## Blind motion-compensated video watermarking

Peter Meerwald, Andreas Uhl June 24, 2008

## Outline

- Video watermarking
- Interframe Attacks
- Motion-compensation temporal filtering
- Blind MC watermarking
- Results

#### Video watermarking



## Inter-frame watermark attacks

- Exploit correlation of the host signal
  - Against independent (uncorrelated) watermark
  - Frame Temporal Filtering (FTF)
  - Extension: Motion-compensated FTF
- Exploit correlation of the watermark
  - Estimate watermark from uncorrelated frames
  - Watermark Estimation and Remodulation (WER) Attack

#### FTF



Foreman sequence



non-blind DWT watermarking scheme MC: block size 8, search range 16

Foreman sequence

## Motion-coherent watermarking

- Countermeasure: [Doerr03c]
  - Watermark of two frames should be as correlated as host signal
- Implementation choices:
  - Frame registration [Doerr04b]
  - Spatial correlation technique via anchor points [Su05a]
  - Motion-compensated temporal transform [Pankajakshan06a]



Haar Filter as Lifting Steps Decomposition H[n] = B[n] - A[n] $L[n] = A[n] + \frac{1}{2}H[n]$ 

Reconstruction

$$A[n] = L[n] - \frac{1}{2}H[n]$$
$$B[n] = H[n] + A[n]$$

#### Motion-compensated Temporal Filtering

- Motion Estimation (ME) <u>connects related pixels</u> between frame A and B
- Can apply filtering along motion trajectories

Decomposition

$$H[n] = B[n] - A[M_{A \to B}(n)]$$
$$L[n] = A[n] + \frac{1}{2}H[M_{B \to A}(n)]$$

Reconstruction  

$$A[n] = L[n] - \frac{1}{2}H[M_{B \to A}(n)]$$

$$B[n] = H[n] + A[M_{A \to B}(n)]$$

## Temporal lowpass frames



No motion compensation

Haar temporal filter CIF, first 16 frames, block size 8, search range 16



# Non-blind motion-compensated watermarking

- MC-TF, 4 decomposition levels
- add additive spread-spectrum <u>watermark on</u> <u>temporal low-pass</u> approximation
- non-blind detector (can refer to original host signal)
  - can cancel host signal, does not interfere with detection
  - has accurate motion information
  - use normalized linear correlation (assume attack is AWGN)

[Pankajakshan06a]

# Blind motion-compensated watermarking

- MC-TF, 4 decomposition levels
- spatial 8x8 block DCT on temporal low-pass approximation
- select 18 mid-frequency channels, rejects part of the host interference; models host with Generalized Gaussian distribution [Hernandez00a]
- <u>estimate motion</u> from received host signal

#### Experiments

- Blind ME from watermarked video (38 dB PSNR)
- How does compression attack affect motion estimation?
  - compare blind with non-blind scheme
- Assess FTF and MC-FTF attack

## Blind ME

| Seguence   | Non   | Blind ME   |            |            |            |  |
|------------|-------|------------|------------|------------|------------|--|
| Sequence   | blind | SR 16, L 4 | SR 32, L 4 | SR 16, L 3 | SR 32, L 3 |  |
| Foreman    | 1.00  | 0.80       | 0.79       | 0.90       | 0.89       |  |
| Coastguard | 1.00  | 0.48       | 0.45       | 0.63       | 0.60       |  |
| Akiyo      | 1.00  | 0.98       | 0.98       | 0.99       | 0.99       |  |
| Mobile     | 1.00  | 0.34       | 0.29       | 0.45       | 0.38       |  |
| Stefan     | 1.00  | 0.47       | 0.47       | 0.64       | 0.61       |  |

#### Non-blind scheme / H.264



#### Non-blind scheme / MC-EZBC



#### Blind scheme / H.264



#### Blind scheme / MC-EZBC



### MC-FTF Attack

| MC-FTF Attack (window size 7) |      |                |      |                    |      |  |  |  |  |
|-------------------------------|------|----------------|------|--------------------|------|--|--|--|--|
| Repetitive WM                 |      | Independent WM |      | Motion-coherent WM |      |  |  |  |  |
| PSNR (dB)                     | d    | PSNR (dB)      | d    | PSNR (dB)          | d    |  |  |  |  |
| 36.96                         | 0.79 | 37.96          | 0.60 | 36.92              | 0.86 |  |  |  |  |
| 33.47                         | 0.51 | 33.84          | 0.38 | 33.12              | 0.68 |  |  |  |  |
| 38.25                         | 1.12 | 41.33          | 0.75 | 38.36              | 0.96 |  |  |  |  |
| 28.53                         | 0.69 | 29.01          | 0.52 | 28.58              | 0.76 |  |  |  |  |
| 30.06                         | 0.63 | 31.02          | 0.53 | 30.26              | 0.79 |  |  |  |  |

## Conclusion

- Blind motion-compensated watermarking seems feasible
- Motion-coherent watermark can be detected in temporal-low pass and per-frame
- Integration with (scalable) video codecs based on MC-TF possible
- Further work
  - can motion estimation be explicitly attacked?
  - WER attack

#### References

- [Doerr03c] G. Doerr et al., New Intra-Video Collusion Attack Using Mosaicing, ICME'03
- [Doerr04b] G. Doerr et al., Secure Background Watermarking Based on Video Mosaicing, El'04
- [Su05a] K. Su et al, Statistical Invisibility for Collusion-resistant Digital Video Watermarking, IEEE Tr. MM, vol. 7, n. 1, 2005
- [Pankajakshan06a] V. Pankajakshan et al., Motioncompensated inter-frame collusion attack on video watermarking and a countermeasure, IEE Proc. IS, vol. 153, n. 2, 2006
- [Hernandez00a] J. Hernandez et al., DCT-Domain Watermarking Techniques for Still Images: Detector Performance Analysis and a New Structure, IEEE Tr. IP, vol. 9, n. 1, 2000