Salzburg Interest Group on Integrated Systems

siGis-21-2001 June 18, 2001

JEvolution: Evolutionary Algorithms in Java

Technical Report
JEvolution V0.4

Helmut A. Mayer
helmut@cosy.sbg.ac.at

Department of Computer Science

University of Salzburg

Salzburg Interest Group on Integrated Systems

Correspondence to:
Helmut Mayer
Universitat Salzburg
Institut fiir Computerwissenschaften
Jakob-Haringer—Strafle 2
A-5020 Salzburg
AUSTRIA

Telephone: +43-662-8044-6315
FAX: +43-662-8044-611



JEvolution: Evolutionary Algorithms in Java

Helmut A. Mayer
Department of Computer Science
University of Salzburg
A-5020 Salzburg, Austria

Abstract

We present the basic ideas and structure of JEvolution, a compact Java package for appli-
cations using Evolutionary Algorithms (EAs) as an optimization tool. JEvolution has been
written with the intent to suit the needs of both, the experienced Evolutionary Computation
(EC) expert, and the novice to this exciting field of computer science. Hence, JEvolution can
be parametrized in many ways, but it can also be used by only writing a few lines of code. In-
evitably, there are two main tasks an evolutionary engineer has to work on, when constructing
an EA: problem encoding and fitness function. While the encoding of the problem is supported
by JEvolution native, ready—to—use Chromosomes, the fitness function has to be provided by
the applicationist, as JEvolution is (not yet) capable of knowing details about the problem
it is working on. The usage of JEvolution is described by means of a simple test program
searching for the minimum of a paraboloide function.

1 Introduction

JEvolution is a Java package for EAs (Goldberg, 1989; Koza, 1992; Michalewicz, 1991; Schwefel,
1995; Mitchell, 1996) which has been implemented with a focus on (presumably) correct object—
oriented design. In less technical words that means that execution speed has been of minor
importance during development. However, it is well known that an EA spends most of the time
evaluating the fitness of individuals which is not an intrinsic part of JEvolution (the user has to
implement the Phenotype Interface in order to provide problem—specific code).

The current version of JEvolution V0.4 ! is of S—quality, as it has been reliably used in a
framework for Evolutionary Feature Selection (Mayer et al., 2000; Mayer and Somol, 2000). It is
currently being integrated in netJEN, a framework for the evolution of Artificial Neural Networks
(ANNS).

The current features of JEvolution are:

Lean and compact Java package

Supports bitstring-, integer-, permutation, and real encoding (native chromosomes)

e User may provide costum chromosomes

Genotype may comprise an arbitrary number of different chromosomes

e Chromosome shuffling

!Please, do not be bothered by our restrictive approach to version numbering.



e Supports tournament selection with arbitrary tournament size (native selection method)
e User may provide costum selection method (implementing the Selection Interface)

e No recomputation of already evaluated individuals (fitness repository)

e Simple Java Interface for problem—specific code

e Direct access to genotype for Lamarckian evolution or repair methods

e Set up for distributed computation of fitness

e Set up for thread interrupt

e Reports simple statistics on evolutionary progress

2 Using JEvolution in an Application

The basic steps to make JEvolution work are illustrated by some lines of code from the test
program GATest.jova coming with your JEvolution distribution.

Create a JEvolution object
JEvolution GA = new JEvolution();

Sets up an EA with default parameters for population size, number of generations, number of runs
(evolutionary cycles).

Get the associated reporter
JEvolutionReporter GAStats = (JEvolutionReporter)GA.getJEvolutionReporter();

Sets up the object reporting on EA progress. If you do not want to change default settings, you
do not even have to know about the reporter, i.e., you do not need that line at all. However, by
default the fitness repository is not used. If you decide to use it, you have to request it from the
reporter.

Create the chromosome(s) needed
BitChromosome chromX = new BitChromosome() ;

Sets up a JEvolution native chromosome (bitstring encoding). All attributes and methods asso-
ciated with mutation and crossover are part of a chromosome object. With the above line, the
chromosome is ready to use, but of course, you may want to change parameters. If you want
to change the basic operation of mutation and crossover, you must extend JEvolution native
chromosomes or the abstract class Chromosome with your own code.

Pass the chromsome(s) to JEvolution

GA.addChromosome (chromX) ;



Hands your parametrized chromosome to JEvolution for future evolution. You can add as much
chromosomes (even of different type) to the genotype as you want. The only thing you have to
keep in mind is the order of addition, as this knowledge is necessary when decoding the genotype
in your implementation of the Phenotype interface.

The JEvolution default native selection method is Binary Tournament Selection (without
replacement). The only other selection method NoSelection has only been implemented for exper-
imental comparisons. However, you may provide costum selection methods by implementing the
Selection Interface. The selection method is set by /tt JEvolution’s setSelection() method.

Register Phenotype class with JEvolution

GA.setPhenotype(new ParaboloidePhenotype());

Notifies JEvolution of the problem—specific code. When having a closer look at the Phenotype
Interface, you will find three methods associated with fitness evaluation. Note that JEvolution
creates a separate Phenotype object for every individual in the population (just like in real life).
This is especially useful for distributed computation of fitness (see below).

First, doOntogeny () is called which maps the genotype to the specific phenotype (so here you
will have to know about the chromosome order). Second, JEvolution calls calcFitness() of each
individual to be evaluated. If you run your application on a single computer, you do not have to
worry about anything, but just provide the fitness function. If you want to distribute computation
of fitness functions, you may want to just pass the request for fitness computation to a dispatcher
and return from calcFitness() without actually having calculated the fitness. Third, after all
calcFitness () calls have been made by JEvolution, fitness values are collected by getFitness().
Again, just return the fitness value here for single-computer applications. For distributed systems
it is important that getFitness() blocks in case of ongoing fitness computation and only returns,
when fitness is available. Yes, it is a simple strategy and gives full responsibility to the user
coordinating distributed computation which is intended..;-)

Start JEvolution
GA.doEvolve();

After having set up the genotype and provided the phenotype class, we simply start evolution and
wait for the result. .. Thus, for our simple test problem, we would only need five lines of code to
implement an EA. However, this is not the whole truth as we also have to provide the problem—
specific code. Please, see ParaboloidePhenotype.java and a straight—forward implementation of
searching the minimum of the function f(z,y) = 2% + y2. The use of two chromosomes encoding
x and y, respectively, is simply for illustrative purposes.

Note that JEvolution always interprets a solution A having a higher fitness value than a
different solution B to be superior to B. Otherwise there is no restriction (besides the type
double) on the fitness values.

3 Caveats

The fitness repository keeps track of all genotypes evaluated during a single evolutionary run. If the
repository is used, JEvolution checks, if a genotype of unknown fitness is already in the repository.
If it is there, the fitness value is retrieved directly from the repository and the Phenotype methods
are never called. Thus, if there is any randomness associated with decoding your genotype or



evaluating its fitness, do not use the fitness repository, as it would always assign the same fitness
to the same genotype.

The repository may reduce computational cost considerably, however, at the cost of memory.
Therefore, some status information on the memory used by the Java Virtual Machine (JVM) is
reported by JEvolutionReporter, when using the repository. Moreover, the repository is built
anew with each JEvolution run, as test runs (rather surprisingly) have shown that solutions from
a previous run are rarely found in a next run. Thus, the repository would grow without any speed
advantage. Still, if you are doing “long” evolutionary runs (common with Genetic Programming),
you could run out of memory even during a single run, when using the repository (of course, there
is also some room for future optimization of the repository in JEvolution).

Of course, JEvolution may be used within a Java thread created by the application. If the
application issues an interrupt () to the thread, JEvolution finishes computations of the current
generation and returns normally (with a smaller number of evaluated generations than originally
set by the user).

4 Final Remarks

Though, JEvolution is intended to be a lean package, some additions surely will be made. Here
is an (incomplete) list of possible extensions:

e Tree (Genetic Programming) native chromosomes
e More selection methods

e Dynamic population sizes and chromosome lengths

More statistics by JEvolutionReporter
The JEvolution distribution JEvolution.tar.gz comes with the following parts:

README - Basic technical information
JEvolution.jar — The Java Archive

Doc/ — Directory containing the API documentation created by javadoc and this document
(jevolution.pdy)

GATest.java — Small test program

Paraboloide Phenoptype.java — Simple Phenotype implementation used by the test program

If you have any comments, suggestions, or more likely bug reports, feel free to contact us at
helmut@cosy.sbg.ac.at.

5 Acknowledgments

This work has partially been supported by AKTION Osterreich — Tschechische Republik under
grant AKTION 29p7: “Conventional and Evolutionary Construction of Finite Mixture Models for
Classification Problems in Remote Sensing”.



A Glossary

Application — Java Program using JEvolution
Applicationist — Synonym for User

Base — Atomic information unit of Chromosome
Chromosome — Part of a Genotype

Custom — Java code extending JEvolution provided by User
EA - Evolutionary Algorithm

Genotype — Encoded problem solution with one to many Chromosomes
JEvolution — Java package for EAs

Mutation — Random alteration of a Base value

Native — Part of JEvolution package

Population — Number of different problem solutions
Selection — Implementation of survival of the fittest

User — Programmer using JEvolution for her application

References

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by means of Natural
Selection. Complex Adaptive Systems. The MIT Press, Cambridge, MA.

Mayer, H. A. and Somol, P. (2000). Conventional and Evolutionary Feature Selection of SAR
Data Using a Filter Approach. In Electronic Proceedings of the 4th World Multiconference on
Systemics, Cybernetics, and Informatics (SCI 2000).

Mayer, H. A., Somol, P., Huber, R., and Pudil, P. (2000). Improving Statistical Measures of
Feature Subsets by Conventional and Evolutionary Approaches. In Proceedings of the Joint
IAPR International Workshops SSPR 2000 and SPR 2000, pages 77—86. Springer.

Michalewicz, Z. (1991). Genetic Algorithms + Data Structures = Evolution Programs. Artificial
Intelligence. Springer, Berlin.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Complex Adaptive Systems. MIT
Press, Cambridge, MA.

Schwefel, H.-P. (1995). Ewvolution and Optimum Seeking. Sixth—Generation Computer Technology
Series. Wiley, New York.



