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ABSTRACT

In this paper, we adapt two blind detector structures for addi-

tive spread-spectrum image watermarking to the host signal

characteristics of the Dual-Tree Complex Wavelet Transform

(DT-CWT) domain coefficients. The research is motivated by

the superior perceptual characteristics of the DT-CWT and its

active use in watermarking. To improve the numerous exist-

ing watermarking schemes in which the host signal is mod-

eled by a Gaussian distribution, we show that the General-

ized Gaussian nature of Dual-Tree detail subband statistics

can be exploited for better detector performance. We found

that the Rao detector is more practical than the likelihood-

ratio test for our detection problem. We experimentally inves-

tigate the robustness of the proposed detectors under JPEG

and JPEG2000 attacks and assess the perceptual quality of

the watermarked images. The results demonstrate that our al-

terations allow significantly better blind watermark detection

performance in the DT-CWT domain than the widely used

linear-correlation detector.

Index Terms— watermarking, dual-tree complex wavelet

transform, detection

1. INTRODUCTION

Watermarking has been proposed as a technology to ensure

copyright protection by embedding an imperceptible, yet de-

tectable signal in digital multimedia content such as images

or video. Transform domains such as the DCT or DWT fa-

cilitate modeling human perception and permit selection of

signal components which can be watermarked in a robust but

unobtrusive way.

Loo et al. [1] first proposed to use Kingsbury’s dual-tree

complex wavelet transform (DT-CWT) [2] for blind water-

marking. The DT-CWT is a complex wavelet transform vari-

ant which is only four-times redundant in 2-D and offers ap-

proximate shift invariance together with the property of di-

rectional selectivity. Thus, it remedies two commonly-known

shortcomings of the classic, maximally decimated DWT. Fur-

thermore, it can be implemented very efficiently on the basis

of four parallel 2-D DWTs.

Supported by Austrian Science Fund project FWF-P19159-N13.

For these reasons, the DT-CWT domain has become a very

popular choice for watermark embedding recently [1, 3, 4,

5, 6, 7, 8]. However, for blind watermarking detection, i.e.

when detection is performed without reference to the unwa-

termarked host signal, the host interferes with the watermark

signal. Hence informed embedding/coding techniques at the

embedder side (e.g. ISS [9]) and, at the detector side, ac-

curate modelling of the host signal is crucial for the overall

performance of a blind watermarking scheme. In this paper,

we focus on improving the detector part.

In section 2 we argue that the real and imaginary parts of

DT-CWT subband coefficients can be accurately modeled by

a Generalized Gaussian distribution (GGD). After reviewing

the literature on complex wavelet domain watermarking in

section 3, we adopt and compare the applicability of two blind

spread-spectrum watermark detectors in section 4 which ex-

ploits the DT-CWT domain subband statistics. We experi-

mentally compare the detection performance of the proposed

schemes also under JPEG and JPEG2000 attacks and assess

the perceptual quality of DT-CWT embedding in section 5.

Section 6 offers concluding remarks.

2. DT-CWT SUBBAND STATISTICS

In order to obtain a good signal detector in noise, i.e. the

host signal for blind watermarking in the absence of at-

tacks, we have to find a reasonable noise model first. By

employing a J-scale 2-D DT-CWT we obtain six com-

plex subbands per decomposition level, oriented along

approximately ±15◦,±45◦,±75◦. To visualize the di-

rectional selectivity, Figure 1 shows the magnitude of

six complex detail subbands at level two of the decom-

posed Bridge image (see Figure 4(d)). The subbands

will be denoted by Dsk = {dsk,ij}1≤i,j≤ns , where the

decomposition level is given by s, 1 ≤ s ≤ J and

k, 1 ≤ k ≤ 6 denotes the orientation. Further, we recog-

nize that dsk,ij ∈ C. The number of coefficients per subband

on level s is given by n2
s (for square subbands). The ma-

trix Dsk can also be written in vector notation as dsk =
[dsk,11, dsk,21, . . . , dsk,ns1, . . . , dsk,1ns , . . . , dsk,nsns ],
where we have simply rearranged the column vectors into

one big row vector. We propose that the marginal distri-



(a) β̂ = 0.94 (b) β̂ = 0.81 (c) β̂ = 0.81 (d) β̂ = 0.82 (e) β̂ = 0.81 (f) β̂ = 0.93

Fig. 1. Complex coefficient magnitudes of the 2nd level detail subbands with the MLEs of the GGD’s shape parameter β fitted

to the marginal distributions of concatenated real and imaginary parts.

Orientation

Scale 15◦ 45◦ 75◦ −75◦ −45◦ −15◦

1 6, 5 4, 3 6, 6 6, 5 4, 4 6, 6

2 4, 5 2, 4 4, 4 3, 3 3, 3 5, 4

3 2, 0 0, 0 1, 2 1, 2 1, 0 1, 1

Table 1. Rejected null-hypothesis for the χ2 GoF outcomes

at 1% significance (6 images).

butions of the real and imaginary parts of complex wavelet

coefficients of scales s ≥ 2 can be modeled by two-parameter

GGDs. The probability density function (PDF) of a GGD is

given by [10]

p(x;α, β) =
β

2αΓ(1/β)
exp

{
−
∣∣∣x
α

∣∣∣β} , −∞ < x <∞
(1)

with parameters α > 0 (scale) and β > 0 (shape). In case

of β = 1 the PDF reduces to the Laplace distribution, in case

of β = 2 we obtain the Gaussian distribution. To verify the

suitability of the proposed distributional model, we employ a

Chi-Square Goodness-of-Fit (GoF) test at the 1% significance

level on the subband statistics for a three-scale DT-CWT. The

null-hypothesis of the Chi-Square GoF test is that the data

originates from a GGD. Regarding the filter parameterization

of the DT-CWT, we use near-orthogonal (13,19)-tap filters on

level one and Kingsbury’s Q-shift (14,14)-tap filters [11] on

levels ≥ 2. Table 1 summarizes the outcomes of the Chi-

Square test for our six test images. A 0 signifies that the null-

hypothesis could not be rejected at the given significance level

for all images, while a number > 0 signifies the correspond-

ing number of rejections. The first number gives the outcome

for the real part, the second number gives the outcome for the

imaginary part. As we can see, the null-hypothesis cannot be

rejected for many of the tests at decomposition levels ≥ 2.
Considering the fact that in case we assume a Normal distri-

bution all null-hypothesis are rejected without exception, the

GGD seems to be a quite good model here.

We further suggest that the real and imaginary parts of the

coefficients of a given subband are realizations of i.i.d. ran-

dom variables following one GGD with parameters α and

Orientation

Scale 15◦ 45◦ 75◦ −75◦ −45◦ −15◦

1 6 6 6 6 6 6

2 0 0 0 1 0 0

3 1 0 0 1 0 0

Table 2. Rejections for the two-sample KS tests at 1% signif-

icance (6 images).

β. Given that this assumption is actually valid, we can con-

catenate the real and imaginary parts to form a row vector

vsk = [R(dsk) I(dsk)] of dimensionality 2n2
s. Here, R(·)

denotes the real parts and I(·) denotes the imaginary parts.

To verify if the assumption holds, we conduct a number of

two-sample Kolmogorow-Smirnow (KS) tests at the 1% sig-

nificance level on the corresponding subband statistics. The

null-hypothesis for the test is that both parts are drawn from

the same underlying population. Table 2 lists the correspond-

ing outcomes. Again a 0 denotes that the null-hypothesis

cannot be rejected, numbers > 0 denote the number of re-

jections for our six test images. We observe that for levels

≥ 2 our assumption can not be rejected for the majority of

cases. Thus, concatenation is reasonable and we can esti-

mate the GGD parameters from vsk . For readability, we set

x = vsk . Further, let N = 2n2
s denote the dimensionality

of x. We use Maximum-Likelihood Estimation (MLE) to de-

termine the GGD parameters throughout this work. The ML

estimate for β is given as the solution to the transcendental,

non-linear equation

0 = 1 +
ψ(1/β̂)
β̂

−
∑N

i=1 |xi|β̂ log |xi|∑N
i=1 |xi|β̂

+

log
(

β̂
N

∑N
i=1 |xi|β̂

)
β̂

.

(2)

The parameter estimate β̂ is then used to compute the MLE

of the second parameter α as follows

α̂ =

(
β̂

L

L∑
i=1

|xi|β̂
)1/β̂

. (3)



To find the root of Eq. (2) we will resort to the classic

Newton-Raphson root-finding iteration, which was proposed

in [12] for example. An alternative would be to use moment

estimate methods [10].

3. COMPLEX WAVELET TRANSFORM

WATERMARKING

Generally speaking, additive spread-spectrum watermarking

in the DT-CWT domain adds a pseudo-random watermark w
to the host signal x to compute the watermarked signal y as

y = x + g · w, where the mask g is used to perceptually

shape the watermark (Note: g · w denotes a point-wise mul-

tiplication). Since the CWT coefficients closely relate to hu-

man perception, a simple perceptual model can be used [13],

where the elements of the mask g for subband Dsk are com-

puted by

gsk =
√
r2 · |dsk|2U + γ2. (4)

Here, |dsk|2U represents the averaged squared magnitude of

neighboring CWT coefficients and r ∈ R and γ ∈ R are pa-

rameters depending on the decomposition level as well as ori-

entation of the embedding subband (see [1]). The advantage

of the DT-CWT over the DWT with biorthogonal 7/9 filters

can be seen in the difference images of Figure 2. Due to the

better directional selectivity of the DT-CWT, the embedded

watermark better aligns with the texture of the image (espe-

cially visible in the lower-right area of Barbara’s trousers).

For a quantitative comparison see the results in section 5.1.

We note that the components of the random watermark W
which lie in the null-space of the inverse transform of the re-

dundant DT-CWT domain will be lost. The problem of em-

bedding a spread-spectrum watermark in the DT-CWT do-

main can be overcome by adding the DT-CWT transformed

watermark W′ to the detail subbands, rather then adding the

bipolar pseudo-random watermark W directly [13]. The wa-

termark vector w′
sk used to watermark the host signal vector

vsk is obtained by decomposing the bipolar watermark image

W in the same way as to host signal and again rearranging the

watermark subband W′
sk into a row vector. In this work, we

only use a scalar scaling factor gsk per subband rather than a

perceptual mask gsk.

In the literature, complex wavelet domain watermarking

has been employed because its shift-invariance allows to com-

pensate geometrical attacks and because of the superior per-

ceptual characteristics due to the better directional sensitiv-

ity of its subbands compared to the DWT [13]. Woo et al.

[3] construct an embedding domain invariant to geometric

desynchronization attacks by applying the DT-CWT on top

of the FFT and a log-polar mapping. For video watermark-

ing, Earl et al. [4] presents a spread-transform, quantization-

based scheme operating on a series on frames, exploiting the

shift invariance property of the DT-CWT to resist spatial jit-

ter. Wang et al. [5] employ scene-segmentation together with

Fig. 2. Difference between original and watermarked images:

DWT domain embedding (top) and DT-CWT domain embed-

ding (bottom) at 40 dB PSNR

a 3D CWT for video watermarking. Coria et al. [6] embed a

spread-spectrum watermark in the coarse subbands and cor-

relate over multiple frames of a video sequence to achieve

robustness against geometrical distortions. Two non-blind

watermarkingmethods incorporate color images and describe

combined visible/invisible watermarking [7, 8].

We now turn to blind watermark detection adapted to the

DT-CWT domain host signal statistics. Previous work re-

lies on linear correlation detection which is suboptimal for

the non-Gaussian DT-CWT detail subbands.

4. BLIND DT-CWT WATERMARK DETECTION

In this section, we will first discuss the detection of the em-

bedded watermark sequence using the classic GGD detector

of [14] and the problems w.r.t. to our watermarking approach.

Second, we introduce our proposed solution and discuss its

advantages. For the following illustrations, we will omit the

position indices s, k of the subbands in the DT-CWT decom-

position structure and use y to denote a watermarked subband
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Fig. 3. Exemplary histograms of the LC, LRT and Rao detector responses underH0 andH1

vector with N = 2n2
s coefficients.

In [14], Hernandez et al. have derived a blind detec-

tor structure for host signals that can be modeled by a two-

parameter GGD. Since the detector can be adapted to a given

host signal via the GGD’s shape parameter β, the detec-

tor demonstrates superior performance compared to a linear-

correlation (LC) detector, which is optimal for a Gaussian

host signal only. The log-likelihood ratio test (LRT) between

the PDFs under H0 (no watermark present) and H1 (water-

marked) of the GGD detector is given by

ρLRT =
N∑

i=1

1
αβ

(
|yi|β − |yi − gwi|β

)
, (5)

for a single scaling factor g ∈ R+. We note that the random

elements in Eq. (5) are the coefficients of the watermark, not

the yi itself. Under the central limit theorem (n → ∞), the

log-likelihood ratio ρLRT (i.e. the detector response) follows

a Gaussian distribution for which under H0 the expectation

value E[ρLRT |H0] = µH0 can be computed according to

µH0 =
N∑

i=1

1
αβ
|yi|β − 1

2

N∑
i=1

1
αβ

(|yi − g|β + |yi + g|β) .
(6)

The variance V[ρLRT |H0] = σ2
H0

can be easily derived,

σ2
H0

=
1
4

N∑
i=1

1
α2β

(|yi + g|β − |yi − g|β)2 . (7)

The expectation and variance under the alternative hypothe-

sis H1, denoted as µH1 , σ
2
H1

, have been shown to be µH1 =
−µH0 and σ2

H1
= σ2

H0
, respectively. According to the

Neyman-Pearson criterion, we can select the detection thresh-

old T based on a desired probability of false-alarm Pf as

T = σH0 ·Q−1(Pf )−µH0 whereQ(·) denotes the Q-function
to express right-tail probabilities of the Normal distribution.

The probability of miss Pm is given by

Pm = P(ρLRT < T |H1) = 1−Q

(
Q−1(Pf )− 2

µH1

σH1

)
.

(8)

However, there is one important restriction to be considered.

Eqs. (6) and (7) only hold for watermarks following a dis-

crete distribution with equiprobable values {−1,+1}. Our

experimental results based on 1000 randomly generated wa-

termarks with equiprobable values {+1,−1} show that the

transformed watermark W′ follows a Gaussian distribution

with zero mean and approximate variance of 0.25. Therefore,
Eqs. (6) and (7) cannot be applied any longer. Since we do

not have a closed form expression for Eqs. (6) and (7) for

the normally distributed subband statistics of W′, we have to
resort to empirical estimates of µH0 and σ2

H0
for a given sig-

nal, in order to determine a reasonable detection threshold T .
Unfortunately, this is a cumbersome procedure in practice.

We can find a solution to that problem in signal detection

theory [15]. In particular, we adopt a Rao hypothesis test

which has already been extensively discussed in a general sig-

nal detection setting by [16] and was proposed by [17] for the

purpose of blind spread-spectrum watermark detection in the

DWT domain. However, our setup is slightly different from

the one presented in [17]. First, our watermark is not bipo-

lar but Normal and second, we use another, but equivalent

parametrization of the GGD (see Eq. (1)). Provided that p(·)
denotes a symmetric PDF, the general formulation of the Rao

hypothesis test derived in [16] is given by

ρRao =

[∑N
i=1

∂ log p(yi−gwi,γ)
∂g

∣∣∣
g=0

]2
1
N

∑N
i=1 w

2
i

(∑N
i=1

[
p′(yi,γ)
p(yi,γ)

]2) , (9)

where p′ denotes the first derivative of the PDF w.r.t. yi and

γ ∈ Rd denotes an arbitrary d-dimensional parameter vector.

In signal detection theory, the elements of γ are termed the

nuisance parameters, which are unknown and have to be esti-

mated. Inserting the PDF of the GGD (γ = [α β]) now leads

to our desired detection statistic

ρRao =

[∑N
i=1 wi sgn(yi)|yi|β−1

]2
1
N

∑N
i=1 w

2
i

(∑N
i=1 |yi|2β−2

) , (10)

where sgn(·) denotes the signum function. We note that in

contrast to the Rao detector for bipolar watermarks, the sum



over the squared watermark elements in the denominator of

Eq. (10) cannot be dropped. From the theory of statistical

signal detection we know that detection statistic underH0 fol-

lows a Chi-Square distribution with one degree of freedom.

Under the alternative hypothesis H1, the detection statistic

follows a Non-Central Chi-Square distribution with one de-

gree of freedom and non-centrality parameter λ. We can de-

termine the detection threshold T based on a desired Pf as

T = Q−1(Pf/2)2. The probability of missing the watermark

(Pm) is given by

Pm = P(ρRao < T |H1) =

1−Q(Q−1(Pf/2)−
√
λ)−Q(Q−1(Pf/2) +

√
λ).

(11)

Alternatively,Pm can be computed using the CDF of the Non-

Central Chi-Square distribution. To illustrate the difference

in the detector output statistics, Figure 3 shows exemplary

histograms of the detector responses (Lena) for the linear-

correlation (LC) detector, the likelihood-ratio test (LRT) and

the Rao detector. We note that the responses of the first

two detectors followNormal distributions with approximately

equal variances under H0 and H1 while the detection re-

sponses of the Rao test can be modeled by the aforementioned

Chi-Square distributions.

5. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our

work.1 Our six 256 × 256 grayscale test images are shown

in Figure 4. We begin by justifying the more involved DT-

CWT domain embedding over the use of the DWT domain

and then report detection performance results.

5.1. Perceptual Assessment

We have already observed the superior perceptual character-

istics of DT-CWT embedding in Figure 2, Section 3. For

an objective assessment of the distortion caused by DT-CWT

and DWT embedding with the same PSNR, we employ four

perceptual metrics, wPSNR/PQS [18], Komparator2 [19], C4

[20] and VSNR3 [21] which all have been proposed to as-

sess compression artifacts without making assumptions about

the type of degradation introduced by coding schemes. Kom-

parator and C4 have already been successfully applied to the

perceptual assessment of watermarking schemes [22]. In Ta-

ble 4 we present the perceptual quality measures for DWT

and DT-CWT embedding according to our chosen metrics.

The embedding strength has been adjusted to obtain water-

marked images of 36 dB PSNR, so that the watermark be-

1Our MATLAB source will be available online at http://www.

wavelab.at/sources.
2Komparator source code is available at http://autrusseau.

florent.club.fr/Komparator.
3VSNR source code is available at http://foulard.ece.

cornell.edu/dmc27/vsnr/vsnr.html.

(a) Lena (b) Barbara (c) Fabric [23]

(d) Bridge (e) Dromedary (f) Models

Fig. 4. Example images

Image PSNR Image PSNR

Barbara 48.21 Bridge 46.73

Dromedary 52.42 Fabric 38.60

Lena 47.16 Models 44.55

Table 3. Average PSNR (dB) for our watermarked images

(embedding with 16 dB DWR)

comes slightly noticeable in smooth and edge regions. DT-

CWT embedding results in better image quality with the ex-

ception of the texture image Fabric which lacks any diagonal

features. Note that for Komparator, lower values correspond

to better perceptual quality, and vice-versa for wPSNR/PQS,

C4 and VSNR .

In addition to our selected example images, the objective

quality assessment has also been performed on 500 other

natural grayscale images of size 512 × 512 (taken from the

BOWS-2 image set4). Komparator claimed superior qual-

ity for the DT-CWT embedding in 382 cases versus 118 for

DWT, while C4 votes 422 times for DT-CWT and 78 times for

DWT. wPSNR/PQS and VSNR decided in all cases in favour

of the DT-CWT embedding approach. To our knowledge, this

is the first objective quality assessment comparing two water-

mark embedding domains – further study is needed.

5.2. Detection Results

For a comparison of the detection performance, we arbitrary

choose to embed the watermark sequence at decomposition

level two (subband +45◦). The resulting PSNRs for the

watermarked images (16 dB Document-to-Watermark Ratio,

DWR) are shown in Table 3.

First, we analyze the performance of our detectors in the

absence of attacks, see Figure 5. We determine the experi-

4BOWS-2 is online at http://bows2.gipsa-lab.inpg.fr/.
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Fig. 5. Detector ROC plots for 16 dB DWR

Image
wPSNR/PQS [18] Komparator [19] C4 [20] VSNR [21]

DWT DT-CWT DWT DT-CWT DWT DT-CWT DWT DT-CWT

Lena 45.88 46.49 992.28 799.57 0.939 0.950 23.48 26.53

Barbara 46.81 47.26 1045.24 400.61 0.954 0.957 24.63 27.78

Fabric 46.19 46.90 198.86 320.72 0.966 0.965 30.88 34.67

Bridge 45.96 46.49 556.719 506.745 0.941 0.960 26.21 29.43

Dromedary 45.95 46.52 1059.48 387.69 0.923 0.946 22.78 25.56

Models 45.75 46.29 672.59 444.81 0.957 0.963 28.60 31.90

Table 4. wPSNR/PQS, Komparator, C4 and VSNR quality metric for DWT and DT-CWT embedding with 36 dB PSNR

mental ROC curves from test runs with 1000 randomly gener-

ated watermarks (simulating theH1 hypothesis). Only in case

of the LRT detector, we have to resort to estimating the mean

and variance of the normally distributed detection statistic un-

der H0 as well. We have further verified that the detector re-

sponses of the Rao detector under H0 actually follow a Chi-

Square distribution with one degree of freedom using a GoF

test at 1% significance.

To compute the ROC curves of the Rao detector we esti-

mate the non-centrality parameter λ from the ρRao as follows:

since we know that underH1 the square-root of the detection

statistic will follow a Normal distribution N (
√
λ, 1), we can

simply estimate λ by raising the arithmetic mean of
√
ρRao

to the power of two. Then, we can determine Pm at a given

Pf from the Eq. (11). As expected, the LC detector em-

ployed by previous DT-CWT domain watermarking schemes

[13, 4, 3, 5, 6] performs worst. Interestingly, using the MLE

of the shape parameter β did not result in the best detection

performance for the Rao and LRT detector. To find a reason-

able explanation for this behavior, we have to take a closer

look at the embedding process. What we actually do, is to add

a scaled random sequence (the watermark), which follows a

Gaussian law, to the transform coefficients following a Gener-

alized Gaussian law. Depending on the embedding strength,

this has the effect that the shape parameter β is altered. Due to

the redundancy of the DT-CWT, the marked coefficients will

be partly lost during the inverse transform. This leads to the

situation that at the detection stage, β cannot be accurately

estimated any longer, which in turn leads to poor detection

performance. However, our experiments show that for rea-

sonable DWRs, a fixed shape parameter β = 1 performs very

well, since after embedding the GGD shape is close to one

for natural images. Therefore, we will perform the detection

performance analysis under attacks with this fixed shape pa-

rameter β = 1. The ROC results for the other test images are

similar but we omit them due to space limitations.

We consider JPEG and JPEG 2000 compression with vary-

ing quality factors and bit rates to evaluate the detectors’ per-

formance under attack in Figures 6 and 7. For the JPEG

attacks we use MATLAB’s functionality to write JPEG im-

ages with quality factors ranging from 10 to 90. In case

of JPEG2000, we employ the Kakadu toolkit5 with bit rates

ranging from 0.2 bpp to 1.4 bpp. The LC detector shows the

worst performance. Concerning the LRT and Rao detector,

Rao is consistently better than LRT for both attacks at the Pf

of 10−10. Setting the GGD’s shape parameter β = 1 only

limits the detection performance for the texture image Fabric,

where the true shape of the GGD significantly differs from

β = 1 and is close to two.

6. CONCLUSION

The contribution of this paper is threefold: First, we show

that the concatenated marginal statistics of the real and imag-

inary coefficient components of the DT-CWT detail subbands

can be modeled by GGDs. Since the shape parameters of

5Kakadu binaries are available at http://kakadusoftware.com.



fitted GGDs differ significantly from the Gaussian distribu-

tion in case of natural images, the blind linear correlation de-

tection employed by earlier DT-CWT watermarking schemes

[13, 4, 3, 5, 6] can be improved. To this end, we have adapted

the GGD detector structure proposed by [14] to work with

the DT-CWT and discussed the problem of threshold deter-

mination. Further, we have proposed a modification of the

Rao detector presented in [17] to work with our watermarking

setup in order to overcome the problems related to the LRT

detector. Second, our experimental results indicate that an es-

timation of the shape parameter of the GGD leads to poorer

detection performance than setting β to a fixed value. The

explanation of this behavior is strongly related to the redun-

dancy of the DT-CWT and the distributional properties of the

transformed watermark. Last, detection results under JPEG

and JPEG2000 attacks highlight the advantages of the Rao

detector and justify our approach. Further work will include

a detailed examination of the parameter estimation issues, in-

vestigate the impact of perceptual modelling and continue the

perceptual assessment of the watermarked images.
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Fig. 6. JPEG attack results for Pf = 10−10 and DWR 16 dB
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Fig. 7. JPEG2000 attack results for Pf = 10−10 and DWR 16 dB


