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ABSTRACT

In this paper, we have a close look at the runtime performance of the intra-component transform employed
in the reference implementations of the JPEG2000 image coding standard. Typically, wavelet lifting is used
to obtain a wavelet decomposition of the source image in a computationally efficient way. However, so far no
attention has been paid to the impact of the CPU’s memory cache on the overall performance. We propose two
simple techniques that dramatically reduce the number of cache misses and cut column filtering runtime by a
factor of 10. Theoretical estimates as well as experimental results on a number of hardware platforms show the
effectivity of our approach.
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1. INTRODUCTION

JPEG2000! is designed to supplement and enhance the existing JPEG standard? for still image coding. It
provides advanced features such as low bit-rate compression, lossless and lossy coding, resolution and quality
scalability, progressive transmission, region-of-interest (ROI) coding, error-resilience, spatial random access
in a unified framework.>* Of course, all these coding possibilities are not obtained for free. The runtime
requirements for JPEG2000 are typically a factor of 5 - 12 higher than for JPEG and 1 - 2 higher than for
SPIHT,® see figure 2 and compare with.®

The JPEG2000 image coding standard® 7 is based on a coding scheme originally proposed by Taubman and
known as EBCOT (“Embedded Block Coding with Optimized Truncation”).® The major difference between
previously proposed wavelet-based image compression algorithms such as EZW? or SPIHT® is that EBCOT
as well as JPEG2000 operate on independent, non-overlapping blocks whose bit-planes are coded in several
passes to create an embedded, scalable bitstream. Instead of zerotrees, the JPEG2000 scheme only exploits
intra-subband correlation via context-adaptive arithmetic coding since the strictly independent block coding
strategy precludes structures across subbands or even code-blocks.
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Figure 1: The basic structure of the JPEG2000 coder.

Looking at figure 1, we can identify the following coding stages: Preprocessing and the inter-component
transform which are only needed for dealing with sub-sampled, multi-component (color) images. The intra-
component transform is a wavelet decomposition. Tier-1 coding comprises three coding passes, context-selection
and arithmetic coding. R/D allocation and bitstream formation is performed in tier-2 coding, followed by
bitstream creation.
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The main design goals behind JPEG2000 are versatility and flexibility which are achieved to a large extent
by the independent processing and coding of image blocks. The default setting for JPEG2000 is to perform
a five-level wavelet decomposition with 7/9-biorthogonal filters and then segment the transformed image into
non-overlapping code-blocks of no more than 4096 coefficients which can be coded independently.

Part 5 of the JPEG2000 standard document provides two reference implementations, namely Jasper* and
jj2000f. While Jasper is implemented in C, jj2000 is an object-oriented design written in Java. Surprisingly,
the Java implementation does not run much slower in a just-in-time (JIT) translated Java runtime environment
(JRE) compared to the compiled Jasper code — the performance difference is within 20% (see figure 2).

Runtime analysis reveals that typically 60 % of the encoder’s runtime is spent in the intra-component trans-
form (figure 3). Clearly, if we want to improve execution speed we have to target the wavelet decomposition code.
JPEG2000 offers two modes of operation, lossless and lossy coding. In lossless mode, the reversible 5/3 integer
transform!? is used while the irreversible 9/7 real-to-real transform!! gives better compression results in lossy
mode. Lifting-based schemes of the wavelet transform are favored in the JPEG2000 reference implementations
because they require less computational effort compared to convolution-based implementations.!? 13
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Figure 2. Comparing the runtime of JPEG, SPTHT and JPEG2000 coding gray-scale images of different sizes on a Intel
Pentium II 400 Mhz.

The rest of the paper is roughly organized along the sequence of discoveries that led to the surprising
runtime results. Section 2 summarizes interesting runtime values of the two reference implementations Jasper
and jj2000. The overall performance for the different coding stages are given, as well as detailed results for the
intra-component phase. Section 3 discusses the problem of cache inefficiency, which turns out to reduce the
performance of vertical lifting significantly. Section 4 proposes 2 different solutions to enhance the access to
column image data via optimizing the caching strategy. Experimental results are given in this section, too.

All results presented in this paper stem from 3 different architectures: An Intel Pentium-II Xeon 400 Mhz,
an Alpha EV67 running at 667 Mhz, and a SGI MIPS R10000 system with 195 Mhz. Within the text, we use
the terms Intel, Alpha, and MIPS. When doing this, we always refer to the 3 mentioned systems.

2. RUNTIME ANALYSIS

Figure 3 shows the runtime of the Jasper and jj2000 coder split up in the main processing stages. We are
using gray-scale images of increasing size, lossy coding mode (and thus the 7/9 real-to-real lifting transform)

*By Michael D. Adams, available at http://www.ece.ubc.ca/ mdadams.
tDeveloped at EPFL, can be downloaded from http://jj2000.epfl.ch.



and perform coding with full bit-rate. Across all analyzed architectures, the wavelet decomposition in the
intra-component transform stage is clearly the most demanding part.
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Figure 3. Runtime analysis of Jasper and jj2000; lossy coding of gray-scale images with increasing size on the Intel
platform.

In order to perform a 2-D wavelet decomposition for each resolution level, first the image rows are filtered
in horizontal direction followed by a decomposition in vertical direction. Filtering along both directions is done
via lifting.!? The lifting scheme is an alternative technique of computing the wavelet coefficients. Depending
on the applied filter bank, lifting often requires less computations, as well as less memory when compared to
the classical convolution based filtering. Anyhow, figure 4 shows the timing for the filtering procedure, broken
down into the vertical and horizontal parts, respectively. The jj2000 vertical filtering step requires more than
10 times the execution time of the horizontal counterpart on the Intel CPU. The Jasper decomposition differs
by a factor of roughly 10, 14, and 18 on the Intel, Alpha, and MIPS CPUs. The runtime difference is increasing
with the size of the image.

JPEG2000 offers the possibility to limit the wavelet transform to tiles of a selectable size. Per default,
the coder uses one tile for each component. To reduce the observed runtime difference for bigger images, the
coder could select smaller tiles, which can be coded independently. The drawback, however, is that tiling
typically introduces boundary effects at medium and high compression rates. Part 2 of the JPEG2000 standard
document provides extensions to perform the wavelet transform with an overlap between different tiles (single
sample overlap technique, SSO). This almost completely removes the artifacts and reduces memory usage and
the observed difference between horizontal and vertical filtering. Nevertheless, tile sizes can be selected manually,
making it necessary to analyze the vertical/horizontal filtering in more detail, especially for large image data.

3. CACHE INEFFICIENCY

The unexpected behavior suggests severe cache-miss problems (see!* 1% and also!” for similar effects in an MPI

implementation of a 3-D wavelet decomposition). In fact, it turns out that when using large images with a
width equal to a power-of-two and filter length longer than 4, which corresponds to a 4-way associative cache,
an entire image column is mapped onto a single cache set (see figure 5). Consequently, during the execution of
the vertical wavelet filtering procedure, an enormous amount of cache misses occurs. A cache miss forces the
required data to be fetched from the next higher cache level or the main memory itself. This way, we get very
poor performance for the vertical filtering phase.
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image.
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Figure 5: Caching basics.

4. PROPOSED SOLUTION

In order to overcome this problem, we have considered two approaches to improve the cache hit rate. The first
approach is called row ertension’ and forces the image width to be not a power of two (eg. by allocating the
next prime number of pixels greater than the image width for each row). This trivial technique does not require
any modification to the filter code and results in the use of more cache sets and consequently allows cache hits
when vertically adjacent pixels are processed. We can observe a significant enhancement of the vertical filtering
routine on all tested platforms. The improvement is illustrated in figure 6. We cut the runtime by a factor
of 3.29, 2.67, and 4.4 for the listed machines (Intel, Alpha, MIPS). The Jasper coder shows a similar behavior
when incorporating row extension ( 1.86, 1.5, 4.35 speedup of vertical filtering through row extension on Intel,
Alpha, and MIPS). Although this technique to enhance the caching efficiency is very simple, it has clearly the
disadvantage, that we have to modify the original input image, inserting some dummy data thus changing the
final coded bitstream.

The second approach, dubbed ’aggregation’, involves filtering a number of adjacent columns concurrently,
instead of doing the filtering sequentially column by column. As an advantage, this technique doesn’t require
changing the image data. When loading the pixels of an image column into the cache, the corresponding data
of adjacent columns get fetched into the cache as well. This is because a single cache line spans several pixel
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Figure 6. The effect of row extension on jj2000 vertical wavelet lifting runtime on different CPUs, image size 4096 x 4096.

columns. Therefore, computing the product of pixels and filter coefficients within a single cache line can be
performed without any cache miss (except the initial access which triggers the ’cold’ cache load). We take
advantage of this caching feature and filter several columns concurrently.

To make aggregation possible, the filtering code has to be modified, the intermediate results for a certain
number of different columns have to be buffered. The achievable speedup depends on the size of a cache line,
i.e. 32 bytes for the Intel Pentium-II processor which corresponds to 4 pixels stored as single-precision real
numbers, and the aggregation factor, which is the number of adjacent columns processed at once. Applying
aggregation when filtering large images, we get surprising improvements for the vertical filtering part. Figure
7 illustrates the effect of increasing aggregation factors on the execution speed. Up to an aggregation factor
of 2° and 2% (which gives the number of columns filtered concurrently), we see an improving performance for
the vertical filtering part, closing the gap to the caching optimal horizontal filtering. At best, we speedup with
factor 4.06, 5.82, and 8.85 (Jasper vertical lifting on Intel, Alpha, and MIPS). At this point, we are only 1.95,
5.65, and 4.67 times slower than horizontal filtering. Originally, we were 8.41, 37.07, and 41.41 times ’'away’
from horizontal filtering.
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Figure 7. Vertical wavelet lifting runtime on an Intel Pentium-II 400 Mhz CPU with increasing aggregation factor;
image size 4096 x 4096, 9/7-biorthogonal filter, C implementation.

Furthermore, we can see that for bigger aggregation factors the runtimes increase again. This should be clear,
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Figure 8. The effect of aggregation on jj2000 vertical wavelet lifting runtime on different CPUs, image size 4096 x 4096,
aggregation factor 16.

since the advantage of a better cache usage is destroyed through increased memory demands and administration
overhead for the concurrent lifting. Note, that an upper and lower bound on the achievable speedup can be
established: at best we achieve the performance of horizontal filtering, at worst, at a aggregation factor of 1,
we achieve the performance of unmodified vertical filtering plus some extra overhead. Figure 9 correlates 3
parameters: The runtime of the vertical filtering part, the image size, as well as the aggregation factor. Along
the x-axis, every line gives the runtime of the vertical filtering part for a given image size at a specific aggregation
factor. Within one aggregation factor, the image size is increasing steadily from the most left line up to the most
right line with 4096 x 4096 pixels. The peaks wee see at aggregation factor 1 prove the poor performance when
filtering images equal to power of two. Applying more and more aggregation, we see these peaks diminishing,
reducing the cache problem significantly.

The second approach has turned out to be more effective than row extension — see figure 8 and compare
figure 8 with 6, although there is a trade-off between speedup and extra memory consumption for intermediate
buffering.

The ’row extension’ and ’aggregation’ techniques can be combined, further reducing the runtime as shown
in figure 10.

Overall, for jj2000 vertical wavelet lifting of a 4096 x 4096 pixels image, we have achieved a speedup factor
of 6.27, 7.14 and 13.06 on the Intel, Alpha and MIPS platform, respectively. The results for the Jasper coder
are similar (see figure 11 a). The numerical results for vertical and horizontal filtering employing one or both
of the proposed techniques are summarized in table 1.

Considering the overall coding time for large images, we cut the runtime significantly on all architectures.
On the Intel, Alpha, and MIPS, the Jasper coding time for a 4096 x 4096 pixels image using aggregation and
row extension is reduced by a factor of 1.66, 4.31, and 3.07 (see figure 11 b). The Java implementation performs
similarly.

It is also worth to note, that we don’t have a big runtime gap between the Jasper C - and the Java
implemantation. Especially the time demanding processing stages show similar performance. The used just-
in-time compiler makes the usage of the Java implementation very competitive, different as one might suspect
initially.
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Figure 9: Increasing the performance of vertical filtering through aggregation.
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Figure 10. Combining the proposed speedup techniques (row extension + aggregation); runtime of jj2000 vertical
wavelet lifting on different CPUs with image size 4096 x 4096, aggregation factor 16.

5. CONCLUSION

He have proposed two simple speedup techniques that tremendously improve the cache hit rate when performing
vertical wavelet lifting as implemented in the two JPEG2000 reference implementations. Preliminary results
indicate that due to the reduced memory-bus traffic, the scalability of a parallel version of the JPEG2000 coder
on SMP systems is also increased. In a forthcoming paper we will combine the techniques described here with
a parallelization approach to further decrease the runtime of JPEG2000 coding.

So far we have only looked at the impact of the first level (L1) cache performance. The interplay between
subsequent cache hierarchy levels and multi-processor shared-memory access patterns'® are promising areas for
further runtime improvements.
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Figure 11. Performance for the modified Jasper coder on different architectures: Speedup reached with increasing
aggregation factors.
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