

Watermark Embedding in Digital
Camera Firmware

Peter Meerwald,
May 28, 2008

Application Scenario

● Digital images can be easily copied and
tampered

● Active and passive methods have been
proposed for copyright protection and integrity
verification: watermarking and forensics

● This work: simple watermarking in camera
firmware for copyright protection

Camera Forensics

● [Chen08a] Use Photo-Response Non-
Uniformity (PRNU) for camera identification and
integrity verification

● Detecting forgeries (lighting, interlacing,
specular highlights on the eye, JPEG
quantization, double compression, chromatic
aberration, image statistics, resampling, region,
duplication, CFA Interpolation [Popescu05a],
[Hani Farid])

“Secure Digital Camera”: Watermarking
● [Blythe04a] Capture human iris image through

viewfinder, embed in camera image together with
camera identification and image hash

● [Lukac06a] Emboss visible watermark in CFA domain

● [Mohanty07c] VLSI architecture for robust and fragile
watermarking

● [Nelson05a] CMOS image sensor adds pseudo-
random watermark

● Kodak and Epson offered cameras with watermarking
capabilities (2003, discontinued)

● Many JPEG-domain algorithms that could be
employed

Patents!

Color Filter Array (CFA)

Bayer CFA pattern

Demosaicking
● Basically interpolation to get full-resolution RGB

image

Many different approaches, eg. Bilinear,
bicubic, smooth hue transition, gradient-based,
adaptive color plane, adaptive homogeneity-
directed, ...

● Implementation, eg.
http://www.cybercom.net/~dcoffin/dcraw/

● Camera implementation unknown

http://www.cybercom.net/~dcoffin/dcraw/

Enter CHDK

● CHDK: firmware add-on for Canon DIGIC II and
DIGIC III cameras, http://chdk.wikia.com

● Adds bracketing of exposure, RAW file support,
BASIC scripts, remote camera control,
additional data display (histogram, battery life),
longer exposure time, faster shutter speed,
games, ...

● Linux-hosted cross-compilation,
using arm-elf-gcc 3.4.6

http://chdk.wikia.com/

 CHDK enables Watermarking

Processing Pipeline

Camera Characteristics

● Canon IXUS 70, 7.1 MP
● DIGIC III chip (ARM9 core), unknown sensor
● Sensor resolution 3152x2340 pixels, usable

3112x2328 pixels
● Camera supports

– 3072x2304, 2592x1944, 2048x1536, 1600x1200,
640x480 pixel JPEG images (3 quality settings)

Camera Hardware / Software

● Canon DIGIC III processor aka. TI 32-bit ARM9
core, ~ 200 MHz

● Lots of custom hardware for JPEG, scaling,
histogram computation, color conversion, ...

● VxWorks operating system
● ~ 3.5 MB firmware
● ~ 1 MB usable free memory,

~45 MB / sec bandwidth
● ~ 150 KB CHDK add-on firmware

Watermark Embedding (1)

● Add pseudo-random sequence {-1, 1}
generated by Mersenne Twister to blue channel
pixels

● Want watermarking in 'real-time', before image
is saved (so ~ 1 sec delay)

● 7.1 MP is 9.2 MB (10 bit/pixel, packed)
● Hard to match runtime requirement!
● Prefer to spend time on perceptual modelling

rather than unpacking/packing bits!

Watermark Embedding (2)

● First naïve implementation
– ~ 45 sec: GetPixel()/PutPixel()

– ~ 15 sec: reduce calls to PRNG

● Unrolled pixel unpack/pack
– ~ 2 sec: shifting through two bit buffers

● Not yet
– Assembler code, SIMD instructions (?)

– Use some specialized hardware (?)

Watermark Embedding (3)

p_row_buf = p_out_row_buf =
(uint16 *) &buf_pos[PIXTOBYTES(RAW_LEFT_MARGIN+4)];

bit_buf = *p_row_buf++;
out_bit_buf = bit_buf >> 6;

bit_buf = (bit_buf << 16) + *p_row_buf++;
pixel = bit_buf >> 12 & 0x3ff;
WATERMARK_PIXEL(pixel);
out_bit_buf = (out_bit_buf << 10) + pixel;
*p_out_row_buf++ = out_bit_buf >> 4;

out_bit_buf = (out_bit_buf << 10)
+ (bit_buf >> 2 & 0x3ff);

...

ldrh r7, [sl], #2
ldr r2, .L102
ldrh r3, [sl], #2
mov r6, r7, asr #6
ldr r5, [r2, #12]
add r7, r3, r7, asl #16
tst r9, r1
mov r3, r7, asr #12
mov r4, r3, asl #22
rsbeq r5, r5, #0
movs r1, r1, lsr #1
mov r4, r4, lsr #22
bne .L50

// process even row

ARM9 can move & shift in one instruction!
and implemented by shifts

Loading Firmware Add-on

Watermarking Menu

Watermarking Options

Image Quality (RAW vs. JPEG)

Image Quality (RAW vs. Watermarked)

Detection Results

SF ... superfine, F ... fine, N ... normal (JPEG quality)

Threshold ~ 0.03

Further Work

● Speedup
● Simple perceptual shaping
● Exploit interpolation for detection
● Image authentication
● Test different image mosaicking algorithms
● Compare with PRNU noise [Chen08a]

References

● [Blythe04a] P. Blythe, J. Fridrich, Secure Digital Camera, Digital Forensic
Research Workshop, Aug. 11-13, 2004; Baltimore, MD, USA

● [Chen08a] M. Chen, J. Fridrich, M. Goljan, J. Lukas, Determining Image
Origin and Integrity Using Sensor Noise, IEEE TIFS, 3(1):74-90, Mar.
2008

● [Lukac06b] R. Lukac, K. Plataniotis, Camera Image Watermark Transfer
by Demosaicking, Proc. ELMAR '06, 9-12, Jun. 2006

● [Mohanty07c] S. Mohanty, E. Kougianos, N. Ranganathan, VLSI
Architecture and Chip for Combined Invisible Robust and Fragile
Watermarking, IET Computers & Digital Techniques, 1(5):600-611, Jun.
2007

● [Nelson05a] G. Nelson, G. Jullien, O. Yadid-Pecht, CMOS Image Sensor
with Watermarking Capabilities, ISCAS '05, 5326-5329, May. 2005

● [Popescu05a] A. Popescu, H. Farid, Exposing Digital Forgeries in Color
Filter Array Interpolated Images, IEEE TSP, 53(10):3948-3959, Oct. 2005

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

