
VU Pattern Recognition II

VU Pattern Recognition II

Helmut A. Mayer

Department of Computer Sciences
University of Salzburg

WS 13/14

VU Pattern Recognition II

Outline

1 Introduction

2 Statistical Classifiers
Bayesian Decision Theory

3 Nonparametric Techniques
Density Estimation
k–Nearest–Neigbor Estimation

4 Linear Discriminant Functions
Decision Surfaces

5 Neural Networks

6 Nonmetric Methods
Classification and Regression Trees

7 Stochastic Methods
Simulated Annealing

8 Projects

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Human vs. Machine

Human Perception

Senses to neural patterns

Machine Perception

Sensors to value patterns

Patterns are everywhere...

Images, Time Series, Medical Diagnosis, Customer Analysis
(only a few examples)

Features build Model

Fish Example

VU Pattern Recognition II

Introduction

Salmon or Sea Bass

FIGURE 1.1. The objects to be classified are first sensed by a transducer (camera),
whose signals are preprocessed. Next the features are extracted and finally the clas-
sification is emitted, here either “salmon” or “sea bass.” Although the information flow
is often chosen to be from the source to the classifier, some systems employ information
flow in which earlier levels of processing can be altered based on the tentative or pre-
liminary response in later levels (gray arrows). Yet others combine two or more stages
into a unified step, such as simultaneous segmentation and feature extraction. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Fish Length Histogram

salmon sea bass

length

count

l*

0

2

4

6

8

10

12

16

18

20

22

5 10 2015 25

FIGURE 1.2. Histograms for the length feature for the two categories. No single thresh-
old value of the length will serve to unambiguously discriminate between the two cat-
egories; using length alone, we will have some errors. The value marked l∗ will lead to
the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Fish Lightness Histogram

2 4 6 8 10
0

2

4

6

8

10

12

14

lightness

count

x*

salmon sea bass

FIGURE 1.3. Histograms for the lightness feature for the two categories. No single
threshold value x∗ (decision boundary) will serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we will have some errors. The value x∗

marked will lead to the smallest number of errors, on average. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Decision Theory

Cost of an Error?

Salmon tastes better..;-)
Minimization of cost (risk)
Decision Rule/Boundary

Improving Recognition

Feature Vector ~x =

(
lightness
width

)

2D Decision Boundary

VU Pattern Recognition II

Introduction

Decision Theory

Cost of an Error?

Salmon tastes better..;-)

Minimization of cost (risk)
Decision Rule/Boundary

Improving Recognition

Feature Vector ~x =

(
lightness
width

)

2D Decision Boundary

VU Pattern Recognition II

Introduction

Decision Theory

Cost of an Error?

Salmon tastes better..;-)
Minimization of cost (risk)

Decision Rule/Boundary

Improving Recognition

Feature Vector ~x =

(
lightness
width

)

2D Decision Boundary

VU Pattern Recognition II

Introduction

Decision Theory

Cost of an Error?

Salmon tastes better..;-)
Minimization of cost (risk)
Decision Rule/Boundary

Improving Recognition

Feature Vector ~x =

(
lightness
width

)

2D Decision Boundary

VU Pattern Recognition II

Introduction

Decision Theory

Cost of an Error?

Salmon tastes better..;-)
Minimization of cost (risk)
Decision Rule/Boundary

Improving Recognition

Feature Vector ~x =

(
lightness
width

)
2D Decision Boundary

VU Pattern Recognition II

Introduction

Decision Theory

Cost of an Error?

Salmon tastes better..;-)
Minimization of cost (risk)
Decision Rule/Boundary

Improving Recognition

Feature Vector ~x =

(
lightness
width

)

2D Decision Boundary

VU Pattern Recognition II

Introduction

Decision Theory

Cost of an Error?

Salmon tastes better..;-)
Minimization of cost (risk)
Decision Rule/Boundary

Improving Recognition

Feature Vector ~x =

(
lightness
width

)
2D Decision Boundary

VU Pattern Recognition II

Introduction

2D Feature Space

2 4 6 8 10
14

15

16

17

18

19

20

21

22

width

lightness

salmon sea bass

FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Overfitting

?

2 4 6 8 10
14

15

16

17

18

19

20

21

22

width

lightness

salmon sea bass

FIGURE 1.5. Overly complex models for the fish will lead to decision boundaries that
are complicated. While such a decision may lead to perfect classification of our training
samples, it would lead to poor performance on future patterns. The novel test point
marked ? is evidently most likely a salmon, whereas the complex decision boundary
shown leads it to be classified as a sea bass. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Generalization

2 4 6 8 10
14

15

16

17

18

19

20

21

22

width

lightness

salmon sea bass

FIGURE 1.6. The decision boundary shown might represent the optimal tradeoff be-
tween performance on the training set and simplicity of classifier, thereby giving the
highest accuracy on new patterns. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Related Fields

Statistical Hypothesis Testing

Image Processing

Regression (age ↔ weight)

Interpolation

Density Estimation

VU Pattern Recognition II

Introduction

Related Fields

Statistical Hypothesis Testing

Image Processing

Regression (age ↔ weight)

Interpolation

Density Estimation

VU Pattern Recognition II

Introduction

Related Fields

Statistical Hypothesis Testing

Image Processing

Regression (age ↔ weight)

Interpolation

Density Estimation

VU Pattern Recognition II

Introduction

Related Fields

Statistical Hypothesis Testing

Image Processing

Regression (age ↔ weight)

Interpolation

Density Estimation

VU Pattern Recognition II

Introduction

Related Fields

Statistical Hypothesis Testing

Image Processing

Regression (age ↔ weight)

Interpolation

Density Estimation

VU Pattern Recognition II

Introduction

Pattern Recognition Systems

post-processing

classification

feature extraction

segmentation

sensing

input

decision

adjustments for
missing features

adjustments for
context

costs

FIGURE 1.7. Many pattern recognition systems can be partitioned into components
such as the ones shown here. A sensor converts images or sounds or other physical
inputs into signal data. The segmentor isolates sensed objects from the background or
from other objects. A feature extractor measures object properties that are useful for
classification. The classifier uses these features to assign the sensed object to a cate-
gory. Finally, a post processor can take account of other considerations, such as the
effects of context and the costs of errors, to decide on the appropriate action. Although
this description stresses a one-way or “bottom-up” flow of data, some systems employ
feedback from higher levels back down to lower levels (gray arrows). From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Feature Extraction

Features ↔ Classification

Invariant Features (translation, rotation, scale)

Deformation (e.g. Cropping)

Feature Selection (Filter, Wrapper)

VU Pattern Recognition II

Introduction

Feature Extraction

Features ↔ Classification

Invariant Features (translation, rotation, scale)

Deformation (e.g. Cropping)

Feature Selection (Filter, Wrapper)

VU Pattern Recognition II

Introduction

Feature Extraction

Features ↔ Classification

Invariant Features (translation, rotation, scale)

Deformation (e.g. Cropping)

Feature Selection (Filter, Wrapper)

VU Pattern Recognition II

Introduction

Feature Extraction

Features ↔ Classification

Invariant Features (translation, rotation, scale)

Deformation (e.g. Cropping)

Feature Selection (Filter, Wrapper)

VU Pattern Recognition II

Introduction

Post Processing

Error Rate, Risk (weighted error)

Context (IC* *IN)

Multiple Classifiers (subspaces, fusion)

VU Pattern Recognition II

Introduction

Post Processing

Error Rate, Risk (weighted error)

Context (IC* *IN)

Multiple Classifiers (subspaces, fusion)

VU Pattern Recognition II

Introduction

Post Processing

Error Rate, Risk (weighted error)

Context (IC* *IN)

Multiple Classifiers (subspaces, fusion)

VU Pattern Recognition II

Introduction

Design Cycle

collect data

choose features

choose model

train classifier

evaluate classifier

end

start

prior knowledge
(e.g., invariances)

FIGURE 1.8. The design of a pattern recognition system involves a design cycle similar
to the one shown here. Data must be collected, both to train and to test the system. The
characteristics of the data impact both the choice of appropriate discriminating features
and the choice of models for the different categories. The training process uses some or
all of the data to determine the system parameters. The results of evaluation may call
for repetition of various steps in this process in order to obtain satisfactory results. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Introduction

Learning and Adaptation

Learning is Parameter Tuning

Supervised Learning (teacher)

Reinforcement Learning (critic)

Unsupervised Learning (clustering)

VU Pattern Recognition II

Introduction

Learning and Adaptation

Learning is Parameter Tuning

Supervised Learning (teacher)

Reinforcement Learning (critic)

Unsupervised Learning (clustering)

VU Pattern Recognition II

Introduction

Learning and Adaptation

Learning is Parameter Tuning

Supervised Learning (teacher)

Reinforcement Learning (critic)

Unsupervised Learning (clustering)

VU Pattern Recognition II

Introduction

Learning and Adaptation

Learning is Parameter Tuning

Supervised Learning (teacher)

Reinforcement Learning (critic)

Unsupervised Learning (clustering)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Probabilities

State of Nature ω = ω1 (class)

A Priori Probability P(ω1) (prior)

Decision Rule P(ω1) > P(ω2)→ ω1

Class–Conditional Probability Density Function p(x |ω)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Probabilities

State of Nature ω = ω1 (class)

A Priori Probability P(ω1) (prior)

Decision Rule P(ω1) > P(ω2)→ ω1

Class–Conditional Probability Density Function p(x |ω)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Probabilities

State of Nature ω = ω1 (class)

A Priori Probability P(ω1) (prior)

Decision Rule P(ω1) > P(ω2)→ ω1

Class–Conditional Probability Density Function p(x |ω)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Probabilities

State of Nature ω = ω1 (class)

A Priori Probability P(ω1) (prior)

Decision Rule P(ω1) > P(ω2)→ ω1

Class–Conditional Probability Density Function p(x |ω)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Class–Conditional Probability Density

9 10 11 12 13 14 15

0.1

0.2

0.3

0.4

p(x|ωi)

x

ω1

ω2

FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category ωi . If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Bayes Decision Rule

Joint Probability Density
p(ωj , x) = P(ωj |x)p(x) = p(x |ωj)P(ωj)

Bayes Formula P(ωj |x) =
p(x |ωj)P(ωj)

p(x)

Decision Rule P(ω1|x) > P(ω2|x)→ ω1

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Bayes Decision Rule

Joint Probability Density
p(ωj , x) = P(ωj |x)p(x) = p(x |ωj)P(ωj)

Bayes Formula P(ωj |x) =
p(x |ωj)P(ωj)

p(x)

Decision Rule P(ω1|x) > P(ω2|x)→ ω1

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Bayes Decision Rule

Joint Probability Density
p(ωj , x) = P(ωj |x)p(x) = p(x |ωj)P(ωj)

Bayes Formula P(ωj |x) =
p(x |ωj)P(ωj)

p(x)

Decision Rule P(ω1|x) > P(ω2|x)→ ω1

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Posterior Probabilities

0.2

0.4

0.6

0.8

1

P(ωi|x)

x

ω1

ω2

9 10 11 12 13 14 15

FIGURE 2.2. Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2)

= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Error Probabilities

Error P(error |x) =

{
P(ω1|x) if ω2

P(ω2|x) if ω1

Average Error Probability
P(error) =

∫∞
−∞ p(error , x)dx =

∫∞
−∞ P(error |x)p(x)dx

Bayes Rule minimizes P(error)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Error Probabilities

Error P(error |x) =

{
P(ω1|x) if ω2

P(ω2|x) if ω1

Average Error Probability
P(error) =

∫∞
−∞ p(error , x)dx =

∫∞
−∞ P(error |x)p(x)dx

Bayes Rule minimizes P(error)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Error Probabilities

Error P(error |x) =

{
P(ω1|x) if ω2

P(ω2|x) if ω1

Average Error Probability
P(error) =

∫∞
−∞ p(error , x)dx =

∫∞
−∞ P(error |x)p(x)dx

Bayes Rule minimizes P(error)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Generalized Bayes Rule

Feature vector ~x ∈ Rd

Classes ω1 . . . ωc

Bayes Formula P(ωj |~x) =
p(~x |ωj)P(ωj)

p(~x)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Generalized Bayes Rule

Feature vector ~x ∈ Rd

Classes ω1 . . . ωc

Bayes Formula P(ωj |~x) =
p(~x |ωj)P(ωj)

p(~x)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Generalized Bayes Rule

Feature vector ~x ∈ Rd

Classes ω1 . . . ωc

Bayes Formula P(ωj |~x) =
p(~x |ωj)P(ωj)

p(~x)

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Dichotomizer

0

0.1

0.2

0.3

decision
boundary

p(x|ω2)P(ω2)

R1

R2

p(x|ω1)P(ω1)

R2

0

5

0

5

FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R2 is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

The Normal Density

Randomized Prototype Vectors with Mean ~µ→
Normal Distribution

Expected Value
E [f (x)] =

∫∞
−∞ f (x)p(x)dx (continous)

E [f (x)] =
∑

x∈D f (x)P(x) (discrete)

Univariate Normal Density

p(x) = 1√
2πσ

e−
1
2

(x−µ
σ

)2

E [x] = µ E [(x − µ)2] = σ2

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

The Normal Density

Randomized Prototype Vectors with Mean ~µ→
Normal Distribution

Expected Value
E [f (x)] =

∫∞
−∞ f (x)p(x)dx (continous)

E [f (x)] =
∑

x∈D f (x)P(x) (discrete)

Univariate Normal Density

p(x) = 1√
2πσ

e−
1
2

(x−µ
σ

)2

E [x] = µ E [(x − µ)2] = σ2

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

The Normal Density

Randomized Prototype Vectors with Mean ~µ→
Normal Distribution

Expected Value
E [f (x)] =

∫∞
−∞ f (x)p(x)dx (continous)

E [f (x)] =
∑

x∈D f (x)P(x) (discrete)

Univariate Normal Density

p(x) = 1√
2πσ

e−
1
2

(x−µ
σ

)2

E [x] = µ E [(x − µ)2] = σ2

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Normal Distribution

x

2.5% 2.5%

σ

p(x)

µ + σ µ + 2σµ - σµ - 2σ µ

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
|x − µ| ≤ 2σ , as shown. The peak of the distribution has value p(µ) = 1/

√
2πσ . From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Multivariate Density

Multivariate Normal Density

p(x) = 1

2π
d
2 |Σ|

1
2
e−

1
2

(~x−~µ)tΣ−1(~x−~µ)

Covariance Matrix Σ (d × d)
E [~x] = ~µ E [(~x − ~µ)(~x − ~µ)t] = Σ
E [xi] = µi E [(xi − µi)(xj − µj)] = σij

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Multivariate Density

Multivariate Normal Density

p(x) = 1

2π
d
2 |Σ|

1
2
e−

1
2

(~x−~µ)tΣ−1(~x−~µ)

Covariance Matrix Σ (d × d)
E [~x] = ~µ E [(~x − ~µ)(~x − ~µ)t] = Σ
E [xi] = µi E [(xi − µi)(xj − µj)] = σij

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

2D Gaussian

x2

x1

µ

FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean �. The ellipses show lines of equal probability density of the Gaussian.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copy-
right c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Four Categories

R3

R2

R1

R4

R4

FIGURE 2.16. The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Classification Errors

Bayes Error: overlapping densities, inherent problem property

Model Error: incorrect model

Estimation Error: finite sample of training data

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Classification Errors

Bayes Error: overlapping densities, inherent problem property

Model Error: incorrect model

Estimation Error: finite sample of training data

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Classification Errors

Bayes Error: overlapping densities, inherent problem property

Model Error: incorrect model

Estimation Error: finite sample of training data

VU Pattern Recognition II

Statistical Classifiers

Bayesian Decision Theory

Bayes Error and Dimensionality

x3

x1

x2

FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace—here,
the two-dimensional x1 − x2 subspace or a one-dimensional x1 subspace—there can
be greater overlap of the projected distributions, and hence greater Bayes error. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Unknown Densities

Real problems: multi–modal, parametric densities: uni–modal
→ estimation of densities directly from data

P that pattern ~x falls in region R, P =
∫
R p(~x)d~x

n patterns, probability that k patterns are in R
Pk =

(n
k

)
Pk(1− P)n−k E [k] = nP

Assuming small region R →
p(~x) ' const →

∫
R p(~x)d~x ' p(~x)V → p(~x) '

k
n
V

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Unknown Densities

Real problems: multi–modal, parametric densities: uni–modal
→ estimation of densities directly from data

P that pattern ~x falls in region R, P =
∫
R p(~x)d~x

n patterns, probability that k patterns are in R
Pk =

(n
k

)
Pk(1− P)n−k E [k] = nP

Assuming small region R →
p(~x) ' const →

∫
R p(~x)d~x ' p(~x)V → p(~x) '

k
n
V

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Unknown Densities

Real problems: multi–modal, parametric densities: uni–modal
→ estimation of densities directly from data

P that pattern ~x falls in region R, P =
∫
R p(~x)d~x

n patterns, probability that k patterns are in R
Pk =

(n
k

)
Pk(1− P)n−k E [k] = nP

Assuming small region R →
p(~x) ' const →

∫
R p(~x)d~x ' p(~x)V → p(~x) '

k
n
V

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Unknown Densities

Real problems: multi–modal, parametric densities: uni–modal
→ estimation of densities directly from data

P that pattern ~x falls in region R, P =
∫
R p(~x)d~x

n patterns, probability that k patterns are in R
Pk =

(n
k

)
Pk(1− P)n−k E [k] = nP

Assuming small region R →
p(~x) ' const →

∫
R p(~x)d~x ' p(~x)V → p(~x) '

k
n
V

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Relative Probability

1
k/n

0.5

1

relative
probability

0

100
5020

P = 0.7

FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen to be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n → ∞, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Sample Size

Estimate p(~x) '
k
n
V is dependent on size of V

if V → 0, p(~x) would be exact, but no more samples in V

Assuming infinite pattern set with decreasing Vn

n–th estimate pn(~x) =
kn
n
Vn

For convergence of pn(~x)→ p(~x)
limn→∞ Vn = 0 limn→∞ kn =∞ limn→∞

kn
n = 0

Decreasing Vn, e.g., Vn = 1√
n
→ Parzen Windows

Increasing kn, e.g., kn =
√
n→ kn–Nearest–Neighbors

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Sample Size

Estimate p(~x) '
k
n
V is dependent on size of V

if V → 0, p(~x) would be exact, but no more samples in V

Assuming infinite pattern set with decreasing Vn

n–th estimate pn(~x) =
kn
n
Vn

For convergence of pn(~x)→ p(~x)
limn→∞ Vn = 0 limn→∞ kn =∞ limn→∞

kn
n = 0

Decreasing Vn, e.g., Vn = 1√
n
→ Parzen Windows

Increasing kn, e.g., kn =
√
n→ kn–Nearest–Neighbors

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Sample Size

Estimate p(~x) '
k
n
V is dependent on size of V

if V → 0, p(~x) would be exact, but no more samples in V

Assuming infinite pattern set with decreasing Vn

n–th estimate pn(~x) =
kn
n
Vn

For convergence of pn(~x)→ p(~x)
limn→∞ Vn = 0 limn→∞ kn =∞ limn→∞

kn
n = 0

Decreasing Vn, e.g., Vn = 1√
n
→ Parzen Windows

Increasing kn, e.g., kn =
√
n→ kn–Nearest–Neighbors

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Sample Size

Estimate p(~x) '
k
n
V is dependent on size of V

if V → 0, p(~x) would be exact, but no more samples in V

Assuming infinite pattern set with decreasing Vn

n–th estimate pn(~x) =
kn
n
Vn

For convergence of pn(~x)→ p(~x)
limn→∞ Vn = 0 limn→∞ kn =∞ limn→∞

kn
n = 0

Decreasing Vn, e.g., Vn = 1√
n
→ Parzen Windows

Increasing kn, e.g., kn =
√
n→ kn–Nearest–Neighbors

VU Pattern Recognition II

Nonparametric Techniques

Density Estimation

Point Density Estimation

n = 1 n = 4 n = 9 n = 16 n = 100

...

...

...

...

Vn =1/ √n

kn = √n

FIGURE 4.2. There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as Vn = 1/

√
n. The

other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number kn = √

n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Prototype Estimation

Estimate density at arbitrary ~x by kn nearest neighbors of ~x

pn(~x) =
kn
n
Vn

(neighbors are training patterns)

Dense neighbors → small Vn → good resolution
Sparse neighbors → large Vn → bad resolution

Problem: often
∫
pn(~x)d~x > 1

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Prototype Estimation

Estimate density at arbitrary ~x by kn nearest neighbors of ~x

pn(~x) =
kn
n
Vn

(neighbors are training patterns)

Dense neighbors → small Vn → good resolution
Sparse neighbors → large Vn → bad resolution

Problem: often
∫
pn(~x)d~x > 1

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Prototype Estimation

Estimate density at arbitrary ~x by kn nearest neighbors of ~x

pn(~x) =
kn
n
Vn

(neighbors are training patterns)

Dense neighbors → small Vn → good resolution
Sparse neighbors → large Vn → bad resolution

Problem: often
∫
pn(~x)d~x > 1

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

1D kNN Estimate

x

p(x)

3 5

FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

2D kNN Estimate

0

p(x)

x1

x2

FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and notice that disconti-
nuities in the slopes generally occur along lines away from the positions of the points
themselves. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifi-
cation. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Unimodal and Bimodal 1D kNN Estimates

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

0 1 2 3 4

1

n=1

kn=1

n=16

kn=4

n=256

kn=16

n= ∞
kn= ∞

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:
a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“spiky.” From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Estimation of A Posteriori Probabilities

Samples of different classes, what is P(ωi |~x)?

Estimate for pn(~x , ωi) =
ki
n
V (in arbitrary V)

Estimate for P(ωi |~x) = pn(~x ,ωi)∑c
j=1 pn(~x ,ωj)

= ki
k

With n→∞ and Bayes Rule: optimal performance (Parzen
and kNN)

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Estimation of A Posteriori Probabilities

Samples of different classes, what is P(ωi |~x)?

Estimate for pn(~x , ωi) =
ki
n
V (in arbitrary V)

Estimate for P(ωi |~x) = pn(~x ,ωi)∑c
j=1 pn(~x ,ωj)

= ki
k

With n→∞ and Bayes Rule: optimal performance (Parzen
and kNN)

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Estimation of A Posteriori Probabilities

Samples of different classes, what is P(ωi |~x)?

Estimate for pn(~x , ωi) =
ki
n
V (in arbitrary V)

Estimate for P(ωi |~x) = pn(~x ,ωi)∑c
j=1 pn(~x ,ωj)

= ki
k

With n→∞ and Bayes Rule: optimal performance (Parzen
and kNN)

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Nearest Neigbor Rule

Single nearest neigbor is ~x ′ (k = 1)
Class label of ~x ′ is θ′ (random variable)
P(θ′ = ωi) = P(ωi |~x ′) ' P(ωi |~x) (for large n)

Assumption of 1NN: P(ωi |~x ′) is largest probability
If true (e.g., P ' 1, or P ' 1

c), then 1NN close to Bayes Error

Average error probability P(e) =
∫
P(e|~x)p(~x)d~x

P(e|~x) = 1− P(ωi |~x ′) is ”minimum” P∗(e|~x)
P∗(e) =

∫
P∗(e|~x)p(~x)d~x

1NN error P = limn→∞ Pn(e)
P∗ ≤ P ≤ P∗(2− c

c−1P
∗)

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Nearest Neigbor Rule

Single nearest neigbor is ~x ′ (k = 1)
Class label of ~x ′ is θ′ (random variable)
P(θ′ = ωi) = P(ωi |~x ′) ' P(ωi |~x) (for large n)

Assumption of 1NN: P(ωi |~x ′) is largest probability
If true (e.g., P ' 1, or P ' 1

c), then 1NN close to Bayes Error

Average error probability P(e) =
∫
P(e|~x)p(~x)d~x

P(e|~x) = 1− P(ωi |~x ′) is ”minimum” P∗(e|~x)
P∗(e) =

∫
P∗(e|~x)p(~x)d~x

1NN error P = limn→∞ Pn(e)
P∗ ≤ P ≤ P∗(2− c

c−1P
∗)

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Nearest Neigbor Rule

Single nearest neigbor is ~x ′ (k = 1)
Class label of ~x ′ is θ′ (random variable)
P(θ′ = ωi) = P(ωi |~x ′) ' P(ωi |~x) (for large n)

Assumption of 1NN: P(ωi |~x ′) is largest probability
If true (e.g., P ' 1, or P ' 1

c), then 1NN close to Bayes Error

Average error probability P(e) =
∫
P(e|~x)p(~x)d~x

P(e|~x) = 1− P(ωi |~x ′) is ”minimum” P∗(e|~x)
P∗(e) =

∫
P∗(e|~x)p(~x)d~x

1NN error P = limn→∞ Pn(e)
P∗ ≤ P ≤ P∗(2− c

c−1P
∗)

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Nearest Neigbor Rule

Single nearest neigbor is ~x ′ (k = 1)
Class label of ~x ′ is θ′ (random variable)
P(θ′ = ωi) = P(ωi |~x ′) ' P(ωi |~x) (for large n)

Assumption of 1NN: P(ωi |~x ′) is largest probability
If true (e.g., P ' 1, or P ' 1

c), then 1NN close to Bayes Error

Average error probability P(e) =
∫
P(e|~x)p(~x)d~x

P(e|~x) = 1− P(ωi |~x ′) is ”minimum” P∗(e|~x)
P∗(e) =

∫
P∗(e|~x)p(~x)d~x

1NN error P = limn→∞ Pn(e)
P∗ ≤ P ≤ P∗(2− c

c−1P
∗)

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Voronoi Tesselation

x1

x2

x1

x3

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

1NN Error Rate Bounds

c - 1
c

P*

P

P =
 P

*

P
 =

 2
P

*

c - 1
c

FIGURE 4.14. Bounds on the nearest-neighbor error rate P in a c-category problem
given infinite training data, where P∗ is the Bayes error (Eq. 52). At low error rates, the
nearest-neighbor error rate is bounded above by twice the Bayes rate. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

k–Nearest–Neigbor Rule

Straight–forward extension: k neighbors

Majority voting: P(ωm|~x) is largest probability (most
prototypes in class m)

If k →∞ then k–NN rule becomes optimal

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

k–Nearest–Neigbor Rule

Straight–forward extension: k neighbors

Majority voting: P(ωm|~x) is largest probability (most
prototypes in class m)

If k →∞ then k–NN rule becomes optimal

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

k–Nearest–Neigbor Rule

Straight–forward extension: k neighbors

Majority voting: P(ωm|~x) is largest probability (most
prototypes in class m)

If k →∞ then k–NN rule becomes optimal

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

5NN in 2D

x

x2

x1

FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses k training samples, and it labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labeled the category
of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

kNN Error Rate Bounds

0 0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

Bayes R
ate

P*

P

1
3
5

9
15

0.5

FIGURE 4.16. The error rate for the k-nearest-neighbor rule for a two-category problem
is bounded by Ck(P∗) in Eq. 54. Each curve is labeled by k; when k = ∞, the estimated
probabilities match the true probabilities and thus the error rate is equal to the Bayes
rate, that is, P = P∗. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Metrics

What is a distance?

Properties of Metrics

Nonnegativity: D(~a,~b) ≥ 0

Reflexivity: D(~a,~b) = 0 iff ~a = ~b

Symmetry: D(~a,~b) = D(~b,~a)

Triangle inequality: D(~a,~b) + D(~b,~c) ≥ D(~a,~c)

Scaling of feature values equivalent to changing the metric

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Metrics

What is a distance?

Properties of Metrics

Nonnegativity: D(~a,~b) ≥ 0

Reflexivity: D(~a,~b) = 0 iff ~a = ~b

Symmetry: D(~a,~b) = D(~b,~a)

Triangle inequality: D(~a,~b) + D(~b,~c) ≥ D(~a,~c)

Scaling of feature values equivalent to changing the metric

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Metrics

What is a distance?

Properties of Metrics

Nonnegativity: D(~a,~b) ≥ 0

Reflexivity: D(~a,~b) = 0 iff ~a = ~b

Symmetry: D(~a,~b) = D(~b,~a)

Triangle inequality: D(~a,~b) + D(~b,~c) ≥ D(~a,~c)

Scaling of feature values equivalent to changing the metric

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Scaling is Change of Metric

x1

x2 x2

x x

αx1

FIGURE 4.18. Scaling the coordinates of a feature space can change the distance rela-
tionships computed by the Euclidean metric. Here we see how such scaling can change
the behavior of a nearest-neighbor classifer. Consider the test point x and its nearest
neighbor. In the original space (left), the black prototype is closest. In the figure at the
right, the x1 axis has been rescaled by a factor 1/3; now the nearest prototype is the red
one. If there is a large disparity in the ranges of the full data in each dimension, a com-
mon procedure is to rescale all the data to equalize such ranges, and this is equivalent
to changing the metric in the original space. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Class of Metrics

Minkowski Metric (Lk Norm) Lk(~a,~b) = (
∑d

i=1 |ai − bi |k)
1
k

L1 Norm: Manhattan distance

L2 Norm: Euclidean distance

L∞ Norm: Maximum of projected distances

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Class of Metrics

Minkowski Metric (Lk Norm) Lk(~a,~b) = (
∑d

i=1 |ai − bi |k)
1
k

L1 Norm: Manhattan distance

L2 Norm: Euclidean distance

L∞ Norm: Maximum of projected distances

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Class of Metrics

Minkowski Metric (Lk Norm) Lk(~a,~b) = (
∑d

i=1 |ai − bi |k)
1
k

L1 Norm: Manhattan distance

L2 Norm: Euclidean distance

L∞ Norm: Maximum of projected distances

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Class of Metrics

Minkowski Metric (Lk Norm) Lk(~a,~b) = (
∑d

i=1 |ai − bi |k)
1
k

L1 Norm: Manhattan distance

L2 Norm: Euclidean distance

L∞ Norm: Maximum of projected distances

VU Pattern Recognition II

Nonparametric Techniques

k–Nearest–Neigbor Estimation

Minkowski Metric

1

4
2

∞

0,0,0

1,0,0

0,1,0
1,1,1

FIGURE 4.19. Each colored surface consists of points a distance 1.0 from the origin,
measured using different values for k in the Minkowski metric (k is printed in red). Thus
the white surfaces correspond to the L1 norm (Manhattan distance), the light gray sphere
corresponds to the L2 norm (Euclidean distance), the dark gray ones correspond to the
L4 norm, and the pink box corresponds to the L∞ norm. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Discriminant Functions

Assumption: we know the form of discriminant functions
(not probability densities)

Problem: determine parameters of discriminant functions

Method: gradient descent of criterion functions
(based on training set)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Discriminant Functions

Assumption: we know the form of discriminant functions
(not probability densities)

Problem: determine parameters of discriminant functions

Method: gradient descent of criterion functions
(based on training set)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Discriminant Functions

Assumption: we know the form of discriminant functions
(not probability densities)

Problem: determine parameters of discriminant functions

Method: gradient descent of criterion functions
(based on training set)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linear Classifier

x0=1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linear Discriminant Functions

Linear discriminant function g(~x) = ~w t~x + w0

(weight vector ~w , bias w0)

Two classes: g(~x) > 0→ ω1, else ω2

or ~w t~x > −w0

Decision surface is hyperplane, ~x1, ~x2 on boundary
~w t~x1 + w0 = ~w t~x2 + w0 → ~w t(~x1 − ~x2) = 0
(~w is normal vector)

Hyperplane H divides space in two half–spaces
R1 is positive side (g(~x) > 0), R2 is negative side (g(~x) < 0)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linear Discriminant Functions

Linear discriminant function g(~x) = ~w t~x + w0

(weight vector ~w , bias w0)

Two classes: g(~x) > 0→ ω1, else ω2

or ~w t~x > −w0

Decision surface is hyperplane, ~x1, ~x2 on boundary
~w t~x1 + w0 = ~w t~x2 + w0 → ~w t(~x1 − ~x2) = 0
(~w is normal vector)

Hyperplane H divides space in two half–spaces
R1 is positive side (g(~x) > 0), R2 is negative side (g(~x) < 0)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linear Discriminant Functions

Linear discriminant function g(~x) = ~w t~x + w0

(weight vector ~w , bias w0)

Two classes: g(~x) > 0→ ω1, else ω2

or ~w t~x > −w0

Decision surface is hyperplane, ~x1, ~x2 on boundary
~w t~x1 + w0 = ~w t~x2 + w0 → ~w t(~x1 − ~x2) = 0
(~w is normal vector)

Hyperplane H divides space in two half–spaces
R1 is positive side (g(~x) > 0), R2 is negative side (g(~x) < 0)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linear Discriminant Functions

Linear discriminant function g(~x) = ~w t~x + w0

(weight vector ~w , bias w0)

Two classes: g(~x) > 0→ ω1, else ω2

or ~w t~x > −w0

Decision surface is hyperplane, ~x1, ~x2 on boundary
~w t~x1 + w0 = ~w t~x2 + w0 → ~w t(~x1 − ~x2) = 0
(~w is normal vector)

Hyperplane H divides space in two half–spaces
R1 is positive side (g(~x) > 0), R2 is negative side (g(~x) < 0)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Multiple Classes

Variant: c dichotomizers (ωi , not ωi)

Variant: c(c−1)
2 dichotomizers (all class pairs)

Variant: linear machine, discriminant functions
gi (~x), i = 1, . . . , c

Decision boundary
gi (~x) = gj(~x)→ (~wi − ~wj)

t~x + (wi0 − wj0) = 0

(~wi − ~wj) ⊥ Hij , r =
gi (~x)−gj (~x)
||~wi−~wj ||

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Multiple Classes

Variant: c dichotomizers (ωi , not ωi)

Variant: c(c−1)
2 dichotomizers (all class pairs)

Variant: linear machine, discriminant functions
gi (~x), i = 1, . . . , c

Decision boundary
gi (~x) = gj(~x)→ (~wi − ~wj)

t~x + (wi0 − wj0) = 0

(~wi − ~wj) ⊥ Hij , r =
gi (~x)−gj (~x)
||~wi−~wj ||

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Multiple Classes

Variant: c dichotomizers (ωi , not ωi)

Variant: c(c−1)
2 dichotomizers (all class pairs)

Variant: linear machine, discriminant functions
gi (~x), i = 1, . . . , c

Decision boundary
gi (~x) = gj(~x)→ (~wi − ~wj)

t~x + (wi0 − wj0) = 0

(~wi − ~wj) ⊥ Hij , r =
gi (~x)−gj (~x)
||~wi−~wj ||

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Multiple Classes

Variant: c dichotomizers (ωi , not ωi)

Variant: c(c−1)
2 dichotomizers (all class pairs)

Variant: linear machine, discriminant functions
gi (~x), i = 1, . . . , c

Decision boundary
gi (~x) = gj(~x)→ (~wi − ~wj)

t~x + (wi0 − wj0) = 0

(~wi − ~wj) ⊥ Hij , r =
gi (~x)−gj (~x)
||~wi−~wj ||

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Dichotomizers in a Four–class Problem

ω1

not ω1

 ω1

not ω2ω2

not ω3
ω3

not ω4

ω4

ambiguous
 region

ambiguous
 region

 ω1 ω1

 ω1

ω2

ω2

ω2

ω3

ω3

ω3

ω4

ω4
ω4

ω2

ω4

ω3

ω3ω2

ω1

ω4

H13H12

H14

H23 H24

H34

FIGURE 5.3. Linear decision boundaries for a four-class problem. The top figure shows
ωi/not ωi dichotomies while the bottom figure shows ωi/ωj dichotomies and the corre-
sponding decision boundaries Hij. The pink regions have ambiguous category assign-
ments. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linear Machines in Multi–class Problems

R1 R2

R3

R4

R5

ω1 R2

R3

R1

ω2 ω1
ω3

ω5

ω2ω3

ω4

H15 H25

H24

H14

H35

H13

H34

H23

H12

H23

H13

FIGURE 5.4. Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Generalized Linear Discriminant Functions

More complex decision boundaries
e.g., quadratic discriminant
g(~x) = w0 +

∑d
i=1 wixi +

∑d
i=1

∑d
j=1 wijxixj

Generalized LDF g(~x) =
∑d̂

i=1 aiyi (~x) = ~at~y
d̂ yi (~x) functions map points from d–dimensional ~x–space to
d̂–dimensional ~y–space

Example g(x) = a1 + a2x + a3x
2, ~y =

 1
x
x2


Decision boundary is linear in ~y–space
Transformed density p(x) is degenerate
If d is large, huge number of parameters
(requires large training data set)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Generalized Linear Discriminant Functions

More complex decision boundaries
e.g., quadratic discriminant
g(~x) = w0 +

∑d
i=1 wixi +

∑d
i=1

∑d
j=1 wijxixj

Generalized LDF g(~x) =
∑d̂

i=1 aiyi (~x) = ~at~y
d̂ yi (~x) functions map points from d–dimensional ~x–space to
d̂–dimensional ~y–space

Example g(x) = a1 + a2x + a3x
2, ~y =

 1
x
x2


Decision boundary is linear in ~y–space
Transformed density p(x) is degenerate
If d is large, huge number of parameters
(requires large training data set)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Generalized Linear Discriminant Functions

More complex decision boundaries
e.g., quadratic discriminant
g(~x) = w0 +

∑d
i=1 wixi +

∑d
i=1

∑d
j=1 wijxixj

Generalized LDF g(~x) =
∑d̂

i=1 aiyi (~x) = ~at~y
d̂ yi (~x) functions map points from d–dimensional ~x–space to
d̂–dimensional ~y–space

Example g(x) = a1 + a2x + a3x
2, ~y =

 1
x
x2



Decision boundary is linear in ~y–space
Transformed density p(x) is degenerate
If d is large, huge number of parameters
(requires large training data set)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Generalized Linear Discriminant Functions

More complex decision boundaries
e.g., quadratic discriminant
g(~x) = w0 +

∑d
i=1 wixi +

∑d
i=1

∑d
j=1 wijxixj

Generalized LDF g(~x) =
∑d̂

i=1 aiyi (~x) = ~at~y
d̂ yi (~x) functions map points from d–dimensional ~x–space to
d̂–dimensional ~y–space

Example g(x) = a1 + a2x + a3x
2, ~y =

 1
x
x2


Decision boundary is linear in ~y–space
Transformed density p(x) is degenerate
If d is large, huge number of parameters
(requires large training data set)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

From 1D to 3D

0

-1

0

1

2

y2

0

2

4

y3

0.5
1

1.5

2

2.5

y1

1-1 20-2
x

R1R1 R2

y = ()1
x

x2

R2

R1

ˆ

ˆ

FIGURE 5.5. The mapping y = (1, x, x2)t takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y-space into regions corresponding to
two categories, and this in turn gives a nonsimply connected decision region in the
one-dimensional x-space. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

From 2D to 3D

y2
w

R2
R1

R1

R2

R1

x1

x2

x1

x2
y1

y3

H
y =

()x 1

x 2

αx 1
x 2

ˆ

ˆ
ˆ

FIGURE 5.6. The two-dimensional input space x is mapped through a polynomial func-
tion f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear discriminant
in this transformed space is a hyperplane, which cuts the surface. Points to the positive
side of the hyperplane Ĥ correspond to category ω1, and those beneath it correspond to
category ω2. Here, in terms of the x space, R1 is a not simply connected. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linearly Separable Dichotomy

Two classes, samples ~yi , ~a
t~yi > 0→ ω1, ~at~yi < 0→ ω2

”Normalization” of ω2: ~yi = −~yi → ~at~yi > 0 ∀~yi

Solution region defines all possible values of ~a
intersection of n half–spaces (~at~yi = 0)

Margin b > 0, ~at~yi ≥ b, new solution region has distance b
||~yi ||

from old boundaries

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linearly Separable Dichotomy

Two classes, samples ~yi , ~a
t~yi > 0→ ω1, ~at~yi < 0→ ω2

”Normalization” of ω2: ~yi = −~yi → ~at~yi > 0 ∀~yi

Solution region defines all possible values of ~a
intersection of n half–spaces (~at~yi = 0)

Margin b > 0, ~at~yi ≥ b, new solution region has distance b
||~yi ||

from old boundaries

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linearly Separable Dichotomy

Two classes, samples ~yi , ~a
t~yi > 0→ ω1, ~at~yi < 0→ ω2

”Normalization” of ω2: ~yi = −~yi → ~at~yi > 0 ∀~yi

Solution region defines all possible values of ~a
intersection of n half–spaces (~at~yi = 0)

Margin b > 0, ~at~yi ≥ b, new solution region has distance b
||~yi ||

from old boundaries

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Linearly Separable Dichotomy

Two classes, samples ~yi , ~a
t~yi > 0→ ω1, ~at~yi < 0→ ω2

”Normalization” of ω2: ~yi = −~yi → ~at~yi > 0 ∀~yi

Solution region defines all possible values of ~a
intersection of n half–spaces (~at~yi = 0)

Margin b > 0, ~at~yi ≥ b, new solution region has distance b
||~yi ||

from old boundaries

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Solution Region and Normalization

y1

y2

separating plane

solution
region

y1

y2

"separating" plane

solution
region

aa

FIGURE 5.8. Four training samples (black for ω1, red for ω2) and the solution region in
feature space. The figure on the left shows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Solution Region with Margins

solution
region

y1

y2

y3

a1

a2

solution
region

a2

a1

y1

y2

y3

b/||y
2 ||

b/||y 1
||

b/
||y

3
||

}

}

}

FIGURE 5.9. The effect of the margin on the solution region. At the left is the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the right
is the case b > 0, shrinking the solution region by margins b/‖yi‖. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Gradient Descent Solutions

Set of linear inequalities ~at~yi > 0, define criterion function
J(~a), which is minimized for a solution vector ~a∗

Minimizing a scalar function J(~a) by gradient descent
~a(k + 1) = ~a(k)− η(k)~∇J(~a(k))

Second–order expansion
J(~a) ' J(~a(k)) + ~∇Jt(~a−~a(k)) + 1

2 (~a−~a(k))tH(~a−~a(k))
H is Hessian Matrix

Minimize J(~a(k + 1)) with η(k) = ||~∇J||2
~∇JtH ~∇J

J(~a) ∼ ~a2 → H = const.→ η = const.

Minimize second–order expansion with ~a(k + 1)→
Newton Descent ~a(k + 1) = ~a(k)− H−1~∇J (expensive)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Gradient Descent Solutions

Set of linear inequalities ~at~yi > 0, define criterion function
J(~a), which is minimized for a solution vector ~a∗

Minimizing a scalar function J(~a) by gradient descent
~a(k + 1) = ~a(k)− η(k)~∇J(~a(k))

Second–order expansion
J(~a) ' J(~a(k)) + ~∇Jt(~a−~a(k)) + 1

2 (~a−~a(k))tH(~a−~a(k))
H is Hessian Matrix

Minimize J(~a(k + 1)) with η(k) = ||~∇J||2
~∇JtH ~∇J

J(~a) ∼ ~a2 → H = const.→ η = const.

Minimize second–order expansion with ~a(k + 1)→
Newton Descent ~a(k + 1) = ~a(k)− H−1~∇J (expensive)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Gradient Descent Solutions

Set of linear inequalities ~at~yi > 0, define criterion function
J(~a), which is minimized for a solution vector ~a∗

Minimizing a scalar function J(~a) by gradient descent
~a(k + 1) = ~a(k)− η(k)~∇J(~a(k))

Second–order expansion
J(~a) ' J(~a(k)) + ~∇Jt(~a−~a(k)) + 1

2 (~a−~a(k))tH(~a−~a(k))
H is Hessian Matrix

Minimize J(~a(k + 1)) with η(k) = ||~∇J||2
~∇JtH ~∇J

J(~a) ∼ ~a2 → H = const.→ η = const.

Minimize second–order expansion with ~a(k + 1)→
Newton Descent ~a(k + 1) = ~a(k)− H−1~∇J (expensive)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Gradient Descent Solutions

Set of linear inequalities ~at~yi > 0, define criterion function
J(~a), which is minimized for a solution vector ~a∗

Minimizing a scalar function J(~a) by gradient descent
~a(k + 1) = ~a(k)− η(k)~∇J(~a(k))

Second–order expansion
J(~a) ' J(~a(k)) + ~∇Jt(~a−~a(k)) + 1

2 (~a−~a(k))tH(~a−~a(k))
H is Hessian Matrix

Minimize J(~a(k + 1)) with η(k) = ||~∇J||2
~∇JtH ~∇J

J(~a) ∼ ~a2 → H = const.→ η = const.

Minimize second–order expansion with ~a(k + 1)→
Newton Descent ~a(k + 1) = ~a(k)− H−1~∇J (expensive)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Gradient Descent Solutions

Set of linear inequalities ~at~yi > 0, define criterion function
J(~a), which is minimized for a solution vector ~a∗

Minimizing a scalar function J(~a) by gradient descent
~a(k + 1) = ~a(k)− η(k)~∇J(~a(k))

Second–order expansion
J(~a) ' J(~a(k)) + ~∇Jt(~a−~a(k)) + 1

2 (~a−~a(k))tH(~a−~a(k))
H is Hessian Matrix

Minimize J(~a(k + 1)) with η(k) = ||~∇J||2
~∇JtH ~∇J

J(~a) ∼ ~a2 → H = const.→ η = const.

Minimize second–order expansion with ~a(k + 1)→
Newton Descent ~a(k + 1) = ~a(k)− H−1~∇J (expensive)

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Gradient and Newton Descent

a1

a2

J(a)

FIGURE 5.10. The sequence of weight vectors given by a simple gradient descent
method (red) and by Newton’s (second order) algorithm (black). Newton’s method typi-
cally leads to greater improvement per step, even when using optimal learning rates for
both methods. However the added computational burden of inverting the Hessian ma-
trix used in Newton’s method is not always justified, and simple gradient descent may
suffice. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Perceptron Criterion Function

”Normalized” inequalities ~at~yi > 0
Perceptron criterion Jp(~a) =

∑
~y∈Y −~at~y

(Y is set of misclassified patterns)

Gradient ~∇Jp =
∑

~y∈Y −~y

Update rule ~a(k + 1) = ~a(k) + η(k)
∑

~y∈Yk ~y

Batch vs. single–sample correction

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Perceptron Criterion Function

”Normalized” inequalities ~at~yi > 0
Perceptron criterion Jp(~a) =

∑
~y∈Y −~at~y

(Y is set of misclassified patterns)

Gradient ~∇Jp =
∑

~y∈Y −~y

Update rule ~a(k + 1) = ~a(k) + η(k)
∑

~y∈Yk ~y

Batch vs. single–sample correction

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Perceptron Criterion Function

”Normalized” inequalities ~at~yi > 0
Perceptron criterion Jp(~a) =

∑
~y∈Y −~at~y

(Y is set of misclassified patterns)

Gradient ~∇Jp =
∑

~y∈Y −~y

Update rule ~a(k + 1) = ~a(k) + η(k)
∑

~y∈Yk ~y

Batch vs. single–sample correction

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Perceptron Criterion Function

”Normalized” inequalities ~at~yi > 0
Perceptron criterion Jp(~a) =

∑
~y∈Y −~at~y

(Y is set of misclassified patterns)

Gradient ~∇Jp =
∑

~y∈Y −~y

Update rule ~a(k + 1) = ~a(k) + η(k)
∑

~y∈Yk ~y

Batch vs. single–sample correction

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Minimum Squared–Error Procedures

Set of equalities ~at~yi = bi
bi > 0 are arbitrary constants

Solve Y~a = ~b
Y is n × (d + 1) matrix containing all training vectors

If Y nonsingular ~a = Y−1~b, however Y mostly rectangular!

Minimizing ~e = Y~a− ~b leads to
Y tY~a = Y t~b → ~a = (Y tY)−1Y t~b = Y †~b
Y † is pseudoinverse (d + 1)× n matrix

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Minimum Squared–Error Procedures

Set of equalities ~at~yi = bi
bi > 0 are arbitrary constants

Solve Y~a = ~b
Y is n × (d + 1) matrix containing all training vectors

If Y nonsingular ~a = Y−1~b, however Y mostly rectangular!

Minimizing ~e = Y~a− ~b leads to
Y tY~a = Y t~b → ~a = (Y tY)−1Y t~b = Y †~b
Y † is pseudoinverse (d + 1)× n matrix

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Minimum Squared–Error Procedures

Set of equalities ~at~yi = bi
bi > 0 are arbitrary constants

Solve Y~a = ~b
Y is n × (d + 1) matrix containing all training vectors

If Y nonsingular ~a = Y−1~b, however Y mostly rectangular!

Minimizing ~e = Y~a− ~b leads to
Y tY~a = Y t~b → ~a = (Y tY)−1Y t~b = Y †~b
Y † is pseudoinverse (d + 1)× n matrix

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Minimum Squared–Error Procedures

Set of equalities ~at~yi = bi
bi > 0 are arbitrary constants

Solve Y~a = ~b
Y is n × (d + 1) matrix containing all training vectors

If Y nonsingular ~a = Y−1~b, however Y mostly rectangular!

Minimizing ~e = Y~a− ~b leads to
Y tY~a = Y t~b → ~a = (Y tY)−1Y t~b = Y †~b
Y † is pseudoinverse (d + 1)× n matrix

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Support Vector Machines

Transform patterns to (much) higher dimension
via nonlinear mapping ϕ(.)

Linear discriminant g(~y) = ~at~y

Distance of ~yk to H is zkg(~yk)
||a|| ≥ b

zk = ±1 (normalization), b is margin

Maximize b with constrained ||a|| = 1
b → minimize ||a|| with

inequality constraints

Kuhn–Tucker theorem, optimization with inequality
constraints, generalization of Lagrange Multipliers

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Support Vector Machines

Transform patterns to (much) higher dimension
via nonlinear mapping ϕ(.)

Linear discriminant g(~y) = ~at~y

Distance of ~yk to H is zkg(~yk)
||a|| ≥ b

zk = ±1 (normalization), b is margin

Maximize b with constrained ||a|| = 1
b → minimize ||a|| with

inequality constraints

Kuhn–Tucker theorem, optimization with inequality
constraints, generalization of Lagrange Multipliers

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Support Vector Machines

Transform patterns to (much) higher dimension
via nonlinear mapping ϕ(.)

Linear discriminant g(~y) = ~at~y

Distance of ~yk to H is zkg(~yk)
||a|| ≥ b

zk = ±1 (normalization), b is margin

Maximize b with constrained ||a|| = 1
b → minimize ||a|| with

inequality constraints

Kuhn–Tucker theorem, optimization with inequality
constraints, generalization of Lagrange Multipliers

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Support Vector Machines

Transform patterns to (much) higher dimension
via nonlinear mapping ϕ(.)

Linear discriminant g(~y) = ~at~y

Distance of ~yk to H is zkg(~yk)
||a|| ≥ b

zk = ±1 (normalization), b is margin

Maximize b with constrained ||a|| = 1
b → minimize ||a|| with

inequality constraints

Kuhn–Tucker theorem, optimization with inequality
constraints, generalization of Lagrange Multipliers

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Support Vector Machines

Transform patterns to (much) higher dimension
via nonlinear mapping ϕ(.)

Linear discriminant g(~y) = ~at~y

Distance of ~yk to H is zkg(~yk)
||a|| ≥ b

zk = ±1 (normalization), b is margin

Maximize b with constrained ||a|| = 1
b → minimize ||a|| with

inequality constraints

Kuhn–Tucker theorem, optimization with inequality
constraints, generalization of Lagrange Multipliers

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin SVM

Maximize margin b using the Kuhn–Tucker functional
L(~a, ~α) = 1

2 ||~a||
2 −

∑n
k=1 αk [zk~a

t~yk − 1]

Resulting in dual problem (quadratic optimization)
L(~α) =

∑n
k=1 αk − 1

2

∑n
k,j αkαjzkzj~y

t
j ~yk

with constraints∑n
k=1 zkαk = 0 αk ≥ 0

Then ~a∗ =
∑n

i=1 ziα
∗
i ~yi (non–zero αi indicates support

vector)

Maximal margin b∗ = (
∑n

i=1 αi
∗)−

1
2

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Maximal Margin Hyperplane

y1

y2

R2

optimal hyperplane

m
ax

im
um

m
ar

gi
n

b

m
ax

im
um

m
ar

gi
n

b

R1

FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Soft Margin SVM

Maximal margin SVM is sensitive to outliers, demands linear
separability for solution

Soft Margin SVM introducing slack variables ξ
zkg(~yk) ≥ b − ξk (relaxed margin)

Maximize relaxed margin b with Kuhn–Tucker functional
L(~a, ~α, ~ξ) = 1

2 ||~a||
2 + C

2

∑n
k=1 ξ

2
i −

∑n
k=1 αk [zk~a

t~yk − 1 + ξi]

Again ~a∗ =
∑n

i=1 ziα
∗
i ~yi

Maximal margin b∗ = (
∑n

i=1 αi
∗ − 1

C |α
∗
i |2)−

1
2

Depends on parameter C !

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Soft Margin SVM

Maximal margin SVM is sensitive to outliers, demands linear
separability for solution

Soft Margin SVM introducing slack variables ξ
zkg(~yk) ≥ b − ξk (relaxed margin)

Maximize relaxed margin b with Kuhn–Tucker functional
L(~a, ~α, ~ξ) = 1

2 ||~a||
2 + C

2

∑n
k=1 ξ

2
i −

∑n
k=1 αk [zk~a

t~yk − 1 + ξi]

Again ~a∗ =
∑n

i=1 ziα
∗
i ~yi

Maximal margin b∗ = (
∑n

i=1 αi
∗ − 1

C |α
∗
i |2)−

1
2

Depends on parameter C !

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Soft Margin SVM

Maximal margin SVM is sensitive to outliers, demands linear
separability for solution

Soft Margin SVM introducing slack variables ξ
zkg(~yk) ≥ b − ξk (relaxed margin)

Maximize relaxed margin b with Kuhn–Tucker functional
L(~a, ~α, ~ξ) = 1

2 ||~a||
2 + C

2

∑n
k=1 ξ

2
i −

∑n
k=1 αk [zk~a

t~yk − 1 + ξi]

Again ~a∗ =
∑n

i=1 ziα
∗
i ~yi

Maximal margin b∗ = (
∑n

i=1 αi
∗ − 1

C |α
∗
i |2)−

1
2

Depends on parameter C !

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Soft Margin SVM

Maximal margin SVM is sensitive to outliers, demands linear
separability for solution

Soft Margin SVM introducing slack variables ξ
zkg(~yk) ≥ b − ξk (relaxed margin)

Maximize relaxed margin b with Kuhn–Tucker functional
L(~a, ~α, ~ξ) = 1

2 ||~a||
2 + C

2

∑n
k=1 ξ

2
i −

∑n
k=1 αk [zk~a

t~yk − 1 + ξi]

Again ~a∗ =
∑n

i=1 ziα
∗
i ~yi

Maximal margin b∗ = (
∑n

i=1 αi
∗ − 1

C |α
∗
i |2)−

1
2

Depends on parameter C !

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Soft Margin SVM

Maximal margin SVM is sensitive to outliers, demands linear
separability for solution

Soft Margin SVM introducing slack variables ξ
zkg(~yk) ≥ b − ξk (relaxed margin)

Maximize relaxed margin b with Kuhn–Tucker functional
L(~a, ~α, ~ξ) = 1

2 ||~a||
2 + C

2

∑n
k=1 ξ

2
i −

∑n
k=1 αk [zk~a

t~yk − 1 + ξi]

Again ~a∗ =
∑n

i=1 ziα
∗
i ~yi

Maximal margin b∗ = (
∑n

i=1 αi
∗ − 1

C |α
∗
i |2)−

1
2

Depends on parameter C !

VU Pattern Recognition II

Linear Discriminant Functions

Decision Surfaces

Soft Margin SVM

Maximal margin SVM is sensitive to outliers, demands linear
separability for solution

Soft Margin SVM introducing slack variables ξ
zkg(~yk) ≥ b − ξk (relaxed margin)

Maximize relaxed margin b with Kuhn–Tucker functional
L(~a, ~α, ~ξ) = 1

2 ||~a||
2 + C

2

∑n
k=1 ξ

2
i −

∑n
k=1 αk [zk~a

t~yk − 1 + ξi]

Again ~a∗ =
∑n

i=1 ziα
∗
i ~yi

Maximal margin b∗ = (
∑n

i=1 αi
∗ − 1

C |α
∗
i |2)−

1
2

Depends on parameter C !

VU Pattern Recognition II

Neural Networks

Multilayer Neural Networks

Real-world problems: linear discriminant often not sufficient

NNs also implement nonlinear mapping to higher dimension

Learning finds mapping AND linear discriminant

Error–backpropagation is least square fit to Bayes discriminant
functions

NNs motivated by biology, but can be explained without it

VU Pattern Recognition II

Neural Networks

Multilayer Neural Networks

Real-world problems: linear discriminant often not sufficient

NNs also implement nonlinear mapping to higher dimension

Learning finds mapping AND linear discriminant

Error–backpropagation is least square fit to Bayes discriminant
functions

NNs motivated by biology, but can be explained without it

VU Pattern Recognition II

Neural Networks

Multilayer Neural Networks

Real-world problems: linear discriminant often not sufficient

NNs also implement nonlinear mapping to higher dimension

Learning finds mapping AND linear discriminant

Error–backpropagation is least square fit to Bayes discriminant
functions

NNs motivated by biology, but can be explained without it

VU Pattern Recognition II

Neural Networks

Multilayer Neural Networks

Real-world problems: linear discriminant often not sufficient

NNs also implement nonlinear mapping to higher dimension

Learning finds mapping AND linear discriminant

Error–backpropagation is least square fit to Bayes discriminant
functions

NNs motivated by biology, but can be explained without it

VU Pattern Recognition II

Neural Networks

Multilayer Neural Networks

Real-world problems: linear discriminant often not sufficient

NNs also implement nonlinear mapping to higher dimension

Learning finds mapping AND linear discriminant

Error–backpropagation is least square fit to Bayes discriminant
functions

NNs motivated by biology, but can be explained without it

VU Pattern Recognition II

Neural Networks

XOR Net

-1 1

-1

1

bias
hidden j

output k

input i

1
1

1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=+1

z=-1

z=-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

R2

R2

R1

y1 y2

z

zk

wkj

wji

x1

x2

x1

x2

x1

x2

y1 y2

FIGURE 6.1. The two-bit parity or exclusive-OR problem can be solved by a three-
layer network. At the bottom is the two-dimensional feature x1x2-space, along with the
four patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their feature values through multiplicative weights
to the hidden units. The hidden and output units here are linear threshold units, each
of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s
thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a +1 if its net is greater than or equal
to 0 and emits a −1 otherwise. Within each unit we show a graph of its input-output
or activation function—f (net) versus net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Neural Networks

Network Components

Neurons and synaptic connections (weights)

Net activation netj =
∑d

i=1 xiwji + wj0 =
∑d

i=0 xiwji ≡ ~wj
t~x

Neuron output zk = f (netk), activation function

Common activation function class is sigmoid, e.g.,
f (x) = 1

1+e−cx

Basic topologies: feed–forward and recurrent

VU Pattern Recognition II

Neural Networks

Network Components

Neurons and synaptic connections (weights)

Net activation netj =
∑d

i=1 xiwji + wj0 =
∑d

i=0 xiwji ≡ ~wj
t~x

Neuron output zk = f (netk), activation function

Common activation function class is sigmoid, e.g.,
f (x) = 1

1+e−cx

Basic topologies: feed–forward and recurrent

VU Pattern Recognition II

Neural Networks

Network Components

Neurons and synaptic connections (weights)

Net activation netj =
∑d

i=1 xiwji + wj0 =
∑d

i=0 xiwji ≡ ~wj
t~x

Neuron output zk = f (netk), activation function

Common activation function class is sigmoid, e.g.,
f (x) = 1

1+e−cx

Basic topologies: feed–forward and recurrent

VU Pattern Recognition II

Neural Networks

Network Components

Neurons and synaptic connections (weights)

Net activation netj =
∑d

i=1 xiwji + wj0 =
∑d

i=0 xiwji ≡ ~wj
t~x

Neuron output zk = f (netk), activation function

Common activation function class is sigmoid, e.g.,
f (x) = 1

1+e−cx

Basic topologies: feed–forward and recurrent

VU Pattern Recognition II

Neural Networks

Network Components

Neurons and synaptic connections (weights)

Net activation netj =
∑d

i=1 xiwji + wj0 =
∑d

i=0 xiwji ≡ ~wj
t~x

Neuron output zk = f (netk), activation function

Common activation function class is sigmoid, e.g.,
f (x) = 1

1+e−cx

Basic topologies: feed–forward and recurrent

VU Pattern Recognition II

Neural Networks

A 2–4–1 Network

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden
output unit has sigmoidal activation function f (·). In the case shown, the hidden unit outputs are paired in
opposition thereby producing a “bump” at the output unit. Given a sufficiently large number of hidden units,
any continuous function from input to output can be approximated arbitrarily well by such a network. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley
& Sons, Inc.

VU Pattern Recognition II

Neural Networks

NN Decision Boundaries

two layer

three layer

x1 x2

x1

x2

...

x1 x2

R1

R2

R1

R2

R2

R1

x2

x1

FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Network Learning

Learning as minimization (of network error)

Error is a function of network parameters

Gradient descent methods reduce error

Problem with hidden layers

Backpropagation = Iterative Local Gradient Descent
Werbos (1974), Rumelhart, Hinton, Williams (1986)

Error–Backpropagation, output error is transmitted backwards
as weighted error, network weights are updated locally

Weight update ∆wj ,i = ηδjai
Generalized error term δ

Common transfer functions: differentiable, nonlinear,
monotonous, easily computable differentiation

VU Pattern Recognition II

Neural Networks

Error–Backpropagation I

x1

x2

H1

H2

I1

I2 z2

z1

y1

y2

w12

w22

w21

w11
v11

v21

v12

v22

Hj =
∑n

i=1 vj ,ixi Ik =
∑h

j=1 wk,jyj
yj = f (Hj), zk = f (Ik)

Error E (p) = 1
2

∑m
k=1 (t

(p)
k − z

(p)
k)2

Output Layer: ∆wk,j = −η ∂E
∂wk,j

∂E
∂wk,j

= ∂E
∂Ik

∂Ik
∂wk,j

= ∂E
∂Ik

yj
∂E
∂Ik

= ∂E
∂zk

∂zk
∂Ik

= −(tk − zk)f ′(Ik)
∂E
∂wk,j

= −(tk − zk)f ′(Ik)yj mit δk = (tk − zk)f ′(Ik)

∆wk,j = ηδkyj

VU Pattern Recognition II

Neural Networks

Error–Backpropagation I

x1

x2

H1

H2

I1

I2 z2

z1

y1

y2

w12

w22

w21

w11
v11

v21

v12

v22

Hj =
∑n

i=1 vj ,ixi Ik =
∑h

j=1 wk,jyj
yj = f (Hj), zk = f (Ik)

Error E (p) = 1
2

∑m
k=1 (t

(p)
k − z

(p)
k)2

Output Layer: ∆wk,j = −η ∂E
∂wk,j

∂E
∂wk,j

= ∂E
∂Ik

∂Ik
∂wk,j

= ∂E
∂Ik

yj
∂E
∂Ik

= ∂E
∂zk

∂zk
∂Ik

= −(tk − zk)f ′(Ik)
∂E
∂wk,j

= −(tk − zk)f ′(Ik)yj mit δk = (tk − zk)f ′(Ik)

∆wk,j = ηδkyj

VU Pattern Recognition II

Neural Networks

Error–Backpropagation I

x1

x2

H1

H2

I1

I2 z2

z1

y1

y2

w12

w22

w21

w11
v11

v21

v12

v22

Hj =
∑n

i=1 vj ,ixi Ik =
∑h

j=1 wk,jyj
yj = f (Hj), zk = f (Ik)

Error E (p) = 1
2

∑m
k=1 (t

(p)
k − z

(p)
k)2

Output Layer: ∆wk,j = −η ∂E
∂wk,j

∂E
∂wk,j

= ∂E
∂Ik

∂Ik
∂wk,j

= ∂E
∂Ik

yj
∂E
∂Ik

= ∂E
∂zk

∂zk
∂Ik

= −(tk − zk)f ′(Ik)
∂E
∂wk,j

= −(tk − zk)f ′(Ik)yj mit δk = (tk − zk)f ′(Ik)

∆wk,j = ηδkyj

VU Pattern Recognition II

Neural Networks

Error–Backpropagation I

x1

x2

H1

H2

I1

I2 z2

z1

y1

y2

w12

w22

w21

w11
v11

v21

v12

v22

Hj =
∑n

i=1 vj ,ixi Ik =
∑h

j=1 wk,jyj
yj = f (Hj), zk = f (Ik)

Error E (p) = 1
2

∑m
k=1 (t

(p)
k − z

(p)
k)2

Output Layer: ∆wk,j = −η ∂E
∂wk,j

∂E
∂wk,j

= ∂E
∂Ik

∂Ik
∂wk,j

= ∂E
∂Ik

yj
∂E
∂Ik

= ∂E
∂zk

∂zk
∂Ik

= −(tk − zk)f ′(Ik)
∂E
∂wk,j

= −(tk − zk)f ′(Ik)yj mit δk = (tk − zk)f ′(Ik)

∆wk,j = ηδkyj

VU Pattern Recognition II

Neural Networks

Error–Backpropagation II

Hidden Layer: ∆vj ,i = −η ∂E
∂vj,i

∂E
∂vj,i

= ∂E
∂Hj

∂Hj

∂vj,i
= ∂E

∂Hj
xi

∂E
∂Hj

= ∂E
∂yj

∂yj
∂Hj

= ∂E
∂yj

f ′(Hj)

∂E
∂yj

= −1
2

∑m
k=1

∂(tk−f (Ik))2

∂yj
= −

∑m
k=1 (tk − zk)f ′(Ik)wk,j

mit δj = f ′(Hj)
∑m

k=1 δkwk,j

∆vj ,i = ηδjxi

Local update rules propagating error from output to input

Present all p patterns of the training set = 1 Epoch (complete
training e.g., 1,000 epochs)

Batch Learning (Off–line): accumulate weight changes for all
patterns, then update weights

On–line Learning: update weights after each pattern

VU Pattern Recognition II

Neural Networks

Error–Backpropagation II

Hidden Layer: ∆vj ,i = −η ∂E
∂vj,i

∂E
∂vj,i

= ∂E
∂Hj

∂Hj

∂vj,i
= ∂E

∂Hj
xi

∂E
∂Hj

= ∂E
∂yj

∂yj
∂Hj

= ∂E
∂yj

f ′(Hj)

∂E
∂yj

= −1
2

∑m
k=1

∂(tk−f (Ik))2

∂yj
= −

∑m
k=1 (tk − zk)f ′(Ik)wk,j

mit δj = f ′(Hj)
∑m

k=1 δkwk,j

∆vj ,i = ηδjxi

Local update rules propagating error from output to input

Present all p patterns of the training set = 1 Epoch (complete
training e.g., 1,000 epochs)

Batch Learning (Off–line): accumulate weight changes for all
patterns, then update weights

On–line Learning: update weights after each pattern

VU Pattern Recognition II

Neural Networks

Error–Backpropagation II

Hidden Layer: ∆vj ,i = −η ∂E
∂vj,i

∂E
∂vj,i

= ∂E
∂Hj

∂Hj

∂vj,i
= ∂E

∂Hj
xi

∂E
∂Hj

= ∂E
∂yj

∂yj
∂Hj

= ∂E
∂yj

f ′(Hj)

∂E
∂yj

= −1
2

∑m
k=1

∂(tk−f (Ik))2

∂yj
= −

∑m
k=1 (tk − zk)f ′(Ik)wk,j

mit δj = f ′(Hj)
∑m

k=1 δkwk,j

∆vj ,i = ηδjxi

Local update rules propagating error from output to input

Present all p patterns of the training set = 1 Epoch (complete
training e.g., 1,000 epochs)

Batch Learning (Off–line): accumulate weight changes for all
patterns, then update weights

On–line Learning: update weights after each pattern

VU Pattern Recognition II

Neural Networks

Error–Backpropagation II

Hidden Layer: ∆vj ,i = −η ∂E
∂vj,i

∂E
∂vj,i

= ∂E
∂Hj

∂Hj

∂vj,i
= ∂E

∂Hj
xi

∂E
∂Hj

= ∂E
∂yj

∂yj
∂Hj

= ∂E
∂yj

f ′(Hj)

∂E
∂yj

= −1
2

∑m
k=1

∂(tk−f (Ik))2

∂yj
= −

∑m
k=1 (tk − zk)f ′(Ik)wk,j

mit δj = f ′(Hj)
∑m

k=1 δkwk,j

∆vj ,i = ηδjxi

Local update rules propagating error from output to input

Present all p patterns of the training set = 1 Epoch (complete
training e.g., 1,000 epochs)

Batch Learning (Off–line): accumulate weight changes for all
patterns, then update weights

On–line Learning: update weights after each pattern

VU Pattern Recognition II

Neural Networks

Error–Backpropagation II

Hidden Layer: ∆vj ,i = −η ∂E
∂vj,i

∂E
∂vj,i

= ∂E
∂Hj

∂Hj

∂vj,i
= ∂E

∂Hj
xi

∂E
∂Hj

= ∂E
∂yj

∂yj
∂Hj

= ∂E
∂yj

f ′(Hj)

∂E
∂yj

= −1
2

∑m
k=1

∂(tk−f (Ik))2

∂yj
= −

∑m
k=1 (tk − zk)f ′(Ik)wk,j

mit δj = f ′(Hj)
∑m

k=1 δkwk,j

∆vj ,i = ηδjxi

Local update rules propagating error from output to input

Present all p patterns of the training set = 1 Epoch (complete
training e.g., 1,000 epochs)

Batch Learning (Off–line): accumulate weight changes for all
patterns, then update weights

On–line Learning: update weights after each pattern

VU Pattern Recognition II

Neural Networks

Learning Curves

J/n

epochs

training
test

validation

1 2 3 4 5 6 7 8 9 10 11

FIGURE 6.6. A learning curve shows the criterion function as a function of the amount
of training, typically indicated by the number of epochs or presentations of the full train-
ing set. We plot the average error per pattern, that is, 1/n

∑n
p=1 Jp. The validation error

and the test or generalization error per pattern are virtually always higher than the train-
ing error. In some protocols, training is stopped at the first minimum of the validation
set. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Neural Networks

XOR Learning Details

-1 1
x1

-1

1

x2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

fin
al

 de
cis

io
n b

ou
nd

ar
y

y1

y2 x2x1

y2y1

bias

10 20 30 40 50 60
epoch

0.5

1

1.5

2

J

1

1

15
15

15

15

1

1

30

30

30

45

45

45

45

60

60

60

60

total error

error on
individual patterns

in
pu

t
re

pr
es

en
ta

ti
on

hi
dd

en
re

pr
es

en
ta

ti
on

FIGURE 6.10. A 2-2-1 backpropagation network with bias and the four patterns of the
XOR problem are shown at the top. The middle figure shows the outputs of the hid-
den units for each of the four patterns; these outputs move across the y1y2-space as
the network learns. In this space, early in training (epoch 1) the two categories are not
linearly separable. As the input-to-hidden weights learn, as marked by the number of
epochs, the categories become linearly separable. The dashed line is the linear decision
boundary determined by the hidden-to-output weights at the end of learning; indeed
the patterns of the two classes are separated by this boundary. The bottom graph shows
the learning curves—the error on individual patterns and the total error as a function
of epoch. Note that, as frequently happens, the total training error decreases monoton-
ically, even though this is not the case for the error on each individual pattern. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Neural Networks

Backpropagation Variants I

Standard Backpropagation: ~wt = ~wt−1 − η~∇E

Gradient Reuse: use ~∇E as long as error drops

BP with variable stepsize (learn rate) η

BP with momentum: ∆ ~wt = −η~∇E + α∆ ~wt−1

VU Pattern Recognition II

Neural Networks

Backpropagation Variants I

Standard Backpropagation: ~wt = ~wt−1 − η~∇E
Gradient Reuse: use ~∇E as long as error drops

BP with variable stepsize (learn rate) η

BP with momentum: ∆ ~wt = −η~∇E + α∆ ~wt−1

VU Pattern Recognition II

Neural Networks

Backpropagation Variants I

Standard Backpropagation: ~wt = ~wt−1 − η~∇E
Gradient Reuse: use ~∇E as long as error drops

BP with variable stepsize (learn rate) η

BP with momentum: ∆ ~wt = −η~∇E + α∆ ~wt−1

VU Pattern Recognition II

Neural Networks

Backpropagation Variants I

Standard Backpropagation: ~wt = ~wt−1 − η~∇E
Gradient Reuse: use ~∇E as long as error drops

BP with variable stepsize (learn rate) η

BP with momentum: ∆ ~wt = −η~∇E + α∆ ~wt−1

VU Pattern Recognition II

Nonmetric Methods

Decision Trees

Real problems: nominal data, e.g., car = green, red,

blue

Rule–based or syntactic methods

Decision tree (DT): series of questions (nodes) lead to answer
at leaf (category)

DT is interpretable (decisions and categories)

VU Pattern Recognition II

Nonmetric Methods

Decision Trees

Real problems: nominal data, e.g., car = green, red,

blue

Rule–based or syntactic methods

Decision tree (DT): series of questions (nodes) lead to answer
at leaf (category)

DT is interpretable (decisions and categories)

VU Pattern Recognition II

Nonmetric Methods

Decision Trees

Real problems: nominal data, e.g., car = green, red,

blue

Rule–based or syntactic methods

Decision tree (DT): series of questions (nodes) lead to answer
at leaf (category)

DT is interpretable (decisions and categories)

VU Pattern Recognition II

Nonmetric Methods

Decision Trees

Real problems: nominal data, e.g., car = green, red,

blue

Rule–based or syntactic methods

Decision tree (DT): series of questions (nodes) lead to answer
at leaf (category)

DT is interpretable (decisions and categories)

VU Pattern Recognition II

Nonmetric Methods

Monothetic Decision Tree

Color?

Size? Size?Shape?

round

Size?

yellow
redgreen

thin mediumsmall smallbig

Grapefruit

big small

Watermelon Banana AppleApple

Lemon

Grape Taste?

sweet sour

Cherry Grape

m
edium

level 0

level 1

level 2

level 3

root

FIGURE 8.1. Classification in a basic decision tree proceeds from top to bottom. The questions asked at
each node concern a particular property of the pattern, and the downward links correspond to the possible
values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read.
Note that the same question, Size?, appears in different places in the tree and that different questions can
have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the
same category (e.g., Apple). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?
Which query (property) at which node?
Termination (leaf node)?
Pruning (simplification)?
Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?
Which query (property) at which node?
Termination (leaf node)?
Pruning (simplification)?
Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?
Which query (property) at which node?
Termination (leaf node)?
Pruning (simplification)?
Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?

Which query (property) at which node?
Termination (leaf node)?
Pruning (simplification)?
Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?
Which query (property) at which node?

Termination (leaf node)?
Pruning (simplification)?
Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?
Which query (property) at which node?
Termination (leaf node)?

Pruning (simplification)?
Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?
Which query (property) at which node?
Termination (leaf node)?
Pruning (simplification)?

Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

CART

Goal: construct pure nodes (ideally, all leaf nodes are pure)

A pure leaf node resembles only patterns of single category

Design Issues

Branching factor = splits?
Which query (property) at which node?
Termination (leaf node)?
Pruning (simplification)?
Missing data?

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Monothetic Decision Boundaries

R
1

R2
R

2

R2

R
2

R1 R
1

R1

x1

x3

x2

x2

x1

R1

R
2

R1

FIGURE 8.3. Monothetic decision trees create decision boundaries with portions perpendicular to the feature
axes. The decision regions are marked R1 and R2 in these two-dimensional and three-dimensional two-
category examples. With a sufficiently large tree, any decision boundary can be approximated arbitrarily
well in this way. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Entropy Impurity

Each non-binary tree can be transformed to binary tree

Monothetic (single feature node) and polythetic (multiple
features node) trees

Any query at a node should gain maximal purity (or minimal
impurity)

Entropy impurity of a node N with class “probabilities” P
i(N) = −

∑
j P(ωj)ldP(ωj)

i(N) = 0→ pure node

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Entropy Impurity

Each non-binary tree can be transformed to binary tree

Monothetic (single feature node) and polythetic (multiple
features node) trees

Any query at a node should gain maximal purity (or minimal
impurity)

Entropy impurity of a node N with class “probabilities” P
i(N) = −

∑
j P(ωj)ldP(ωj)

i(N) = 0→ pure node

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Entropy Impurity

Each non-binary tree can be transformed to binary tree

Monothetic (single feature node) and polythetic (multiple
features node) trees

Any query at a node should gain maximal purity (or minimal
impurity)

Entropy impurity of a node N with class “probabilities” P
i(N) = −

∑
j P(ωj)ldP(ωj)

i(N) = 0→ pure node

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Entropy Impurity

Each non-binary tree can be transformed to binary tree

Monothetic (single feature node) and polythetic (multiple
features node) trees

Any query at a node should gain maximal purity (or minimal
impurity)

Entropy impurity of a node N with class “probabilities” P
i(N) = −

∑
j P(ωj)ldP(ωj)

i(N) = 0→ pure node

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Entropy Impurity

Each non-binary tree can be transformed to binary tree

Monothetic (single feature node) and polythetic (multiple
features node) trees

Any query at a node should gain maximal purity (or minimal
impurity)

Entropy impurity of a node N with class “probabilities” P
i(N) = −

∑
j P(ωj)ldP(ωj)

i(N) = 0→ pure node

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Other Impurity Measures

Gini impurity (generalization of variance impurity)
i(N) =

∑
i 6=j P(ωi)P(ωj) = 1

2 [1−
∑

j P
2(ωj)]

Expected error rate at N (if pattern is selected from
distribution at N)

Misclassification impurity (discontinous derivative may cause
problems)
i(N) = 1−max

j
P(ωj)

Minimal probability of a misclassified pattern at N

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Other Impurity Measures

Gini impurity (generalization of variance impurity)
i(N) =

∑
i 6=j P(ωi)P(ωj) = 1

2 [1−
∑

j P
2(ωj)]

Expected error rate at N (if pattern is selected from
distribution at N)

Misclassification impurity (discontinous derivative may cause
problems)
i(N) = 1−max

j
P(ωj)

Minimal probability of a misclassified pattern at N

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Other Impurity Measures

Gini impurity (generalization of variance impurity)
i(N) =

∑
i 6=j P(ωi)P(ωj) = 1

2 [1−
∑

j P
2(ωj)]

Expected error rate at N (if pattern is selected from
distribution at N)

Misclassification impurity (discontinous derivative may cause
problems)
i(N) = 1−max

j
P(ωj)

Minimal probability of a misclassified pattern at N

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Other Impurity Measures

Gini impurity (generalization of variance impurity)
i(N) =

∑
i 6=j P(ωi)P(ωj) = 1

2 [1−
∑

j P
2(ωj)]

Expected error rate at N (if pattern is selected from
distribution at N)

Misclassification impurity (discontinous derivative may cause
problems)
i(N) = 1−max

j
P(ωj)

Minimal probability of a misclassified pattern at N

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Greedy Query Search

Select query with largest impurity decrease from N
to NL (left child) and NR (right child)
∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Greedy Query Search

Select query with largest impurity decrease from N
to NL (left child) and NR (right child)
∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Greedy Query Search

Select query with largest impurity decrease from N
to NL (left child) and NR (right child)
∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Greedy Query Search

Select query with largest impurity decrease from N
to NL (left child) and NR (right child)
∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR)

Nominal features (exhaustive search), continous features
(gradient descent)

Specific choice of impurity measure is uncritical, more
important are stop splitting and pruning methods

Multiway splits (B > 2), simple impurity decrease favors large
splits, scaling of impurity decrease, Gain Ratio Impurity
∆i ′(N,B) = ∆i(N,B)

−
∑

k Pk ldPk

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Stop Splitting Methods

Naive Stop: each leaf node has impurity 0 (perfect
overfitting), may degenerate to a look–up table (a leaf node
for each pattern)

Measure split performance with a separate validation set
(minimal error on validation set)

Impurity threshold ∆i(N) ≤ β, unbalanced trees, choice of β?

Pattern threshold: stop when a node represents a certain
(small) number (percentage) of patterns

Minimum Description Length (regularization reduces
complexity)
J(DT) = α#N +

∑
LN i(LN) (LN = leaf nodes)

Statistical significance of impurity reduction
(distribution of ∆i)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Stop Splitting Methods

Naive Stop: each leaf node has impurity 0 (perfect
overfitting), may degenerate to a look–up table (a leaf node
for each pattern)

Measure split performance with a separate validation set
(minimal error on validation set)

Impurity threshold ∆i(N) ≤ β, unbalanced trees, choice of β?

Pattern threshold: stop when a node represents a certain
(small) number (percentage) of patterns

Minimum Description Length (regularization reduces
complexity)
J(DT) = α#N +

∑
LN i(LN) (LN = leaf nodes)

Statistical significance of impurity reduction
(distribution of ∆i)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Stop Splitting Methods

Naive Stop: each leaf node has impurity 0 (perfect
overfitting), may degenerate to a look–up table (a leaf node
for each pattern)

Measure split performance with a separate validation set
(minimal error on validation set)

Impurity threshold ∆i(N) ≤ β, unbalanced trees, choice of β?

Pattern threshold: stop when a node represents a certain
(small) number (percentage) of patterns

Minimum Description Length (regularization reduces
complexity)
J(DT) = α#N +

∑
LN i(LN) (LN = leaf nodes)

Statistical significance of impurity reduction
(distribution of ∆i)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Stop Splitting Methods

Naive Stop: each leaf node has impurity 0 (perfect
overfitting), may degenerate to a look–up table (a leaf node
for each pattern)

Measure split performance with a separate validation set
(minimal error on validation set)

Impurity threshold ∆i(N) ≤ β, unbalanced trees, choice of β?

Pattern threshold: stop when a node represents a certain
(small) number (percentage) of patterns

Minimum Description Length (regularization reduces
complexity)
J(DT) = α#N +

∑
LN i(LN) (LN = leaf nodes)

Statistical significance of impurity reduction
(distribution of ∆i)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Stop Splitting Methods

Naive Stop: each leaf node has impurity 0 (perfect
overfitting), may degenerate to a look–up table (a leaf node
for each pattern)

Measure split performance with a separate validation set
(minimal error on validation set)

Impurity threshold ∆i(N) ≤ β, unbalanced trees, choice of β?

Pattern threshold: stop when a node represents a certain
(small) number (percentage) of patterns

Minimum Description Length (regularization reduces
complexity)
J(DT) = α#N +

∑
LN i(LN) (LN = leaf nodes)

Statistical significance of impurity reduction
(distribution of ∆i)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Stop Splitting Methods

Naive Stop: each leaf node has impurity 0 (perfect
overfitting), may degenerate to a look–up table (a leaf node
for each pattern)

Measure split performance with a separate validation set
(minimal error on validation set)

Impurity threshold ∆i(N) ≤ β, unbalanced trees, choice of β?

Pattern threshold: stop when a node represents a certain
(small) number (percentage) of patterns

Minimum Description Length (regularization reduces
complexity)
J(DT) = α#N +

∑
LN i(LN) (LN = leaf nodes)

Statistical significance of impurity reduction
(distribution of ∆i)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Pruning

Stop Splitting: insufficient look–ahead (horizon effect) due to
greedy search

Pruning: merge nodes, starts at leaf nodes, but any node is
possible

Uses complete data set, huge cost with large data sets

Rule pruning: construct and simplify rules (conjunctions) for
each leaf

Context pruning: prune specific rules for specific patterns

Improved interpretability

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Feature Extraction

.2 .4 .6 .8 1
0

.2

.4

.6

.8

1
 - 1.2 x1 + x2 < 0.1

x1 < 0.27

x2 < 0.32

x1 < 0.07

 x2 < 0.6

 x1 < 0.55

 x2 < 0.86

x1 < 0.81

x1

x2

ω2 ω1

ω2

ω1

ω1

ω1

ω1

ω2

ω2

ω2
R2

R1

R2

R1

.2 .4 .6 .8 1
0

.2

.4

.6

.8

1

x1

x2

FIGURE 8.5. If the class of node decisions does not match the form of the training data,
a very complicated decision tree will result, as shown at the top. Here decisions are
parallel to the axes while in fact the data is better split by boundaries along another
direction. If, however, “proper” decision forms are used (here, linear combinations of
the features), the tree can be quite simple, as shown at the bottom. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Potential Improvements

At each node train a linear classifier, arbitrary linear decision
boundaries

Long training, (again) fast recall

Integrate priors and/or costs by weights

Weighted Gini Impurity with cost λij
i(N) =

∑
ij λijP(ωi)P(ωj)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Potential Improvements

At each node train a linear classifier, arbitrary linear decision
boundaries

Long training, (again) fast recall

Integrate priors and/or costs by weights

Weighted Gini Impurity with cost λij
i(N) =

∑
ij λijP(ωi)P(ωj)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Potential Improvements

At each node train a linear classifier, arbitrary linear decision
boundaries

Long training, (again) fast recall

Integrate priors and/or costs by weights

Weighted Gini Impurity with cost λij
i(N) =

∑
ij λijP(ωi)P(ωj)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Potential Improvements

At each node train a linear classifier, arbitrary linear decision
boundaries

Long training, (again) fast recall

Integrate priors and/or costs by weights

Weighted Gini Impurity with cost λij
i(N) =

∑
ij λijP(ωi)P(ωj)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Multivariate Decision Trees

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.04 x1 + 0.16 x2 < 0.11

0.27 x1 - 0.44 x2 < -0.02

0.96 x1 - 1.77x2 < -0.45

5.43 x1 - 13.33 x2 < -6.03

x2 < 0.5

x2 < 0.56x1 < 0.95

x2 < 0.54

x1

ω1ω2

R2

R
1

0

ω2

ω1

ω1

ω1

ω1

ω2

ω2

ω2

R
1

R2

R
2

R1

x2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1
0

x2

FIGURE 8.6. One form of multivariate tree employs general linear decisions at each
node, giving splits along arbitrary directions in the feature space. In virtually all inter-
esting cases the training data are not linearly separable, and thus the LMS algorithm is
more useful than methods that require the data to be linearly separable, even though the
LMS need not yield a minimum in classification error (Chapter 5). The tree at the bottom
can be simplified by methods outlined in Section 8.4.2. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Missing Attributes

Naive approach: use only non-deficient patterns

Better: use only non–deficient attributes

Works with training, but how to classify a deficient pattern?

Surrogate splits: find alternative splits using different features
having maximal predictive association (correlation)

Virtual values, e.g., mean value of non–deficient feature values

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Missing Attributes

Naive approach: use only non-deficient patterns

Better: use only non–deficient attributes

Works with training, but how to classify a deficient pattern?

Surrogate splits: find alternative splits using different features
having maximal predictive association (correlation)

Virtual values, e.g., mean value of non–deficient feature values

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Missing Attributes

Naive approach: use only non-deficient patterns

Better: use only non–deficient attributes

Works with training, but how to classify a deficient pattern?

Surrogate splits: find alternative splits using different features
having maximal predictive association (correlation)

Virtual values, e.g., mean value of non–deficient feature values

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Missing Attributes

Naive approach: use only non-deficient patterns

Better: use only non–deficient attributes

Works with training, but how to classify a deficient pattern?

Surrogate splits: find alternative splits using different features
having maximal predictive association (correlation)

Virtual values, e.g., mean value of non–deficient feature values

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

Missing Attributes

Naive approach: use only non-deficient patterns

Better: use only non–deficient attributes

Works with training, but how to classify a deficient pattern?

Surrogate splits: find alternative splits using different features
having maximal predictive association (correlation)

Virtual values, e.g., mean value of non–deficient feature values

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

ID3

ID3 stems from third interactive dichotomizer

Nominal features (real are binned)

Branch factor is number of attributes

Train until all nodes pure or no more features

Results in tree depth = number of features

No pruning

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

ID3

ID3 stems from third interactive dichotomizer

Nominal features (real are binned)

Branch factor is number of attributes

Train until all nodes pure or no more features

Results in tree depth = number of features

No pruning

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

ID3

ID3 stems from third interactive dichotomizer

Nominal features (real are binned)

Branch factor is number of attributes

Train until all nodes pure or no more features

Results in tree depth = number of features

No pruning

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

ID3

ID3 stems from third interactive dichotomizer

Nominal features (real are binned)

Branch factor is number of attributes

Train until all nodes pure or no more features

Results in tree depth = number of features

No pruning

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

ID3

ID3 stems from third interactive dichotomizer

Nominal features (real are binned)

Branch factor is number of attributes

Train until all nodes pure or no more features

Results in tree depth = number of features

No pruning

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

ID3

ID3 stems from third interactive dichotomizer

Nominal features (real are binned)

Branch factor is number of attributes

Train until all nodes pure or no more features

Results in tree depth = number of features

No pruning

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

C4.5

Refinement of ID3

B > 2 with nominal features, B = 2 with real features

Pruning based on statistical significance of splits

Missing features: sample all subtrees of missing feature using
training data

Additional rule pruning, can prune any node (see Figure 8.6)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

C4.5

Refinement of ID3

B > 2 with nominal features, B = 2 with real features

Pruning based on statistical significance of splits

Missing features: sample all subtrees of missing feature using
training data

Additional rule pruning, can prune any node (see Figure 8.6)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

C4.5

Refinement of ID3

B > 2 with nominal features, B = 2 with real features

Pruning based on statistical significance of splits

Missing features: sample all subtrees of missing feature using
training data

Additional rule pruning, can prune any node (see Figure 8.6)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

C4.5

Refinement of ID3

B > 2 with nominal features, B = 2 with real features

Pruning based on statistical significance of splits

Missing features: sample all subtrees of missing feature using
training data

Additional rule pruning, can prune any node (see Figure 8.6)

VU Pattern Recognition II

Nonmetric Methods

Classification and Regression Trees

C4.5

Refinement of ID3

B > 2 with nominal features, B = 2 with real features

Pruning based on statistical significance of splits

Missing features: sample all subtrees of missing feature using
training data

Additional rule pruning, can prune any node (see Figure 8.6)

VU Pattern Recognition II

Stochastic Methods

Stochastic Search

Analytical methods problematic in high dimensions or with
complex models

Large number of local optima makes gradient descent very
costly

Stochastic methods try to localize promising search regions

Pure random search is often not sufficient

Simulated Annealing and Boltzmann Learning motivated by
statistical mechanics

Evolutionary Computation motivated by evolutionary
principles from biology

VU Pattern Recognition II

Stochastic Methods

Stochastic Search

Analytical methods problematic in high dimensions or with
complex models

Large number of local optima makes gradient descent very
costly

Stochastic methods try to localize promising search regions

Pure random search is often not sufficient

Simulated Annealing and Boltzmann Learning motivated by
statistical mechanics

Evolutionary Computation motivated by evolutionary
principles from biology

VU Pattern Recognition II

Stochastic Methods

Stochastic Search

Analytical methods problematic in high dimensions or with
complex models

Large number of local optima makes gradient descent very
costly

Stochastic methods try to localize promising search regions

Pure random search is often not sufficient

Simulated Annealing and Boltzmann Learning motivated by
statistical mechanics

Evolutionary Computation motivated by evolutionary
principles from biology

VU Pattern Recognition II

Stochastic Methods

Stochastic Search

Analytical methods problematic in high dimensions or with
complex models

Large number of local optima makes gradient descent very
costly

Stochastic methods try to localize promising search regions

Pure random search is often not sufficient

Simulated Annealing and Boltzmann Learning motivated by
statistical mechanics

Evolutionary Computation motivated by evolutionary
principles from biology

VU Pattern Recognition II

Stochastic Methods

Stochastic Search

Analytical methods problematic in high dimensions or with
complex models

Large number of local optima makes gradient descent very
costly

Stochastic methods try to localize promising search regions

Pure random search is often not sufficient

Simulated Annealing and Boltzmann Learning motivated by
statistical mechanics

Evolutionary Computation motivated by evolutionary
principles from biology

VU Pattern Recognition II

Stochastic Methods

Stochastic Search

Analytical methods problematic in high dimensions or with
complex models

Large number of local optima makes gradient descent very
costly

Stochastic methods try to localize promising search regions

Pure random search is often not sufficient

Simulated Annealing and Boltzmann Learning motivated by
statistical mechanics

Evolutionary Computation motivated by evolutionary
principles from biology

VU Pattern Recognition II

Stochastic Methods

Energy Minimization

Example: minimizing (model) energy in a (Hopfield) network

Energy E = −1
2

∑N
i ,j=1 wijsi sj si = ±1

Minimize energy of spin–glass model

Probability of energy state, Boltzmann factor

P(γ) = e
−Eγ
T

Z(T)

VU Pattern Recognition II

Stochastic Methods

Energy Minimization

Example: minimizing (model) energy in a (Hopfield) network

Energy E = −1
2

∑N
i ,j=1 wijsi sj si = ±1

Minimize energy of spin–glass model

Probability of energy state, Boltzmann factor

P(γ) = e
−Eγ
T

Z(T)

VU Pattern Recognition II

Stochastic Methods

Energy Minimization

Example: minimizing (model) energy in a (Hopfield) network

Energy E = −1
2

∑N
i ,j=1 wijsi sj si = ±1

Minimize energy of spin–glass model

Probability of energy state, Boltzmann factor

P(γ) = e
−Eγ
T

Z(T)

VU Pattern Recognition II

Stochastic Methods

Energy Minimization

Example: minimizing (model) energy in a (Hopfield) network

Energy E = −1
2

∑N
i ,j=1 wijsi sj si = ±1

Minimize energy of spin–glass model

Probability of energy state, Boltzmann factor

P(γ) = e
−Eγ
T

Z(T)

VU Pattern Recognition II

Stochastic Methods

Recurrent Net
hi

dd
en

wij

i

j

αβ

visible

visible

s1 s2 s3 s4 s5 s6

s14 s15 s16 s17

s8

s10

s9

s11

s12
s13

s7

FIGURE 7.1. The class of optimization problems of Eq. 1 can be viewed in terms of a
network of nodes or units, each of which can be in the si = +1 or si = −1 state. Every
pair of nodes i and j is connected by bi-directional weights wij; if a weight between two
nodes is zero, then no connection is drawn. (Because the networks we shall discuss can
have an arbitrary interconnection, there is no notion of layers as in multilayer neural
networks.) The optimization problem is to find a configuration (i.e., assignment of all
si) that minimizes the energy described by Eq. 1. While our convention was to show
functions inside each node’s circle, our convention in so-called Boltzmann networks is
to indicate the state of each node. The configuration of the full network is indexed by
an integer γ , and because here there are 17 binary nodes, γ is bounded 0 ≤ γ < 217.
When such a network is used for pattern recognition, the input and output nodes are
said to be visible, and the remaining nodes are said to be hidden. The states of the
visible nodes and hidden nodes are indexed by α and β, respectively, and in this case
are bounded 0 ≤ α ≤ 210 and 0 ≤ β < 27. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Stochastic Methods

Energy Landscape

x1 x1

x2 x2

E E

FIGURE 7.2. The energy function or energy “landscape” on the left is meant to suggest the types of opti-
mization problems addressed by simulated annealing. The method uses randomness, governed by a control
parameter or “temperature” T to avoid getting stuck in local energy minima and thus to find the global mini-
mum, like a small ball rolling in the landscape as it is shaken. The pathological “golf course” landscape at the
right is, generally speaking, not amenable to solution via simulated annealing because the region of lowest
energy is so small and is surrounded by energetically unfavorable configurations. The configuration spaces of
the problems we shall address are discrete and are more accurately displayed in Fig. 7.6. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Stochastic Methods

Simulated Annealing

Simulated Annealing Basics

Stochastic search for state of lower energy

Basic idea: occasionally go to higher energy to possibly
escape local minima

After random change of parameter si
∆Eab = Eb − Ea

accept Eb, if Eb < Ea or

accept Ea with P = e
−∆Eab

T

Annealing Schedule, e.g., T (k + 1) = cT (k) 0 < c < 1
typically 0.8 < c < 0.99

High initial temperature, large c and large kmax (number of
iterations) leads to good results (but also computational cost)

VU Pattern Recognition II

Stochastic Methods

Simulated Annealing

Simulated Annealing Basics

Stochastic search for state of lower energy

Basic idea: occasionally go to higher energy to possibly
escape local minima

After random change of parameter si
∆Eab = Eb − Ea

accept Eb, if Eb < Ea or

accept Ea with P = e
−∆Eab

T

Annealing Schedule, e.g., T (k + 1) = cT (k) 0 < c < 1
typically 0.8 < c < 0.99

High initial temperature, large c and large kmax (number of
iterations) leads to good results (but also computational cost)

VU Pattern Recognition II

Stochastic Methods

Simulated Annealing

Simulated Annealing Basics

Stochastic search for state of lower energy

Basic idea: occasionally go to higher energy to possibly
escape local minima

After random change of parameter si
∆Eab = Eb − Ea

accept Eb, if Eb < Ea or

accept Ea with P = e
−∆Eab

T

Annealing Schedule, e.g., T (k + 1) = cT (k) 0 < c < 1
typically 0.8 < c < 0.99

High initial temperature, large c and large kmax (number of
iterations) leads to good results (but also computational cost)

VU Pattern Recognition II

Stochastic Methods

Simulated Annealing

Simulated Annealing Basics

Stochastic search for state of lower energy

Basic idea: occasionally go to higher energy to possibly
escape local minima

After random change of parameter si
∆Eab = Eb − Ea

accept Eb, if Eb < Ea or

accept Ea with P = e
−∆Eab

T

Annealing Schedule, e.g., T (k + 1) = cT (k) 0 < c < 1
typically 0.8 < c < 0.99

High initial temperature, large c and large kmax (number of
iterations) leads to good results (but also computational cost)

VU Pattern Recognition II

Stochastic Methods

Simulated Annealing

Simulated Annealing Basics

Stochastic search for state of lower energy

Basic idea: occasionally go to higher energy to possibly
escape local minima

After random change of parameter si
∆Eab = Eb − Ea

accept Eb, if Eb < Ea or

accept Ea with P = e
−∆Eab

T

Annealing Schedule, e.g., T (k + 1) = cT (k) 0 < c < 1
typically 0.8 < c < 0.99

High initial temperature, large c and large kmax (number of
iterations) leads to good results (but also computational cost)

VU Pattern Recognition II

Stochastic Methods

Simulated Annealing

Simulated Annealing Experiment

−
−
−
−
−
−

+
−
−
−
−
−

+
+
−
−
−
−

−
+
−
−
−
−

−
+
+
−
−
−

+
+
+
−
−
−

+
−
+
−
−
−

−
−
+
−
−
−

−
−
+
+
−
−

+
−
+
+
−
−

+
+
+
+
−
−

−
+
+
+
−
−

−
+
−
+
−
−

+
+
−
+
−
−

+
−
−
+
−
−

−
−
−
+
−
−

−
−
−
+
+
−

+
−
−
+
+
−

+
+
−
+
+
−

−
+
−
+
+
−

−
+
+
+
+
−

+
+
+
+
+
−

+
−
+
+
+
−

−
−
+
+
+
−

−
−
+
−
+
−

+
−
+
−
+
−

+
+
+
−
+
−

−
+
+
−
+
−

−
+
−
−
+
−

+
+
−
−
+
−

+
−
−
−
+
−

−
−
−
−
+
−

−
−
−
−
+
+

+
−
−
−
+
+

+
+
−
−
+
+

−
+
−
−
+
+

−
+
+
−
+
+

+
+
+
−
+
+

+
−
+
−
+
+

−
−
+
−
+
+

−
−
+
+
+
+

+
−
+
+
+
+

+
+
+
+
+
+

−
+
+
+
+
+

−
+
−
+
+
+

+
+
−
+
+
+

+
−
−
+
+
+

−
−
−
+
+
+

−
−
−
+
−
+

+
−
−
+
−
+

+
+
−
+
−
+

−
+
−
+
−
+

−
+
+
+
−
+

+
+
+
+
−
+

+
−
+
+
−
+

−
−
+
+
−
+

−
−
+
−
−
+

+
−
+
−
−
+

+
+
+
−
−
+

−
+
+
−
−
+

−
+
−
−
−
+

+
+
−
−
−
+

+
−
−
−
−
+

−
−
−
−
−
+

T
(k

)
E

(k)

k k

E

s
1

s
2

s
3

s
4

s
5

s
6

begin

end

 γ

FIGURE 7.3. Stochastic simulated annealing (Algorithm 1) uses randomness, governed by a control parameter
or “temperature” T (k) to search through a discrete space for a minimum of an energy function. In this example
there are N = 6 variables; the 26 = 64 configurations are shown along the bottom as a column of + and
− symbols. The plot of the associated energy of each configuration given by Eq. 1 for randomly chosen
weights. Every transition corresponds to the change of just a single si. (The configurations have been arranged
so that adjacent ones differ by the state of just a single node; nevertheless, most transitions corresponding
to a single node appear far apart in this ordering.) Because the system energy is invariant with respect to a
global interchange si ↔ −si, there are two “global” minima. The graph at the upper left shows the annealing
schedule—the decreasing temperature versus iteration number k. The middle portion shows the configuration
versus iteration number generated by Algorithm 1. The trajectory through the configuration space is colored
red for transitions that increase the energy and black for those that decrease the energy. Such energetically
unfavorable (red) transitions become rarer later in the anneal. The graph at the right shows the full energy
E(k), which decreases to the global minimum. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Stochastic Methods

Simulated Annealing

Empirical Energy States

−
−
−
−
−
−

+
−
−
−
−
−

+
+
−
−
−
−

−
+
−
−
−
−

−
+
+
−
−
−

+
+
+
−
−
−

+
−
+
−
−
−

−
−
+
−
−
−

−
−
+
+
−
−

+
−
+
+
−
−

+
+
+
+
−
−

−
+
+
+
−
−

−
+
−
+
−
−

+
+
−
+
−
−

+
−
−
+
−
−

−
−
−
+
−
−

−
−
−
+
+
−

+
−
−
+
+
−

+
+
−
+
+
−

−
+
−
+
+
−

−
+
+
+
+
−

+
+
+
+
+
−

+
−
+
+
+
−

−
−
+
+
+
−

−
−
+
−
+
−

+
−
+
−
+
−

+
+
+
−
+
−

−
+
+
−
+
−

−
+
−
−
+
−

+
+
−
−
+
−

+
−
−
−
+
−

−
−
−
−
+
−

−
−
−
−
+
+

+
−
−
−
+
+

+
+
−
−
+
+

−
+
−
−
+
+

−
+
+
−
+
+

+
+
+
−
+
+

+
−
+
−
+
+

−
−
+
−
+
+

−
−
+
+
+
+

+
−
+
+
+
+

+
+
+
+
+
+

−
+
+
+
+
+

−
+
−
+
+
+

+
+
−
+
+
+

+
−
−
+
+
+

−
−
−
+
+
+

−
−
−
+
−
+

+
−
−
+
−
+

+
+
−
+
−
+

−
+
−
+
−
+

−
+
+
+
−
+

+
+
+
+
−
+

+
−
+
+
−
+

−
−
+
+
−
+

−
−
+
−
−
+

+
−
+
−
−
+

+
+
+
−
−
+

−
+
+
−
−
+

−
+
−
−
−
+

+
+
−
−
−
+

+
−
−
−
−
+

−
−
−
−
−
+

T
(k

)

k E

P(γ)

ε
[E

]

k

s
1

s
2

s
3

s
4

s
5

s
6

 γ

FIGURE 7.4. An estimate of the probability P(γ) of being in a configuration denoted by γ is shown for
four temperatures during a slow anneal. (These estimates, based on a large number of runs, are nearly the
theoretical values e−Eγ /T.) Early, at high T, each configuration is roughly equal in probability while late, at
low T, the probability is strongly concentrated at the global minima. The expected value of the energy, E[E]
(i.e., averaged at temperature T), decreases gradually during the anneal. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

VU Pattern Recognition II

Projects

Project Teams

2 students form a team

Implementation of a pattern classification method

Use existing (free) software (e.g., WEKA)

Data import, pre–processing, results (graphics, tables)

Methods must be understood, parameters!

Project report (February 10, 2014)

VU Pattern Recognition II

Projects

Project Teams

2 students form a team

Implementation of a pattern classification method

Use existing (free) software (e.g., WEKA)

Data import, pre–processing, results (graphics, tables)

Methods must be understood, parameters!

Project report (February 10, 2014)

VU Pattern Recognition II

Projects

Project Teams

2 students form a team

Implementation of a pattern classification method

Use existing (free) software (e.g., WEKA)

Data import, pre–processing, results (graphics, tables)

Methods must be understood, parameters!

Project report (February 10, 2014)

VU Pattern Recognition II

Projects

Project Teams

2 students form a team

Implementation of a pattern classification method

Use existing (free) software (e.g., WEKA)

Data import, pre–processing, results (graphics, tables)

Methods must be understood, parameters!

Project report (February 10, 2014)

VU Pattern Recognition II

Projects

Project Teams

2 students form a team

Implementation of a pattern classification method

Use existing (free) software (e.g., WEKA)

Data import, pre–processing, results (graphics, tables)

Methods must be understood, parameters!

Project report (February 10, 2014)

VU Pattern Recognition II

Projects

Project Teams

2 students form a team

Implementation of a pattern classification method

Use existing (free) software (e.g., WEKA)

Data import, pre–processing, results (graphics, tables)

Methods must be understood, parameters!

Project report (February 10, 2014)

VU Pattern Recognition II

Projects

Project Topics

k-NN Classifier (different metrics)
Kauba, Mayer

Artificial Neural Networks (Boone)
Reissig, DiStolfo

Support Vector Machine
Linortner, N.N.

Decision Tree (C4.5)

Simulated Annealing (meta)

Genetic Algorithm (meta, JEvolution)
Auracher, Herzog, Kirchgasser

Genetic Programming (optional, JEvolution)

VU Pattern Recognition II

Projects

Project Topics

k-NN Classifier (different metrics)
Kauba, Mayer

Artificial Neural Networks (Boone)
Reissig, DiStolfo

Support Vector Machine
Linortner, N.N.

Decision Tree (C4.5)

Simulated Annealing (meta)

Genetic Algorithm (meta, JEvolution)
Auracher, Herzog, Kirchgasser

Genetic Programming (optional, JEvolution)

VU Pattern Recognition II

Projects

Project Topics

k-NN Classifier (different metrics)
Kauba, Mayer

Artificial Neural Networks (Boone)
Reissig, DiStolfo

Support Vector Machine
Linortner, N.N.

Decision Tree (C4.5)

Simulated Annealing (meta)

Genetic Algorithm (meta, JEvolution)
Auracher, Herzog, Kirchgasser

Genetic Programming (optional, JEvolution)

VU Pattern Recognition II

Projects

Project Topics

k-NN Classifier (different metrics)
Kauba, Mayer

Artificial Neural Networks (Boone)
Reissig, DiStolfo

Support Vector Machine
Linortner, N.N.

Decision Tree (C4.5)

Simulated Annealing (meta)

Genetic Algorithm (meta, JEvolution)
Auracher, Herzog, Kirchgasser

Genetic Programming (optional, JEvolution)

VU Pattern Recognition II

Projects

Project Topics

k-NN Classifier (different metrics)
Kauba, Mayer

Artificial Neural Networks (Boone)
Reissig, DiStolfo

Support Vector Machine
Linortner, N.N.

Decision Tree (C4.5)

Simulated Annealing (meta)

Genetic Algorithm (meta, JEvolution)
Auracher, Herzog, Kirchgasser

Genetic Programming (optional, JEvolution)

VU Pattern Recognition II

Projects

Project Topics

k-NN Classifier (different metrics)
Kauba, Mayer

Artificial Neural Networks (Boone)
Reissig, DiStolfo

Support Vector Machine
Linortner, N.N.

Decision Tree (C4.5)

Simulated Annealing (meta)

Genetic Algorithm (meta, JEvolution)
Auracher, Herzog, Kirchgasser

Genetic Programming (optional, JEvolution)

VU Pattern Recognition II

Projects

Project Topics

k-NN Classifier (different metrics)
Kauba, Mayer

Artificial Neural Networks (Boone)
Reissig, DiStolfo

Support Vector Machine
Linortner, N.N.

Decision Tree (C4.5)

Simulated Annealing (meta)

Genetic Algorithm (meta, JEvolution)
Auracher, Herzog, Kirchgasser

Genetic Programming (optional, JEvolution)

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive
http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals
Semeion Handwritten Digit: Digit Recognition
Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive

http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals
Semeion Handwritten Digit: Digit Recognition
Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive
http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals
Semeion Handwritten Digit: Digit Recognition
Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive
http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals

Semeion Handwritten Digit: Digit Recognition
Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive
http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals
Semeion Handwritten Digit: Digit Recognition

Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive
http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals
Semeion Handwritten Digit: Digit Recognition
Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive
http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals
Semeion Handwritten Digit: Digit Recognition
Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

VU Pattern Recognition II

Projects

Project Data Sets

Data Sets

UCI Machine Learning Archive
http://www.ics.uci.edu/~mlearn/MLRepository.html

Ionosphere: Radar Signals
Semeion Handwritten Digit: Digit Recognition
Wine Quality: Wine Critic

Leave–one–out validation (common partitioning)

Confusion matrix

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Outline
	Introduction
	Statistical Classifiers
	Bayesian Decision Theory

	Nonparametric Techniques
	Density Estimation
	 k –Nearest–Neigbor Estimation

	Linear Discriminant Functions
	Decision Surfaces

	Neural Networks
	Nonmetric Methods
	Classification and Regression Trees

	Stochastic Methods
	Simulated Annealing

	Projects

