lvrxl(a,b)

Let EA be the effective address formed from the sum of the contents of a and the contents of b and let eb be the
value of the four least significant bits of EA. If eb is not equal to zero (for example, EA is not quadword-aligned), then
eb bytes in memory addressed by (EA - eb) are loaded into the rightmost eb bytes of d and the leftmost (16 - eb)
bytes of d are set to zero. If eb is equal to zero (for example, EA is quadword-aligned), then the contents of d are
set to zero. vec_lvrxl provides a hint that the quadword in memory addressed by EA will probably not be needed
again by the program in the near future.

Table 7-201: Load Vector Right Indexed Last

Return/Argument Types
d a b

Assembly Mapping

unsigned char * vector unsigned char any integral type
vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

lvrxl d, a, b

 ��� PPU Vector Multimedia Extension Intrinsics 111

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_stvlx: Store Vector Left Indexed

(void) vec_stvlx(a, b, c)

Let EA be the effective address formed from the sum of the contents of b and the contents of c, and let eb be the
value of the four least significant bits of EA. Store the (16 - eb) leftmost bytes of a into the memory addressed by
EA.

Table 7-202: Store Vector Left Indexed

Return/Argument Types
a b c

Assembly Mapping

unsigned char * vector unsigned char any integral type
vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

stvlx a, b, c

112 PPU Vector Multimedia Extension Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_stvlxl: Store Vector Left Indexed Last

(void) vec_stvlxl(a, b, c)

Let EA be the effective address formed from the sum of the contents of b and the contents of c, and let eb be the
value of the four least significant bits of EA. Store the (16 - eb) leftmost bytes of a into the memory addressed by
EA. vec_stvlxl provides a hint that the quadword in memory addressed by EA will probably not be needed again
by the program in the near future.

Table 7-203: Store Vector Left Indexed Last

Return/Argument Types
a b c

Assembly Mapping

unsigned char * vector unsigned char any integral type
vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

stvlxl a, b, c

 ��� PPU Vector Multimedia Extension Intrinsics 113

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_stvrx: Store Vector Right Indexed

(void) vec_stvrx(a, b, c)

Let EA be the effective address formed from the sum of the contents of b and the contents of c, and let eb be the
value of the four least significant bits of EA. Store the eb rightmost bytes of a into the memory addressed by (EA -
eb). If eb is zero, EA is 16-byte aligned, and no memory is stored.

Table 7-204: Store Vector Right Indexed

Return/Argument Types
a b c

Assembly Mapping

unsigned char * vector unsigned char any integral type
vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

stvrx a, b, c

114 PPU Vector Multimedia Extension Intrinsics ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_stvrxl: Store Vector Right Indexed Last

(void) vec_stvrxl(a, b, c)

Let EA be the effective address formed from the sum of the contents of b and the contents of c, and let eb be the
value of the four least significant bits of EA. Store the eb rightmost bytes of a into the memory addressed by (EA -
eb). If eb is zero, EA is 16-byte aligned, no memory is stored. vec_stvrxl provides a hint that the quadword in
memory addressed by EA will probably not be needed again by the program in the near future.

Table 7-205: Store Vector Right Indexed Last

Return/Argument Types
a b c

Assembly Mapping

unsigned char * vector unsigned char any integral type
vector unsigned char *
signed char *

vector signed char any integral type
vector signed char *

vector bool char any integral type vector bool char *
unsigned short *

vector unsigned short any integral type
vector unsigned short *
signed short *

vector signed short any integral type
vector signed short *

vector bool short any integral type vector bool short *
vector pixel any integral type vector pixel *

unsigned int *
vector unsigned int any integral type

vector unsigned int *
signed int *

vector signed int any integral type
vector signed int *

vector bool int any integral type vector bool int *
float *

vector float any integral type
vector float *

stvrxl a, b, c

 ��� PPU Vector Multimedia Extension Intrinsics 115

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vec_promote: Promote Scalar to Vector

d = vec_promote(a, element)

Scalar a is promoted to a vector containing a in the element that is specified by the element parameter, and the
result is returned in vector d. All other elements of d are undefined. Depending on the size of a, only a limited
number of the least significant bits of the element index are used. Specifically for 1-, 2-, and 4-byte elements, only
four, three, and two of the least significant bits are used, respectively.

Table 7-206: Promote Scalar to Vector

Return/Argument Types
d a element

Assembly Mapping1

vector unsigned char unsigned char

vector signed char signed char

EA=memaddr + (element&0xF)
stbx a, 0, EA
lvebx d, 0, EA

vector unsigned short unsigned short

vector signed short signed short

EA=memaddr + (element&0x7)<<2
sthx a, 0, EA
lvehx d, 0, EA

vector unsigned int unsigned int

vector signed int signed int

EA=memaddr + (element&0x3)<<3
stwx a, 0, EA
lvewx d, 0, EA

vector float float

int

EA=memaddr + (element&0x3)<<3
stfsx a, EA
lvewx d, 0, EA

1 memaddr is the address of a temporary memory location which is 16-byte aligned.

vec_splats: Splat Scalar to Vector

d = vec_splats(a)

The single scalar a value is replicated across all elements of a vector of the same type and the result is returned in
vector d.

Table 7-207: Splat Scalar to Vector

Return/Argument Types
d a

Assembly Mapping

vector unsigned char unsigned char
vector signed char signed char
vector unsigned short unsigned short
vector signed short signed short
vector unsigned int unsigned int
vector signed int signed int
vector float float

store a into memory (EA) that 16-byte aligned
lvebx/lvehx/lvewx tmp, 0, EA
vspltb/vsplth/vspltw d, tmp, 0

vector unsigned char unsigned char (5-bit unsigned literal)
vector signed char signed char (5-bit unsigned literal)
vector unsigned short unsigned short (5-bit unsigned literal)
vector signed short signed short (5-bit unsigned literal)
vector unsigned int unsigned int (5-bit unsigned literal)
vector signed int signed int (5-bit unsigned literal)
vector float float (5-bit unsigned literal)

vspltisb d, a
 or
vspltish d, a
 or
vspltisw d, a
 or
vspltisw d, a

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

8. SPU C and C++ Standard Libraries and Language Support

This chapter describes differences between the implementations of the C and C++ standard libraries on the SPU
and the corresponding ISO/IEC standards. It also identifies common language features that are specifically not
supported on the SPU.

8.1. Standard Libraries
The C and C++ standard libraries that are required for the SPU are based on the Standard C Library described in
ISO/IEC Standard 9899:1999 and the C++ Standard Library described in ISO/IEC Standard 14882:1998. However,
neither library must be a fully compliant implementation of the respective ISO/IEC standard.

The proposed differences from ISO/IEC compliant implementations are due to two reasons: 1) The SPU does not
have the same system resources and operating system support that are available to most stand-alone processors;
and 2) the SPU hardware doesn’t fully support the IEEE floating-point standard. Because of the SPU's limited
operating system support, library functions that require system calls, thread facilities, and file input/output (I/0) may
not be supported. Because of differences in floating-point behavior, the results of single-precision floating-point
functions will probably be less accurate than defined by the Standard, and floating-point exceptions will be less
reliable. Nevertheless, the standard library functions that are provided should execute fast, in most cases.

The minimum C and C++ library features that must be provided for the SPU are described in the following sections.

8.1.1. C Standard Library

This section describes the minimum requirements of a compliant C standard library implementation.

Library Contents
All of the entities required in the C standard library must be declared and defined within the library header files listed
in Table 8-208. Differences between the contents of these header files and the header files that comprise the ISO
Standard Library are identified in the table. For a detailed description of the particular entities, see the ISO/IEC C
Standard listed in the “Related Documentation” section.

Table 8-208: C Library Header Files
Header Name Description

assert.h Enforce assertions when functions execute. The assert macro reports assertion failures
using the special debug printf (described later in this chapter).

complex.h Perform complex arithmetic.
ctype.h Classify characters. The functions declared in this header use only the “C” locale.
errno.h Test error codes reported by library functions.

fenv.h Control IEEE style floating-point arithmetic. Macros for single- and double-precision
exceptions are described in “9.2.2. Floating-Point Exceptions”.

float.h Test floating-point type properties. These properties are specified in section “9.1. Properties
of Floating-Point Data Type Representations”.

inttypes.h Convert various integer types.
iso646.h Program in ISO 646 variant character sets.
limits.h Test integer type properties. The macro MB_LEN_MAX is defined as 1.
locale.h Not available.

math.h

Compute common mathematical functions. The floating-point behavior of these functions will
adhere to the specifications described in section “9.3. Floating-Point Operations”. Although
not specified or required, corresponding vector versions of the math functions may be added
to the library to take advantage of the many high-performance SIMD (single instruction,
multiple data) instructions provided by the SPU hardware.

setjmp.h Execute nonlocal goto statements.

 ��� SPU C and C++ Standard Libraries and Language Support 117

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Header Name Description

signal.h Not available.
stdarg.h Access a varying number of arguments.
stdbool.h Define a convenient Boolean type name and constants.
stddef.h Define several useful types and macros. The wchar_t is not defined.

stdint.h Define various integer types with size constraints. SIG_ATOMIC_MAX and SIG_ATOMIC_MIN
are not defined, nor are any of the WCHAR_MAX, WCHAR_MIN, WINT_MAX, and WINT_MIN.

stdio.h Not available, except for printf, which is provided for debugging. (See section “Debug
printf()”.)

stdlib.h
Perform a variety of operations. The functions getenv, mblen, mbstowcs, mbtowc,
system, wcstombs, and wctomb are not defined. The type wchar_t and the macro
MB_CUR_MAX are also not defined.

string.h Manipulate several kinds of strings. The function strxfrm uses only the “C” locale.

tgmath.h
Declare various type-generic math functions. Single-precision functions declared in this
header adhere to the same specifications described for the corresponding functions that are
declared in math.h.

time.h Not available.
wchar.h Not available.
wctype.h Not available.

Fastest Minimum-Width Integer Types
The typedefs named int_fastN_t and uint_fastN_t designate the fastest signed and unsigned integer types
with a width of at least N. These typedefs are defined as shown in Table 8-209. The size of these types is not
guaranteed to be equal to the types defined for the PPU.

Table 8-209: Fastest Minimum-Width Integer Types

Types Size (in bits)

int_fast8_t/uint_fast8_t 32
int_fast16_t/uint_fast16_t 32
int_fast32_t/uint_fast32_t 32
int_fast64_t/uint_fast64_t 64

Debug printf()
A printf() function will be provided for application debugging. The implementation of this function depends on the
particular services provided by the underlying operating system. Although detailed specifications for this function are
not mandated by this document, a full-featured implementation is recommended. Such an implementation would
include all of the usual output format conversion specifiers required by the C standard. In addition, conversion
specifiers of the type described in the AltiVec™ Technology Programming Interface Manual are recommended to
handle vector output formatting. Output conversion specifiers take the following form:

%[<flags>][<width>][<precision>][<size>]<conversion>

where

<flags> ::= <flag-char> | <flags><flag-char>

<flag-char> ::= <std-flag-char> | <c-sep>
<std-flag-char> ::= '-' | '+' | '0' | '#' | ' '

<c-sep> ::= ',' | ';' | ':' | '_'
<width> ::= <decimal-integer> | '*'

<precision> ::= '.' <width> | ‘.’ | ‘.*’

118 SPU C and C++ Standard Libraries and Language Support ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

<size> ::= ‘hh’ | ‘h’ | 'l' | 'll' | 'L' | <vector-size>
<vector-size> ::= 'v' | ‘vhh’ | 'vh' | 'vl' | 'vll' | 'vL' | ‘hhv’

 | 'hv' | 'lv'| 'llv' | 'Lv'
<conversion> ::= <char-conv> | <str_conv> | <fp-conv> | <int-conv>

 | <byte-conv> | <misc-conv>
<char-conv> ::= 'c'

<str-conv> ::= 's'

<fp-conv> ::= 'e' | 'E' | 'f' | 'F' | 'g' | 'G'

<int-conv> ::= 'd' | 'i' | 'u' | 'p' | 'o' |'x' | 'X'

<byte-conv> ::= 'uc' | 'co' | 'cx' | 'cX'
<misc-conv> ::= 'n' | '%'

Extensions to the C standard output conversion specification are shown in bold for vector types. Vector types are
formatted using the conversions shown in Table 8-210. String conversions (<str-conv>) and miscellaneous
conversions (<misc-conv>) are not defined for vectors. The ‘p’ integer conversion (<int-conv>) is also not
defined. The default separator (<c-sep>) is a space, except for character conversion (<char-conv>), which has
no separator.

Table 8-210: Vector Formats

Vector Size Conversion Description

v <char-conv> A vector is printed as a vector char, consisting of 16 one-byte elements. The ‘c’
conversion prints contiguous ASCII characters.

v <int-conv>
<byte-conv>

With the ‘uc’ conversion, a vector is printed as a vector unsigned char,
consisting of 16 one-byte elements. Similarly, the ‘co’, ‘cx’, and ‘cX’ conversions
print either a vector unsigned char or a qword, in octal format or in hexadecimal
format. For all other integer conversions, a vector is printed in the respective
octal (o), integer (d, i, u) or hexadecimal (x, X) format, either as a vector
unsigned int or as a vector signed int, consisting of 4 four-byte elements.

v <fp-conv>

A vector is printed in a signed decimal fractional representation, either in
standard decimal notation (f or F) or with a decimal power-of-ten exponent (e,
E, g, G). The representation is printed as a vector float, containing 4 four-byte
elements.

vhh or hhv <int-conv>
A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x,
X) format, either as a vector unsigned char or as a vector signed char,
consisting of 16 one-byte elements.

vh or hv <int-conv>
A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x,
X) format, either as a vector unsigned short or as a vector signed short,
consisting of 8 two-byte elements.

vl or lv <int-conv>
A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x,
X) format, as a vector unsigned int or as a vector signed int, consisting of 4
four-byte elements.

vll or llv <int-conv>
A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x,
X) format, as a vector unsigned long long or as a vector signed long long,
consisting of 2 eight-byte elements.

vL or Lv <fp-conv>

A vector is printed in a signed decimal fractional representation, either in
standard decimal notation (f or F) or with a decimal power-of-ten exponent (e,
E, g, G). The representation is printed as a vector double, consisting of 2 eight-
byte elements.

Malloc Heap
The malloc heap is defined to begin at _end and to extend to the end of the stack. The memory heap may be
enlarged by a heap-extending function. This function would negatively adjust the Available Stack Size element of

 ��� SPU C and C++ Standard Libraries and Language Support 119

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

the current Stack Pointer Information register and all Available Stack Sizes residing in the saved SP registers found
in the sequence of Back Chain quadwords.

Whenever the malloc heap is enlarged, code should verify that the enlarged malloc heap does not extend into
the currently used stack. If it does, the operation should fail.

Implementations of setjmp/longjmp are also affected by the use of heap-extending functions. When restoring the
Stack Pointer Information register as a result of invoking the longjmp function, the function must detect any change
to the Available Stack Size between setjmp and longjmp, and it must correct the saved Stack Pointer Information
register. For example:

SP.avail_stack_size = SP_set.stack_ptr - SP.stack_ptr +
 SP.avail_stack_size;

where SP is the current Stack Pointer Information register, and SP_set is the Stack Pointer Information register
saved at the last setjmp call.

8.1.2. C++ Standard Library

This section describes the minimum contents of the C++ standard library.

As with the C library, the C++ library header files declare or define the contents of the C++ library. Table 8-211 lists
the header files that comprise the core of the C++ standard library. Differences between the contents of the C++
header files and the header files that comprise the ISO Standard Library are noted in this table.

Table 8-211: C++ Library Header Files
Header Name Description

algorithm Define numerous templates that implement useful algorithms.
bitset Define a template class that administers sets of bits.
complex Define a template class that supports complex arithmetic.
deque Define a template class that implements a deque container.
exception Not available.
fstream Not available.

functional Define several templates that help construct predicates for the templates defined in algorithm
and numeric.

iomanip Not available.
ios Not available.
iosfwd Not available.
iostream Not available.
istream Not available.
iterator Define several templates that help define and manipulate iterators.
limits Test numeric type properties.
list Define a template class that implements a doubly linked list container.
locale Not available.
map Define template classes that implement associative containers that map keys to values.
memory Define several templates that allocate and free storage for various container classes.
new Declare several functions that allocate and free storage.
numeric Define several templates that implement useful numeric functions.
ostream Not available.
queue Define a template class that implements a queue container.
set Define template classes that implement associative containers.
slist Define a template class that implements a singly linked list container.

120 SPU C and C++ Standard Libraries and Language Support ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Header Name Description

sstream Not available.
stack Define a template class that implements a stack container.
stdexcept Not available.
streambuf Not available.
string Define a template class that implements a string container.
strstream Not available.
typeinfo Not available.
utility Define several templates of general utility.
valarray Define several classes and template classes that support value-oriented arrays.
vector Define a template class that implements a vector container.

The C++ standard library contains new-style C++ header files that correspond to 12 traditional C header files. Both
the new-style and the traditional-style header files are included in the library. These header files are listed in Table
8-212.

Table 8-212: New and Traditional C++ Library Header Files
New-Style Header Name Traditional Header Name Description

cassert assert.h Enforce assertions when functions execute.1
cctype ctype.h Classify characters.1
cerrno errno.h Test error codes reported by library functions.1
cfloat float.h Test floating-point type properties.
ciso646 iso646.h Program in ISO 646 variant character sets.
climits limits.h Test integer type properties.1
clocale locale.h Not available.
cmath math.h Compute common mathematical functions.1
csetjmp setjmp.h Execute nonlocal goto statements.
csignal signal.h Not available.
cstdarg stdarg.h Access a varying number of arguments.
cstddef stddef.h Define several useful types and macros.1
cstdio stdio.h Not available.
cstdlib stdlib.h Perform a variety of operations.1
cstring string.h Manipulate several kinds of strings.1
ctime time.h Not available.
cwchar wchar.h Not available.
cwctype wctype.h Not available.

1 See Table 8-208: C Library Header Files, for specific implementation limitations.

8.2. Non-Supported Language Features
C and C++ implementations should comply with the language features prescribed in the respective ISO/IEC
standards, as much as possible. However, certain features are specifically not supported because of SPU
architecture limitations. Currently, the only non-supported feature is C++ exception handling.

 ��� SPU C and C++ Standard Libraries and Language Support 121

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

9. Floating-Point Arithmetic on the SPU

Annex F of the C99 language standard (ISO/IEC 9899) specifies support for the IEC 60559 floating-point standard.
This chapter describes differences from Annex F and ISO/IEC Standard 60559 that apply to SPU compilers and
libraries.

Floating-point behavior is essentially dictated by the SPU hardware. For single precision, the hardware provides an
extended single-precision number range. Denorm arguments are treated as 0, and NaN (not-a-number) and Infinity
are not supported. The only rounding mode that is supported is truncation (round towards 0), and exceptions apply
only to certain extended range floating-point instructions). For double precision, the hardware provides the standard
IEEE number range, but again, denorm arguments are treated as 0. IEEE exceptions are detected and accumulated
in the FPSCR register, and the IEEE rules for propagation of NaNs are not implemented in the architecture. (For
details, see the Synergistic Processor Unit Instruction Set Architecture.) These and other IEEE differences affect
almost every aspect of floating-point computation, including data-type properties, rounding modes, exception status,
error reporting, and expression evaluation. The particular effect of these differences on the compiler and libraries
are described in the following sections.

9.1. Properties of Floating-Point Data Type Representations
The properties of floating-point data type representations are declared as macros in float.h. Table 9-213 lists
these macros and the corresponding values that are applicable for the SPU.

Table 9-213: Values for Floating-Point Type Properties

Macro Value

FLT_DIG 6
FLT_EPSILON 0x1p-23f (1.19209290E-07f)
FLT_MANT_DIG 24
FLT_MAX_10_EXP 38
FLT_MAX_EXP 129
FLT_MIN_10_EXP -37
FLT_MIN_EXP -125
FLT_MAX 0x1.FFFFFEp128f (6.80564694E+38f)
FLT_MIN 0x1p-126f (1.17549436E-38f)
FLT_ROUNDS Initialized to 16 (to nearest for both elements)
FLT_EVAL_METHOD 0 (no promotions occur)
FLT_RADIX 2
DBL_DIG 15
DBL_EPSILON 0x1p-52 (2.2204460492503131E-016)
DBL_MANT_DIG 53
DBL_MAX_10_EXP 308
DBL_MAX_EXP 1024
DBL_MIN_10_EXP -307
DBL_MIN_EXP -1021
DBL_MAX 0x1.FFFFFFFFFFFFFp1023 (1.7976931348623157E+308)
DBL_MIN 0x1p-1022 (2.2250738585072014E-308)
DECIMAL_DIG 17

 ��� Floating-Point Arithmetic on the SPU 123

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

9.2. Floating-Point Environment
The macros defined within fenv.h control the directed-rounding control mode and floating-point exception status
flags for floating-point operations.

 9.2.1. Rounding Modes
Whereas the C language specification requires that all floating-point data types use the same rounding modes, the
SPU hardware supports different rounding modes for single- and double-precision arithmetic. On the SPU, the
rounding mode for single precision is round-towards-zero, and the default rounding mode for double precision is
round-to-nearest.

According to the C99 standard, the rounding mode for floating-point addition is characterized by the implementation-
defined value of FLT_ROUNDS. On the SPU, this macro is only used for double precision. Single-precision rounding
mode is always truncation. (See Table 9-213.)

FLT_ROUNDS will return a 5-bit value which represents the rounding mode for both double precision elements. The
highest bit is always 1. The next two bits are the rounding mode for element 0 and the two lowest bits are the
rounding mode for element 1. Table 9-214 lists the rounding mode represented by the two bits for each element.

Table 9-214: Rounding Mode for Two Bits of FLT_ROUNDS

Last Two Bits Rounding Mode

00 Round to nearest even
01 Round toward zero (truncate)
10 Round toward +infinity
11 Round towards -infinity

Because the SPU hardware only supports rounding towards zero for single precision, some single-precision math
functions will necessarily deviate from the C99 standard. The standard library math functions and macros that
deviate are described later, in section “9.3.2. Overall Behavior of C Operators and Standard Library Math
Functions”.

Table 9-215 lists the macros that can be used to set the double precision rounding modes for element 0 and
element 1. The macros for element 0 and element 1 may be used together with a bitwise OR to set the rounding
mode for both elements, or the macros can be used separately to set the rounding mode for only that element.

Table 9-215: Macros for Double Precision Rounding Modes

Macro Comment

FE_TONEAREST Set element 0 to round to nearest even
FE_TOWARDZERO Set element 0 to round towards zero
FE_UPWARD Set element 0 to round towards +infinity
FE_DOWNWARD Set element 0 to round towards –infinity
FE_TONEAREST_1 Set element 1 to round to nearest even
FE_TOWARDZERO_1 Set element 1 to round towards zero
FE_UPWARD_1 Set element 1 to round towards +infinity
FE_DOWNWARD_1 Set element 1 to round towards -infinity

9.2.2. Floating-Point Exceptions

Table 9-216 andTable 9-217 list the macros for floating-point exceptions that will be defined in fenv.h. Because of
the restricted behavior of the SPU floating-point hardware, single-precision library functions can have an undefined
effect on these exception flags. Moreover, hardware traps will not result from any raised exception.

124 Floating-Point Arithmetic on the SPU ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 Table 9-216: Macros for Single Precision Floating-Point Exceptions

Macro Comment

FE_OVERFLOW_SNGL Overflow exception for element 0
FE_UNDERFLOW_SNGL Underflow exception for element 0
FE_DIFF_SNGL Different from IEEE exception for element 0
FE_DIVBYZERO_SNGL Divide by zero exception for element 0
FE_OVERFLOW_SNGL_1 Overflow exception for element 1
FE_UNDERFLOW_SNGL_1 Underflow exception for element 1
FE_DIFF_SNGL_1 Different from IEEE exception for element 1
FE_DIVBYZERO_SNGL_1 Divide by zero exception for element 1
FE_OVERFLOW_SNGL_2 Overflow exception for element 2
FE_UNDERFLOW_SNGL_2 Underflow exception for element 2
FE_DIFF_SNGL_2 Different from IEEE exception for element 2
FE_DIVBYZERO_SNGL_2 Divide by zero exception for element 2
FE_OVERFLOW_SNGL_3 Overflow exception for element 3
FE_UNDERFLOW_SNGL_3 Underflow exception for element 3
FE_DIFF_SNGL_3 Different from IEEE exception for element 3
FE_DIVBYZERO_SNGL_3 Divide by zero exception for element 3
FE_ALL_EXCEPT_SNGL Bitwise OR of all macros for element 0
FE_ALL_EXCEPT_SNGL_1 Bitwise OR of all macros for element 1
FE_ALL_EXCEPT_SNGL_2 Bitwise OR of all macros for element 2
FE_ALL_EXCEPT_SNGL_3 Bitwise OR of all macros for element 3

Table 9-217: Macros for Double Precision Floating-Point Exceptions

Macro Comment

FE_OVERFLOW_DBL Overflow exception for element 0
FE_UNDERFLOW_DBL Underflow exception for element 0
FE_INEXACT_DBL ISO/IEC inexact for element 0
FE_INVALID_DBL ISO/IEC invalid for element 0
FE_NC_NAN_DBL Possibly non-compliant NaN for element 0
FE_NC_DENORM_DBL Possibly non-compliant denormal for element 0
FE_OVERFLOW_DBL_1 Overflow exception for element 1
FE_UNDERFLOW_DBL_1 Underflow exception for element 1
FE_INEXACT_DBL_1 ISO/IEC inexact for element 1
FE_INVALID_DBL_1 ISO/IEC invalid for element 1
FE_NC_NAN_DBL_1 Possibly non-compliant NaN for element 1
FE_NC_DENORM_DBL_1 Possibly non-compliant denormal for element 1
FE_ALL_EXCEPT_DBL Bitwise OR of all macros for element 0
FE_ALL_EXCEPT_DBL_1 Bitwise OR of all macros for element 1
FE_ALL_EXCEPT Bitwise OR of all macros from this table

The floating-point environment variables defined in the C99 specification only apply to double-precision.

The pragma FENV_ACCESS will be used to inform the compiler whether the program intends to control and test
floating-point status. If the pragma is on, the compiler will take appropriate action to ensure that code
transformations preserve the behavior specified in this document.

 ��� Floating-Point Arithmetic on the SPU 125

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

9.2.3. Other Floating-Point Constants in math.h

Several additional floating-point constants are defined in math.h. These constants are used by functions to report
various domain and range errors. Many have a non-standard definition for the SPU. A description of these particular
constants is shown in Table 9-218.

Table 9-218: Floating-Point Constants
Macro Description

HUGE_VAL Infinity
HUGE_VALF FLT_MAX
HUGE_VALL Infinity
INFINITY
NAN

Double precision adheres to the IEEE definition. These macros are not used for single-
precision operations.

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

For single precision, the fpclassify() function will only return FP_NORMAL and
FP_ZERO classes; FP_NAN, FP_INFINITE, and FP_SUBNORMAL are never generated.

FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL

These are defined to indicate that the fma function executes more quickly than a multiply
and an add of float and double operands.

FP_ILOGB0
FP_ILOGBNAN

FP_ILOGB0 is the value returned by ilogb(x) and ilogbf(x) if x is zero or a
denorm number. Its value is INT_MIN.
FP_ILOGBNAN is the value returned by ilogb(x) if x is a NaN. This does not apply to
the single-precision case of ilogbf. Its value is INT_MAX.

MATH_ERRNO
MATH_ERREXCEPT These will expand to the integer constants 1 and 2, respectively.

math_errhandling
Expands to an expression that has type int and the value MATH_ERRNO,
MATH_ERREXCEPT, or the bitwise OR of both. The value of math_errhandling is
constant for the duration of a program.

9.3. Floating-Point Operations
This section specifies floating-point data conversions, and it describes the overall behavior of C operators and
standard library functions. It also describes several special cases where floating-point results might vary from the
IEEE standard. Lastly, the section describes the specific behavior of several specific math functions.

9.3.1. Floating-Point Conversions

This section provides specifications for the four types of floating-point data conversions: 1) conversions from
integers
to floating-point; 2) conversions from floating-point to integer; 3) conversion between floating-point precisions; and,
4) conversions between floating-point and string.

Integer to Floating-Point Conversions
Conversions from integers to floats will adhere to the following rules:

• A single-precision conversion from integer to float produces a result within the extended single-precision
floating-point range. See Table 9-213 for details about this range.

• A single-precision conversion from integer to float rounds towards zero.

• A double-precision conversion from integer to float produces a result within the C99 standard
double-precision floating-point range.

• A double-precision conversion from integer to float rounds according to the rounding mode indicated by the
value of FLT_ROUNDS.

126 Floating-Point Arithmetic on the SPU ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Floating-Point to Integer Conversions
Conversions from floats to integers will have the following behavior:

• When converting from a float to an integer, exceptions are raised for overflow, underflow, and IEEE non-
compliant result.

• Overflow and underflow exceptions are raised when converting from a double to an integer. If a
double-precision value is infinite or NaN or if the integral part of the floating value exceeds the range of the
integer type, an “invalid” floating-point exception is raised, and the resulting value is unspecified. An
“inexact” floating-point exception is raised by the hardware when a conversion involves an integral floating-
point value that is outside the range of the integer data type.

Conversions between Floating-Point Precision
To achieve maximum performance, compilers only perform conversion from float to double and from double to
float within the IEEE standard range. These conversions will comply with the IEEE standard, except for denormal
inputs, which are forced to zero. Conversion of numbers outside of the IEEE standard range is unspecified.
Conversions with NaNs, infinities, or denormal results are also unspecified.

Conversions between Floating-Point and Strings
Conversions between floating-point and string values will adhere to both the extended single-precision floating-point
range and the IEEE standard double-precision floating-point range.

9.3.2. Overall Behavior of C Operators and Standard Library Math Functions

Library functions and compilers will obey the same general rules with respect to rounding and overflow. These rules
differ, however, depending on whether the code is single precision or double precision.

Single-Precision Code
For single precision, the C operators (+, -, *, and /) and the standard library math functions will have the following
behavior:

• If the operation produces a value with a magnitude greater than the largest positive representable extended-
precision number, the result will be FLT_MAX with appropriate sign, and the overflow flag will be raised.

• For all operators and standard functions, except the negate operator and the fabsf() and copysignf()
functions, an argument with a denormal value will be treated as +0.0.

• Except for the negate operator and the fabsf() and copysignf() functions, operators and standard
functions will never return a denormal value or -0.0.

• The negate operator and the fabsf() and copysignf() functions must be implemented such that only
the sign bit is changed.

• Expressions will be evaluated using the round-towards-zero mode. Implementations that depend on other
rounding directions for algorithm correctness will produce incorrect results and therefore cannot be used.

• The overflow flag will be set when FLT_MAX is returned instead of a value whose magnitude is too large.
Because infinity is undefined for single precision, FLT_MAX will be used to signal infinity in situations where
infinity would otherwise be generated on an IEEE754-compliant system. This modification will enable
common trig identities to work.

• NaN is not supported and does not need to be copied from any input parameter.

• By default, compilers may perform optimizations for single-precision floating-point arithmetic that assume 1)
that NaNs are never given as arguments; and, 2) that ±Inf will never be generated as a result.

• Compilers can assume that floating-point operations will not generate user-visible traps, such as division by
zero, overflow, and underflow.

• Constant expressions that are evaluated at compile time will produce the same result as they would if they
were evaluated at runtime. For example,

float x = 6.0e38f * 8.1e30f;

 ��� Floating-Point Arithmetic on the SPU 127

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

will be evaluated as FLT_MAX.

• Compilers may use single-precision contracted operations, such as Floating Reciprocal Absolute Square
Root Estimate (frsqest) or Floating Multiply and Add (fma), unless explicitly prohibited by FP_CONTRACT
pragma or a no-fast-float compiler option. When contracted operations are used, errno does not need to
be set.

Double-Precision Code
For double-precision floating-point, the C operators and standard library math functions will be compliant with the
IEEE standard, with the following exceptions:

• When a NaN is produced as a result of an operation, it will always be a QNaN.

• Except for the negate operator and the fabs() and copysign() functions, denormal values will only be
supported as results. A denormal operand is treated as 0 with same sign as the denormal operand.

• The default rounding mode for double precision is rounding to nearest.

• Compilers may use double precision contracted operations, such as Double Floating Multiply and Add
(dfma), unless explicitly prohibited by the FP_CONTRACT pragma or a no-fast-double compiler option. When
contracted operations are used, errno does not need to be set.

9.3.3. Floating-Point Expression Special Cases

The C99 standard describes several standard expression transformations that might fail to produce the required
effect on the SPU:

• x/2 -> x*0.5

 Valid for this particular value because the value is an exact power of 2, but it is invalid in general (for
example, x/10 != x*0.1) because the floating-point constant is not exactly representable in any finite
base-2 floating-point system.

• x*1 -> x and x/1 -> x

 Invalid when: 1) x is a SNaN or a non-default QNaN (double precision only); 2) x is a denormal number; or, 3)
x is -0.0 (single precision only).

• x/x -> 1.0

 Invalid for single precision when x is zero or a denormal, and invalid for double precision when x is zero, or
a denormal, Inf, or NaN.

• x-y -> -(y-x)

 Invalid for zero results which might have different signs, or, for double precision, round to +/- infinity,
nonzero results might differ by 1 ULP.

• x-x -> 0.0

 Always valid for single precision, but the equivalence is invalid for double precision when x is either NaN or
Inf. It is also invalid for double precision for round to –infinity, in which case the result will be –0.0.

• 0*x -> 0.0

 Always valid for single precision, but invalid for double precision when x is a NaN, Inf, negative number,
or -0.

• x+0 -> x

 Invalid in single precision, if x is a denormal operand or -0. Invalid in double precision if x=-0 under round-
to-nearest, round to +infinity and truncate. Also invalid in double precision if x is a SNaN or non-default
QNaN and if x is a denormal number, in which case x+0 becomes a zero with appropriate sign.

• x-0 -> x

128 Floating-Point Arithmetic on the SPU ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

 Valid for single precision, except if x is a denormal operand or -0. Invalid for double precision if x is an
SNaN or non-default QNaN, if x is a denormal number, or if x is +0 and rounding mode is rounding to –
infinity. In this last case, x-0 = +0-0 =-0. For any normalized operand the result is valid even with round to
–infinity.

• -x -> 0-x
Invalid for single precision when x is +0.0 or a denormal. Invalid for double precision in the following cases:
1) For NaNs the value of -x is undefined; the result will be different for all NaNs. 2) If x is +0 and the
rounding mode is rounding to nearest-even, +infinity, or truncation, 0-x = +0 and -x = -0.

• x!=x -> false

 Always valid for single precision. For double precision, x=NaN always compares unordered, so x!=x ->
true.

• x==x -> true

 Always valid for single precision. For double precision, x=NaN always compares unordered, so x==x ->
false.

• x<y -> isless(x,y),
x<=y -> islessequal(x,y),
x>y -> isgreater(x,y), and
x>=y -> isgreaterequal(x,y)

 Valid. Exceptions are due to flags that are set as side effects when x or y are NaN under double precision.
The FENV_ACCESS pragma can change the invalid flag behavior.

9.3.4. Specific Behavior of Standard Math Functions

This section describes the specific behavior of various floating-point functions declared in math.h. As noted, the
SPU hardware has a direct effect on the behavior of floating-point functions. Because of the many differences
between strict IEEE behavior and the hardware behavior, the standard math functions do not need to provide
rigorous checks for exception situations and out-of-range conditions. Consequently, the results of many functions
are redefined. The following is a list of differences:

• The function nanf()will return zero.

• The isfinite() macro will always return a nonzero value for single precision.

• The isinf() macro will always return zero for single precision.

• The isnan() macro will always return zero for single precision.

• Unlike the C99 standard specifications, the single-precision functions nearbyintf(), lrintf(),
llrintf(), and fmaf() round towards zero.

• Trig, hyperbolic, exponential, logarithmic, and gamma functions do not need to set the inexact flag when
values are rounded.

• The boundary cases with a NaN argument will not be supported for single precision because NaN is not a
valid argument.

• nextafterf(subnormal,y) will never raise an underflow flag. The functions nextafterf() and
nexttowardf() will succeed when incrementing past the IEEE maximal float value.

 ��� Floating-Point Arithmetic on the SPU 129

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

• The following boundary cases will not be supported for single precision because infinity is not a valid
argument: atanf(±inf), atan2f(±y, ±inf), atan2f(±inf,x), atan2f(±inf,±inf),
acoshf(+inf), asinhf(±inf), atanhf(±1), atanhf(±inf), coshf(±inf), sinhf(±inf),
tanhf(±inf), expf(±inf), exp2f(±inf), expm1f(±inf), frexpf(±inf,&exp),
ldexpf(±inf,exp), logf(+inf), log10f(+inf), log1pf(+inf), log2f(+inf), logbf(±inf),
modff(±inf,iptr), scalbnf(±inf,n), cbrtf(±inf), fabsf(±inf), hypotf(±inf,y), powf(-
1,±inf), powf(x,±inf), powf(±inf,y), sqrtf(±inf), erff(±inf), erfcf(±inf),
lgammaf(±inf), tgammaf(+inf), ceilf(±inf), floorf(±inf), nearbyintf(±inf),
roundf(±inf), rintf(±inf), lrintf(±inf), llrintf(±inf), lroundf(±inf),
llroundf(±inf), truncf(±inf), fmodf(x,±inf), remainderf(±inf), remquof(±inf),and
copysignf(±inf).

• For single precision, the following boundary cases will produce a non-IEEE-compliant result:
acosf(|x|>1), asinf(|x|>1), acoshf(x<1.0), atanhf(|x|>1), tgammaf(x<0), fmodf(x,0),
ldexpf(x,BIG_INT), logf(±0), logf(x<0), log10f(±0), log10f(x<0), log1pf(-1),
log1pf(x<-1), log2f(±0), log2f(x<0), logbf(±0), powf(±0,y), and tgammaf(±0)

• For single precision, the following boundary cases will not return NaN: cosf(±inf), sinf(±inf),
tanf(±inf), tgammaf(-inf), fmodf(±inf,y), nextafterf(x,±inf), fmaf(±inf|0,0|±inf,z),
and fmaf(±inf,0,-+inf).

• Section “9.3.1. Floating-Point Conversions” describes the behavior of implicit conversions when a single
precision value is passed as an argument to a double precision function or when a single precision variable
is assigned the result of a double-precision function.

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

10. Operator Overloading for Vector Data Types

Operator overloading is a syntactic feature in which common operators, such ‘+’ or ‘-’, have different
implementations depending upon the type of their arguments. This section describes the vector data types that may
be used with certain standard C/C++ operators and the behavior of these operators.

10.1. Supported Types
Operator overloading is valid on the vector data types listed in Table 10-219 and Table 10-220.

Table 10-219: Integer Vector Types

Type SPU/PPU

vector signed char Both
vector unsigned char Both
vector signed short Both
vector unsigned short Both
vector signed int Both
vector unsigned int Both
vector signed long long SPU
vector unsigned long long SPU

Table 10-220: Floating-Point Vector Types

Type SPU/PPU

vector float Both
vector double SPU

10.2. Vector Subscripting
Given E1[E2], where E1 has a vector type with base type T and E2 has an integer type, the result is equivalent to:

(((T *)&(E1))[E2])

When the value of E2 does not designate a valid element of E1, the behavior is undefined.

10.3. Unary Operators
Given OP E1, where E1 is a vector type T with N elements and OP is one of the operators in Table 10-221, the result
has a value equivalent to:

 (T){ OP E1[0], ..., OP E1[N-1] }

Table 10-221: Valid Types for Specified Unary Operators

OP Integer Vector Types Floating-Point Vector Types

++ yes yes
-- yes yes
+ yes yes
- yes yes
~ yes no

 ��� Floating-Point Arithmetic on the SPU 131

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

10.4. Binary Operators
Given E1 OP E2, where E1 and E2 have equivalent vector types T with N elements and OP is one of the operators in
Table 10-222, the result has a value equivalent to:

 (T){ E1[0] OP E2[0], ..., E1[N-1] OP E2[N-1] }

For the assignment operators, E1 shall be a modifiable lvalue, and the result value will be assigned to the object it
designates.

Table 10-222: Valid Types for Specified Binary Operators

OP Integer Vector Types Floating-Point Vector Types

+ += yes yes
- -= yes yes
* *= yes yes
/ /= yes yes
% %= yes no
& &= yes no
| |= yes no
^ ^= yes no
<< <<= yes no
>> >>= yes no

10.5. Relational Operators
Given E1 OP E2, where E1 and E2 have equivalent vector types T with N elements and OP is one of the operators in
Table 10-223, the result has a value equivalent to:

 ((E1[0] OP E2[0]) & ... & (E1[N-1] OP E2[N-1]))

Table 10-223: Valid Types for Specified Relational Operators

OP Integer Vector Types Floating-Point Vector Types

== yes yes
!= yes yes
< yes yes
> yes yes
<= yes yes
>= yes yes

 ���

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

Index

A
alignment

__align_hint...3
AltiVec compatibility ...6

C
C library header files115
C standard library...115
C++ library header files..................................118
C++ standard library118
common intrinsic operations – arithmetic

negative vector multiply and add
(spu_nmadd) ...22

negative vector multiply and subtract
(spu_nmsub) ...22

vector add (spu_add)17
vector add extended (spu_addx).................18
vector floating-point reciprocal estimate

(spu_re)...22
vector floating-point reciprocal square root

estimate (spu_rsqrte)22
vector generate borrow (spu_genb)18
vector generate borrow extended

(spu_genbx) ..18
vector generate carry (spu_genc)19
vector generate carry extended

(spu_gencx)...19
vector multiply (spu_mul)20
vector multiply and add (spu_madd)19
vector multiply and shift right (spu_mulsr)...21
vector multiply and subtract (spu_msub).....20
vector multiply even (spu_mule)..................21
vector multiply high (spu_mulh)...................20
vector multiply high high and add

(spu_mhhadd)19
vector multiply odd (spu_mulo)21
vector subtract (spu_sub)............................23
vector subtract extended (spu_subx)23

common intrinsic operations – bits and masking
form select byte mask (spu_maskb)............30
form select halfword mask (spu_maskh).....30
form select word mask (spu_maskw)31
gather bits from elements (spu_gather)29
select bits (spu_sel)31
shuffle two vectors of bytes (spu_shuffle) ...31
vector count leading zeros (spu_cntlz)........29
vector count ones for bytes (spu_cntb)29

common intrinsic operations – bytes
average of two vectors (spu_avg)24
sum bytes into shorts (spu_sumb)24
vector absolute difference (spu_absd)24

common intrinsic operations – channel control
read channel count (spu_readchcnt)...........51
read quadword channel (spu_readchqw)51
read word channel (spu_readch).................50
write quadword channel (spu_writechqw)....51
write word channel (spu_writech)51

common intrinsic operations – compare, branch
and halt
branch indirect and set link if external data

(spu_bisled)...24
halt if compare equal (spu_hcmpeq)28
halt if compare greater than (spu_hcmpgt) .28
vector compare absolute equal

(spu_cmpabseq)..............................25, 28
vector compare absolute greater than

(spu_cmpabsgt).....................................25
vector compare equal (spu_cmpeq)............26
vector compare greater than (spu_cmpgt) ..27

common intrinsic operations – constant
formation intrinsics
splat scalar to vector (spu_splats)...............15

common intrinsic operations – control
disable interrupts (spu_idisable)..................47
enable interrupts (spu_ienable)...................47
move from floating-point status and control

register (spu_mffpscr)48
move from special purpose register

(spu_mfspr) ...48
move to floating-point status and control

register (spu_mtfpscr)48
move to special purpose register

(spu_mtspr) ...48
stop and signal (spu_stop)49
synchronize (spu_sync)49
synchronize data (spu_dsync).....................49

common intrinsic operations – conversion
convert integer vector to vector float

(spu_convtf) ..16
convert vector float to signed integer vector

(spu_convts)..16
convert vector float to unsigned integer vector

(spu_convtu) ...16
extend vector (spu_extend).........................17
round vector double to vector float

(spu_roundtf) ...17
common intrinsic operations – logical

OR word across (spu_orx)36
vector bit-wise AND (spu_and)....................32
vector bit-wise AND with complement

(spu_andc) ..33
vector bit-wise complement of AND

(spu_nand) ..34
vector bit-wise complement of OR

(spu_nor)...35
vector bit-wise equivalent (spu_eqv)34
vector bit-wise exclusive OR (spu_xor)36

 ��� Index 133

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

vector bit-wise OR (spu_or)35
vector bit-wise OR with complement

(spu_orc) ...36
common intrinsic operations – scalar

extract vector element from vector
(spu_extract) ...52

insert scalar into specified vector element
(spu_insert) ...53

promote scalar to vector (spu_promote)54
common intrinsic operations – shift and rotate

quadword rotate left by bits (spu_rlqw).......42
quadword rotate left and mask by bits

(spu_rlmaskqw)40
quadword rotate left and mask by bytes

(spu_rlmaskqwbyte)41
quadword rotate left and mask by bytes from

bit shift count (spu_rlmaskqwbytebc).....41
quadword rotate left by bytes

(spu_rlqwbyte).......................................43
quadword rotate left by bytes from bit shift

count (spu_rlqwbytebc)44
quadword shift left by bits (spu_slqw)..........45
quadword shift left by bytes (spu_slqwbyte) 45
quadword shift left by bytes from bit shift

count (spu_slqwbytebc).........................46
vector rotate left and mask algebraic by bits

(spu_rlmaska)..39
vector rotate left and mask by bits

(spu_rlmask) ...38
vector rotate left by bits (spu_rl)37
vector shift left by bits (spu_sl)44

composite intrinsics (DMA)55
spu_mfcdma32 ...55
spu_mfcdma64 ...55
spu_mfcstat...56

constant formation intrinsics
si_il..

..11
si_ila..11
si_ilh..11
si_ilhu..11
si_iohl..11

control intrinsics
si_stopd...12

D
data types

default alignments...3
restrict type qualifier7
single token vector ..2
type casting...5
vector ..1
vector literals...5

debug printf() ...116

F
floating-point arithmetic on the SPU...............121
floating-point environment..............................122

exceptions...122

floating-point constants124
macros for double precision floating-point

exceptions ...123
macros for double precision rounding

modes ...122
macros for single precision floating-point

exceptions ...123
rounding mode for two bits of

FLT_ROUNDS122
rounding modes ..122

floating-point operations.................................124
conversions...124

conversion between floating-point and strings125
conversions between floating-point precision........125
floating-point to integer conversions......................125
integer to floating-point conversions......................124

G
generate controls for sub-quadword insertion

si_cbd..10
si_cbx..10
si_cdd..10
si_cdx..10
si_chd..10
si_chx..10
si_cwd ...11
si_cwx ...11

H
header files ..2

I
inline assembly ..8
intrinsics

arithmetic ..17
bits and mask..29
byte operation ...24
channel control..49
compare, branch and halt24
composite (DMA) ..55
constant formation11, 15
control ...12, 47
conversion...16
generic and built-ins13
logical intrinsics...32
low-level specific and generic........................9
mapping with scalar operands.....................13
scalar ..52
shift and rotate ..37
specific ..1, 9, 10
specific casting..12
specific intrinsics not accessible through

generic intrinsics....................................10

M
malloc heap ...117
mapping

PPU VMX data types to SPU data types.......2

134 Index ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

PPU VMX intrinsics that are difficult to map to
SPU intrinsics..76

PPU VMX intrinsics that map one-to-one with
SPU intrinsics..75

SPU data types to PPU VMX data types.......2
SPU intrinsics that are difficult to map to PPU

VMX intrinsics..77
SPU intrinsics that map one-to-one with PPU

VMX intrinsics..77
with scalar operands13

memory load and store intrinsics
si_lqa...11
si_lqd...11
si_lqr ...12
si_lqx...12
si_stqa...12
si_stqd...12
si_stqr ...12
si_stqx...12

MFC atomic update commands63
get lock line and create reservation

(mfc_getllar) ..63
put lock line if reservation for effective

address exists (mfc_putllc)63
put lock line unconditional (mfc_putlluc)......63

MFC DMA commands
move data from effective address to local

storage (mfc_get)60
move data from effective address to local

storage using MFC list (mfc_getl)..........62
move data from effective address to local

storage using MFC list with barrier
(mfc_getlb) ..62

move data from effective address to local
storage using MFC list with fence
(mfc_getlf) ...62

move data from effective address to local
storage with barrier (mfc_getb)..............60

move data from effective address to local
storage with fence (mfc_getf)60

move data from local storage to effective
address (mfc_put)59

move data from local storage to effective
address using MFC list (mfc_putl)61

move data from local storage to effective
address using MFC list with barrier
(mfc_putlb) ..61

move data from local storage to effective
address using MFC list with fence
(mfc_putlf) ...62

move data from local storage to effective
address with barrier (mfc_putb).............59

move data from local storage to effective
address with fence (mfc_putf)60

MFC DMA mnemonics.....................................59
MFC DMA status ...66
MFC DMA status functions

acknowledge tag group containing stalled
DMA list commands (mfc_write_list
_stall_ack) ...69

check availability of atomic command status
(mfc_stat_atomic_status)69

check availability of list DMA stall-and-notify
status (mfc_stat_list_stall_status)..........68

check availability of MFC_RdTagStat channel
(mfc_stat_tag_status)............................68

check availability of tag status update request
channel (mfc_stat_tag_update)67

check the number of available entries in the
MFC DMA queue (mfc_stat_cmd_queue)
..66

read atomic command status
(mfc_read_atomic_status).....................69

read list DMA stall-and-notify status
(mfc_read_list_stall_status)...................68

read tag mask indicating MFC tag groups to
be included in query operation
(mfc_read_tag_mask)66

request that tag status be immediately
updated
(mfc_write_tag_update_immediate)67

request that tag status be updated
(mfc_write_tag_update).........................66

request that tag status be updated for any
enabled completion with no outstanding
operation (mfc_write_tag_update_any) .67

request that tag status be updated when all
enabled tag groups have no outstanding
operation (mfc_write_tag_update_all) ...67

set tag mask to select MFC tag groups to be
included in query operation
(mfc_write_tag_mask)66

wait for an updated tag status
(mfc_read_tag_status)67

wait for no outstanding operation of all
enabled tag groups
(mfc_read_tag_status_all)68

wait for no outstanding operation of any
enabled tag group (mfc_read_tag
_status_any)..68

wait for the updated status of any enabled tag
group (mfc_read_tag_status_immediate)
..68

MFC multisource synchronization functions
check the status of multisource

synchronization
(mfc_stat_multi_src_sync_request).......70

request multisource synchronization
(mfc_write_multi_src_sync_request)69

MFC multisource synchronization request69
MFC structures

DMA list element for MFC list DMA
(mfc_list_element)57

MFC synchronization commands.....................64
MFC synchronization functions

enqueue mfc_barrier command into DMA
queue or stall when queue is full
(mfc_barrier)..65

enqueue mfc_eieio command into DMA
queue or stall when queue is full
(mfc_eieio) ..65

 ��� Index 135

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

enqueue mfc_sync command into DMA
queue or stall when queue is full
(mfc_sync)...65

send signal (mfc_sndsig)64
send signal with barrier (mfc_sndsigb)........65
send signal with fence (mfc_sndsigf)65

MFC tag manager ..58
MFC tag manager functions

put queued lock line unconditional
(mfc_putqlluc)..64

release a group of tags from exclusive use
(mfc_multi_tag_release)........................59

release a tag from exclusive use
(mfc_tag_release)58

reserve a group of tags for exclusive use
(mfc_multi_tag_reserve)........................59

reserve a tag for exclusive use
(mfc_tag_reserve)58

MFC Tag manager mnemonics58
MFC utility functions

concatenate higher 32 bits and lower 32
bits (mfc_hl2ea).....................................58

extract higher 32 bits from effective address
(mfc_ea2h) ..57

extract lower 32 bits from effective address
(mfc_ea2l) ...57

round up value to next multiple of 128
(mfc_ceil128)...58

N
new and traditional C++ library header files ...119
no operation intrinsics

si_lnop...11
si_nop ...11

non-supported language features119

O
operator overloading for vector data types.....129
operators

address ...4
assignment..4
sizeof() ..4

P
pointers

arithmetic and pointer dereferencing.............4
PPU instrinsics

change thread priority to high (__cctph)......79
change thread priority to low (__cctpl)79
change thread priority to medium (__cctpm)

..79
convert double to (__fctiw)85
convert double to doubleword (__fctid)84
convert double to doubleword with round

towards zero (__fctidz)85
convert double to word with round towards

zero (__fctiwz)85
convert doubleword to double (__fcfid)84

count leading doubleword zeros (__cntlzd) .80
count leading word zeros (__cntlzw)80
data cache block flush (__dcbf)81
data cache block set to zero (__dcbz).........83
data cache block store (__dcbst)81
data cache block touch (__dcbt)82
data cache block touch for store (__dcbtst) 83
delay 10 cycles at dispatch (__db10cyc).....80
delay 12 cycles at dispatch (__db12cyc).....80
delay 16 cycles at dispatch (__db16cyc).....81
delay 8 cycles at dispatch (__db8cyc).........81
double absolute value (__fabs)84
double fused multiply and add (__fmadd) ...85
double fused multiply and subtract

(__fmsub) ..86
double fused negative multiply and add

(__fnmadd)..87
double fused negative multiply and subtract

(__fnmsub) ..88
double multiply (__fmul)86
double negative (__fnabs)...........................87
double reciprocal square root estimate

(__frsqrte)..89
double square root (__fsqrt)........................90
enforce in-order execution of I/O (__eieio)..83
float absolute value (__fabsf)84
float fused multiply and add (__fmadds)86
float fused multiply and subtract (__fmsubs)

..86
float fused negative multiply and add

(__fnmadds) ..88
float fused negative multiply and subtract

(__fnmsubs) ..88
float multiply (__fmuls)87
float negative (__fnabsf)..............................87
float reciprocal estimate (__fres).................88
float square root (__fsqrts)90
floating-point select of double (__fsel).........89
floating-point select of float (__fsels)...........89
instruction cache block invalidate (_icbi)90
instruction sync (_isync)..............................90
light weight sync (_lwsync)..........................92
load doubleword with reserved (_ldarx).......91
load reversed doubleword (_ldbrx)..............91
load reversed halfword (_lhbrx)...................91
load reversed word (_lwbrx)92
load word with reserved (_lwarx).................91
move from floating-point status and control

register (__mffs)92
move from special purpose register

(__mfspr)...93
move from time base (__mftb)93
move to special purpose register (__mtspr) 94
multiply double unsigned word, high part

(__mulhdu) ..95
multiply doubleword, high part (__mulhd)....94
multiply unsigned word, high part

(__mulhwu)..95
multiply word, high part (__mulhw)..............95
no operation (__nop)...................................95
reset bit of FPSCR (__mtfsb0)93

136 Index ���

C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

rotate left doubleword immediate then clear
(__rldic) ...97

rotate left doubleword immediate then clear
left (__rldicl)...97

rotate left doubleword immediate then clear
right (__rldicr) ..98

rotate left doubleword immediate then mask
insert (__rldimi)......................................98

rotate left doubleword then clear left
(__rldcl) ...96

rotate left doubleword then clear right
(__rldcr)...97

rotate left immediate then mask insert
(__rlwimi)...98

rotate left word immediate then AND with
mask (__rlwinm)99

rotate left word then AND with mask
(__rlwnm) ..99

round to single precision (__frsp)89
save and set the FPSCR (__setflm)............99
set bit of FPSCR (__mtfsb1)93
set field of FPSCR (__mtfsfi).......................94
set fields in FPSCR (__mtfsf)......................94
set the number of blocks to stream

(__protected_stream_count)95
set up a stream (__protected_stream_set) 96
set up an unlimited stream

(__protected_unlimited_stream_set)96
set up streaming data (__dcbt_TH1000).....82
start all streams (__protected_stream_go).96
start or stop streaming data

(__dcbt_TH1010)82
stop a stream (__protected_stream_stop) .96
stop all streams (__protected_stream

_stop_all)...96
store doubleword conditional (__stdcx)100
store reversed doubleword (__stdbrx).........99
store reversed halfword (__sthbrx)............100
store reversed word (__stwbrx).................100
store word conditional (__stwcx)101
sync (__sync) ..101

PPU VMX intrinsics
extract vector element from vector

(vec_extract)104
insert scalar into specified vector element

(vec_insert) ...105
load vector left indexed (vec_lvlx)106
load vector left indexed last (vec_lvlxl)......107
load vector right Indexed (vec_lvrx)108
load vector right indexed last (vec_lvrxl) ...109
promote scalar to vector (vec_promote)....114
splat scalar to vector (vec_splats)114
store vector left indexed (vec_stvlx)110
store vector left indexed last (vec_stvlxl)...111
store vector right indexed (vec_stvrx)112
store vector right indexed last (vec_stvrxl) 113
stream control operators that have been

deprecated on the PPU103
programmer directed branch prediction7
programming support for MFC input and

output ...57

R
restrict type qualifier...7

S
SPU decrementer ..72
SPU decrementer functions

load a value to decrementer
(spu_write_decrementer).......................72

read current value of decrementer
(spu_read_decrementer)72

SPU event..72
SPU event functions

acknowledge events (spu_write_event_ack)
..73

check availability of event status
(spu_stat_event_status)73

read event status mask
(spu_read_event_mask)........................73

read event status or stall until status is
available (spu_read_event_status)........72

select events to be monitored by event status
(spu_write_event_mask)73

SPU mailbox functions
get available capacity of SPU outbound

interrupt mailbox (spu_stat_out_intr
_mbox) ..71

get available capacity of SPU outbound
mailbox (spu_stat_out_mbox)71

get the number of data entries in SPU
inbound mailbox (spu_stat_in_mbox)71

read next data entry in SPU inbound mailbox
(spu_read_in_mbox)71

send data to SPU outbound interrupt mailbox
(spu_write_out_intr_mbox)71

send data to SPU outbound mailbox
(spu_write_out_mbox)71

SPU mailboxes ..71
SPU signal notification70

check if pending signals exist on signal
notification 1 channel (spu_stat_signal1)
..70

SPU signal notification functions
atomically read and clear signal notification 1

channel (spu_read_signal1)70
atomically read and clear signal notification 2

channel (spu_read_signal2)70
check if pending signals exist on signal

notification 2 channel (spu_stat_signal2)
..70

SPU state management...................................73
SPU state management functions

read current SPU machine status
(spu_read_machine_status)73

read SPU SRR0 (spu_read_srr0)................74
write to SPU SRR0 (spu_write_srr0)...........74

SPU target definition ..8

 ��� Index 137

 C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.5

V
vector literals

alternate format (for AltiVec compatibility).....6
standard format...6

End of Document

	About This Document
	Audience
	Version History
	Related Documentation
	Conventions Used in This Document

	Bit Notation
	Byte Ordering and Element Numbering
	Other Conventions
	1. Data Types and Programming Directives
	1.1. Data Types
	1.1.1. Fundamental Data Types
	1.1.2. Mapping of PPU Data Types to SPU Data Types
	1.1.3. Mapping of SPU Data Types to PPU Data Types

	1.2. Header Files
	1.2.1. Header File Contents
	1.2.2. Single Token Typedefs

	1.3. Alignment
	1.3.1. Default Data Type Alignments
	1.3.2. __align_hint

	1.4. Operating on Vector Types
	1.4.1. sizeof() Operator
	1.4.2. Assignment Operator
	1.4.3. Address Operator
	1.4.4. Pointer Arithmetic and Pointer Dereferencing
	1.4.5. Type Casting
	1.4.6. Vector Literals

	1.5. Restrict Type Qualifier
	1.6. SPU Programmer Directed Branch Prediction
	1.7. Inline Assembly
	1.8. Target Definitions

	2. SPU Low-Level Specific and Generic Intrinsics
	2.1. Specific Intrinsics
	2.1.1. Specific Casting Intrinsics

	2.2. Generic Intrinsics and Built-ins
	2.2.1. Mapping Intrinsics with Scalar Operands
	2.2.2. Implicit Conversion of Arguments of Intrinsics
	2.2.3. Notations and Conventions

	2.3. Constant Formation Intrinsics
	spu_splats: Splat Scalar to Vector

	2.4. Conversion Intrinsics
	spu_convtf: Convert Integer Vector to Vector Float
	spu_convts: Convert Vector Float to Signed Integer Vector
	spu_convtu: Convert Vector Float to Unsigned Integer Vector
	spu_extend: Extend Vector
	spu_roundtf: Round Vector Double to Vector Float

	2.5. Arithmetic Intrinsics
	spu_add: Vector Add
	spu_addx: Vector Add Extended
	spu_genb: Vector Generate Borrow
	spu_genbx: Vector Generate Borrow Extended
	spu_genc: Vector Generate Carry
	spu_gencx: Vector Generate Carry Extended
	spu_madd: Vector Multiply and Add
	spu_mhhadd: Vector Multiply High High and Add
	spu_msub: Vector Multiply and Subtract
	spu_mul: Vector Multiply
	spu_mulh: Vector Multiply High
	spu_mule: Vector Multiply Even
	spu_mulo: Vector Multiply Odd
	spu_mulsr: Vector Multiply and Shift Right
	spu_nmadd: Negative Vector Multiply and Add
	spu_nmsub: Negative Vector Multiply and Subtract
	spu_re: Vector Floating-Point Reciprocal Estimate
	spu_rsqrte: Vector Floating-Point Reciprocal Square Root Estimate
	spu_sub: Vector Subtract
	spu_subx: Vector Subtract Extended

	2.6. Byte Operation Intrinsics
	spu_absd: Vector Absolute Difference
	spu_avg: Average of Two Vectors
	spu_sumb: Sum Bytes into Shorts

	2.7. Compare, Branch and Halt Intrinsics
	spu_bisled: Branch Indirect and Set Link if External Data
	spu_cmpabseq: Vector Compare Absolute Equal
	spu_cmpabsgt: Vector Compare Absolute Greater Than
	spu_cmpeq: Vector Compare Equal
	spu_cmpgt: Vector Compare Greater Than
	spu_hcmpeq: Halt If Compare Equal
	spu_hcmpgt: Halt If Compare Greater Than
	spu_testsv: Vector Test Special Value

	2.8. Bits and Mask Intrinsics
	spu_cntb: Vector Count Ones for Bytes
	spu_cntlz: Vector Count Leading Zeros
	spu_gather: Gather Bits from Elements
	spu_maskb: Form Select Byte Mask
	spu_maskh: Form Select Halfword Mask
	spu_maskw: Form Select Word Mask
	spu_sel: Select Bits
	spu_shuffle: Shuffle Two Vectors of Bytes

	2.9. Logical Intrinsics
	spu_and: Vector Bit-Wise AND
	spu_andc: Vector Bit-Wise AND with Complement
	spu_eqv: Vector Bit-Wise Equivalent
	spu_nand: Vector Bit-Wise Complement of AND
	spu_nor: Vector Bit-Wise Complement of OR
	spu_or: Vector Bit-Wise OR
	spu_orc: Vector Bit-Wise OR with Complement
	spu_orx: OR Word Across
	spu_xor: Vector Bit-Wise Exclusive OR

	2.10. Shift and Rotate Intrinsics
	spu_rl: Vector Rotate Left by Bits
	spu_rlmask: Vector Rotate Left and Mask by Bits
	spu_rlmaska: Vector Rotate Left and Mask Algebraic by Bits
	spu_rlmaskqw: Quadword Rotate Left and Mask by Bits
	spu_rlmaskqwbyte: Quadword Rotate Left and Mask by Bytes
	spu_rlmaskqwbytebc: Quadword Rotate Left and Mask by Bytes from Bit Shift Count
	spu_rlqw: Quadword Rotate Left by Bits
	spu_rlqwbyte: Quadword Rotate Left by Bytes
	spu_rlqwbytebc: Quadword Rotate Left by Bytes from Bit Shift Count
	spu_sl: Vector Shift Left by Bits
	spu_slqw: Quadword Shift Left by Bits
	spu_slqwbyte: Quadword Shift Left by Bytes
	spu_slqwbytebc: Quadword Shift Left by Bytes from Bit Shift Count

	2.11. Control Intrinsics
	spu_idisable: Disable Interrupts
	spu_ienable: Enable Interrupts
	spu_mffpscr: Move from Floating-Point Status and Control Register
	spu_mfspr: Move from Special Purpose Register
	spu_mtfpscr: Move to Floating-Point Status and Control Register
	spu_mtspr: Move to Special Purpose Register
	spu_dsync: Synchronize Data
	spu_stop: Stop and Signal
	spu_sync: Synchronize

	2.12. Channel Control Intrinsics
	spu_readch: Read Word Channel
	spu_readchqw: Read Quadword Channel
	spu_readchcnt: Read Channel Count
	spu_writech: Write Word Channel
	spu_writechqw: Write Quadword Channel

	2.13. Scalar Intrinsics
	spu_extract: Extract Vector Element from Vector
	spu_insert: Insert Scalar into Specified Vector Element
	spu_promote: Promote Scalar to Vector

	3. Composite Intrinsics
	spu_mfcdma32: Initiate DMA to/from 32-Bit Effective Address
	spu_mfcdma64: Initiate DMA to/from 64-Bit Effective Address
	spu_mfcstat: Read MFC Tag Status

	4. Programming Support for MFC Input and Output
	4.1. Structures
	mfc_list_element: DMA List Element for MFC List DMA

	4.2. Effective Address Utilities
	mfc_ea2h: Extract Higher 32 Bits from Effective Address
	mfc_ea2l: Extract Lower 32 Bits from Effective Address
	mfc_hl2ea: Concatenate Higher 32 Bits and Lower 32 Bits
	mfc_ceil128: Round Up Value to Next Multiple of 128

	4.3. MFC Tag Manager
	mfc_tag_reserve: Reserve a Tag for Exclusive Use
	mfc_tag_release: Release a Tag from Exclusive Use
	mfc_multi_tag_reserve: Reserve a Group of Tags for Exclusive Use
	mfc_multi_tag_release: Release a Group of Tags from Exclusive Use

	4.4. MFC DMA Commands
	mfc_put: Move Data from Local Storage to Effective Address
	mfc_putb: Move Data from Local Storage to Effective Address with Barrier
	mfc_putf: Move Data from Local Storage to Effective Address with Fence
	mfc_get: Move Data from Effective Address to Local Storage
	mfc_getf: Move Data from Effective Address to Local Storage with Fence
	mfc_getb: Move Data from Effective Address to Local Storage with Barrier

	4.5. MFC List DMA Commands
	mfc_putl: Move Data from Local Storage to Effective Address Using MFC List
	mfc_putlb: Move Data from Local Storage to Effective Address Using MFC List with Barrier
	mfc_putlf: Move Data from Local Storage to Effective Address Using MFC List with Fence
	mfc_getl: Move Data from Effective Address to Local Storage Using MFC List
	mfc_getlb: Move Data from Effective Address to Local Storage Using MFC List with Barrier
	mfc_getlf: Move Data from Effective Address to Local Storage Using MFC List with Fence

	4.6. MFC Atomic Update Commands
	mfc_getllar: Get Lock Line and Create Reservation
	mfc_putllc: Put Lock Line if Reservation for Effective Address Exists
	mfc_putlluc: Put Lock Line Unconditional
	mfc_putqlluc: Put Queued Lock Line Unconditional

	4.7. MFC Synchronization Commands
	mfc_sndsig: Send Signal
	mfc_sndsigb: Send Signal with Barrier
	mfc_sndsigf: Send Signal with Fence
	mfc_barrier: Enqueue mfc_barrier Command into DMA Queue or Stall When Queue is Full
	mfc_eieio: Enqueue mfc_eieio Command into DMA Queue or Stall When Queue is Full
	mfc_sync: Enqueue mfc_sync Command into DMA Queue or Stall When Queue is Full

	4.8. MFC DMA Status
	mfc_stat_cmd_queue: Check the Number of Available Entries in the MFC DMA Queue
	mfc_write_tag_mask: Set Tag Mask to Select MFC Tag Groups to be Included in Query Operation
	mfc_read_tag_mask: Read Tag Mask Indicating MFC Tag Groups to be Included in Query Operation
	mfc_write_tag_update: Request That Tag Status be Updated
	mfc_write_tag_update_immediate: Request That Tag Status be Immediately Updated
	mfc_write_tag_update_any: Request That Tag Status be Updated for Any Enabled Completion with No Outstanding Operation
	mfc_write_tag_update_all: Request That Tag Status be Updated When All Enabled Tag Groups Have No Outstanding Operation
	mfc_stat_tag_update: Check Availability of Tag Status Update Request Channel
	mfc_read_tag_status: Wait for an Updated Tag Status
	mfc_read_tag_status_immediate: Wait for the Updated Status of Any Enabled Tag Group
	mfc_read_tag_status_any: Wait for No Outstanding Operation of Any Enabled Tag Group
	mfc_read_tag_status_all: Wait for No Outstanding Operation of All Enabled Tag Groups
	mfc_stat_tag_status: Check Availability of MFC_RdTagStat Channel
	mfc_read_list_stall_status: Read List DMA Stall-and-Notify Status
	mfc_stat_list_stall_status: Check Availability of List DMA Stall-and-Notify Status
	mfc_write_list_stall_ack: Acknowledge Tag Group Containing Stalled DMA List Commands
	mfc_read_atomic_status: Read Atomic Command Status
	mfc_stat_atomic_status: Check Availability of Atomic Command Status

	4.9. MFC Multisource Synchronization Request
	mfc_write_multi_src_sync_request: Request Multisource Synchronization
	mfc_stat_multi_src_sync_request: Check the Status of Multisource Synchronization

	4.10. SPU Signal Notification
	spu_read_signal1: Atomically Read and Clear Signal Notification 1 Channel
	spu_stat_signal1: Check if Pending Signals Exist on Signal Notification 1 Channel
	spu_read_signal2: Atomically Read and Clear Signal Notification 2 Channel
	spu_stat_signal2: Check if Pending Signals Exist on Signal Notification 2 Channel

	4.11. SPU Mailboxes
	spu_read_in_mbox: Read Next Data Entry in SPU Inbound Mailbox
	spu_stat_in_mbox: Get the Number of Data Entries in SPU Inbound Mailbox
	spu_write_out_mbox: Send Data to SPU Outbound Mailbox
	spu_stat_out_mbox: Get Available Capacity of SPU Outbound Mailbox
	spu_write_out_intr_mbox: Send Data to SPU Outbound Interrupt Mailbox
	spu_stat_out_intr_mbox: Get Available Capacity of SPU Outbound Interrupt Mailbox

	4.12. SPU Decrementer
	spu_read_decrementer: Read Current Value of Decrementer
	spu_write_decrementer: Load a Value to Decrementer

	4.13. SPU Event
	spu_read_event_status: Read Event Status or Stall Until Status is Available
	spu_stat_event_status: Check Availability of Event Status
	spu_write_event_mask: Select Events to be Monitored by Event Status
	spu_write_event_ack: Acknowledge Events
	spu_read_event_mask: Read Event Status Mask

	4.14. SPU State Management
	spu_read_machine_status: Read Current SPU Machine Status
	spu_write_srr0: Write to SPU SRR0
	spu_read_srr0: Read SPU SRR0

	5. SPU and PPU Vector Multimedia Extension Intrinsics
	5.1. Mapping of PPU VMX Intrinsics to SPU Intrinsics
	5.1.1. One-to-One Mapped Intrinsics
	5.1.2. PPU VMX Intrinsics That Are Difficult to Map to SPU Intrinsics

	5.2. Mapping of SPU Intrinsics to PPU VMX Intrinsics
	5.2.1. One-to-One Mapped Intrinsics
	5.2.2. SPU Intrinsics That Are Difficult to Map to PPU VMX Intrinsics

	6. PPU Specific Intrinsics
	__cctph: Change Thread Priority to High
	__cctpl: Change Thread Priority to Low
	__cctpm: Change Thread Priority to Medium
	__cntlzd: Count Leading Doubleword Zeros
	__cntlzw: Count Leading Word Zeros
	__db10cyc: Delay 10 Cycles at Dispatch
	__db12cyc: Delay 12 Cycles at Dispatch
	__db16cyc: Delay 16 Cycles at Dispatch
	__db8cyc: Delay 8 Cycles at Dispatch
	__dcbf: Data Cache Block Flush
	__dcbst: Data Cache Block Store
	__dcbt: Data Cache Block Touch
	__dcbt_TH1000: Set Up Streaming Data
	__dcbt_TH1010: Start or Stop Streaming Data
	__dcbtst: Data Cache Block Touch for Store
	__dcbz: Data Cache Block Set to Zero
	__eieio: Enforce In-Order Execution of I/O
	__fabs: Double Absolute Value
	__fabsf: Float Absolute Value
	__fcfid: Convert Doubleword to Double
	__fctid: Convert Double to Doubleword
	__fctidz: Convert Double to Doubleword with Round Towards Zero
	__fctiw: Convert Double to Word
	__fctiwz: Convert Double to Word with Round Towards Zero
	__fmadd: Double Fused Multiply and Add
	__fmadds: Float Fused Multiply and Add
	__fmsub: Double Fused Multiply and Subtract
	__fmsubs: Float Fused Multiply and Subtract
	__fmul: Double Multiply
	__fmuls: Float Multiply
	__fnabs: Double Negative
	__fnabsf: Float Negative
	__fnmadd: Double Fused Negative Multiply and Add
	__fnmadds: Float Fused Negative Multiply and Add
	__fnmsub: Double Fused Negative Multiply and Subtract
	__fnmsubs: Float Fused Negative Multiply and Subtract
	__fres: Float Reciprocal Estimate
	__frsp: Round to Single Precision
	__frsqrte: Double Reciprocal Square Root Estimate
	__fsel: Floating-Point Select of Double
	__fsels: Floating-Point Select of Float
	__fsqrt: Double Square Root
	__fsqrts: Float Square Root
	__icbi: Instruction Cache Block Invalidate
	__isync: Instruction Sync
	__ldarx: Load Doubleword with Reserved
	__ldbrx: Load Reversed Doubleword
	__lhbrx: Load Reversed Halfword
	__lwarx: Load Word with Reserved
	__lwbrx: Load Reversed Word
	__lwsync: Light Weight Sync
	__mffs: Move from Floating-Point Status and Control Register
	__mfspr: Move from Special Purpose Register
	__mftb: Move from Time Base
	__mtfsb0: Reset Bit of FPSCR
	__mtfsb1: Set Bit of FPSCR
	__mtfsf: Set Fields in FPSCR
	__mtfsfi: Set Field of FPSCR
	__mtspr: Move to Special Purpose Register
	__mulhd: Multiply Doubleword, High Part
	__mulhdu: Multiply Double Unsigned Word, High Part
	__mulhw: Multiply Word, High Part
	__mulhwu: Multiply Unsigned Word, High Part
	__nop: No Operation
	__protected_stream_count: Set the Number of Blocks to Stream
	__protected_stream_go: Start All Streams
	__protected_stream_set: Set Up a Stream
	__protected_stream_stop: Stop a Stream
	__protected_stream_stop_all: Stop All Streams
	__protected_unlimited_stream_set: Set Up an Unlimited Stream
	__rldcl: Rotate Left Doubleword then Clear Left
	__rldcr: Rotate Left Doubleword then Clear Right
	__rldic: Rotate Left Doubleword Immediate then Clear
	__rldicl: Rotate Left Doubleword Immediate then Clear Left
	__rldicr: Rotate Left Doubleword Immediate then Clear Right
	__rldimi: Rotate Left Doubleword Immediate then Mask Insert
	__rlwimi: Rotate Left Word Immediate then Mask Insert
	__rlwinm: Rotate Left Word Immediate then AND With Mask
	__rlwnm: Rotate Left Word then AND With Mask
	__setflm: Save and Set the FPSCR
	__stdbrx: Store Reversed Doubleword
	__stdcx: Store Doubleword Conditional
	__sthbrx: Store Reversed Halfword
	__stwbrx: Store Reversed Word
	__stwcx: Store Word Conditional
	__sync: Sync

	7. PPU Vector Multimedia Extension Intrinsics
	vec_extract: Extract Vector Element from Vector
	vec_insert: Insert Scalar into Specified Vector Element
	 vec_lvlx: Load Vector Left Indexed
	 vec_lvlxl: Load Vector Left Indexed Last
	 vec_lvrx: Load Vector Right Indexed
	 vec_lvrxl: Load Vector Right Indexed Last
	vec_stvlx: Store Vector Left Indexed
	vec_stvlxl: Store Vector Left Indexed Last
	vec_stvrx: Store Vector Right Indexed
	vec_stvrxl: Store Vector Right Indexed Last
	vec_promote: Promote Scalar to Vector
	vec_splats: Splat Scalar to Vector

	8. SPU C and C++ Standard Libraries and Language Support
	8.1. Standard Libraries
	8.1.1. C Standard Library
	8.1.2. C++ Standard Library

	8.2. Non-Supported Language Features

	 Floating-Point Arithmetic on the SPU
	9.1. Properties of Floating-Point Data Type Representations
	9.2. Floating-Point Environment
	9.2.1. Rounding Modes
	9.2.2. Floating-Point Exceptions
	9.2.3. Other Floating-Point Constants in math.h

	9.3. Floating-Point Operations
	9.3.1. Floating-Point Conversions
	9.3.2. Overall Behavior of C Operators and Standard Library Math Functions
	9.3.3. Floating-Point Expression Special Cases
	9.3.4. Specific Behavior of Standard Math Functions

	 Operator Overloading for Vector Data Types
	10.1. Supported Types
	10.2. Vector Subscripting
	10.3. Unary Operators
	10.4. Binary Operators
	10.5. Relational Operators

