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Introduction

Audio processing theory makes heavy use of the z-transform. The z-transform
is a Fourier-related transform. Figure 1 shows all kinds of Fourier transforms,

t ω0
continuous FT F (ω) =∫∞

−∞ f (t )e−iωt dt

t
0 2π k0

Fourier series F [k] =∫2π
0 f (t )e−ikt dt

l0 n k0 n
DFT (FFT) F [k] =∑n−1

l=0 f [l ]e−i2πkl /n

k0 t0 2π
DTFT F (ω) =∑∞

k=−∞ f [k]e−iωk

k0

ℑz

ℜz
z-transform F (z) =∑∞

k=−∞ f [k]z−k

Figure 1: Different Fourier transforms, defined by their support in the time and
frequency domain. The depiction of the z-transform is stylized: the values (third
dimension) are folded as a polar plot into the z-plane.

defined by their support in the time and frequency domain. While the contin-
uous Fourier transform is defined on R in both domains, the Fourier series is
defined on a continuous interval in the time domain and on Z in the frequency
domain. The discrete time Fourier transform (DTFT) is the reverse of the Fourier
series. The z-transform is just the DTFT wrapped around the unit circle by setting
z = eiω. Additionally, the z-transform is also defined for non-unit z.

Note also the symmetries in the frequency domain (conjugate mirror around
the 0-frequency), and that phases (angles of the complex values) are not shown
in the graphs. Discrete time arguments are always indicated by square brackets.

Because the z-transform is a linear transform, it satisfies usual linearity prop-
erties:

g [t ] = a f [t ] ⇒G(z) = aF (z), g [t ] = f1[t ]+ f2[t ] ⇒G(z) = F1(z)+F2(z) .
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In addition, a time delay of 1 is turned into a multiplication by z−1:

g [t ] = f [t −1] ⇒
G(z) =

∑
g [t ]z−t =

∑
f [t −1]z−t s=t−1======

∑
f [s]z−(s+1)

= z−1
∑

f [s]z−s = z−1F (z)

This allows the manipulation of filters by means of arithmetic operations, since
filters involve time delay operations. For FIR (finite impulse response) filters:

y[t ] = (h ∗x)[t ] = h[0]x[t ]+h[1]x[t −1]+ . . .+h[n]x[t −n] ⇒
Y (z) = h[0]X (z)+h[1]z−1X (z)+ . . .h[n]z−n X (z)

= (h[0]+h[1]z−1 + . . .h[n]z−n)X (z)

= H(z)X (z) ,

where h∗x is the convolution of the signal x and the filter h, and H is its transfer
function. In a similar way, for IIR (infinite impulse response) filters:

y[t ] = (h ∗x)[t ]

= h[0]x[t ]+ . . .h[n]x[t −n]

+ĥ[1]y[t −1]+ . . .+ ĥ[m]y[t −m]

y[t ]− ĥ[1]y[t −1]− . . .− ĥ[m]y[t −m] = h[0]x[t ]+ . . .h[n]x[t −n]

(1− ĥ[1]z−1 − . . .− ĥ[m]z−m)Y (z) = (h[0]+h[1]z−1 + . . .h[n]z−n)X (z)

Y (z) = h[0]+h[1]z−1 + . . .h[n]z−n

1− ĥ[1]z−1 − . . .− ĥ[m]z−m
X (z)

Y (z) = H(z)X (z)

In the following chapters, we will always assume the sampling rate to be 1,
so that the range of frequencies f is from 0 to 0.5 (the Nyquist frequency), and
ω= 2π f from 0 to π. Figure 2 shows an example of a simple low-pass filter. Phase
shift and amplification are represented by angle and amplitude of the transfer
function H(z).

1 Linear Processing

In audio processing, there is a control flow in addition to the signal flow. In a
control flow, the parameters of the process operating on the signal flow are mod-
ified. The control flow is usually slower than the signal flow, i.e. for every n signal
samples the parameters are changed once, where n is in the range 16 to 4096.
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z H(z) z H(z) z H(z)

ℜx,h ∗ℜx

ℑx,h ∗ℑx

Figure 2: The (complex) signal x = eiωt = z t for ω ∈ {0.1π,0.4π,0.8π} (solid line),
and its filtering (dashed line) by the filter h = (0.5,0.5) (H(z) = 0.5+0.5z−1). Note
the lower amplitude (low-pass filter) and higher phase shift for higher ω, also
represented by length and angle of H(z).

A(ei0)

A(ei2π fc )

A(ei2π0.5) L(ei0)

L(ei2π fc )

L(ei2π0.5) H(ei0)

H(ei2π fc )

H(ei2π0.5)

Figure 3: Transfer functions for allpass (A), lowpass (L) and highpass (H) filters
in the z-plane for fc = 0.1

To change the parameters of a linear FIR or IIR filter can be costly because
each filter tap has to be calculated according to a certain scheme that defines the
filter. Therefore, we now introduce a type of filter that allows for easy parameter-
ization. Thus, they are called parametric filters.

The first building block of a parametric filter is a parametric allpass filter.
The first-order version is given by

y[t ] = (a ∗x)[t ] = cx[t ]+x[t −1]− c y[t −1] .

Its transfer function is

A(z) = c + z−1

1+ cz−1 .

See Figure 3. The magnitude response is indeed 1, since

|A(z)| = |c + z−1|
|1+ cz−1| =

|c + z−1|
|z−1| · |z + c|

|z|=1===== 1

The phase response ϕ= arg(A(eiω)) is 0 for ω= 0 because A(1) = 1, and −180◦ for
the Nyquist rateω=π, because A(−1) =−1. The parameter c controls the slope of
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Figure 4: Response of parametric allpass filter with fc = 0.01 depending on fre-
quency f = ω

2π .

the phase response. To set the phase response to −90◦ at the “cutoff”-frequency
ω= 2π fc , we set A(z) = A(e−iω) =−i, which leads to

c + z−1

1+ cz−1 =−i

c + z−1 =−i− icz−1

c(1+ iz−1) =−(i+ z−1) | · (1− iz)

c(1+ iz−1 − iz +1) =−(i+ z−1 + z − i)

c(2+2sinω) =−2cosω

c =− cosω

1+ sinω
= tan(π fc )−1

tan(π fc )+1
.

Figure 4 shows the phase response and group delay ( dϕ
dω ) of the parametric allpass

filter with fc = 0.01.
Now, a parametric lowpass and a parametric highpass filter can be imple-

mented by using the allpass filter in the following way. The lowpass filter is

y = l ∗x = x +a ∗x

2
, L(z) = 1+ A(z)

2
.

The parametric highpass filter simply substitutes a − for the +, i.e. h∗x = x−a∗x
2 .

Figure 5 shows the magnitude and phase response of these filters.
The implementation of parametric bandpass and bandreject filters can be

achieved with a second-order allpass filter. It is given by

y[t ] = (a2 ∗x)[t ] =−d x[t ]+c(1−d)x[t −1]+x[t −2]−c(1−d)y[t −1]+d y[t −2] ,
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Figure 5: Response of parametric lowpass and highpass filters with fc = 0.01 de-
pending on frequency f = ω

2π .

A2(ei0)A2(ei2π fc )

A2(ei2π0.1)

R(ei0)R(ei2π fc )

R(ei2π0.1)

B(ei0) B(ei2π fc )

B(ei2π0.1)

Figure 6: Transfer functions for second-order allpass (A2), band-reject (R) and
band-pass (B) filters in the z-plane for fc = 0.2 and fd = 0.15
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Figure 7: Phase response of second-order allpass filter for fc = 0.01 and fd =
0.005.

and has the transfer function

A2(z) = −d + c(1−d)z−1 + z−2

1+ c(1−d)z−1 −d z−2 .

See Figure 6. Again, the magnitude response is 1, since

|A2(z)| = |−d + c(1−d)z−1 + z−2|
|1+ c(1−d)z−1 −d z−2| = |−d + c(1−d)z−1 + z−2|

|z−2| · |−d + c(1−d)z + z2|
|z|=1===== 1.

The phase response is 0 for ω = 0 because |A2(1)| = 1, and also 0 (or −360◦) for
the Nyquist rate ω= π because |A2(−1)| = 1. We want the phase to pass through

−180◦ at frequency ω= fc

2π , so we set A2(z) = A2(eiω) =−1 and get

c =−cosω=−cos2π fc .

Furthermore, the parameter d controls the slope at which the phase changes
from 0◦ to −360◦. It may be calculated by

d = tan(π fd )−1

tan(π fd )+1
.

Figure 7 shows the phase response.
With the help of the second-order allpass filter we can now implement a second-

order bandpass filter. It is defined by

y = b ∗x = x −a2 ∗x

2
, B(z) = 1− A2(z)

2
.

Similarly, the second-order bandreject filter is defined by

y = r ∗x = x +a2 ∗x

2
, R(z) = 1+ A2(z)

2
.
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Figure 8: Response of parametric second-order bandpass and bandreject filters
with fc = 0.01 and fd = 0.005 depending on frequency f = ω

2π .

Figure 8 shows the magnitude and phase responses.
There are corresponding second-order low-/highpass filters as well, but the

control of their coefficients is somewhat more complicated. With K = tanπ fc , the
lowpass filter is given by

y[t ] = (l2 ∗x)[t ] = 1

1+
p

2K +K 2
(K 2x[t ]+2K 2x[t −1]+K 2x[t −2]

−2(K 2 −1)y[t −1]− (1−
p

2K +K 2)y[t −2]) ,

and the highpass filter by

y[t ] = (h2 ∗x)[t ] = 1

1+
p

2K +K 2
(x[t ]−2x[t −1]+x[t −2]

−2(K 2 −1)y[t −1]− (1−
p

2K +K 2)y[t −2]) .

Often, one does not want to attenuate the stopbands to zero, but instead leave
them as they are, and just increase or decrease the amplitude in certain bands. If
those bands include ω= 0 or ω= π, then the filters are closely related to lowpass
and highpass filters, and are called shelving filters. The idea is simply to add the
output of a low- or highpass filter to the original signal.

sl ∗x = x + (v −1)l ∗x , or sh ∗x = x + (v −1)h ∗x ,

where v is the amplitude factor for the passband. sl is the low-frequency and sh

the high-frequency shelving filter. If a gain in dB is given as V , then v = 10V /20. If
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Figure 9: Magnitude response of low-frequency and high-frequency shelving fil-
ters for gain from −20dB to +20dB and fc = 0.01, depending on frequency f = ω

2π .

the cutoff frequency parameter c of the first-order low- or highpass filters is cal-
culated in the usual way, we get an effect that can be seen in Figure 9(a). For gains
v < 1 (cut), the attenuation retreats into the passband, which is not symmetrical
to the v > 1 case (boost), where it extends more into the stopband, the higher the
gain gets. To make this symmetrical, the parameter c for the first-order filters has
to be calculated differently for v < 1, namely

c = tan(π fc )− v

tan(π fc )+ v
, c = v tan(π fc )−1

v tan(π fc )+1
,

for the low-frequency and the high-frequency filter, respectively. The magnitude
responses are shown in Figure 9(b).

Second-order shelving filters based on second-order low- and highpass fil-
ters are also possible, or course. However, their parameters are again more com-
plicated to calculate.

Following the same idea, but using bandpass filters, peak filters can be cre-
ated. Peak filters increase or decrease the amplitude within a certain passband.

p ∗x = x + (v −1)b ∗x .

For a similar reason as for shelving filters (band-narrowing in the cut case), the
parameter d or the second-order bandpass filter has to be calculated differently
for v < 1:

d = tan(π fd )− v

tan(π fd )+ v
.

Figure 10 shows the magnitude response for the peak filter.
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Figure 10: Magnitude response of peak filters for fc = 0.01.

With all these filters, an equalizer can be implemented by concatenating shelv-
ing and peak filters, one for each equalizer band:

e = sl ( fcl ,Vl )∗p( fc1, fd1,V1)∗·· ·∗p( fcn , fdn ,Vn)∗ sh( fch ,Vh) .

A phaser is a set of second-order bandreject filters with independently vary-
ing center frequencies. This can be implemented by a cascade of second-order
allpass filters that are mixed with the original filter.

ph ∗x = (1−m)x +m ·a(n)
2 ∗·· ·∗a(2)

2 ∗a(1)
2 ∗x .

a(k)
2 are n different second-order allpass filters, controlled by low-frequency os-

cillators at unrelated frequencies. m is a mix parameter controlling the strength
of the effect. Moreover, there is an extension of the scheme with a feedback loop
over the allpass filters:

ph3 ∗x = a(n)
2 ∗·· ·∗a(2)

2 ∗a(1)
2 ∗ph2 ∗x ,

(ph2 ∗x)[t ] = x[t ]+q · (ph3 ∗x)[t −1] ,

ph ∗x = (1−m)x +m ·ph3 ∗x .

This further increases the spacy effect of the phaser. See also Figure 11.
The Wah-Wah effect is basically a set of peak filters with varying center fre-

quencies. However, it is implemented with only a single peak filter and an addi-
tional trick: The (single tap) delay unit in the filter is substituted by an m-tap de-
lay. This means that the transfer function of the Wah-Wah effect is W (z) = P (zm).
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Figure 11: Phaser with feedback loop
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Figure 12: Frequency transforms of a 5-fold Wah-Wah effect.
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Figure 13: Interpolation for fractional delays

As a result, the amplitude response of the peak filter wraps around the unit circle
in the z-plane m

2 times while the ω of the Wah-Wah effect moves from 0 to π. To-
gether with the fact that the magnitude response for negative frequencies is the
same as for positive ones, i.e.

|H(ei(−ω))| = |H(z̄)| = |H(z)| = |H(z)| = |H(eiω)| ,

and also because eiω = ei(ω±2π), we can map the frequencies mω to the range
[0,π] as is shown in Figure 12(a) for the case m = 5. Thus, if we control the peak
frequency of P by a low-frequency oscillator, we get several incarnations of the
peak frequency in a way shown in Figure 12(b). The result is the modification of
the audio input signal that sound like “wah-wah”, hence the name.

The other parameter, the bandwidth fd of the peak filter, is often increased
linearly with the peak frequency fc . This means that the so-called Q-factor, which

is defined as the ratio of bandwidth and cutoff/peak-frequency q = fd

fc
, is held

constant (constant Q-factor), so that fd = q fc . The Q-factor is rather high in the
case of the Wah-Wah filter, i.e. q ≈ 0.5.

The idea of extending the delay unit to an m-tap delay leads to the imple-
mentation of general delay effects. If there is no feedback or mix with the direct
signal, the signal is simply shifted in time, which brings no audible effect. How-
ever, if the time-shift m is varied according to a low-frequency oscillator between
0 and 3 ms, the result is a vibrato effect. Restricting m to integer values might not
be fine grained enough, though. Therefore, fractional delays have to be used,
which interpolate between bmc and dme. The simplest way to do so is linear in-
terpolation (see Figure 13(a))

y[t ] = (1− f )x[t −bmc]+ f x[t −dme] ,

12



Figure 14: A rotary speaker

where f is the fractional part f = m −bmc. The correct way to do it is to use sinc
interpolation, following Shannon’s sampling theorem that states that, if there is
no frequency above the Nyquist frequency 0.5, then the continuous signal is de-
termined by

x(s) =
∞∑

s=−∞
x[t ]sinc(s − t ) ,

where s is a continuous time variable, t the discrete time, and sinc(s) = sinπs
πs .

Because this sinc-kernel has infinite length, cannot be implemented by an IIR
filter, and is not even causal, some approximation is necessary. A good solution
is the Lanczos kernel (see Figure 13(b))

L(s) =
{

sinc(s)sinc( s
a ) −a < x < a

0 else
.

a is the size of the Lanczos kernel. The interpolation is then

y[t ] =
∑

|r−m|<a
x[t − r ]L(r −m) .

There is also an allpass interpolation approach

y[t ] = (1− f )x[t −bmc]+x[t −dme]− (1− f )y[t −1] ,

and interpolation with spline functions.
Apart from the obvious vibrato, there is the rotary speaker effect, which was

originally produced by real rotating loudspeakers. See Figure 14. Two speaker
cones oriented in opposite directions emit the same sound and are rotated so
that in one moment they point to the left and right, and in the next moment ones
points towards the listener and the other away from them. While this causes a

13
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Figure 15: Comb filters
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Figure 16: Magnitude response of comb filters with m = 5 for g = 0.8 and g =−0.8.

variation in amplitude, since the speaker is heard louder when pointing at the
listener than when pointing in other directions, it also causes a change in pitch
when the cone moves towards the listener or away from them. This effect can be
calculated by

y[t ] = l (1+ sinβt )x[t −a(1− sinβt )]+ r (1− sinβt )x[t −a(1+ sinβt )] ,

where β is the rotation speed of the speakers, a is the depth of the pitch modula-
tion, and l and r are the amplitudes of the two speakers, best set to equal values.
A stereo effect can be achieved easily by setting l and r to unequal but symmetri-
cal values for the left and right channel. For instance, yl with l = 0.7,r = 0.5, and
yr with l = 0.5,r = 0.7.

If the delayed signal is mixed with the direct signal, a multiply mirrored low-
pass or highpass filter results, similar to the Wah-Wah effect. The result is a so-
called comb filter. The first approach is to use a simple FIR filter

y[t ] = (c ∗x)[t ] = x[t ]+ g x[t −m] , C (z) = 1+ g z−m ,

where g is the positive or negative feed-forward parameter. See Figure 15(a). The
magnitude response is shown in Figure 16(a). The second approach is an IIR
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variant.

y[t ] = (c ∗x)[t ] = x[t ]+ g y[t −m] , C (z) = 1

1− g z−m ,

where g is the positive or negative feedback parameter. See Figure 15(b). The
magnitude response is shown in Figure 16(b). Note that one is the inverse of the
other with negative g . Thus, they could be combined to a delayed version of the
first-order allpass filter.

Note also that the IIR comb filter can have a very high gain, which might have
to be reduced. In order to retain L∞-norm so that the range of the signal is not
exceeded, the output has to by divided by 1 − |g |. If unmodified loudness for
broadband signals is necessary, the L2-norm has to be retained by dividing the
output by

√
1− g 2.

Several audio effects can be implemented by delay filters. The slapback effect
is an FIR comb filter with a delay of 10 to 25 ms (often used in 1950’s rock’n’roll).
For delays over 50 ms an echo can be heard. For delays of less than 15 ms that
are varied by a low-frequency oscillator, a flanger effect results. A chorus effect
is achieved by mixing several delayed signals with the direct signal, where the
delays are independent and randomly varied with low frequencies. All these ef-
fects can also be implemented with IIR comb filters for more intense effects and
repeated slapback or echoes.

A ring modulator multiplies a carrier signal c[t ] and a modulator signal m[t ].
For complex signals, their frequencies would be added because, if c[t ] = eiωc t and
m[t ] = eiωm t , then

c[t ]m[t ] = eiωc t eiωm t = ei(ωc+ωm )t .

For real signals, however, we have to include mirrored negative frequencies, i.e.
cos x = 1

2 (eix +e−ix ). Thus, for c[t ] = cosωc t and m[t ] = cosωm t we get

c[t ]m[t ] = 1

2

(
eiωc t +e−iωc t ) 1

2

(
eiωm t +e−iωm t )

= 1

4

(
ei(ωc+ωm )t +e−i(ωc+ωm )t +ei(ωc−ωm )t +e−i(ωc−ωm )t )

= 1

2
(cos(ωc +ωm)t +cos(ωc −ωm)t ) .

We see that not only the sum but also the difference of the frequencies is in-
cluded. The modulator signal usually has lower frequencies than the carrier sig-
nal and the carrier signal is a single sine wave, so the positive and negative fre-
quency bands of the modulator signal appear as upper and lower sidebands around
the carrier frequency. See Figure 17. Note that the lower sideband is mirrored, so

15
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Figure 17: Sidebands in ring modulation

the higher the modulator frequencies get the lower they get in the lower sideband.
The result is a strange non-harmonic sound.

If the roles are reversed, amplitude modulation can be implemented by

y[t ] = (1+αm[t ])x[t ] .

Here, the modulator is a low-frequency oscillator or something similar with am-
plitude < 1 and α < 1 controls the amount of amplitude variation of the input
signal x[t ]. The result is a tremolo effect.

Often we don’t want the lower sideband to be audible. In order to get rid of
it, we could get rid of the negative frequency band of the modulator and carrier
signals first, so no lower sideband would be created in the first place. To do so, we
need a filter that produces a 90◦ phase shift of the input signal which we can add
as imaginary part, in order to eliminate negative frequencies. So cosωt should
become

cos
(
ωt − π

2

)
= 1

2

(
ei

(
ωt− π

2

)
+e−i

(
ωt− π

2

))
= 1

2

(−ieiωt + ie−iωt ) .

This means that the transfer function of the filter should be

H(eiω) =
{
−i ω> 0

i ω< 0.

This filter is called Hilbert filter. Via inverse z-transform, we find its impulse
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response:

h[t ] = 1
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=
{

2
πt t odd

0 t even.

See Figure 18. Unfortunately, this filter has infinite length and is not causal.
Therefore, it is approximated by truncating it at t = ±30 for instance, multiplied
by some window function, and shifted in time by 30 to make it causal. When
mixed with the direct signal, it also has to be delayed by 30. We write x̂ = h∗x for
the Hilbert-filtered signal.

Now, we can get the analytic version (that without negative frequencies) of c
and m as c + iĉ and m + im̂. Multiplying them leads to

(c + iĉ)(m + im̂) = cm − ĉm̂ + i(cm̂ + ĉm) .

As we are only interested in the real part, we get our single sideband modulated
signal as cm − ĉm̂.

In this way, the modulator signal can be shifted in frequency by fc . Note, how-
ever, that harmonic frequencies fm ,2 fm ,3 fm , . . . become non-harmonic after the
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Figure 19: Frequency shifts leading to non-harmonic sounds

frequency shift: ( fm + fc ), (2 fm + fc ), (3 fm + fc ), . . .. See Figure 19. As a result, a
harmonic sound such as a plucked string can sound like a bell or a drum. On the
other hand, real string sounds are not perfectly harmonic due to physical impu-
rities, which gives them a warm sound. This effect could be achieved by shifting
a perfectly harmonic sound such as a repeating wavetable by a small amount.

2 Nonlinear Processing

In linear processing, the signal values x[t ] are modified by linear operations,
i.e. addition and multiplication by constant factors, time-varying values or even
signals. In nonlinear processing, the signal values are modified by a nonlinear
function g (x) so that in the simplest case y[t ] = g (x[t ]). In this way new harmon-
ics are generated and bandwidth expansion takes place. One way to avoid this is
to apply signal strength modifications slowly.

In dynamics processing, the amplitude of the signal is modified for several
purposes such as limiting the amplitude to avoid clipping or cancellation of noise
when no other sound is present. In order to decide whether to amplify or attenu-
ate the signal, the amplitude of the signal has to be known. This can be achieved
by amplitude followers. They are comprised of two parts: the detector and the
averager.

A detector transforms a signal value in order to approximate the amplitude of
the wave. The half-wave rectifier simply permits only positive values, d(x)[t ] =
max(0, x[t ]). The full-wave rectifier calculates the absolute value d(x)[t ] = |x[t ]|.
The squarer sets d(x)[t ] = x2[t ]. And the instantaneous envelope is calculated
with the help of the Hilbert transform d(x)[t ] = x2[t ]+ x̂2[t ]. See Figure 20.
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Figure 20: Detectors. Dashed lines show the output of averagers. The rectifiers
use short attack and longer release times. The squarer uses equal attack and re-
lease times. The instantaneous envelope may not need averagers at all.
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Figure 21: Dynamic range control. All levels and factors in dB, maximum level is
0 dB.

d a1 log r exp a2

z−τ ×

Figure 22: Operator chain for dynamics processing

The averager then just smoothes the output of the detector in order to avoid
a jumping envelope for low frequencies. It can be implemented by a simple low-
pass filter

y[t ] = a(x)[t ] = (1− g )x[t ]+ g y[t −1] , where g = e−
1
τ ,

and τ is an attack and release time constant in samples. In order to have shorter
attack than release times, two different constants may be used in the following
way:

y[t ] = a(x)[t ] =
{

(1− ga)x[t ]+ ga y[t −1] y[t −1] < x[t ]

(1− gr )x[t ]+ gr y[t −1] y[t −1] ≥ x[t ] .

Dynamic range control is then performed by calculating a gain factor from
the signal level to multiply the direct signal. The gain factor calculation r is done
in the logarithmic domain to get linear level curves. See Figure 21 for typical
operations.

y[t ] = x[t −τ] ·a2(exp(r (log(a1(d(x))))))[t ] .

In order to smooth out transitions of the gain factor, the gain factor is processed
by a second averager a2 with usually much longer attack and release times τ2.
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Figure 23: The workings of a compressor/limiter

Because the amplitude follower a1(d) and the second averager need some time to
respond to changing input levels, the direct signal is delayed by τ. In this way the
output level can be reduced smoothly before a sudden rise in input level would
make the output level exceed the allowed range. See Figure 22 and Figure 23.

A compressor reduces the amplitude of loud signals so that the difference
between loud and quiet signals is lessened. An expander does the opposite for
quiet signals to increase the liveliness of the sound. Both use an RMS-style am-
plitude follower, i.e. a squarer as detector. Typical values for detector and adjust-
ment times are τ1,a = 5ms, τ1,r = 130ms, τ2,a = 1. . .100ms, τ2,r = 20. . .5000ms.
A noise gate entirely eliminates signals below a threshold below which no use-
ful signal is expected. This makes noise disappear which would only be audible
when no other sound is present. The purpose of a limiter is to reduce peaks in
the audio signal. Therefore, it uses a rectifier as level detector. The attack and
release times are faster than for compressors. An infinite limiter, or clipper, is
basically a limiter with zero attack and release times. It operates directly on the
signal and cuts off samples that exceed the clipping level. A polynomial curve
below the clipping level may be used in order to reduce the distortion of hard
clipping.

Such a function may be approximated by a Taylor expansion g (x) = a0+a1x+
a2x2 +a3x3 + . . .. It operates on the signal as

y[t ] = g (x[t ]) ,

To see what that might do to the frequency spectrum of a single oscillation, we
look at

cosn(ωt +ϕ) = 1

2n

n∑

k=0

(
n

k

)
cos((n −2k)(ωt +ϕ)) .
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Figure 24: Distortion transforms.

From this we see that a single exponentiation can introduce a number of new fre-
quencies into the signal. For a whole polynomial, all integer multiplesω,2ω,3ω, . . .
of the original frequency ω will be present.

The amount of distortion this causes to the original sine wave can be calcu-
lated by the total harmonic distortion

THD =

√√√√ A2
2 + A2

3 + A2
4 + . . .

A2
1 + A2

2 + A2
3 + . . .

,

where Ak is the amplitude of frequency kω.
When there is more than one frequency in the input signal, the situation is

even more critical. For two sine waves we get

(cosω1t +cosω2t )n =
n∑

k=0

(
n

k

)
cosk ω1t cosn−k ω2t .

So the sine waves and their harmonics are multiplied. And because we have
learned that this produces the sum and difference of frequencies, we see that
all frequencies aω1 + bω2 for integers a and b will be present. For almost but
not-perfect harmonic input signals, as often is the case for real recorded sounds,
this means that a certain range around each frequency will be filled by sound.
This can be heard as a warmth of the sound or, when the distortion is greater, a
fuzziness of the sound.

Distortion based on such a transform g (x) can be found in valve (tube) ampli-
fiers and distortion effects. An effect similar to soft clipping can be implemented
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with

g (x) = sign(x) ·





2|x| 0 ≤ |x| ≤ 1
3

3−(2−3|x|)2

3
1
3 ≤ |x| ≤ 2

3

1 2
3 ≤ |x| ≤ 1.

For distortion, the following can be used:

g (x) = sign(x)(1−e−a|x|) ,

where a controls the amount of distortion. See Figure 24. Depending on the
amount of distortion, the following terms are used: overdrive is a small amount
of distortion which makes the sound “warmer”, distortion is clearly audible dis-
tortion where the original sound is still recognizable, and fuzz is heavy distor-
tion where only single notes/tones can be played because mutual interaction be-
tween several notes would result in noise.

An exciter uses light distortion in order to increase the harmonics of a sound.
It is often used on vocals and speech, i.e. signal that lack high frequency content,
to produce a brighter and clearer sound. An enhancer is very similar but also
uses equalization to shape the harmonic content.
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Figure 26: Extension of bandwidth through distortion, the resulting aliasing, and
two methods to resolve the problem

A more extreme way to modify a signal in a nonlinear way is to use rectifiers
to move a signal one or even two octaves up or down. Such effects are called
octavers. For instance, a full-wave rectifier g (x) = |x| transforms a sine-wave with
wave-length τ into a τ

2 -periodic signal because the second (negative) half of the
wave is now equal to the first half of the wave. Therefore, only even multiples of
the original frequency are present, which means an upwards octave shift. For the
other direction, zero-crossings of the signal are counted and this information is
used to suppress all but every second positive half-wave. Another possibility is to
invert every second wave. See Figure 25. The result is a signal that is 2τ-periodic,
which means a downwards octave shift. Because this turns out to sound very
mechanical and synthetic, some octavers apply a low-pass filter to single out the
half-frequency and mix that with the original signal.

An important thing to note when distorting discrete signals is that the band-
width (i.e. the highest frequency in the signal) is multiplied by n if the distortion
function g (x) contains an xn term. These frequencies may be aliased back into
the frequency range from 0 to Nyquist-frequency. See Figure 26. While this may
be wanted as a source of even more distortion, there are two methods to avoid
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the aliasing. The first method is to upsample the signal by a factor of n using in-
terpolation, creating n −1 new samples between two existing ones. The new fre-
quencies from distortion are then below the new Nyquist-frequency. After that,
down-sampling is applied to return to the original sampling rate, where the signal
has to be low-pass filtered to eliminate the frequencies that would cause aliasing.
Both interpolation and anti-aliasing may use the Lanczos filter.

The second method is to split g (x) into a1x+a2x2+a3x3+ . . ., then also split-

ting x into n channels, each low-pass filtered by lk with a cutoff frequency of fs

2k
before being processed by exponentiation and summing the results.

y[t ] = a1x +a2(l2 ∗x)2 +a3(l3 ∗x)3 + . . . .

Thus, the bandwidth enlargement of the low-pass filtered signals will not reach
the aliasing region.

3 Time-Frequency Processing

The signals we investigate can be represented by the sinusoidal+residual model.
In this model the signal is a sum of sinusoids of different time-varying frequencies
and time-varying amplitudes, plus a residual signal with no particular frequency,
i.e. noise with a certain time-varying spectral shape.

x[t ] =
∑

k
ak [t ]cos(ϕk [t ])+e[t ] .

where ak [t ] is the amplitude of the k-th sinusoid, e[t ] is the residual signal, and
ϕk [t ] is the instantaneous phase of the k-th sinusoid that cumulates the instan-
taneous frequency ωk [t ]:

ϕk [t ] =
t∑

s=0
ωk [s] .

The goal is now to extract these sinusoids from the signal x[t ], apply some modifi-
cations, and put them back together. The most common method is time-frequency
processing.

3.1 Phase Vocoder Techniques

In time-frequency processing, the audio signal is split in time into blocks (or
frames) which are transformed by a Fourier transform. This is called short-time
Fourier transform (STFT). See Figure 27. Because the Fourier transform is made
for signals that are periodic with the block length n, a signal that has a different
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Figure 28: The effect of windowing on the spectral shape of the peak of a sinusoid

period fills all frequency bins, where the amplitude drops only with 1/(ω−ω0)
where ω0 is the frequency of the signal. To avoid this, a window function h[t ] is
applied so that the narrow low-pass frequency response of the window is modu-
lated by the signal frequency and, thus, moved as a window in the frequency do-
main to the frequency of the signal and attenuates frequency bins with a greater
distance from the frequency of the signal. See Figure 28.

The window or frame size n is always a compromise because a small window
size leads to bad frequency resolution and a large window size leads to bad time
resolution and higher latency. The hop size r is the distance between the centers
of two consecutive windows. If the window size is greater than the hop size, then
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there is an overlap of windows. The percentage of overlap is defined by 1− r /n.
Big overlaps lead to smoother transitions of the spectral feature points, but is
computationally more expensive.

The STFT is given by

X [t , w] =
n/2−1∑

s=−n/2
h[s]x[r t + s]e−i2πw s/n

Thus, the signal is now given in several frequency bands w with coarser time-
resolution t . X [t , w] contains amplitude and phase information which can be
modified separately. After that, the signal is usually reconstructed in the time
domain by re-synthesis. This can be done by the inverse Fourier transform. An-
other window function, the synthesis window hs , has to be applied for two rea-
sons: First, the analysis window has to be reversed. Second, in overlap regions
the sum of the resulting windows has to be 1.

x[t ] =
∑

s:− n
2 ≤t−r s< n

2

hs[t − r s]
∑
w

X [s, w]ei2πw(t−r s) .

This is called the overlap-add method. The summing condition is, therefore,
given by ∑

s
h[t − r s]hs[t − r s] = 1.

If the analysis and the synthesis window are the same, then the sum of squares of
the window has to be 1. This is true for the Hann window, h[t ] = A

2 (1+cos2πt/n),
with a hop size of r = n/4, because for t ≥ n/4:

h2[t ]+h2[t −n/4]+h2[t −n/2]+h2[t −3n/4]

= A2

4
(1+cos2πt/n)2+ A2

4
(1+cos2π(t/n−1/2))2+ . . .+ A2

4
(1+cos2π(t/n−3/4))2

= A2

4
(1+cos)2 + A2

4
(1− sin)2 + A2

4
(1−cos)2 + A2

4
(1+ sin)2

= A2

4
(1+2cos+cos2+1−2sin+sin2+1−2cos+cos2+1+2sin+sin2)

= A2

4
(4+2(cos2+sin2)) = 3A2

2
A=

p
2/3======= 1.

The method of STFT, followed by modifications of the result and inverse STFT,
is called phase vocoder for historical reasons. The most common uses for the
phase vocoder is time stretching and pitch shifting.

27



t

ϕ[t , w ]

t

ϕ[t +1, w ]=ϕ[t , w ]+∆ϕ mod 2π

t

ϕ[t , w ]+ rs
r ∆ϕ

Figure 29: Wrapped phases

For time stretching, the idea is simply to use a different hop size rs for syn-
thesis than for analysis. There is one problem, however: If the frequency of a
signal is not changed and a frame is shifted in time, then the phases have to be
adjusted. To do this, we first need phase unwrapping. See Figure 29 and Figure
30 for a visualization of the following. Let ϕ[t , w] be the instantaneous phase of
the STFT coefficient X [t , w], so that

X [t , w] = A[t , w]eiϕ[t ,w] .

Now, if the frequency would be exactly w , then the projected phase of X [t +1, w]
is

ϕp [t +1, w] =ϕ[t , w]+2πwr /n ,

which should be equal to the real phase ϕ[t +1, w] modulo 2π. However, since
the real frequency is not necessarily in the center of the frequency bin w , there is
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Figure 30: Phase unwrapping and time stretching

some difference. The unwrapped phase ϕu[t +1, w] is, therefore, set so that

ϕu[t +1, w] =ϕ[t +1, w] mod 2π , −π≤ϕu[t +1, w]−ϕp [t +1, w] ≤π .

This can be achieved by

ϕu[t +1, w] =ϕ[t +1, w]+ round((ϕp [t +1, w]−ϕ[t +1, w])/2π) ·2π .

The total phase rotation between time t and t +1 in frequency bin w is then

∆ϕ[t +1, w] =ϕu[t +1, w]−ϕ[t , w] .

Now back to time stretching. As said, we need to adjust the phases if we move
from hop size r to hop size rs . Our new frequency coefficients shall be

Y [t , w] =
n/2−1∑

s=−n/2
h[s]y[rs t + s]e−i2πw s/n = A[t , w]eiψ[t ,w] .

The total phase rotation between t and t +1 must now be greater by a factor of
rs/r :

ψ[t +1, w] =ψ[t , w]+ rs

r
∆ϕ[t +1, w] .

Pitch shifting can be reduced to time stretching simply by applying resam-
pling after time stretching to restore the original rate of frames per second. Note
the pitch shifting is different from frequency shifting, as it is done with single
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sideband modulation. Frequency shifting adds a certain delta frequency to ev-
ery frequency in the signal. Pitch shifting multiplies each frequency by a factor
α. To achieve this with time stretching, we set rs =αr . After time stretching, the
resampling calculates y[t ] = x[αt ]. Because time stretching does not modify the
frequencies, the result has shifted frequencies by the factor α because cos(ωt )
becomes cos(ωαt ).

It turns out that time stretching and pitch shifting works well for sums of si-
nusoids with slowly varying amplitude and frequency, but it has problems with
amplitude and frequency transients, and noise such as consonants in speech.
These sounds tend to be smeared in time. A possibility to cope with this is to sep-
arate stable from transient components. A frequency bin is defined as belonging
to a stable sinusoid if the phase change itself does not change too much. More
precisely,

ϕ[t , w]−ϕ[t −1, w] ≈ϕ[t −1, w]−ϕ[t −2, w] mod 2π ,

or even more precisely,

|ϕ[t , w]−2ϕ[t −1, w]+ϕ[t −2, w]| < d mod 2π ,

where “|x| < d mod 2π” means that the smallest |x + k · 2π| is smaller than d .
Stable frequency bins are now subject to time stretching as explained, while tran-
sient ones are either dropped or used to construct the residual signal.

The mutation (morphing, cross-synthesis) of two sounds can be achieved by
combining the time-frequency representation of two sounds. The most typical
vocoder effect is to use the phase of one sound X1 (from a keyboard for instance)
and the magnitude of another sound X2 (a voice for instance).

Y [t , w] = X1[t , w]

|X1[t , w]| |X2[t , w]| .

In this way, the harmonic content, i.e. phases and therefore frequencies, of the
first sound is modified to have the spectral shape of the second sound, so that the
vowels can be heard as such, because vowels are defined by the spectral shape. As
a very similar effect, robotization can be achieved by using only X2 and setting
all phases to zero in each frame and each bin. The result will be periodic with the
hop size as period, and, therefore, have constant pitch. If the phase is random-
ized, then a whisperization effect is produced. For this effect, the frame and hop
size must not be too large, lest the bin magnitudes will represent the frequencies
too well.

Denoising is achieved by attenuating frequency bins with low magnitude while
keeping high magnitudes unchanged. This may be done by a nonlinear function
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Figure 31: Fitting a parabola to a spectrum peak and finding the maximum

such as

Y [t , w] = X [t , w]
|X [t , w]|

|X [t , w]|+ cw
,

where cw is a parameter that controls the amount and level of attenuation. It can
be chosen differently for different frequencies, so that noise levels as measured in
a recording of silence are sufficiently suppressed while leaving frequencies with
little noise content as unmodified as possible.

3.2 Peak Based Techniques

The main problem with the traditional phase vocoder techniques as presented so
far is that sinusoids are not really extracted but spread over several neighboring
frequency bins and possibly even overlap. A more recent development is to find
and separate individual sinusoids by finding local peaks in the spectrum. These
peaks can be located more precisely than the frequency resolution seems to allow
by applying interpolation.

In peak detection, local maxima in the magnitude spectrum are found and
associated with a sinusoid. Note that this association is not perfect because of
noise, side lobes and spectrum overlaps. Moreover, the local maximum would
only be accurate up to half a bin width in frequency, i.e. up to fs/N , where fs

is the sampling rate and n is the Fourier transform size. To improve this, one
could enlarge n by zero padding of data. Another possibility is to fit a parabola
to the maximum and the two neighboring bins in the logarithmic representation
of the magnitudes, and find the peak of the parabola. See Figure 31. Let aw =
10log10 |X [t , w0 +w]|22, where w0 is the bin of the local maximum. We want to fit
a parabola p(w) =αw2 +βw +γ so that p(w) = aw for w ∈ {−1,0,1}. This results
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Figure 32: Pitch detection by casting votes to integer fractions of peak frequencies

in α−β+γ = a−1, γ = a0, α+β+γ = a1, and from that α = 1
2 (a1 − 2a0 + a−1),

β = 1
2 (a1 − a−1). Now, in order to find the peak of p(w), we set p ′(w) = 0, which

leads to 2αw +β= 0. In this way we get

w =− β

2α
= a−1 −a1

2(a−1 −2a0 +a1)
.

In pitch detection, the goal is to find the fundamental frequency whose inte-
ger multiples are called harmonics or partials and should cover all detected fre-
quency peaks. As the fundamental frequency is not necessarily the peak with the
highest magnitude, as it can even be missing entirely, this is not an easy task.
There are several heuristic approaches. Most suggest a set of candidates by us-
ing the most prominent peaks and integer fractions of them. Each peak casts a
(weighted) vote to itself and its integer fractions. The candidate with most votes
is selected as the fundamental frequency. See Figure 32. Pitch detection can also
improve the peak detection by dropping the peaks that don’t fit in the detected
pitch, assuming that those are probably sidelobes of real harmonics or just noise.

Another way to improve the peak detection is to look at the temporal develop-
ment of the peaks so as to promote peaks that continue peaks of previous frames.
This is called peak continuation. A simple way to do this is to assign to each peak
the one of the next frame that is closest in frequency. In the presence of noise and
transients, this method is error prone, though, and the sinusoid trajectories may
switch between different partials. See Figure 33. A better approach is to set up
“guides” that represent the current position of partials. In every new frame, these
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Figure 33: Peak continuation into tracks. Dashed lines indicate possible wrong
continuations due to nearer frequencies of neighboring partials.

guides are updated in order to best match the fundamental frequency and the
peaks. Guides may be turned off temporarily, killed entirely or created when new
unmatched peaks appear. The result is a set of sinusoid trajectories which can be
modified and synthesized into the reconstructed output signal.

The result of this process is a set of sinusoids with amplitudes and frequencies
sampled at hop-size intervals. This is often called a tracks representation of the
sound. See Figure 33. In order to convert this representation back into the time
domain, synthesis methods are required that are not as straight forward as the
inverse FFT. The first method works in the time domain and implements each
sinusoid by an oscillator.

The oscillator is a single wave signal that satisfies the following differential
equation:

x ′′(t ) =−ax(t ) ,

which means that the acceleration is negatively proportional to the amplitude.
To turn this into a discrete version, we approximate the second derivative by

x ′′(t ) ≈ x[t +1]−2x[t ]+x[t −1] ,

which gives
x[t +1] = (2−a)x[t ]−x[t −1] =: (r ∗x)[t +1] .

This corresponds to an IIR filter r without excitation by an input signal, which is
called the digital resonator. See Figure 34. It has the transfer function
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R(z) = 1

1− (2−a)z−1 + z−2 ,

and the pole of R(z) is located at the actual frequency of the oscillator. To examine
this, we set the denominator to zero and get

(2−a)z−1 = 1+ z−2

(2−a) = z + z−1 = 2cosω ,

so we can substitute 2cosω for the factor (2− a) in order to synthesize the fre-
quencyω. The oscillator has to be initialized by calculating x[0] and x[1] directly.
This also has to be done when the frequency changes, i.e. when the factor (2−a)
changes. This can be seen from the following energy function.

E [t ] = ax[t ]x[t −1]+ (x[t ]−x[t −1])2 .

It consists of two parts. The first one represents the potential energy, the sec-
ond one the kinetic energy. E [t ] has the property that it remains constant if x[t ]
evolves after the digital resonator scheme. We will show this:

E [t +1] = ax[t +1]x[t ]+ (x[t +1]−x[t ])2

= a((2−a)x[t ]−x[t −1])x[t ]+ ((2−a)x[t ]−x[t −1]−x[t ])2

= a(2−a)x[t ]2 −ax[t ]x[t −1]+ (x[t ]−x[t −1]−ax[t ])2

= a(2−a)x[t ]2 −ax[t ]x[t −1]+ (x[t ]−x[t −1])2 −2ax[t ](x[t ]−x[t −1])+a2x[t ]2

= a(2−a)x[t ]2 −ax[t ]x[t −1]+ (x[t ]−x[t −1])2 −a(2−a)x[t ]2 +2ax[t ]x[t −1]

= ax[t ]x[t −1]+ (x[t ]−x[t −1])2 = E [t ] .

What does this mean for the amplitude of the signal? When the signal reaches its
maximum, then there is almost no kinetic energy so we have

E [t ] ≈ ax[t ]x[t −1] ≈ ax[t ]2 .
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When a changes to a2 in this situation, we get an oscillation with changed fre-
quency, changed energy by a2/a, but equal amplitude, which is desirable. How-
ever, when a changes at a zero crossing, i.e. when there is only kinetic energy,
the energy remains the same. And this means that the amplitude will be changed
because at the next peak the energy ax[t ]2 will still be the same, which can only
be achieved by a changed amplitude because a has changed. This has to be com-
pensated or, better, the signal has to be initialized again.

The second method for sinusoid synthesis is synthesis by inverse Fourier
transform. Here, the spectral pattern of a sinusoid is added to the bins in the
frequency domain, followed by an inverse Fourier transform and the application
of a synthesis window, just as in the phase vocoder. To do this, first a pure sine
wave has to be windowed and transformed in order to get the proper coefficients.
These can be stored in a table and copied into the bins of a frame when needed.

Fortunately, not all combinations of frequencies, amplitudes and phases have
to be stored. Amplitudes can be adjusted by simply multiplying the coefficients,
so only a normed amplitude has to be stored. Similarly, the phase can also be
adjusted by multiplication with eiϕ. Moreover, as all coefficients of a single sinu-
soid should have the same phase, no phase information has to be stored at all.
Also, coefficients for two frequencies with an integer bin-distance are exactly the
same, just shifted by a certain number of bins; so only coefficients for frequen-
cies between bin 0 and 1 have to be stored. And finally, coefficients far from the
frequency of the sinusoid are negligibly small, so only a small number of bins
around the center frequency has to be considered. To sum up, we need the fol-
lowing coefficients:

C f [w] =
n/2−1∑

s=−n/2
h[s]ei2π f s/ne−i2πw s/n =

n/2−1∑

s=−n/2
h[s]e−i2π(w− f )s/n ,

where w = −b, . . . ,b is integer, b is the approximation bandwidth, and f ∈ [0,1),
or better f ∈ [−0.5,0.5), is real. w and f can even be combined into v = w − f :

C (v) =
n/2−1∑

s=−n/2
h[s]e−i2πv s/n .

This can be implemented by a strongly zero-padded Fourier transform of the
window h[s] for arbitrarily detailed resolution of v . Higher resolutions can also be
achieved by interpolation of C (v). For symmetric windows h[s], the coefficients
C (v) will be real. See Figure 35.

Altogether, for the synthesis of a sinusoid with frequency f , amplitude A and
instantaneous phaseϕ, we have to copy AC (w− f )eiϕ into bin w . Note that, here,
f ∈ [0,n/2] instead of [0,0.5], so correctly it should be AC (w −n f )eiϕ.
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Figure 35: Spectral motif C (v) for Hann window, used for IFFT synthesis (n f =
5.3, ϕ=π/4)

What are the benefits of this method? It seems at first that it is slower than the
resonator method because, whereas the latter only requires one multiply- and
one add-operation per sample, the IFFT-method requires O(n logn) operations
per frame of size n for the inverse FFT, which means O(logn)/(1−overlap) oper-
ations per sample. However, the O(b) operations to fill the bins only have to be
executed once for a frame. Therefore, the IFFT method will be faster if a large
number of sinusoids have to be synthesized, because the inverse FFT has to be
performed only once.

A problem with overlap-add IFFT synthesis is that a change in frequency can
lead to interferences in the overlap regions. Also, the more overlap the lower the
computational efficiency. Therefore, there exists an approach to use no overlap
at all. The result of the inverse Fourier transform has to be inverse windowed
with h[s]−1. Depending on the bandwidth b, there will be approximation errors,
especially at the borders. As a countermeasure, either the bandwidth b could be
increased, or a bit of the border can be truncated. Both methods increase the
computational complexity, either by increasing the work to fill more frequency
bins, or by reducing the hop size, which is now equal to the FFT size minus the
truncation, while the amount of computation per hop remains almost the same.
However, if the best compromise of b and truncation is found, the method turns
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Figure 36: A signal in double logarithmic representation, its residual signal with
the re-synthesized harmonic part removed, and a straight-line segment approxi-
mation with logarithmically spaced segments

out to be more efficient and has no overlap interference problems. Phases have
to be calculated exactly so that frequency changes happen without phase jumps
at the border.

The residual signal is found by subtracting the re-synthesized signal from the
original signal. This can be in the time domain or in the frequency domain. If it
is done in the time domain, then the window and hop sizes can be reduced. This
is preferable because frequency resolution is not that important for the residual
signal, while time resolution should be higher in order to better represent short
noises such as consonants in speech or tone onsets of instruments. If the sub-
traction is done in the frequency domain, however, then no additional FFT has to
be performed for the residual analysis.

The residual signal is – or should be – a stochastic signal, which means that
only the spectral shape without the phase information is necessary for sufficient
reproduction of the sound. The analysis of the signal is done in the frequency
domain by curve fitting on the magnitude spectrum. The simplest case would
be straight-line segment approximation: the frequency domain is decomposed
into equally or logarithmically spaced segments, then the maximum magnitude
is found in each segment, and each segment is substituted by a point with this
magnitude; the points are linearly interpolated by straight-line segments. See
Figure 36. The segment number and sizes can be adjusted to the complexity of
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Figure 37: A harmonic signal with spline-interpolated peaks, pitch shifting with
timbre preservation, and spectral shape shifting

the sound. Another possibility would be spline interpolation.
The synthesis of the residual signal could be done by a convolution of white

noise and the impulse response of the magnitude spectrum. A better way is, of
course, to fill each frequency bin with a complex value that has the magnitude
from the measured magnitude spectrum and a random phase. The phases must
be re-randomized in each frame in order to avoid periodicity.

A simple application of the above method is a filter with arbitrary resolution.
As we know the exact frequency of the involved sinusoids, we can drop them if
they are slightly out of a specified range. This results in a very steep transition
band which could hardly be achieved by a normal filter.

Pitch shifting can be implemented in this scheme very easily. The frequency
of each sinusoid can be shifted or scaled individually. It is also possible to ap-
ply timbre preservation, which means that the spectral shape should remain the
same while the frequencies are shifted. See Figure 37. As an approximation of
the spectral shape, linear or spline interpolation of the magnitudes between the
sinusoids is calculated at the position of the shifted or scaled frequencies, and
the interpolated magnitude is used as the new magnitude of the sinusoid.

Time stretching can also be implemented in this scheme. The hop-size can
be the same for analysis and synthesis. However, because the frames are read
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at a different rate in analysis as they are written in synthesis, sometimes anal-
ysis frames are used twice when time is stretched, or not at all when time is
compressed. To avoid the smoothing of attack transients, analysis and synthe-
sis frame rates can be set equal for a short time. Attack transients can be detected
by fast changing energies in certain frequency ranges.

Pitch correction is achieved by first detecting the pitch of a signal, then quan-
tifying it towards the nearest of the 12 semitones of the octave. All sinusoids are
the pitch-scaled by the same factor so that the pitch matches the correct semi-
tone. This enables unskilled singers to sing in perfect tune. It was popularized as
a recording and performance effect by the Auto-Tune software.

A spectral shape shift is the opposite of pitch shifting with timbre preserva-
tion. See Figure 37. The frequencies of the sinusoids remain the same while the
spectral shape is moved up or down the frequency scale. This can change the
timbre of a sound without changing its pitch. Gender change can be achieved by
a combination of pitch scaling, by an octave for instance, and moving the spec-
tral shape along with the pitch if the target gender is female, as this is a feature of
the female voice. In the female-to-male case, the spectral shape has to be moved
in the opposite direction to remove the feature.

Hoarseness can be simulated by simply increasing the magnitude of the resid-
ual signal.

3.3 Linear Predictive Coding

Another way to represent the spectral shape of a signal is linear predictive coding
(LPC). It models the signal x[t ] with a filter p that predicts x[t ] from previous
values x[t −k] so that the difference, the residual signal e[t ] = x[t ]− (p ∗ x)[t ] is
as small as possible.

(p ∗x)[t ] = p[1]x[t −1]+p[2]x[t −2]+ . . .+p[m]x[t −m] .

To re-synthesize the signal from p, one uses x[t ] = (p ∗x)[t ]+e[t ]. If the residual
signal e[t ] is not known exactly because it has been quantized to ẽ[t ] for data-
compression purposes, or if it is substituted entirely by a new excitation signal
ẽ[t ] (or source signal), then we get

y[t ] = (p ∗ y)[t ]+ ẽ[t ] ,

which is an all-pole IIR filter, similar to the digital resonator.
The question is now how to find the optimum filter coefficients p[k] that min-

imize the residual signal. What we want to minimize is

E :=
∑

t
e2[t ] =

∑
t

(x[t ]−p[1]x[t −1]−p[2]x[t −2]− . . .−p[m]x[t −m])2 .
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The optimum is found by deriving this with respect to all p[k] and setting the
result to zero.

0 = dE

dp[k]
=

∑
t

2e[t ]
de[t ]

dp[k]
= 2

∑
t

e[t ]x[t −k] = 2
∑

t

(
x[t ]−

∑

j
p[ j ]x[t − j ]

)
x[t −k]

⇔
∑

j
p[ j ]

∑
t

x[t − j ]x[t −k] =
∑

t
x[t ]x[t −k] .

This a system of equations involving the autocorrelation of x, which can be sub-
stituted by a windowed version in order to get more stable filter coefficients.

rxx [s] :=
∑

t
w[t ]x[t ]w[t − s]x[t − s] .

Thus, we get ∑

j
p[ j ]rxx [k − j ] = rxx [k] ,

which is an equation system in the form of a Toeplitz matrix, i.e. it has constant
diagonals Mk,k−i = rxx [k − (k − i )] = rxx [i ].

Such a system is best solved with the Levinson-Durbin recursion. Let T (n) be
the upper left n ×n-sub-matrix of Mk, j = rxx [k − j ], and p(n) the solution vector
of T (n)p(n) = y (n) where y (n) = rxx [1 . . .n]. Then

T (n+1)
(

p(n)

0

)
=

(
y (n)

ε

)
. (1)

We want rxx [n + 1] instead of ε, though. With the help of a vector b(n) which
satisfies T (n)b(n) = (0, . . . ,0,1) we can calculate

T (n+1)p(n+1) = T (n+1)
((

p(n)

0

)
+ (rxx [n +1]−ε)b(n+1)

)
= y (n+1) . (2)

Now we have to find those vectors b(n). For that, we will simultaneously find
vectors f (n) satisfying T (n) f (n) = (1,0, . . . ,0). Also in a recursive approach we get

T (n+1)
(

f (n)

0

)
=




1
0
...
ε f




, T (n+1)
(

0
b(n)

)
=




εb

0
...
1




. (3)
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Now we find α and β so that

T (n+1) f (n+1) = T (n+1)
(
α

(
f (n)

0

)
+β

(
0

b(n)

))
=α




1
0
...
ε f



+β




εb

0
...
1



=




1
0
...


 , (4)

which can be found by solving

α+βεb = 1, αε f +β= 0 ⇒ α= 1

1−εbε f
, β=−ε f α . (5)

The same has to be done to find b(n+1). However, it turns out that for symmetric
Toeplitz matrices, as is the case here, b is just f with reversed order of elements,
and also ε f = εb .

Thus, by recursion from n+1 = 1 to m (the length of filter p), the optimal filter
coefficients can be found in O(m2) complexity, compared to O(m3) of normal
equation solving.

Example.
x = (1,2,1,−1,−2,−1)

rxx [0] = 12 +22 + . . . ,rxx [1] = 1 ·2+2 ·1+ . . . , rxx = (12,7,−2,−6,−4,−1)

To solve for m = 3: 


12 7 −2
7 12 7
−2 7 12







p[1]
p[2]
p[3]


=




7
−2
−6




Iteration n = 0
p(1) = (7/12) =

( 7
12

)
, f (1) = b(1) = ( 1

12

)

Iteration n = 1

ε f = εb = 1

12
·7 = 7

12
⇐ (3)

α= 1

1− 7
12 · 7

12

= 144

95
, β=− 7

12
· 144

95
=−84

95
⇐ (5)

f (2) = 144

95

( 1
12
0

)
+

(
−84

95

)(
0
1

12

)
=

( 12
95
− 7

95

)
, b(2) =

(− 7
95

12
95

)
⇐ (4)

ε= 7

12
·7 = 49

12
⇐ (1)
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p(2) =
( 7

12
0

)
+

(
−2− 49

12

)(− 7
95

12
95

)
=

( 98
95
−73

95

)
⇐ (2)

x[t ], (p(2) ∗x)[t ]:

Iteration n = 2

ε f = εb = 12

95
· (−2)+

(
− 7

95

)
·7 =−73

95
⇐ (3)

α= 1

1− (−73
95

) · (−73
95

) = 9025

3696
, β=−

(
−73

95

)
· 9025

3696
= 6935

3696
⇐ (5)

f (3) = 9025

3696




12
95
− 7

95
0


+ 6935

3696




0
− 7

95
12
95


=




95
308
− 7

22
73

308


 , b(3) =




73
308
− 7

22
95

308


 ⇐ (4)

ε= 98

95
· (−2)+

(
−73

95

)
·7 =

(
−707

95

)
⇐ (1)

p(3) =



98
95
−73

95
0


+

(
−6−

(
−707

95

))


73
308
− 7

22
95

308


=




423
308
−27

22
137
308


 ⇐ (2)

x[t ], (p(3) ∗x)[t ]:

There are two possibilities to apply the predictor p to a signal: as FIR filter
p ∗x and as recursive IIR filter p(r ) ∗x, defined as

y[t ] = (p(r ) ∗x)[t ] := x[t ]+ (p ∗ y)[t ] = x[t ]+p1 y[t −1]+ . . .+pm y[t −m] ,

where x is often called the “excitation” of p(r ). If the recursive prediction filter is
excited with the prediction residual, then it is easy to see that the original signal
is reconstructed:

y = p(r ) ∗ (x −p ∗x) = x −p ∗x +p ∗ y ⇒ y −p ∗ y = x −p ∗x ⇒ y = x .

Figure 38 shows that the residual x−p∗x is “whitened”, i.e. the spectrum is made
flatter, and the predictor itself represents the spectral shape of x. It is important to
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Figure 38: A harmonic signal x consisting of 7 sinusoids, the prediction residual
x−p∗x, and the impulse excited recursive prediction (impulse response of p(r )),
depicted in time and as a spectral plot for predictor sizes m = 10 and m = 100.
Note that the prediction residual is “whitened”, i.e. its peaks are all at the same
level, contrary to those of x, whereas the predictor represents the spectral shape,
as revealed by p(r ) ∗δ. For large m, the predictor also represents the peaks.
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Figure 39: Construction of the cepstrum c with low-pass filtering in dashed lines

see that the order (length) m of the filter p determines how exact the spectral rep-
resentation of the signal is. Low-order filters represent a coarse approximation of
the spectrum, which corresponds to the spectral shape as in peak-interpolation.
This can be used for sound mutation by filtering the residual of a signal x1 with
the recursive LPC-filter p(r )

2 of signal x2:

y = p(r )
2 ∗ (x1 −p1 ∗x1) .

The LPC-method is very well suited for speech processing, as the filter rep-
resents the formants of the vowels. Thus, the method is widely used in speech
analysis, synthesis and compression.

3.4 Cepstrum

Yet another method to represent the spectral shape is the cepstrum. It is basically
a smoothing of the magnitude spectrum by a Fourier method. The first part is to
inversely Fourier-transform the logarithm of the magnitude spectrum.

c[t , s] := 1

n

n/2−1∑

w=−n/2
log |X [t , w]|ei2πw s/n .
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See Figure 39. The result is called the real cepstrum – the normal cepstrum would
include the phase as an imaginary part before the inverse Fourier transform. It is
then low-pass filtered in the s-domain by a window

l [s] =
{

1 −sc ≤ s < sc

0 else,

where sc is the cutoff “quefrency”. The forward Fourier transform then yields a
smoothed spectrum in the logarithmic domain (dB):

Cl [t , w] =
n/2−1∑

s=−n/2
c[t , s]l [s]e−i2πw s/n .

By using a high-pass window h[s] = 1− l [s] instead of l [s], we get the comple-
mentary source envelope which satisfies

log |X [t , w]| =Cl [t , w]+Ch[t , w] ,

or, according to the properties of the logarithm:

X [t , w] = exp(Cl [t , w])exp(Ch[t , w])eiϕ[t ,w] .

So, exp(Cl [t , w]) is the filter or spectral envelope, whereas exp(Ch[t , w])eiϕ[t ,w] is
the source signal (source-filter separation).

Sound mutation can again be implemented with this scheme by calculating
the envelopes of two signals x(1) and x(2), and putting them together in the fol-
lowing way:

Y [t , w] = exp(C (1)
l [t , w])exp(C (2)

h [t , w])eiϕ(2)[t ,w]

= X (2)[t , w]exp(−C (2)
l [t , w])exp(C (1)

l [t , w]) .

In the same style, formant changing can be done by scaling the spectral en-
velope:

Y [t , w] = X [t , w]exp(−Cl [t , w])exp(Cl [t , w/k])

= X [t , w]exp(Cl [t , w/k]−Cl [t , w]) ,

where k is the scale factor. Of course, in case of pitch shifting, this method can be
used to achieve timbre preservation by whitening the signal before pitch shifting
and applying the spectral envelope afterwards.
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Figure 40: The synchronous overlap-add (SOLA) method for time stretching

The cepstrum can be used for pitch detection. Since the fundamental fre-
quency and the partials of a harmonic sound appear in regular intervals in the
frequency domain with a period that is equal to the fundamental frequency, the
cepstrum will have a peak for this period. There will also be peaks for integer
factors of the period, so the lowest peak should be chosen. The domain of the
cepstrum, i.e. quefrency, is basically a time-measure, representing the period of
the fundamental frequency.

4 Time-Domain Methods

Time stretching can be done in the time domain by shifting overlapping short
segments of a signal in time. As these time-shifted overlaps would produce phase
mismatches and, thus, amplitude fluctuations, the time shift has to be adjusted
to avoid this as far as possible. The approach is as follows (see also Figure 40):
The signal is cut into overlapping segments

xk [t ] = x[kr + t ] for t = 0, . . . ,n −1,

where k is the index of the segment, r is the hop-size, and n is the segment length.
Now the hop-size is changed to r ′. To account for phase matching, each segment

46



x

t

rxx

s

T0/Ts

Figure 41: A signal with partial amplitudes (0.4,0.8,0.4,0.6,0.1,0.2,0.1) producing
a false peak in the autocorrelation rxx at 0.5 ·T0/Ts due to the strong amplitudes
of even partials

shift can be adjusted by an additional shift sk . The segments are then overlap-
added with the help of a fade-in/fade-out window wk .

y[t ] =
∑

k
xk [t −kr ′− sk ]wk [t −kr ′− sk ] .

The best fitting shifts sk can be found by the cross-correlation of subsequent seg-
ments

c[s] =
∑

t
xk−1[t + r ′− sk−1]xk [t − s] ,

and finding the maximum
sk = argmax

s
c[s] .

This method is called SOLA (synchronous overlap-add). For more extreme scal-
ing, segments can be repeated. This can be done by choosing a source segment
k(l ) for each destination segment l and proceeding as before.

If the pitch of the signal can be determined, a variant, PSOLA (pitch-syn-
chronous overlap-add) can be used. In this case, the shift r ′− r + sk − sk−1 must
be a multiple of the pitch period τ. Therefore,

sk = round

(
r ′− r − sk−1

τ

)
τ− (r ′− r )+ sk−1 .

Another way to perform pitch detection is to use auto-correlation. See Figure
41. rxx [s] is supposed to have a peak at a lag of s = T0/Ts , where T0 is the period
of the signal, i.e. T0 = 1/ f0, and Ts is the sampling interval, i.e. Ts = 1/ fs . Thus,
we get s = fs/ f0.
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Figure 42: Panorama

There are some problems with this. First, the lag has to be an integer value
because the auto-correlation is only calculated at integer shifts. Therefore, the
detected fundamental frequencies must not be too high, and the sampling rate
should be high enough. The second problem is that the fundamental frequency
is not the only peak in the auto-correlation signal. Integer multiples of the fun-
damental lag also have peaks of the same order because a signal with a period Ts

is also periodic with a period of kTs . Therefore, the first peak should be chosen.
However, since harmonics of the fundamental frequency also produce periods
of their own, integer fractions of the fundamental lag also produce peaks in the
autocorrelation signal.

5 Spatial E�ects

5.1 Sound Field Methods

Spatial effects can be achieved most easily with multiple loudspeakers, in the
simplest case with two speakers, i.e. stereo speakers. The most basic spatial ef-
fect is panorama. See Figure 42(a). It exploits the fact that, if both speakers emit
the same signal at different volumes, the apparent source direction tends to the
louder speaker. This can be formalized in the following way. Let θl be the angle of
the speakers measured from a point in front of the listener, so that the speakers
are 2θl apart. θ be the angle of the apparent direction of the sound, and gL and
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gR are the gains that the speakers are playing at. Then

p := tanθ

tanθl
= gL − gR

gL + gR
.

When choosing the gains gL and gR , one has to take care to preserve the total
loudness of the sound. Linear interpolation (linear panning) does not preserve
loudness, it yields a “hole” in the center. The reason for this is that the sound
energy E for the left and right speakers add up, and the energy is proportional to
the square of the gain, so

√
E(g x) =

√
g 2E(x) = g

p
E(x), and

√
E(gL x)+E(gR x) =

√
g 2

LE(x)+ g 2
R E(x) =

√
g 2

L + g 2
R

√
E(x) .

Therefore, the proper way to do it is

gL = 1+p√
2(1+p2)

, gR = 1−p√
2(1+p2)

,

so that the “overall gain”
√

g 2
L + g 2

R = 1. See Figure 42(b). All this is, however, only
true for broadband signals and low frequencies. Therefore, one might choose to
use a different panning θ/θl for higher frequencies.

Another possibility to modify the apparent source direction of a sound is to
introduce a short delay of up to 1 ms between the two speakers. The sound will
appear to be nearer to the speaker that emits the sound first. This is called the
precedence effect. It has a similar behavior to the panorama effect, but depend-
ing on the time difference between left and right speaker. However, the effect
strongly depends on the type of sound being played and the frequency.

When operating with headphones, inter-aural differences play a big role.
The inter-aural intensity difference (IID) is basically a panorama effect, but it de-
pends on the frequency. Because higher frequencies have less diffraction, the
head shadows a sound more in the higher frequencies. Therefore, the IID is
higher for higher frequencies for a sound source placed at an angle to the lis-
tener. The inter-aural time difference (ITD) is the time delay between the two
channels. It also depends on the frequency: below 1 kHz, the difference is greater
than above, but constant otherwise. Of course, IID and ITD both depend on the
angle of the sound source.

IID and ITD, together with shoulder echoes and pinna reflections, are rep-
resented by a head related transfer function (HRTF). See Figure 43. It can be
measured by artificial dummy heads for sound sources at different angles and
approximated by IIR filters of an order of about 10. A different approach is to
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Figure 43: Inter-aural differences and head related transfer function (HRTF)

correlated
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headphones loudspeakers

Figure 44: Influence of correlation on source position and width

approximate the head by a sphere and calculate the IID filter as a first-order IIR
filter. ITD is then implemented by a delay; shoulder echoes by a single echo, also
with angle-dependent delay; and the pinna reflections is a short series of short-
time echoes with angle-dependent delays of only a few samples implemented by
an interpolated tapped delay line.

When listening to sound via headphones, the sound usually seems to come
from inside of the head. Special measures have to be taken to achieve sound ex-
ternalization, i.e. to push the apparent sound source out of the head. See Figure
44. The best method to do so is decorrelation. The correlation coefficient of two
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right traveling wave

left traveling wave

standing wave (sum)

directional difference

t1 t2 t3

x1 x2 x1 x2 x1 x2

Figure 45: Traveling waves, standing waves as sum of waves traveling in opposite
directions, and the directional component as the difference of traveling waves.
The shading indicates air pressure. The small arrows show the air particle ve-
locities. At listening position x1 there is an oscillating standing wave but a zero
difference signal, whereas at x2 the standing wave is zero and the difference sig-
nal is oscillating. See also an animation.

sound signals is given by

r (τ) =
∫

xL(t )xR (t +τ)dt
√∫

x2
L(t )dt

∫
x2

R (t )dt
,

which has a strong peak for lags τ if one signal is just a copy of the other shifted by
τ. Decorrelation can be achieved by complex reverberation or convolution with
uncorrelated white noise.

Additionally, the correlation determines the apparent source width of the sig-
nal. This is important for stereo loudspeakers (not only headphones). A pos-
itively correlated signal seems to be a point-like sound source close to the lis-
tener. A non-correlated signal seems to be a wide sound source at half distance
to the loudspeakers. A negatively correlated signal seems to be a point-like sound
source between the loudspeakers. See Figure 44.

A general approach to capture 3D audio is sound field recording. Several mi-
crophones are placed in several directions, and the sound is reproduced by loud-
speakers placed in the same directions. The disadvantage is that the recording
forces a fixed placement of loudspeakers, as in surround sound. A better ap-
proach is Ambisonics. It represents the sound field by a non-directional sound
pressure component W and three directional components X , Y , and Z . See Fig-
ure 45 for how non-directional and directional components relate to traveling
waves. So, if the sound can arrive from all directions, front, back, left, right, up,
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Figure 46: Ambisonics sound field recording with directional microphones, and
Ambisonics sound field reproduction with several loudspeakers

down, then

W = front+back+ left+ right+up+down

X = front−back

Y = left− right

Z = up−down

If a signal x arrives from a direction ~u, then

(W, X ,Y , Z ) = (
p

2/2,~u) · x .

See Figure 46. For decoding, i.e. playback of the sound field, at least four (bet-
ter six) loudspeakers are required. A loudspeaker at direction ~u shall produce a
sound according to

1

2
(G1W +G2(X ,Y , Z )T~u) ,

where G1 and G2 depend on the theory (there are several) and might be frequency-
dependent, i.e. they might be filters. A disadvantage of Ambisonics is that there
will probably be so-called “sweet spots”, i.e. places where the sound field is repro-
duced convincingly, whereas one step away the sound field reproduction might
collapse or be inverted. If the elevation component of the sound field is not
needed, the Z channel can be ignored. On the other hand, there are higher-
order versions of Ambisonics, where the first-order spatial derivatives X ,Y , Z of
the sound field are supplemented by higher derivatives.

5.2 Reverberation

The apparent distance of a sound from the listener can be easily influenced by
reverberation. There is always the direct sound that reaches the listener first,
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Figure 47: The room-within-a-room model with several sound trajectories from
a sound source to two speakers in the inner room

and one or more delayed copies of the sound at lower volumes. This simulates
reflections from walls. The ratio of direct to reverberating sound is a cue for the
distance of the sound source, because the reverberating sound basically does not
become more silent when the sound source is more distant, it fills the room con-
tinuously. The direct sound, however, loses energy with the distance because the
sound energy is spread on the surface of a growing sphere originating from the
sound source. Thus, by making the direct sound more quiet and the reverbera-
tion louder, the sound source seems more distant.

A more elaborate method is to calculate the delays of the reverberations from
reflections of virtual walls. If Td is the time the direct sound takes from the sound
source to the listener, and Tr is the time the sound takes to be reflected from
a wall and reaching the listener in this way, then the delay Tr − Td will give a
cue for the position of the sound source, especially when several reflections are
calculated. Such delays can easily be implemented by a delay line.

If reverberated sound is reproduced by loudspeakers, the room that contains
the listener and the loudspeakers will introduce reverberations itself, which can-
not be avoided. A robust method to cope with this situation is the room-within-
a-room model. See Figure 47. The sound source is placed in a virtual room sur-
rounding the actual listening room which is assumed to have holes in the wall at
loudspeaker positions, permitting sound from the outer room to arrive in the lis-
tening room. The sound, as it appears at the loudspeakers, is delayed according
to the path length l from the sound source in the outer room to the loudspeaker
(hole) position by l/c, where c is the speed of sound. The paths may, of course,
include reflections on the walls of the outer room. The gain is set to 1/l , with l be-
ing measured in meters, according to the energy distribution on spherical sound
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waves. The gain might be limited to 1 to avoid infinite (or too high) gains. Also,
speakers having opposite directions of the sound source might be attenuated,
giving a better localization of the sound source.

The calculation of sound paths with reflections can become computationally
demanding when multiple reflections are included until the attenuation by dis-
tance and damping at the walls lets the amplitude drop below a threshold. How-
ever, starting from a certain path length, the sound waves become planar and are
somehow aligned with the room geometry. For simplicity, we assume a rectan-
gular room of size (lx , ly , lz ). The reverberating sound waves then are grouped
in normal modes, represented by a discrete mode number vector (nx ,ny ,nz )
(ni = 0,1, . . .), meaning that there is a standing wave with a wavelength of

λn = 2

((
nx

lx

)2

+
(

ny

ly

)2

+
(

nz

lz

)2)− 1
2

.

See Figure 48. For n = (1,0,0) there is a standing wave with air-pressure oscil-
lating between the left and the right wall, or a wave traveling from left to right
and back, so there is a wavelength of two times the room size in x-direction. For
n = (1,1,0), opposing edges of the room have the same air-pressure, which oscil-
lates between neighboring corners of the room. According to these wave lengths,
the impulse response of the room will have resonances at frequencies fn = c/λn .
For irreducible triplets n, this frequency will be a fundamental frequency with
multiples of the triplets generating harmonic frequencies. These parts of the re-
verberation can thus be implemented by comb filters with a feedback delay line.

Often, one does not want the artificial reverberation to introduce “coloration”
of the sound, i.e. the magnitude response should be flat. Therefore, the simplest
tool of recursive reverberation is the delay-based all-pass filter:

y[t ] = (a ∗x) = cx[t ]+x[t −m]− c y[t −m] .

The idea is that, for later echoes, the signal is repeated with exponentially de-
creasing magnitude in constant intervals that depend on the modes of the room,
where m represents the round-trip time of a mode, i.e. λn/c.

A popular combination of the techniques is Moorer’s reverberator. See Fig-
ure 49. The overall structure is a first part that represents the early reflections
with a delay-based FIR filter

y1[t ] = x[t ]+a1x[t − l1]+ . . .+an x[t − ln] ,

where the delays li are based on the sound trajectories. This is followed by IIR
comb filters with a low-pass filter in the loop

y[t ] = (c ∗x)[t ] = x[t ]+ g (l ∗ y)[t −m]
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n =
(1,0,0)

(0,1,0)

(1,1,0)

(2,1,0)

(2,3,0)

α
α

lx/nx

ly /ny

λn/2

λn /2
ly /ny

= lx /nxp
(ly /ny )2+(lx /nx )2

⇒ λn = 2 1p
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Figure 48: Two-dimensional room modes for several mode number vectors n.
Time progresses from left to right and spans half a period, it then continues from
right to left. The shading indicates air pressure. Full lines represent the wave
front and dotted lines the corresponding valley of the wave. The double arrow in-
dicates the half wavelength λn/2. See also animations for (1,0,0), (0,1,0), (1,1,0),
(2,1,0), (2,3,0).
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Figure 49: Moorer’s reverberator
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Figure 50: A Feedback Delay Network (FDN)

applied in parallel to the output of the FIR part

y2[t ] = c1 ∗ y1 + c2 ∗ y1 + . . .+ co ∗ y1 ,

where the delays mi are based on the wavelengths of the room modes, and the
low-pass filter simulates the behavior of the walls. The result is fed into an all-
pass filter, delayed and mixed together:

y3[t ] = y1[t ]+ (a ∗ y2)[t − ln −k] .

The last delay guarantees that the late diffuse reverberation from the comb and
all-pass filters appear after the last early reflection from the FIR part.

A generalization of the recursive comb filter y[t ] = x[t ]+ g · y[t −m] is the
feedback delay network (FDN). See Figure 50. The feedback coefficient g is sub-
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stituted by a matrix G so that

~y[t ] = x[t − ~m]~b +G~y[t − ~m] and y[t ] = d x[t ]+~cT~y[t ] ,

where ~y[t − ~m] means that each component of ~y is delayed by a different delay
mi . If G is a diagonal matrix, the result is just a set of parallel comb filters as in
Moorer’s reverberator. The non-diagonal elements of G account for the interac-
tion between the room’s normal modes due to diffusive elements such as pieces
of furniture.

Taking the z-transform, we get

~Y (z) = diag
(
z−~m

)(
~bX (z)+G~Y (z)

)
,

(
diag

(
z ~m

)
−G

)
~Y (z) =~bX (z) ,

H(z) = Y (z)

X (z)
= d +~cT

(
diag

(
z ~m

)
−G

)−1
~b .

Now the poles and zeros of this expression can be analyzed. The poles are found
by the solution of det(diag(z ~m)−G) = 0. They should be kept inside the unit cir-
cle to achieve a stable system. Moreover, they should all have the same absolute
value, so that all modes will decay at the same rate, so no “coloration” will hap-
pen. In order to achieve this, first a lossless prototype is found with the poles all
on the unit circle, for instance by choosing G as a unitary matrix. Then, atten-
uation coefficients αmi are introduced in the feedback loops. Finally, one does
want to make higher frequencies decay faster, so the attenuation coefficients are
substituted by lowpass filters.

Feedback matrices should be of a special form so they can be implemented
in a fast way. One possibility are circular Toeplitz matrices, which represent a
circular convolution and can therefore be implemented by Fourier methods in
n logn complexity.

5.3 Convolution Methods

Real room reverberations can be implemented by first measuring the room im-
pulse response and then convolve the input signal with the impulse response.
For the first step, one could emit an impulse from a loudspeaker at the sound
source position and record the resulting sound at the listener position. The prob-
lem with this approach is that loud impulses are bad for the loudspeaker, whereas
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Figure 51: A linear feedback shift register of size 4 to produce a maximum length
sequence (MLS) of size 24 −1 = 15

quiet impulses do not produce enough sound to record reliably. The reason is
that an impulse is the signal with the highest possible crest factor

C = peak |x|
RMS(x)

.

The ultimate solution to this problem are maximum length sequences (MLS).
They are pseudo-random binary (bit) sequences, generated by linear feedback
shift registers. Bits in a such a shift register are shifted to the right in each step,
and the leftmost bit is calculated from other bits by XOR operations. An example
with a shift register size of 4 (a3, a2, a1, a0) is

a3[t ] = a0[t −1] XOR a1[t −1] , ak [t ] = ak+1[t −1] for k = 0,1,2 .

See Figure 51. For initial values 0001 for a, the result is

a0[t ] = 100010011010111100010011010111100010011010111 . . .

Such sequences have several nice properties. First, for a shift register of size m,
the sequence will have a length of 2m −1 (15 in our case) before it repeats itself.
Half of the runs are of length 1, a quarter of length 2, an eighth of length 3, and
so on. Approximately half of the bits are 1. If 0 is substituted by −1, the resulting
signal has a crest factor of 1, the minimum possible.

And it has a correlation property stating that the auto-correlation function
(when we have −1 instead of 0) is very close to a train of impulses at intervals of
2m −1, i.e.

(a?a)[k] =
2m−2∑
t=0

a[t ]a[t −k] ≈
{

2m −1 k = 0 mod 2m −1

0 else.

So, apart from the repetition at (long) intervals and the scaling, the result is ap-
proximately the Kronecker delta δ. This can be used to extract the room impulse
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Figure 52: Two methods for blocked convolution with FFT. The shaded shapes
represent four exemplary positions of the (reversed) impulse response h together
with their corresponding coefficients in the output blocks of x ∗h.

from the recording of a MLS emitted from a loudspeaker in the room in the fol-
lowing way. If h is the impulse response, then the recording will be y = h∗a. Now,
if we correlate y with a again, we get

y ?a = h ∗a?a = h ∗δ= h .

The direct convolution of the impulse response with an input signal in the
time domain is computationally very costly. Because of the convolution theorem,
however, there are faster methods using the FFT. The signal is split into blocks of
size n, transformed and multiplied with the transformed impulse response of size
m, then transformed back. The resulting convolution is circular, though.

FFT−1 (
FFT(x[0], . . . , x[n −1])¯FFT(h[0], . . . ,h[m −1], . . . ,0︸ ︷︷ ︸

length n

)
)

= (x[0]h[0]+x[n −1]h[1]+x[n −2]h[2]+ . . . , . . .) ,

where ¯ is pointwise multiplication.
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To avoid the circular overlaps, both the block and the impulse response have
to be zero-padded to length n +m −1 (see Figure 52(a)).

FFT−1 (
FFT(x[0], . . . , x[n −1], . . . ,0︸ ︷︷ ︸

length n+m−1

)¯FFT(h[0], . . . ,h[m −1], . . . ,0︸ ︷︷ ︸
length n+m−1

)
)

= (x[0]h[0], x[1]h[0]+x[0]h[1], . . . , x[n −1]h[0]+ . . .+x[n −m +1]h[m −1],

x[n −1]h[1]+ . . .+x[n −m]h[m −1], . . . , x[n −1]h[m −1]) .

The result has to be overlap-added.

x[0]h[0]
x[1]h[0]+x[0]h[1]
...
x[n −1]h[0]+ . . .+x[n −m +1]h[m −1]
x[n −1]h[1]+ . . .+x[n −m]h[m −1] +x[n]h[0]
...

...
x[n −1]h[m −1] +x[n +m −2]h[0]+ . . .+x[n]h[m −2]

...
+x[2n −1]h[m −1] ,

where the left column is the processing of block x[0, . . . ,n −1] and the right col-
umn of x[n, . . . ,2n −1].

Another possibility would be to let input blocks of size n +m −1 overlap and
discard m −1 samples of the result (see Figure 52(b)).

FFT−1 (
FFT(x[−m +1], . . . , x[n −1])¯FFT(h[0], . . . ,h[m −1], . . . ,0︸ ︷︷ ︸

length n+m−1

)
)

= (x[−m +1]h[0]+x[n −1]h[1]+ . . ., . . ., x[−1]h[0]+ . . .+x[n −1]h[m −1],

x[0]h[0]+ . . .+x[−m +1]h[m −1], . . . , x[n −1]h[0]+ . . .+x[n −m]h[m −1]) .

The big problem of these methods is the latency introduced by the block size.
The latter approach can, however, be modified to achieve almost zero latency
with a bit more computation. The idea is to split the impulse response h into
blocks h1,h2,h3, . . . of increasing power-of-two size, so that short term responses
are calculated with short filters and later responses with larger filters. The out-
put of these filter-blocks has to be summed. See Figure 53. Because there is on
overlap of input and output of the size of h1, we have to introduce some latency,
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Figure 53: Splitting the impulse response h into three parts h1, h2, h3 with sep-
arate FFT-convolutions which have to be summed. Three points of time in the
signal are depicted. See also an animation with time progressing indefinitely.
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Figure 54: Blocked FFT-convolution with a latency of only one or two h1-blocks,
respectively. The gray subblocks have to be summed and output. See also an
animation of (a) and (b).
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so that the output is produced after the corresponding input has been read. See
Figure 54(a). When a block of the size of h1 has been read from the input, the
h1-computation is moved one block to the right. If no h2-output has yet been
produced for that position, the h2-computation is moved two blocks to the right,
and so on for h3, h4, . . . The result is a latency of only one h1-block.

However, this is only theoretical because the computation of the convolu-
tions would have to be performed in 0 time. Practically, for the computation of
one block, the time of one block has to be reserved. The scheme in Figure 54(b)
solves this. Whenever a block of certain size and alignment has been read, its
processing is started and can take up to the time of that block to be completed
before being summed with other blocks and output. The latency is twice the size
of a h1-block.

Note that by prepending a block h0 of the size of h1 (or twice that in the sec-
ond case), whose input is located to the right of h1’s input, overlapping the output
of h1, and performing this convolution directly sample-by-sample without FFT,
one could create a zero-latency convolution. In reality, I/O is blocked anyway,
though.

6 Audio Coding

We will first look at lossless audio coding. The simplest approach is silence com-
pression, where runs of zero values are encoding with runlength-coding, i.e. a
single codeword followed by the coding of the length of the zero-run. Almost
silent parts could be set to zero, making this approach a lossy coding scheme.

All state-of-the-art lossless audio codecs use linear prediction (linear predic-
tive coding), where a filter with optimized coefficients (Levinson-Durbin recur-
sion) is used to predict the samples. In lossless coding, the prediction error has to
be encoded. The differences between prediction and real samples follow a two-
sided geometric distribution:

pk = P (x[t ]− (p ∗x)[t ] = k) ∝ s−|k| .

Such values can be efficiently encoded with Rice codes, or Golomb-Rice codes.
To encode k, an optimal parameter M for the variance of the distribution has to
be found, where M is a power of two for Rice codes. k is divided by M to give a
quotient q and a remainder r :

k = M q + r .

Then q is encoded as a unary code, i.e. as q ones followed by a zero, and r is
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Figure 55: The two-sided geometric distribution pk = 1
6 · 1.4−|k|, and its self-

information − log2(pk ) compared to the codelengths for M = 4

simply encoded as log2(M) bits. For M = 4 we get:

k code k code k code k code
0 000 4 1000 8 11000 12 111000
1 001 5 1001 9 11001 13 111001
2 010 6 1010 10 11010 14 111010
3 011 7 1011 11 11011 15 111011

This is only suitable for positive k, though. To allow for signed k, positive num-
bers can be mapped by k 7→ 2k for k ≥ 0, and k 7→ 2|k| −1 for k < 0. See Figure
55.

In forward-adaptive prediction (see Figure 56(a)), the optimal coefficients
are calculated at the encoder side, quantized, and encoded so that the decoder
can use the same coefficients to get the same prediction values, and, by adding
the encoded prediction error, the correct reconstructed samples. In backward-
adaptive prediction (see Figure 56(b)), the optimal coefficients are calculated
from a previously coded block of the signal. As this can also be done at the de-
coder side, the coefficients do not have to be encoded. Although coefficients are
not directly optimized for the block to be encoded, it allows for longer filters and
non-quantized coefficients.

In long-term prediction (see Figure 57), the signal is not predicted from di-
rectly preceding signal values, but from values further in the past, i.e. delayed by
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Figure 56: Adaptive prediction with prediction coefficients calculated either from
the current or the preceding block. At each beginning of a block, the “Lev.-Dur.”
operator calculates optimal prediction coefficients p from that block, so in “looks
into the future”, except when the signal is delayed by one block in (b).
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Figure 57: Short-term and long-term prediction
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Figure 58: Filter banks for lossy audio coding. The Hi are bandpass filters with
different center frequencies. ↓ n is downsampling by a factor of n. ↑ n is upsam-
pling, i.e. insertion of n −1 zeros after each element. The Gi then turn this back
into signals with the corresponding center frequency. The filters Hi and Gi have
to fulfill a “perfect reconstruction” constraint.

some τ. One to five values around t −τ are chosen for prediction. This method is
very efficient on periodic signals. τ has to be found as the optimal period of the
signal and encoded. Short-term and long-term prediction can be combined.

Standards and software such as FLAC (Free Lossless Audio Codec) and MPEG-
ALS use these approaches with many optimization details.

For lossy audio coding, early approaches include µ-law and A-law encoding,
which is just logarithmic quantization in order to decrease the quantization step
size for low-magnitude signals. Then, linear prediction can be used while quan-
tizing the prediction errors in order to reduce the required number of bits. In
DPCM (differential pulse code modulation) and ADPCM (adaptive DPCM), only
quantized prediction errors are encoded; in pure linear predictive coding, only
the prediction filter coefficients are encoded; and in CELP (code excited linear
predictor), both are encoded.

More advanced lossy audio codecs operate in the frequency domain, though
(transform coding). The problem here is that, if the transform is executed on
blocks, then the block borders will introduce high frequency artifacts, which leads
to bad compression performance. On the other hand, when windowed overlap-
ping blocks are used, then the number of Fourier coefficients is increased by the
overlap factor, which contradicts the purpose of data compression. There are
two methods to cope with this problem: first, filter banks can be used instead of
blocked transforms. See Figure 58. This approach is taken in MPEG audio level
1–2.

Another possibility is the modified discrete cosine transform (MDCT). It is
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Figure 59: First four basis functions of the MDCT for n = 128.
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(n per block) stays the same.

66



Figure 61: Frequency masking

defined as

X [w, t ] =
2n−1∑
s=0

x[nt + s]cos

(
π

n

(
s + 1

2
+ n

2

)(
w + 1

2

))
,

where n is the hop-size, 2n the block size, and w = 0, . . . ,n−1. Figure 59 shows the
first four basis functions of the MDCT. Note that each block of size 2n produces
only n MDCT coefficients. However, there is a 50% overlap of the blocks, and this
overlap is orthogonal, so no information is lost in the transform. See Figure 60.
The MDCT blocks can be windowed, where the window functions have to satisfy
w[s]2+w[s+n]2 = 1. The MDCT is used in MPEG audio layer 3 (MP3, in addition
to filter banks), in MPEG-AAC (advanced audio coding), and in Vorbis.

Once audio data is represented in the transform domain, it can be quantized
and encoded with entropy coders such as Huffman or arithmetic coding. There
is, however, a huge gain in efficiency achievable with adaptively choosing quan-
tization factors on a coefficient basis. The key for this is psychoacoustics.

The first effect in psychoacoustics is frequency masking, as shown in Figure
61. Apart from the general frequency-dependent audibility threshold, there is
the following effect: Sinusoids with a frequency near a sinusoid with higher am-
plitude are masked out, i.e. the human ear or brain does not notice them. There-
fore, coefficients below or near a masking threshold can be dropped or at least
quantized more aggressively.

The second effect is an extension of frequency masking: temporal masking,
as shown in Figure 62. The masking of a sinusoid continues for a short while after
the masking sinusoid has already disappeared. All this masking information has
to be calculated in the frequency domain and used in a quantization adaptation
loop with a target bit-rate as a goal. Psychoacoustics is used in all state-of-the-art
lossy audio codecs, such as MP3, AAC, Vorbis.

Disadvantages of these codecs are (1) latency, i.e. the delay introduced by
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Figure 62: Temporal masking

blocked processing, which makes them unusable for interactive audio, (2) bad
compression performance for very low bit-rate and speech coding, where pre-
dictive techniques still have advantages, and (3) heavily patent covered tech-
niques. The Opus codec aims to solve all these problems. It uses frequency-
domain techniques for higher bit-rates, but can switch to predictive coding dy-
namically, whenever it achieves lower bit-rates. It also uses small block sizes and
special techniques to overcome the resulting low frequency resolution.

Another improvement adopted recently by many audio codecs is spectral
band replication. For low bit-rates, high frequencies are usually dropped en-
tirely because they would require too many bits and are not necessary for “rec-
ognizable” audio quality. Spectral band replication aims to synthesize higher fre-
quency bands by extrapolating frequency content in lower bands. Harmonic sig-
nals are supplemented with more harmonic frequencies in higher bands, and
low-frequency noise with high-frequency noise. This post-processing step on
the decoder side may be guided by low-bit-rate side information encoded by the
encoder. The result is a signal that, although it only crudely approximates the
original signal, sounds definitely “nice” and can improve comprehensibility of
speech.

68



Index

allpass interpolation, 13
Ambisonics, 51
amplitude followers, 18
amplitude modulation, 16
averager, 20

backward-adaptive prediction, 63
boost, 9

cepstrum, 44
chorus, 15
clipper, 21
comb filter, 14
compressor, 21
constant Q-factor, 12
control flow, 3
crest factor, 58
cross-synthesis, 30
cut, 9

decorrelation, 50
delay, 12
Denoising, 30
detector, 18
digital resonator, 33
distortion, 23
dynamics processing, 18

echo, 15
enhancer, 23
equalizer, 10
exciter, 23
expander, 21

FDN, 56
feedback delay network, 56
flanger, 15
forward-adaptive prediction, 63
fractional delays, 12
fuzz, 23

Gender change, 39

head related transfer function, 49
Hilbert filter, 16
Hoarseness, 39
hop size, 26
HRTF, 49

infinite limiter, 21
inter-aural differences, 49

Lanczos kernel, 13
Levinson-Durbin recursion, 40
limiter, 21
linear interpolation, 12
linear predictive coding, 39
long-term prediction, 63
lossless audio coding, 62
lossy audio coding, 65
LPC, 39

maximum length sequences, 58
MDCT, 65
MLS, 58
modified discrete cosine transform, 65
Moorer’s reverberator, 54
morphing, 30
mutation, 30, 44, 45

noise gate, 21
normal modes, 54

octavers, 24
oscillator, 33
overdrive, 23
overlap, 27
overlap-add, 27

panorama, 48
parametric allpass filter, 4
parametric filters, 4
parametric highpass filter, 5
parametric lowpass, 5
peak continuation, 32
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peak detection, 31
peak filters, 9
phase unwrapping, 28
phase vocoder, 27
phaser, 10
Pitch correction, 39
pitch detection, 32, 46, 47
Pitch shifting, 29, 38
precedence effect, 49
PSOLA, 47
psychoacoustics, 67

Q-factor, 12

re-synthesis, 27
rectifier, 18
residual signal, 37
reverberation, 52
Rice codes, 62
ring modulator, 15
robotization, 30
room impulse response, 57
room-within-a-room, 53
rotary speaker, 13

second-order allpass filter, 5
second-order bandpass filter, 7
second-order bandreject, 7
second-order low-/highpass filters, 8
Second-order shelving filters, 9
shelving filters, 8
short-time Fourier transform, 25
sidebands, 15
signal flow, 3
silence compression, 62
sinc interpolation, 13
single sideband, 17
sinusoidal+residual model, 25
slapback, 15
SOLA, 47
sound externalization, 50
spectral band replication, 68
spectral shape shift, 39
STFT, 25

synthesis, 33
synthesis by inverse Fourier transform, 35

timbre preservation, 38
Time stretching, 38, 46
time stretching, 28
total harmonic distortion, 22
transfer function, 3
tremolo, 16

vibrato, 12

Wah-Wah, 10
whisperization, 30

z-transform, 2
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