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Introduction

Salmon or Sea Bass

FIGURE 1.1. The objects to be classified are first sensed by a transducer (camera),
whose signals are preprocessed. Next the features are extracted and finally the clas-
sification is emitted, here either “salmon” or “sea bass.” Although the information flow
is often chosen to be from the source to the classifier, some systems employ information
flow in which earlier levels of processing can be altered based on the tentative or pre-
liminary response in later levels (gray arrows). Yet others combine two or more stages
into a unified step, such as simultaneous segmentation and feature extraction. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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Fish Length Histogram
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FIGURE 1.2. Histograms for the length feature for the two categories. No single thresh-
old value of the length will serve to unambiguously discriminate between the two cat-
egories; using length alone, we will have some errors. The value marked l∗ will lead to
the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 1.3. Histograms for the lightness feature for the two categories. No single
threshold value x∗ (decision boundary) will serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we will have some errors. The value x∗

marked will lead to the smallest number of errors, on average. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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2D Feature Space
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Overfitting
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FIGURE 1.5. Overly complex models for the fish will lead to decision boundaries that
are complicated. While such a decision may lead to perfect classification of our training
samples, it would lead to poor performance on future patterns. The novel test point
marked ? is evidently most likely a salmon, whereas the complex decision boundary
shown leads it to be classified as a sea bass. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 1.6. The decision boundary shown might represent the optimal tradeoff be-
tween performance on the training set and simplicity of classifier, thereby giving the
highest accuracy on new patterns. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Pattern Recognition Systems
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FIGURE 1.7. Many pattern recognition systems can be partitioned into components
such as the ones shown here. A sensor converts images or sounds or other physical
inputs into signal data. The segmentor isolates sensed objects from the background or
from other objects. A feature extractor measures object properties that are useful for
classification. The classifier uses these features to assign the sensed object to a cate-
gory. Finally, a post processor can take account of other considerations, such as the
effects of context and the costs of errors, to decide on the appropriate action. Although
this description stresses a one-way or “bottom-up” flow of data, some systems employ
feedback from higher levels back down to lower levels (gray arrows). From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Design Cycle

collect data

choose features

choose model

train classifier

evaluate classifier 

end

start

prior knowledge
(e.g., invariances)

FIGURE 1.8. The design of a pattern recognition system involves a design cycle similar
to the one shown here. Data must be collected, both to train and to test the system. The
characteristics of the data impact both the choice of appropriate discriminating features
and the choice of models for the different categories. The training process uses some or
all of the data to determine the system parameters. The results of evaluation may call
for repetition of various steps in this process in order to obtain satisfactory results. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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Statistical Classifiers

Bayesian Decision Theory

Class–Conditional Probability Density
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category ωi . If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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Statistical Classifiers

Bayesian Decision Theory

Posterior Probabilities
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FIGURE 2.2. Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2)

= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Bayesian Decision Theory
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FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R2 is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Normal Distribution
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
|x − µ| ≤ 2σ , as shown. The peak of the distribution has value p(µ) = 1/

√
2πσ . From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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2D Gaussian
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FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean �. The ellipses show lines of equal probability density of the Gaussian.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copy-
right c© 2001 by John Wiley & Sons, Inc.
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FIGURE 2.16. The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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Bayes Error and Dimensionality
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FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace—here,
the two-dimensional x1 − x2 subspace or a one-dimensional x1 subspace—there can
be greater overlap of the projected distributions, and hence greater Bayes error. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen to be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n → ∞, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Sample Size

Estimate p(~x) '
k
n
V is dependent on size of V

if V → 0, p(~x) would be exact, but no more samples in V

Assuming infinite pattern set with decreasing Vn

n–th estimate pn(~x) =
kn
n
Vn

For convergence of pn(~x)→ p(~x)
limn→∞ Vn = 0 limn→∞ kn =∞ limn→∞

kn
n = 0

Decreasing Vn, e.g., Vn = 1√
n
→ Parzen Windows

Increasing kn, e.g., kn =
√
n→ kn–Nearest–Neighbors
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Point Density Estimation

n = 1 n = 4 n = 9 n = 16 n = 100

...

...

...

...

Vn =1/ √n

kn = √n

FIGURE 4.2. There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as Vn = 1/

√
n. The

other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number kn = √

n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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(neighbors are training patterns)

Dense neighbors → small Vn → good resolution
Sparse neighbors → large Vn → bad resolution

Problem: often
∫
pn(~x)d~x > 1
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1D kNN Estimate

x

p(x)

3 5

FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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0

p(x)

x1

x2

FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and notice that disconti-
nuities in the slopes generally occur along lines away from the positions of the points
themselves. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifi-
cation. Copyright c© 2001 by John Wiley & Sons, Inc.



VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Unimodal and Bimodal 1D kNN Estimates
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n=1

kn=1

n=16

kn=4

n=256

kn=16

n= ∞
kn= ∞

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:
a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“spiky.” From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Samples of different classes, what is P(ωi |~x)?

Estimate for pn(~x , ωi ) =
ki
n
V (in arbitrary V )

Estimate for P(ωi |~x) = pn(~x ,ωi )∑c
j=1 pn(~x ,ωj )

= ki
k

With n→∞ and Bayes Rule: optimal performance (Parzen
and kNN)
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Nearest Neigbor Rule

Single nearest neigbor is ~x ′ (k = 1)
Class label of ~x ′ is θ′ (random variable)
P(θ′ = ωi ) = P(ωi |~x ′) ' P(ωi |~x) (for large n)

Assumption of 1NN: P(ωi |~x ′) is largest probability
If true (e.g., P ' 1, or P ' 1

c ), then 1NN close to Bayes Error

Average error probability P(e) =
∫
P(e|~x)p(~x)d~x

P(e|~x) = 1− P(ωi |~x ′) is ”minimum” P∗(e|~x)
P∗(e) =

∫
P∗(e|~x)p(~x)d~x

1NN error P = limn→∞ Pn(e)
P∗ ≤ P ≤ P∗(2− c

c−1P
∗)
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Voronoi Tesselation

x1

x2

x1

x3

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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c - 1
c

P*

P

P =
 P

*

P
 =

 2
P

*

c - 1
c

FIGURE 4.14. Bounds on the nearest-neighbor error rate P in a c-category problem
given infinite training data, where P∗ is the Bayes error (Eq. 52). At low error rates, the
nearest-neighbor error rate is bounded above by twice the Bayes rate. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Straight–forward extension: k neighbors

Majority voting: P(ωm|~x) is largest probability (most
prototypes in class m)

If k →∞ then k–NN rule becomes optimal
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5NN in 2D

x

x2

x1

FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses k training samples, and it labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labeled the category
of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 4.16. The error rate for the k-nearest-neighbor rule for a two-category problem
is bounded by Ck(P∗) in Eq. 54. Each curve is labeled by k; when k = ∞, the estimated
probabilities match the true probabilities and thus the error rate is equal to the Bayes
rate, that is, P = P∗. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Properties of Metrics

Nonnegativity: D(~a,~b) ≥ 0

Reflexivity: D(~a,~b) = 0 iff ~a = ~b

Symmetry: D(~a,~b) = D(~b,~a)

Triangle inequality: D(~a,~b) + D(~b,~c) ≥ D(~a,~c)

Scaling of feature values equivalent to changing the metric
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Scaling is Change of Metric

x1

x2 x2

x x

αx1

FIGURE 4.18. Scaling the coordinates of a feature space can change the distance rela-
tionships computed by the Euclidean metric. Here we see how such scaling can change
the behavior of a nearest-neighbor classifer. Consider the test point x and its nearest
neighbor. In the original space (left), the black prototype is closest. In the figure at the
right, the x1 axis has been rescaled by a factor 1/3; now the nearest prototype is the red
one. If there is a large disparity in the ranges of the full data in each dimension, a com-
mon procedure is to rescale all the data to equalize such ranges, and this is equivalent
to changing the metric in the original space. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Minkowski Metric (Lk Norm) Lk(~a,~b) = (
∑d

i=1 |ai − bi |k)
1
k

L1 Norm: Manhattan distance

L2 Norm: Euclidean distance

L∞ Norm: Maximum of projected distances
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FIGURE 4.19. Each colored surface consists of points a distance 1.0 from the origin,
measured using different values for k in the Minkowski metric (k is printed in red). Thus
the white surfaces correspond to the L1 norm (Manhattan distance), the light gray sphere
corresponds to the L2 norm (Euclidean distance), the dark gray ones correspond to the
L4 norm, and the pink box corresponds to the L∞ norm. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.



VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Discriminant Functions

Assumption: we know the form of discriminant functions
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Problem: determine parameters of discriminant functions

Method: gradient descent of criterion functions
(based on training set)
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Linear Classifier

x0=1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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Linear Discriminant Functions

Linear discriminant function g(~x) = ~w t~x + w0

(weight vector ~w , bias w0)

Two classes: g(~x) > 0→ ω1, else ω2

or ~w t~x > −w0

Decision surface is hyperplane, ~x1, ~x2 on boundary
~w t~x1 + w0 = ~w t~x2 + w0 → ~w t(~x1 − ~x2) = 0
(~w is normal vector)

Hyperplane H divides space in two half–spaces
R1 is positive side (g(~x) > 0), R2 is negative side (g(~x) < 0)
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Multiple Classes

Variant: c dichotomizers (ωi , not ωi )

Variant: c(c−1)
2 dichotomizers (all class pairs)

Variant: linear machine, discriminant functions
gi (~x), i = 1, . . . , c

Decision boundary
gi (~x) = gj(~x)→ (~wi − ~wj)

t~x + (wi0 − wj0) = 0

(~wi − ~wj) ⊥ Hij , r =
gi (~x)−gj (~x)
||~wi−~wj ||
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Dichotomizers in a Four–class Problem
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FIGURE 5.3. Linear decision boundaries for a four-class problem. The top figure shows
ωi/not ωi dichotomies while the bottom figure shows ωi/ωj dichotomies and the corre-
sponding decision boundaries Hij. The pink regions have ambiguous category assign-
ments. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.



VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linear Machines in Multi–class Problems

R1 R2

R3

R4

R5

ω1 R2

R3

R1

ω2 ω1
ω3

ω5

ω2ω3

ω4

H15 H25

H24

H14

H35

H13

H34

H23

H12

H23

H13

FIGURE 5.4. Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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∑d̂

i=1 aiyi (~x) = ~at~y
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2, ~y =
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Decision boundary is linear in ~y–space
Transformed density p(x) is degenerate
If d is large, huge number of parameters
(requires large training data set)
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FIGURE 5.5. The mapping y = (1, x, x2)t takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y-space into regions corresponding to
two categories, and this in turn gives a nonsimply connected decision region in the
one-dimensional x-space. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.6. The two-dimensional input space x is mapped through a polynomial func-
tion f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear discriminant
in this transformed space is a hyperplane, which cuts the surface. Points to the positive
side of the hyperplane Ĥ correspond to category ω1, and those beneath it correspond to
category ω2. Here, in terms of the x space, R1 is a not simply connected. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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Solution region defines all possible values of ~a
intersection of n half–spaces (~at~yi = 0)

Margin b > 0, ~at~yi ≥ b, new solution region has distance b
||~yi ||

from old boundaries
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FIGURE 5.8. Four training samples (black for ω1, red for ω2) and the solution region in
feature space. The figure on the left shows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 5.9. The effect of the margin on the solution region. At the left is the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the right
is the case b > 0, shrinking the solution region by margins b/‖yi‖. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Set of linear inequalities ~at~yi > 0, define criterion function
J(~a), which is minimized for a solution vector ~a∗

Minimizing a scalar function J(~a) by gradient descent
~a(k + 1) = ~a(k)− η(k)~∇J(~a(k))

Second–order expansion
J(~a) ' J(~a(k)) + ~∇Jt(~a−~a(k)) + 1

2 (~a−~a(k))tH(~a−~a(k))
H is Hessian Matrix

Minimize J(~a(k + 1)) with η(k) = ||~∇J||2
~∇JtH ~∇J

J(~a) ∼ ~a2 → H = const.→ η = const.

Minimize second–order expansion with ~a(k + 1)→
Newton Descent ~a(k + 1) = ~a(k)− H−1~∇J (expensive)
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FIGURE 5.10. The sequence of weight vectors given by a simple gradient descent
method (red) and by Newton’s (second order) algorithm (black). Newton’s method typi-
cally leads to greater improvement per step, even when using optimal learning rates for
both methods. However the added computational burden of inverting the Hessian ma-
trix used in Newton’s method is not always justified, and simple gradient descent may
suffice. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Perceptron criterion Jp(~a) =

∑
~y∈Y −~at~y

(Y is set of misclassified patterns)

Gradient ~∇Jp =
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~y∈Y −~y

Update rule ~a(k + 1) = ~a(k) + η(k)
∑

~y∈Yk ~y

Batch vs. single–sample correction
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Minimum Squared–Error Procedures

Set of equalities ~at~yi = bi
bi > 0 are arbitrary constants

Solve Y~a = ~b
Y is n × (d + 1) matrix containing all training vectors

If Y nonsingular ~a = Y−1~b, however Y mostly rectangular!

Minimizing ~e = Y~a− ~b leads to
Y tY~a = Y t~b → ~a = (Y tY )−1Y t~b = Y †~b
Y † is pseudoinverse (d + 1)× n matrix
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Support Vector Machines

Transform patterns to (much) higher dimension
via nonlinear mapping ϕ(.)

Linear discriminant g(~y) = ~at~y

Distance of ~yk to H is zkg(~yk )
||a|| ≥ b

zk = ±1 (normalization), b is margin

Maximize b with constrained ||a|| = 1
b → minimize ||a|| with

inequality constraints

Kuhn–Tucker theorem, optimization with inequality
constraints, generalization of Lagrange Multipliers
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Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2



VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2



VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2



VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2



VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin Hyperplane

y1

y2

R2

optimal hyperplane

m
ax

im
um

m
ar

gi
n 

b

m
ax

im
um

m
ar

gi
n 

b

R1

FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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Soft Margin SVM

Maximal margin SVM is sensitive to outliers, demands linear
separability for solution

Soft Margin SVM introducing slack variables ξ
zkg(~yk) ≥ b − ξk (relaxed margin)

Maximize relaxed margin b with Kuhn–Tucker functional
L(~a, ~α, ~ξ) = 1

2 ||~a||
2 + C

2

∑n
k=1 ξ

2
i −

∑n
k=1 αk [zk~a

t~yk − 1 + ξi ]

Again ~a∗ =
∑n

i=1 ziα
∗
i ~yi

Maximal margin b∗ = (
∑n

i=1 αi
∗ − 1

C |α
∗
i |2)−

1
2

Depends on parameter C !
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FIGURE 6.1. The two-bit parity or exclusive-OR problem can be solved by a three-
layer network. At the bottom is the two-dimensional feature x1x2-space, along with the
four patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their feature values through multiplicative weights
to the hidden units. The hidden and output units here are linear threshold units, each
of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s
thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a +1 if its net is greater than or equal
to 0 and emits a −1 otherwise. Within each unit we show a graph of its input-output
or activation function—f (net) versus net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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A 2–4–1 Network
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FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden
output unit has sigmoidal activation function f (·). In the case shown, the hidden unit outputs are paired in
opposition thereby producing a “bump” at the output unit. Given a sufficiently large number of hidden units,
any continuous function from input to output can be approximated arbitrarily well by such a network. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley
& Sons, Inc.
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FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation
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FIGURE 6.6. A learning curve shows the criterion function as a function of the amount
of training, typically indicated by the number of epochs or presentations of the full train-
ing set. We plot the average error per pattern, that is, 1/n

∑n
p=1 Jp. The validation error

and the test or generalization error per pattern are virtually always higher than the train-
ing error. In some protocols, training is stopped at the first minimum of the validation
set. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 6.10. A 2-2-1 backpropagation network with bias and the four patterns of the
XOR problem are shown at the top. The middle figure shows the outputs of the hid-
den units for each of the four patterns; these outputs move across the y1y2-space as
the network learns. In this space, early in training (epoch 1) the two categories are not
linearly separable. As the input-to-hidden weights learn, as marked by the number of
epochs, the categories become linearly separable. The dashed line is the linear decision
boundary determined by the hidden-to-output weights at the end of learning; indeed
the patterns of the two classes are separated by this boundary. The bottom graph shows
the learning curves—the error on individual patterns and the total error as a function
of epoch. Note that, as frequently happens, the total training error decreases monoton-
ically, even though this is not the case for the error on each individual pattern. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 8.1. Classification in a basic decision tree proceeds from top to bottom. The questions asked at
each node concern a particular property of the pattern, and the downward links correspond to the possible
values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read.
Note that the same question, Size?, appears in different places in the tree and that different questions can
have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the
same category (e.g., Apple). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 8.3. Monothetic decision trees create decision boundaries with portions perpendicular to the feature
axes. The decision regions are marked R1 and R2 in these two-dimensional and three-dimensional two-
category examples. With a sufficiently large tree, any decision boundary can be approximated arbitrarily
well in this way. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Greedy Query Search

Select query with largest impurity decrease from N
to NL (left child) and NR (right child)
∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Greedy Query Search

Select query with largest impurity decrease from N
to NL (left child) and NR (right child)
∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Greedy Query Search

Select query with largest impurity decrease from N
to NL (left child) and NR (right child)
∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Stop Splitting Methods

Naive Stop: each leaf node has impurity 0 (perfect
overfitting), may degenerate to a look–up table (a leaf node
for each pattern)

Measure split performance with a separate validation set
(minimal error on validation set)

Impurity threshold ∆i(N) ≤ β, unbalanced trees, choice of β?

Pattern threshold: stop when a node represents a certain
(small) number (percentage) of patterns

Minimum Description Length (regularization reduces
complexity)
J(DT ) = α#N +

∑
LN i(LN) (LN = leaf nodes)

Statistical significance of impurity reduction
(distribution of ∆i)
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possible
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Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability



VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Feature Extraction

.2 .4 .6 .8 1
0

.2

.4

.6

.8

1
 - 1.2 x1 + x2 < 0.1   

x1 < 0.27

x2 < 0.32

x1 < 0.07

  x2 < 0.6

  x1 < 0.55

  x2 < 0.86

x1 < 0.81

x1

x2

ω2 ω1

ω2

ω1

ω1

ω1

ω1

ω2

ω2

ω2
R2

R1

R2

R1

.2 .4 .6 .8 1
0

.2

.4

.6

.8

1

x1

x2

FIGURE 8.5. If the class of node decisions does not match the form of the training data,
a very complicated decision tree will result, as shown at the top. Here decisions are
parallel to the axes while in fact the data is better split by boundaries along another
direction. If, however, “proper” decision forms are used (here, linear combinations of
the features), the tree can be quite simple, as shown at the bottom. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 8.6. One form of multivariate tree employs general linear decisions at each
node, giving splits along arbitrary directions in the feature space. In virtually all inter-
esting cases the training data are not linearly separable, and thus the LMS algorithm is
more useful than methods that require the data to be linearly separable, even though the
LMS need not yield a minimum in classification error (Chapter 5). The tree at the bottom
can be simplified by methods outlined in Section 8.4.2. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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having maximal predictive association (correlation)

Virtual values, e.g., mean value of non–deficient feature values
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B > 2 with nominal features, B = 2 with real features

Pruning based on statistical significance of splits

Missing features: sample all subtrees of missing feature using
training data

Additional rule pruning, can prune any node (see Figure 8.6)
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FIGURE 7.1. The class of optimization problems of Eq. 1 can be viewed in terms of a
network of nodes or units, each of which can be in the si = +1 or si = −1 state. Every
pair of nodes i and j is connected by bi-directional weights wij; if a weight between two
nodes is zero, then no connection is drawn. (Because the networks we shall discuss can
have an arbitrary interconnection, there is no notion of layers as in multilayer neural
networks.) The optimization problem is to find a configuration (i.e., assignment of all
si) that minimizes the energy described by Eq. 1. While our convention was to show
functions inside each node’s circle, our convention in so-called Boltzmann networks is
to indicate the state of each node. The configuration of the full network is indexed by
an integer γ , and because here there are 17 binary nodes, γ is bounded 0 ≤ γ < 217.
When such a network is used for pattern recognition, the input and output nodes are
said to be visible, and the remaining nodes are said to be hidden. The states of the
visible nodes and hidden nodes are indexed by α and β, respectively, and in this case
are bounded 0 ≤ α ≤ 210 and 0 ≤ β < 27. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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E E

FIGURE 7.2. The energy function or energy “landscape” on the left is meant to suggest the types of opti-
mization problems addressed by simulated annealing. The method uses randomness, governed by a control
parameter or “temperature” T to avoid getting stuck in local energy minima and thus to find the global mini-
mum, like a small ball rolling in the landscape as it is shaken. The pathological “golf course” landscape at the
right is, generally speaking, not amenable to solution via simulated annealing because the region of lowest
energy is so small and is surrounded by energetically unfavorable configurations. The configuration spaces of
the problems we shall address are discrete and are more accurately displayed in Fig. 7.6. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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accept Eb, if Eb < Ea or

accept Ea with P = e
−∆Eab

T

Annealing Schedule, e.g., T (k + 1) = cT (k) 0 < c < 1
typically 0.8 < c < 0.99

High initial temperature, large c and large kmax (number of
iterations) leads to good results (but also computational cost)
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FIGURE 7.3. Stochastic simulated annealing (Algorithm 1) uses randomness, governed by a control parameter
or “temperature” T (k) to search through a discrete space for a minimum of an energy function. In this example
there are N = 6 variables; the 26 = 64 configurations are shown along the bottom as a column of + and
− symbols. The plot of the associated energy of each configuration given by Eq. 1 for randomly chosen
weights. Every transition corresponds to the change of just a single si. (The configurations have been arranged
so that adjacent ones differ by the state of just a single node; nevertheless, most transitions corresponding
to a single node appear far apart in this ordering.) Because the system energy is invariant with respect to a
global interchange si ↔ −si, there are two “global” minima. The graph at the upper left shows the annealing
schedule—the decreasing temperature versus iteration number k. The middle portion shows the configuration
versus iteration number generated by Algorithm 1. The trajectory through the configuration space is colored
red for transitions that increase the energy and black for those that decrease the energy. Such energetically
unfavorable (red) transitions become rarer later in the anneal. The graph at the right shows the full energy
E(k), which decreases to the global minimum. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.4. An estimate of the probability P(γ ) of being in a configuration denoted by γ is shown for
four temperatures during a slow anneal. (These estimates, based on a large number of runs, are nearly the
theoretical values e−Eγ /T.) Early, at high T, each configuration is roughly equal in probability while late, at
low T, the probability is strongly concentrated at the global minima. The expected value of the energy, E[E]
(i.e., averaged at temperature T), decreases gradually during the anneal. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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