Chapter 3

Artificial Neural Networks

In this chapter we present the basic principles and mechanisms of ANNs
by means of an historical outline of the development of the field. As the
biological model has played an important role in ANN research, and still is
the source of a variety of new ANN models, we start with a short review
of BNN properties. We conclude the following introduction focusing on the
prominent Error Back—propagation algorithm for ANN training, which plays
an important role in our system evolving ANSs.

3.1 Biological Neural Networks

Since the human brain has been identified as the center of thinking by Greek
philosophers around 500 B.C., philosophers and scientists attempted to reveal
structure and function of biological neural networks. But it was only at
the end of the 19th century that the Spanish histologist Cajal was able to
demonstrate that the nervous system is composed of interconnected cells
(neurons) creating complex circuits. In the 1950s Hodgkin, Huzley, Katz,
and FEccles were able to record electrical signals exchanged between neurons,
and identified Synapses as biological connectors allowing the transmission of
electrical signals from a source (presynaptic) to a sink (postsynaptic) neuron.
In the 1980s methods became available to analyze the genetic control of
differentiation of neurons and the expression of their functional properties
(Shepherd, 1994), which is essentially what computer scientists began to use
as a model for the artificial evolution of networks being at the center of this
work.

According to Shepherd (1994, pp. 4-5) the main task of Neurobiology is to
identify the functional and structural organization of the brain, and associate
it with stages of information processing ultimately resulting in the physical

29

behavior of an organism. Barlow (1972) stated in his Neuron Doctrine that
individual neurons represent specific events by hierarchically processing the
information surveyed by the sensory input signals (Barlow, 1972). Consistent
with Barlow’s neuron doctrine researchers coined the terms Pontifical Cell
(Sherrington, 1940), Grandmother Cell (Lettvin et al., 1959), and Cardinal
Cell (Barlow, 1972) which should illustrate the one-to—one mapping of a
neuron and a specific concept. However, it were not science, if researchers
did not come up with the opposing concept of Parallel Distributed Processing
advocating a one-to-many mapping between neurons and concepts having
had great impact on the ANN community (Rumelhart et al., 1986). Todays
solomonic view supports both hypotheses by classifying neurons into one of
the two categories with possible intermediate (fuzzy) states always found in
biological systems.

It is estimated that the human brain consists of approx. 10! neurons
with approx. 10'* connections. Hundreds of brain areas have been identi-
fied forming structural units that are interconnected at this higher level of
organization. Though, many areas are associated with more or less specific
tasks, it remains unclear, whether the structural units have a strict assign-
ment to a function, or can be used for a variety of tasks. Again, the possibly
unsatisfying answer to this question may be that both concepts are realized
in biological neural networks including all variants of intermediate solutions.

A single neuron might seem to be a good candidate to serve as the atomic
structural unit of a BNN, but even in terms of information processing a single
biological neuron is an extremely complex structure, hence, it is also labeled
Microstructure. Basically, a neuron sends a signal via its single Azon (output)
and receives signals along the Dendrites (inputs) (Figure 3.1), however, the
discrimination between axons and dendrites is not trivial, and many neurons
send their signals over dendrites. Axons and dendrites of different neurons
are coupled by electrical and/or chemical synapses. In electrical synapses
ions carrying the signal directly traverse the small distance between the con-
nected “cables”, while in chemical synapses the electrical signal evokes a
transmission of Neurotransmitters, which in turn generate an electrical sig-
nal on the receiving side. Axons, dendrites, and cell bodies (Soma) may be
connected in any combination (Shepherd, 1994). Considering that some cells
have hundreds and thousands of dendrites with a number of synapses on each
of them, the complexity of a single neuron becomes apparent.

The electrical signals (Action Potentials) are generated and transmitted
by complex processes in the neurons, where activation—dependent ion chan-
nels regulate the flow of charges through the cell’s membrane involving K+,
Nat, Ca™, and CI~ ions. At certain electrical states the neuron discharges
and triggers an action potential with a maximal frequency of approx. 100 Hz,

30

Dendrites

Soma
Axon

Figure 3.1: A vertebrate motoneuron with exemplary synaptic connections (after
Shepherd (1994, p63)).

which compared to the clock rate of modern microprocessors is unbelievable
slow, but the massive parallelism seen in the brain accounts for this deficit
in signal speed.

An even higher degree of complexity at the neuron level is introduced
by the fact that biological neurons are, of course, living structures changing
their long— and short-term behavior under the influence of various Neuro-
modulators enabling Synaptic Plasticity (Shepherd, 1994). Above properties
contribute to the astonishing plasticity of biological neural networks and
could give some important clues for further improvement of ANNs. How-
ever, despite all the excitement the term ANN may imply, we should always
keep in mind that most of todays ANN models are a high-level abstraction
of a BNN. Essentially, the analogy is restricted to neurons (computational
units) sending signals (numbers) over axons (connections) to other neurons,
hereby transforming (processing) the signals.

3.2 A Brief ANN History

According to Haykin (1999, p38) it is generally agreed that the discipline of
artificial neural networks was founded by McCulloch and Pitts (1943) with
their work on neuron models capable of computing logical functions (McCul-
loch and Pitts, 1943). In this model excitatory connections w;; = +1.0 and
inhibitory connections w;; = —1.0 are discerned. Inhibitory connections may

31

be absolute, completely switching off a neuron, or relative, attenuating the
summed input signal. The activation function a(z) is a threshold function
generating binary signals.

The psychologist Donald Hebb (1949) suggested a fundamental hypothe-
sis of learning in BNNs. In (Hebb, 1949) he says

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency as one of the cells firing B is increased.

The biological mechanisms of Hebb Learning have been explored many years
later (in the 1970s), when Long-Term Potentiation (LTP) and Long-Term
Depression (LTD) have been found to sustainably change synaptic proper-
ties. Hebb also suggested that the connectivity of BNNs changes with time
and creates clusters of cooperating neurons organized in neuronal groups.
Closely related to these ideas are two modern hypotheses in neuroscience:
Neural Darwinism suggests that the neural pathways of biological brains are
constantly sculptured by feedback of the environment, specifically during on-
togeny (Edelman, 1987). Tononi and Edelman (1998) presented the Dynamic
Core hypothesis proposing that brain areas are dynamically rearranged and
allocated for the processing of specific tasks (Tononi and Edelman, 1998).

Although, Hebb’s hypothesis originated strictly from the observation of
BNNs, it is at the core of many prominent learning algorithms in ANNs,
which can be derived in a pure mathematical way without using any biological
inspiration. This may be viewed as an indication that the links between
artificial and biological neural networks are stronger than generally conceded.

The psychologist Frank Rosenblatt (1958) presented the Perceptron model,
which resembled basic organizational properties of BNNs. The perceptron
network is composed of three layers of artificial neurons: a Retina (input
layer), an Association (hidden) layer, and a Response (output) layer '. Retina
and association layer are linked by feed—forward connections, while associa-
tion and response layer also contain recurrent connections to previous layers.
The real-numbered weights w;; modulate the signals to a neuron, where
the activation is modelled by a binary threshold function a(z) (Rosenblatt,
1958). Many of the network architectures investigated and applied today are
very similar to the perceptron, but in order to ease mathematical analysis
Rosenblatt used single neurons as a simplified perceptron, which became the
target of criticism of perceptrons in general.

!Today the expressions in parentheses are used.

32

Minsky and Papert (1969) published a number of proofs on the com-
putational capabilities and limitations of perceptrons (Minsky and Papert,
1988). In condensed form the results of these analyses have been labeled
as Minsky’s Paradoz stating that a single perceptron cannot learn the XOR
function. However, later work has shown that multi-layered perceptrons
(originally proposed by Rosenblatt) are universal approximators (Lippmann,
1987; Cybenko, 1989; Hornik et al., 1989).

Widrow and Hoff (1960) developed the Adaptive LINear NEuron (ADA-
LINE) neuron interconnected in a Multiple ADALINE (MADALINE) net-
work for adaptive filters in communication devices. Of specific importance
for the development of ANN learning algorithms was the MADALINE’s learn-
ing procedure based on minimization of the mean square error of ADALINEs
(Least Mean Square (LMS) or Widrow—Hoff learning rule) (Widrow and Hoff,
1960). In essence the supervised Widrow—Hof! training is the basis of Error
Back-propagation by solving the problem of algorithmic weight adjustment
between an output and the directly connected previous layer. However, it
took many more years until the credit assignment problem (the contribution
of a specific neuron to network error) has been solved allowing supervised
training of multi-layer perceptrons.

In the 1970s Associative Memories came into the spotlight of ANN re-
searchers, e.g., (Anderson, 1972; Kohonen, 1972). Linear associators with
an input and an output layer linked by weighted connections can be trained
using concepts from linear algebra. The resulting weight update rules essen-
tially constitute Hebbian learning, also termed Correlative learning in the
context of associative memories.

In the 1980s the attraction to the ANN field regained momentum and a
series of new ANN types has been proposed. Grossberg presented Adaptive
Resonance Theory (ART) networks based on Competitive learning. The main
idea behind ART is to escape the Stability—Plasticity dilemma of neural net-
works, i.e., the problem of learning new concepts, while not forgetting those
already learned. Thus, in an ART network the response to input patterns
is fed back to the input layer via recurrent connections. If input and re-
sponse match each other, a resonance process is initiated strengthening the
connections between input and response layer. If the input is unknown to
the network, a new concept (assigned to an output neuron) is formed (Cohen
and Grossberg, 1983).

Kohonen (1982) presented the Self-Organizing Map (SOM), a network
type inspired by the sensory input mapping in BNNs (Willshaw and von der
Malsburg, 1976), which is trained by unsupervised, competitive learning. The
output layer is organized in a one—, or two—dimensional space inducing neigh-
borship relations between output neurons. An input pattern propagated to

33

the output layer results in a winner neuron having the highest activation in
the output layer. The weight vectors to the winner neuron and its neighbors
are then shifted towards the input pattern vector (again a form of Hebbian
learning). During training the input data are mapped to output neurons,
whereby the topology of the input space is preserved. Each output neu-
ron represents a region of the input space, i.e., a number of input values is
represented by the weight vector to this neuron (Vector Quantization). The
topology of the input space is preserved in the output layer (map), even when
the dimension of the input space is reduced by the SOM (Kohonen, 1982).

The existence of recurrent connections in an ANN inevitably leads to
dynamical phenomena of the system. Hopfield (1982) based the analysis of
a recurrent network, where each neuron is connected to all other neurons,
with symmetrically weighted connections on the Spin Glass model describing
condensed matter with disordered magnetic moments. In this model the
minimization of energy leads to a stable attractor of the dynamical system.
When the weights of a network are viewed as energy of the network, energy
minimization (training) results in connection weights allowing convergence of
the activations of the network. Thus, (activation) patterns can be stored in
stable attractors of the network constituting a Content Addressable Memory:
a pattern similar to a stored pattern will cause the network to converge to
the pattern in memory (if the applied pattern is in the basin of attraction)
(Hopfield, 1982). It is unclear, if processes similar to the dynamics of a
Hopfield net are fundamental for biological memories, but some researchers
claim that chaos associated with dynamical systems plays an important role
in BNNs (Freeman, 1994).

Arguably, the single most influential development in ANN history was
the Error Back-propagation algorithm for multi-layer perceptrons reported
in (Rumelhart et al., 1986). It solved the problem of assigning exact error
terms to neurons in hidden layers, i.e., for each neuron the degree of its
impact on the networks overall error can be calculated. Essentially, back—
propagation is an optimization technique based on gradient descent, where
the gradient of a high-dimensional function can be computed by an iterative
procedure requiring only local information. The algorithm has already been
reported in (Werbos, 1974) in a broader statistical context, but Rumelhart
et al. (1986) worked out its specific merits in ANN training.

Since then, the multi-layer perceptron trained by error back-propagation
has become the most utilized ANN type in most scientific and real-world ap-
plications (the standard neuron model employed in these networks is sketched
in Figure 3.2). With an ANN software package at hand, users must “only”
provide a set of problem—specific training data to teach a network. However,
in order to achieve a well-performing network many parameters, e.g., number

34

of neurons, layers, and connections, or learning rates, have to be adjusted.
For all of these ANN parameters no analytical rules exist to determine appro-
priate values, hence, ANN performance often relies on the expertise of human
ANN designers. The automatic adjustment of ANN parameters, more gen-
erally components of an ANS, by evolutionary algorithms is at the center of
this work. The general approach adopted is to combine evolution of ANS
components with conventional ANN training that is based on error back-
propagation being outlined in the following section.

Figure 3.2: A standard artificial neuron with weighted sum of inputs ¥ trans-
formed by an activation function a(x).

3.3 Error Back—propagation

The specific mapping of an input pattern to an output pattern in an ANN is
dependent on the network’s weights w;; and the neurons’ activation function
a(x). In supervised learning known input/output patterns are used to de-
termine the current error (deviation of actual network output from expected
output). Hence, in a general form gradient descent towards minimal network
error is given by

ij,i = _n(ﬁE)j,i; (31)

where (6E) ;i is the j,4—th component of the error gradient vector, 7 is the
learning rate determining the step size in direction of the negative gradient,
and Aw,; is the resulting weight change. With hundreds and thousands
of connection weights in a network solving Equation 3.1 becomes a complex,
high—dimensional problem, as the network error function is highly non-linear
(induced by the non-linear activation function). Error back-propagation

35

solves the problem by an iterative computation of the weight changes Aw;;
needing only local information from the two neurons linked by the connection
weight. The method starts by calculating an error term at the network’s
output layer and computes the weight changes by back-propagating error
terms through the network. Figure 3.3 shows a simple one-hidden layer
network with all the parameters, which will be used for derivation of back—
propagation learning.

X1

Figure 3.3: An exemplary feed—forward network with all the parameters
relevant to back—propagation training (after (Patterson, 1996)).

The following definitions (Patterson, 1996) are valid for any one-hidden—
layer network with m input neurons and n hidden neurons:

m n
Hy=) vjxi Io=) wey (3.2)
i=0 §=0

with H; and I being the sum of the weighted input signals of a hidden
layer neuron and an output layer neuron, respectively. Note that the bias
of each neuron is represented by an additional weighted connection to a
neuron xy or yo (not shown in Figure 3.3) having a fixed activation of 1.0.
By definition the input neurons do not transform the input signal, i.e., the
activation function is the identity function and the bias is 0.0.
The input signal to a neuron is transformed by the activation function a
to give
yi =a(H;) 2z =ally), (3.3)

where y; and z;, are the neuron’s activation.
The overall output error of the network is given by the sum of the error
terms of the o output neurons

36

o

B =2 S - AP)2 (3.4)
k=1

—_

The superscript p (omitted in the following) indicates that E® is the
error of a specific input pattern in the training set. An output neuron’s error
term is simply given by the square of the difference of the target value ¢
(defined in the training set) and the actual output activation z. Though,
the Summed Square Error (SSE) is the most common, any error term can be
used for back-propagation, e.g., the error of the network on the validation
set, or even an error signal generated by a human or a machine.

Referring to Equation 3.1 we now calculate the weight change of the
connections between hidden and output layer Awy, ; = —n%. As the error
F is primarily a function of I, which in turn is a function of u}]k,j, application
of the chain rule of partial differentiation yields

OE(Ik(wy,)) _ OF 98I, _ 0F

= =—y;. 3.5
awk,j 8[k 8wk’j 6Ik Yi ()
Further use of the chain rule and Equation 3.4 give
aE(Zk(Ik)) OF 8zk '
VRV 2T TR (4, — I 3.6
aIk aZk aIk (k Zk)(]/ (k)’ ()
and defining a Generalized Error Term ¢ at the output layer as
(Sk = (tk - Zk) a'(Ik) (37)
finally results in
oF
Wi = 1 gy = M0k s (3.8)

Equation 3.8 is essentially the Widrow—Hoff learning rule (setting o’ (1) =
1.0) and has exactly the structure of the Generalized Hebb Rule Awy,; =
nz,y;. In supervised back-propagation learning the generalized error term
d (provided by a teacher) substitutes the activation z; of the unsupervised
Hebb learning.

Calculating the weight changes for the connections between input and hid-

den layer, we again, start with the general gradient descent Av;; = —n aiE -,
Jst
which gives
OFE(H;(v;; OF 0H; oF
(](UL)) _ J T, (39)

an’i B 8HJ 8’()]',1' B GHJ

37

and

0E 0E dy; OE ,
5 = oy, 98 ~ oy,) (3.10)

Right here the problem of credit assignment, how to determine the influ-
ence of the activation of a hidden neuron on the overall error of the network,
arises. It is solved by using the chain rule, again.

OE 1~ 0tk — f(Ix))? -
oy 2k oy

dy; =—) (s — z) a'(I) e (3.11)

k=1 k=1

Defining the generalized error term at the hidden layer as

5]' = a'(Hj)25k wk,j (312)
k=1

the distribution of errors at the output layer d; to the error term ¢; for
each neuron in the hidden layer is described elegantly. The output errors are
weighted by the connection weights and summed up at the output of each
hidden neuron. During training the errors are propagated in a manner very
similar to signals in network recall, however, in the opposite direction, which
gives error back—propagation its name. Though, we have restricted the anal-
ysis to one-hidden layer networks, it can be easily extended to an arbitrary
number of layers and to generalized multi-layer perceptrons allowing any
connections in forward direction. Equation 3.12 enables the computation of
an error term for any neuron, whose post—synaptic error terms are known.

In analogy to Equation 3.8 the final weight update rule for connections
between input and output layer is given by

oF

n 8vm~
Clearly, it can be seen that back—propagation requires only local knowl-
edge of the network’s parameters. In fact, for each weight update of a con-
nection only two parameters, the activation of the source neuron and the
generalized error term of the sink neuron, are needed. Compared to the gen-
eral gradient, where most parameters of the network appear non-linearly in
each component of the gradient vector, back—propagation is a very effective
way to change the weight towards an error minimum. Still, there are a num-
ber of problems associated with the presented plain error back—propagation.

AU]"Z' = = 776J.TZ (313)

38

Although, the single weight updates are computationally cheap opera-
tions, the complexity of the ANN structure (number of neurons and con-
nections), the size of the training data set, and the number of Epochs can
make ANN training very expensive. Typically, a network is trained for some
hundreds to some thousands of epochs. In each epoch (cycle) all patterns of
the training data set are presented to the network sequentially.

Two modes of back—propagation learning can be discerned by the fre-
quency of actual weight updates (Haykin, 1999). With Batch or On-line
Learning the computed weight changes are accumulated for all patterns and
are only applied after completion of an epoch. While this method allows an
accurate calculation of the error gradient, it may suffer from redundant (iden-
tical) pattern in the training data set. Sequential or On—line learning changes
the weights after each pattern, hence, randomness is introduced by the order
of the patterns in the training data sets. Though, computation of the error
gradient is only based on a single pattern, on-line learning is believed to
converge faster, however, the differences may be small and dependent on the
specific training data.

Like any optimization procedure back-propagation can be trapped in
local minima of the error surface. While no improvement of back—propagation
can guarantee to find the global error minimum, a number of enhancements
aim at decreasing training time. A simple technique is Gradient Reuse, where
the weight changes computed for a single epoch are repeated as long as
the overall network error decreases. This technique is a first step towards
adaptation of the learning rate during training, as a series of e epochs with
reuseable weight changes effectively alters the learning rate n to ' = en.

Evidently, the learning rate has a great influence on training time and
convergence. A small learning rate enables sampling of the error surface
with high resolution, which increases the chances to find any minimum, but
also the possibility to end up in a local minimum. Moreover, it increases
training time in flat regions of the error surface. A large learning rate quickly
traverses flat regions, but it may also cause the algorithm to miss regions of
high interest, namely, the global minimum or minima close to it. A simple,
but effective adaptation of the learning rate is achieved by addition of a
Momentum term o (Rumelhart et al., 1986) as given by

1)
A’LUj,i(t) = — . + O!ij,i(t - 1), (314)

with Aw;;(t — 1) being the weight change in the previous epoch. The

momentum term accelerates learning in flat regions of the error surface, while
fine-tuning the search in “rough terrain”. The trade—off for these benefits

39

is the increased probability to miss interesting minima close to flat regions
(overshooting).

A number of algorithms based on back—propagation employ a more so-
phisticated adaptation of learning parameters during the learning process. A
member of this family of algorithms is Resilient Back—propagation (RPROP)
(Riedmiller and Braun, 1993), which will be described in more detail in the
following section, as RPROP is commonly used to train evolved ANN struc-
tures in this work.

According to Equation 3.1 the computation of weight changes in back—
propagation is based on a linear approximation of the gradient through the
current point of the error surface. Additional information on the curvature
of the surface would improve a training algorithm, as it would lead to a
more exact path towards decreasing error. However, these improvements
demand costly computation of the Hessian matrix containing all possible
second derivatives of the high—dimensional error surface, inducing a non—
local weight update scheme.

Various methods for the solution of these second-order optimization prob-
lems exist, e.g., the Newton method, but they become computationally im-
practical for larger networks. Even the simplified Quasi—Newton method
only requiring estimations of the gradient has a computational complexity
of O(|C|?) (|C|* being the number of connections) (Haykin, 1999), which
leaves Conjugate—Gradient methods the only promising alternative to deal
with training of larger networks based on second—order methods (Fletcher,
1987).

Secant methods try to reduce the computational cost of second—order
methods by a rough estimation of the shape of the error surface. A repre-
sentant of secant methods is Quickprop (Fahlman, 1988) assuming a local
parabolic shape of the error surface resulting in the basic weight update

9(t)
Aw;;(t) = Aw;;(t—1 3.15
w]ﬂ() c+g(t _ 1) _ g(t) w]ﬂ()a ()
where g = —a?f; -, and ¢ is a constant eliminating the “flat spot” introduced

by g(t — 1) = g(t). Here, the shape of the error surface is approximated by
the secant given by the difference of the gradient of two consecutive epochs.
A small difference, indicating the more linear region of the assumed parabolic
shape, results in a larger weight change (following the linear gradient), while
a larger difference is a sign for larger curvature, hence, a smaller weight
change.

40

3.3.1 Resilient Back—propagation

A problem associated with standard back—propagation is the dependence of
the generalized error term § on the first derivative of the activation function.
In large regions of the widely used sigmoidal functions the numerical value of
the derivative can be very small resulting in a slowly converging ANN train-
ing. Jacobs (1988) has proposed four heuristics to improve the convergence
rate of back-propagation (Jacobs, 1988):

1. Adaptation of network weights is controlled by connection—specific learn
ing rates.

2. The learning rates are adapted to the error surface during training.

3. If the error gradient for consecutive training epochs does not change
its direction (sign), the learning rate is increased.

4. If the error gradient changes its direction, the learning rate is decreased.

All of the above heuristics to improve back—propagation are incorpo-
rated in the Resilient Back—propagation (RPROP) algorithm (Riedmiller and
Braun, 1993). Instead of calculating the weight change using the linear ap-
proximation of the gradient Aw,;(t) = —n %, for each weight a single
variable A,;(t) governs the weight update, whose numerical value depends
on the sign of the gradient, as given by

—Ajt) if 22 >0

Bwjﬁv
Aw;;(t) =< +4A,4(t) if a?ji <0 (3.16)
0 else.

The weight change A;;(¢) is dynamically adapted during training increas-
ing, when the gradient does not change its principal direction in two consec-
utive epochs, and decreasing, when the gradient changes its sign. Quantita-
tively, the adaptation is given by

Ow;; Owj;

3.17
n_A],z(t . 1) if OE(t—1) x OE(t) < 0’ ()

ow;j ; ow;j ;

tAL(E—1) if 2EEDIEO o
A],Z(t):{n .77()

where the constants ™ and n— are fixed to empirical values in the range of
0 <n~ <1< nt. The initial value of the weight change A and the maximal
weight change A,,,; are the two RPROP learning parameters, which will be
evolved in experiments in Section 7. The training result is believed to be
rather insensitive to both parameters, as the weight updates are adapted to

41

the error surface. However, a A,,,; being too large could result in a coarse
sampling of the error surface missing regions of high interest.

42

Bibliography

Almasi, G. S. and Gottlieb, A. (1989). Highly Parallel Computing. Ben-
jamin/Cummings. ISBN 0-8053-0177-1.

Anderson, J. A. (1972). A simple neural network generating an interactive
memory. Mathematical Biosciences, 14:197-220.

Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1994). An Evolutionary
Algorithm that Constructs Recurrent Neural Networks. IEEE Transac-
tions on Neural Networks, 5(1):54-64.

Béck, T. (1996). FEwvolutionary Algorithms in Theory and Practice. Oxford
University Press.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In
Grefenstette, J. J., editor, Proceedings of the First International Con-
ference on Genetic Algorithms and their Applications, pages 101-111.
Texas Instruments, Inc. and Naval Research Laboratory, Lawrence Erl-
baum Associates.

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algo-
rithm. In Grefenstette, J. J., editor, Genetic Algorithms and their Ap-
plications: Proceedings of the Second International Conference on Ge-
netic Algorithms, pages 14-21. Naval Research Laboratory, Lawrence
Erlbaum Associates.

Balakrishnan, K. and Honavar, V. (1995). Evolutionary design of neural ar-
chitectures — a preliminary taxonomy and guide to literature. Technical
Report CS TR #95-01, Iowa State University, Department of Computer
Science, Ames, Towa 50011-1040, U.S.A.

Barlow, H. B. (1972). Single units and cognition: A neurone doctrine for
perceptual psychology. Perception, 1:371-394.

Beasley, D., Bull, D. R., and Martin, R. R. (1993). An overview of genetic
algorithms: Part 1, fundamentals. University Computing, 15(2):58—69.

212

Blake, C. and Merz, C. (1998). http://www.ics.uci.edu/~mlearn/mlrepository.html.
WWW Repository, University of California, Irvine, Dept. of Information
and Computer Sciences.

Blickle, T. and Thiele, L. (1995). A Mathematical Analysis of Tournament
Selection. In Eshelman, L., editor, Genetic Algorithms: Proceedings
of the 6th International Conference (ICGA95), San Mateo, California.
Morgan Kaufmann Publishers, Inc.

Bornholdt, S. and Graudenz, D. (1992). General Asymmetric Neural Net-
works and Structure Design by Genetic Algorithms. Neural Networks,
5:327-334.

Branke, J. (1995). Evolutionary Algorithms in Neural Network Design and
Training — A Review. In Alander, J. T., editor, Proceedings of the First
Nordic Workshop on Genetic Algorithms and their Applications, pages
145-163.

Brindle, A. (1981). Genetic Algorithms for Function Optimization. PhD
thesis, University of Alberta.

Bruce, J. and Miikkulainen, R. (2001). Evolving Populations of Expert Neu-
ral Networks. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 251-257, San Francisco. Morgan Kaufmann.

Caruna, R. A. and Schaffer, J. D. (1988). Representation and Hidden Bias:
Gray vs. Binary Coding for Genetic Algorithms. In Proceedings of the
Fifth International Conference on Machine Learning, pages 153-161.

Castillo, P. A., Carpio, J., Merelo, J. J., Prieto, A., Rivas, V., and Romero,
G. (2000). Evolving Multilayer Perceptrons. Neural Processing Letters,
12(2):115-128.

Cavaretta, M. J. and Chellapilla, K. (1999). Data Mining using Genetic
Programming: The Implications of Parsimony on Generalization Error.
In Congress on Evolutionary Computation, pages 1330-1337. IEEE.

Chalmers, D. J. (1990). The Evolution of Learning: An Experiment in Ge-
netic Connectionism. In Touretsky, D. S., Elman, J. L., Sejnowski, T. J.,
and Hinton, G. E., editors, Proceedings of the 1990 Connectionist Sum-
mer School, pages 81-90, San Francisco, CA. Morgan Kaufmann.

Chellapilla, K. and Fogel, D. B. (1999). Evolving Neural Networks to Play
Checkers without Expert Knowledge. IEEE Transactions on Neural
Networks, 10(6):1382-1391.

213

CMU-Repository (1993). ftp://ftp.cs.cmu.edu/afs/cs.cmu.edu/
project/connect/bench/. WWW Repository, Carnegie Mellon Univer-
sity.

Coelho, A., Weingaertner, D., and von Zuben, F. J. (2001). Evolving Hetere-
geneous Neural Networks for Classification Problems. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 266-273,
San Francisco. Morgan Kaufmann.

Cohen, M. A. and Grossberg, S. (1983). Absolute Stability of Global Pattern
Formation and Parallel Memory Storage by Competitive Neural Net-
works. IEEE Transactions on Sytems, Man, and Cybernetics, 13(5):815—
826.

Cun, Y. L., Denker, J., and Solla, S. (1990). Optimal Brain Damage. In
Touretzky, D., editor, Advances in Neural Information Processing Sys-
tems, volume 2, pages 599-605. Morgan Kaufmann.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals, and Systems, 2(4):303-314.

Darwin, C. (1872). The Origins of Species. Collier Books.

Davidor, Y. (1990a). Epistasis variance: Suitability of a representation to
genetic algorithms. Compler Systems, 4:369-383.

Davidor, Y. (1990b). Sub—Goal Reward and Lamarckism in a Genetic Algo-
rithm. In Proceedings of the FEuropean Conference on Artificial Intelli-
gence.

Davis, L. (1989). Adapting Operator Probabilities in Genetic Algorithms.
In Schaffer, J. D., editor, Proceedings of the Third International Confer-
ence on Genetic Algorithms, pages 61-69, San Mateo, California. Philips
Laboratories, Morgan Kaufmann Publishers, Inc.

Davis, L., editor (1991). Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York. ISBN 0-442-00173-8.

de Garis, H., Korkin, M., Gers, F., Nawa, E., and Hough, M. (2000). Building
an artificial brain using an FPGA based CAM-Brain Machine. Applied
Mathematics and Computation, 111(2-3):163-192.

DeJong, K. (1975). The Analysis and Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan.

214

Domingos, P. (1999). The Role of Occam’s Razor in Knowledge Discovery.
Data Mining and Knowledge Discovery, 3(4):409-425.

Eaton, M. and Collins, J. J. (1996). A Comparison of Encoding Schemes
for Genetic Algorithms. In World Congress on Neural Networks, pages
1067-1070. International Neural Network Society, Lawrence Erlbaum
Associates, Inc.

Edelman, G. M. (1987). Neural Darwinism — The Theory of Neuronal Group
Selection. Basic Books, New York.

Edwards, D., Brown, K., and Taylor, N. (2002). An Evolutionary Method
for the Design of Generic Neural Networks. In Proceedings of the 2002
World Congress on Computational Intelligence, Congress on Evolution-
ary Computation, pages 1769-1774. IEEE.

Eigen, M. (1971). Selforganization of Matter and the Evolution of Biological
Macro—Molecules. Die Naturwissenschaften, 58(10):465-523.

Fahlman, S. and Lebiere, C. (1990). The Cascade-Correlation Learning Ar-
chitecture. In Touretzky, D., editor, Advances in Neural Information
Processing Systems, volume 2, pages 524-532. Morgan Kaufmann.

Fahlman, S. E. (1988). Faster learning variations on back—propagation. In
Proceedings of the 1988 Connectionist Models Summer School, pages
38-51, San Mateo, CA. Morgan Kaufmann.

Field, P. (1996). A Multary Theory for Genetic Algorithms: Unifiying Bi-
nary and Nonbinary Problem Representations. PhD thesis, University
of London.

Fletcher, R. (1987). Practical Methods of Optimization. Wiley, New York,
2nd edition.

Fogel, D. (1995). Ewolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, New York.

Fogel, D. B. (1991). System Identification through Simulated Evolution: A
Machine Learning Approach to Modeling. Ginn Press, Needham Heights.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence
through Simulated Evolution. Wiley, New York.

215

Forrest, S. (1985). Documentation for Prisoner’s Dilemma and Norms Pro-
grams that Use the Genetic Algorithm. Technical report, The University
of New Mexico, Albuquerque, NM.

Fraser, A. S. (1957). Simulation of Genetic Systems by Automatic Digital
Computers, I. Introduction. Australian Journal of Biological Science,
10:492-499.

Freeman, W. J. (1994). Neural networks and chaos. Journal of Theoretical
Biology, 171:13-18.

Friedrich, C. M. and Moraga, C. (1996). An Evolutionary Method to Find
Good Building Blocks for Architectures of Artificial Neural Networks. In
Proceedings of the Sixth International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems,

pages 951-956.
Futuyma, D. J. (1990). Ewvolutionsbiologie. Birkhaduser Verlag, Basel.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sun-
deram, V. (1994). PVM 8 User’s Guide and Reference Manual. Oak
Ridge National Laboratory.

Goldberg, D. E. (1983). Computer—Aided Pipeline Operation Using Genetic
Algorithms and Rule Learning. PhD thesis, University of Michigan.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Addison-Wesley.

Goldberg, D. E. and Deb, K. (1991). A Comparative Analysis of Selection
Schemes Used in Genetic Algorithms. In Rawlins, G., editor, Founda-
tions of Genetic Algorithms, San Mateo, CA. Morgan Kaufmann.

Goldberg, D. E. and Lingle, R. (1985). Alleles, Loci, and the Traveling
Salesman Problem. In Grefenstette, J. J., editor, Proceedings of the First
International Conference on Genetic Algorithms and their Applications,
pages 154-159. Texas Instruments, Inc. and Naval Research Laboratory,
Lawrence Erlbaum Associates.

Gronroos, M. (1999). A Comparison of Some Methods for Evolving Neural
Networks. In Proceedings of the GECCO’99 Genetic and Evolutionary
Computation Conference, pages 1442-1449, San Francisco, CA. Morgan
Kaufmann.

216

Gruau, F. (1992). Genetic Synthesis of Boolean Neural networks with a Cell
Rewriting Developmental Process. In Whitley, D. and Schaffer, J. D., ed-
itors, Proceedings of the Third International Workshop on Combinations
of Genetic Algorithms and Neural Networks, pages 55—74, Los Alamitos,
California. IEEE Computer Society Press.

Hancock, P. J. B. (1992). Genetic Algorithms and permutation problems: a
comparison of recombination operators for neural net structure specifi-
cation. In Whitley, D., editor, Proceedings of COGANN Workshop at
the International Joint Conference on Neural Networks. IEEE Press.

Hanson, S. and Pratt, L. (1989). Comparing biases for minimal network
construction with back-propagation. In Touretzky, D., editor, Advances
in Neural Information Processing Systems, volume 1, pages 177-185.
Morgan Kaufmann.

Harp, S. A., Samad, T., and Guha, A. (1989). Towards the genetic synthesis
of neural networks. In Schaffer, J. D., editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 360-369, San
Mateo, California. Philips Laboratories, Morgan Kaufmann.

Hasenjéger, M. and Ritter, H. (2002). Active learning in neural networks.
In Jain, L. C. and Kacprzyk, J., editors, New learning paradigms in
soft computing, pages 137-169. Physica—Verlag GmbH, Heidelberg, Ger-
many.

Hassibi, B., Stork, D., and Wolff, G. (1993). Optimal Brain Surgeon and
General Network Pruning. In Proceeding IEEFE International Conference
on Neural Networks, San Francisco, pages 293-299.

Haykin, S. (1999). Neural Networks. A Comprehensive Foundation. Prentice—
Hall, Upper Saddle River, 2nd edition.

Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York.

Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as
an optimization procedure. Physica D, 42:228-234.

Hinton, G. (1986). Learning Distributed Representations of Concepts. Pro-
ceeding of the Fighth Annual Conference of the Cognitive Science Soci-
ety.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. MIT
Press.

217

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences, USA, 81:8429-8433.

Hornby, G. S. and Pollack, J. B. (2001). Body-Brain Co-evolution Using
L-systems as a Generative Encoding. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 868-875, San Francisco.
Morgan Kaufmann.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2:359-366.

Huber, R. and Mayer, H. A. (1998). ERC — Evolutionary Resample and Com-
bine for Adaptive Parallel Training Data Set Selection. In Jain, A. K.,
Venkatesh, S., and Lovell, B. C., editors, 14th International Conference
on Pattern Recognition, pages 882—885, Los Alamitos, California. Inter-
national Association for Pattern Recognition, IEEE Computer Society.

Huber, R., Mayer, H. A., and Schwaiger, R. (1995). netGEN - A Parallel Sys-
tem Generating Problem-Adapted Topologies of Artificial Neural Net-
works by means of Genetic Algorithms. In Beitrdge zum 7. Fachgruppen-

treffen Maschinelles Lernen der GI-Fachgruppe 1.1.3, Forschungsbericht
Nr. 580, Dortmund.

Huber, R., Schwaiger, R., and Mayer, H. A. (1996). On the Role of Reg-
ularization Parameters in Fitness Functions for Evolutionary Designed
Artificial Neural Networks. In World Congress on Neural Networks,
pages 1063-1066. International Neural Network Society, Lawrence Erl-
baum Associates, Inc.

Ishiguro, A., Tokura, S., Kondo, T., Uchikawa, Y., and Eggenberger, P.
(1999). Reduction of the Gap between Simulated and Real Environments
in Evolutionary Robotics: A Dynamically-Rearranging Neural Network

Approach. In IEEE Systems, Man, and Cybernetics Conference, pages
IT — 239-244. TEEE.

Jacobs, R. A. (1988). Increased Rates of Convergence Through Learning
Rate Adaptation. Neural Networks, 1(4):295-307.

Jain, A. and Zongker, D. (1997). Feature Selection: Evaluation, Applica-
tion and Small Sample Performance. IEEE Transactions on PAMI,
19(2):153-158.

218

Kallel, L. and Schoenauer, M. (1997). Alternative Random Initialization in
Genetic Algorithms. In Proceedings of the Seventh International Confer-
ence on Genetic Algorithms, pages 268—275, San Francisco, CA. Morgan
Kaufmann.

Kelly, K. (1994). Out of Control - The New Biology of Machines. Fourth
Estate Ltd., London.

Kim, H. B., Jung, S. H., Kim, T. G., and Park, K. H. (1996). Fast Learning
Method for Back-Propagation Neural Network by Evolutionary Adap-
tation of Learning Rates. Neurocomputing, 11(1):101-106.

Kitano, H. (1990). Designing neural networks using genetic algorithms with
graph generation systems. Complex Systems, 4:461-476.

Kohonen, T. (1972). Correlation Matrix Memories. IEEE Transactions on
Computers, C—21:353-359.

Kohonen, T. (1982). Self-organized Formation of Topologically Correct Fea-
ture Maps. Biological Cybernetics, 43:59—-69.

Koza, J. R. (1992). Genetic Programming: On the Programming of Com-
puters by means of Natural Selection. Complex Adaptive Systems. The
MIT Press, Cambridge, MA.

Kron, B., Steinsky, B., Strapetz, M., and Mayer, H. A. (2000). On the Num-
ber of Neural Networks. Technical Report, University of Graz (Depart-
ment of Mathematics), University of Salzburg (Department of Computer
Science), Austria.

Kwok, T.-Y. and Yeung, D.-Y. (1997). Constructive Algorithms for Struc-
ture Learning in Feedforward Neural Networks for Regression Problems.
IEEE Transactions on Neural Networks, 8(3):630-645.

Kyngés, J. and Hakkarainen, J. (1996). Predicting sunspot numbers with
evolutionarily optimized neural networks. In Proceedings of the 2nd
Nordic Workshop on Genetic Algorithms and their Applications, pages
173-180.

la Maza, M. D. and Tidor, B. (1993). An analysis of selection procedures
with particular attention paid to proportional and boltzmann selection.
In Stephanie Forrest, U. o. N. M., editor, Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, pages 124-131. University
of Illinois at Urbana-Champaign, Morgan Kaufmann.

219

Lee, C.-H. and Kim, J.-H. (1996). Evolutionary Ordered Neural Network with
a Linked-List Encoding Scheme. In Whitley, D., editor, International
Conference on Evolutionary Computation, pages 665—669.

Lettvin, J. Y., Maturana, H. R., McCulloch, W. S.; and Pitts, W. R. (1959).
What the Frog’s Eye Tells the Frog’s Brain. Proc. I.R.E., 47(11):1940—
1951.

Likothanassis, D., Georgopoulos, E., and Fotakis, D. (1997). Optimiz-
ing the Structure of Neural Networks Using Evolution Techniques. In
Proceedings of 5th International Conference on Applications of High—
Performance Computers in Engineering, pages 157-168.

Lindenmayer, A. (1968). Mathematical Models for Cellular Interaction in
Development. Parts I and II. Journal of Theoretical Biology, 18:280—
299; 300-315.

Lippmann, R. P. (1987). An introduction to computing with neural nets.
IEEE Acoustics, Speech and Signal Processing, 4(2):4-22.

Liu, Y. and Yao, X. (1996). Evolutionary Design of Artificial Neural Networks
with Different Nodes. In Proceedings of the Third IEEE International
Conference on Evolutionary Computation, pages 570-675.

Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P., and
Darnell, J. (1995). Molecular Cell Biology. Scientific American Books,
3rd edition. ISBN 07167-2380-8.

Lovelock, J. (1988). The Ages of Gaia: A Biography of Our Living Earth.
W. W. Norton.

Lund, H. H., Webb, B., and Hallam, J. (1997). A Robot Attracted to the
Cricket Species Gryllus bimaculatus. In Husbands, P. and Harvey, 1.,

editors, Proceedings of Fourth FEuropean Conference on Artificial Life,
pages 246-255, MA. MIT Press/Bradford Books.

Mayer, H. A. (1998a). ptGAs—Genetic Algorithms Evolving Noncoding Seg-
ments by Means of Promoter /Terminator Sequences. Evolutionary Com-
putation, 6(4):361-386.

Mayer, H. A. (1998b). Symbiotic Coevolution of Artificial Neural Networks
and Training Data Sets. In Eiben, A. E., Bick, T., Schoenauer, M., and
Schwefel, H.-P., editors, Fifth International Conference Parallel Problem
Solving from Nature, pages 511-520, Berlin, Germany. Springer.

220

Mayer, H. A., Fiirlinger, K., and Strapetz, M. (1999). Extraction of Compact
Rule Sets from Evolutionary Designed Artificial Neural Networks. In
IEEE Systems, Man, and Cybernetics Conference, pages 1 — 420-424.
IEEE.

Mayer, H. A. and Huber, R. (1998). Evolutionary Training Data Sets with n—
dimensional Encoding for Neural InSAR Classifiers. In Arabnia, H. R.,
editor, International Conference on Imaging Science, Systems and Tech-

nology, pages 161-168. CSREA, CSREA Press.

Mayer, H. A., Huber, R., and Schwaiger, R. (1996). Lean Artificial Neural
Networks - Regularization Helps Evolution. In Proceedings of the 2nd

Nordic Workshop on Genetic Algorithms and their Applications, pages
163-172.

Mayer, H. A., Schmidbauer, J., and Stieglbauer, G. (2001a). EMMA —
Architecture and Subsystems of a Mobile Autonomous Robot with a
Preference for Soccer. In Advances in Signal Processing, Robotics and
Communications (RODLICS 2001), pages 310-316. WSES Press.

Mayer, H. A. and Schwaiger, R. (1997). Towards the Evolution of Training
Data Sets for Artificial Neural Networks. In Proceedings of the 4th IEEE

International Conference on Evolutionary Computation, pages 663-666.
IEEE Press.

Mayer, H. A. and Schwaiger, R. (1999). Evolutionary and Coevolutionary
Approaches to Time Series Prediction Using Generalized Multi-Layer
Perceptrons. In Congress on Evolutionary Computation, pages 275-280.
IEEE.

Mayer, H. A. and Schwaiger, R. (2002). Differentiation of Neuron Types
by Evolving Activation Function Templates for Artificial Neural Net-
works. In Proceedings of the 2002 World Congress on Computational

Intelligence, International Joint Conference on Neural Networks, pages
1773-1778. IEEE.

Mayer, H. A., Somol, P., Huber, R., and Pudil, P. (2000). Improving Sta-
tistical Measures of Feature Subsets by Conventional and Evolutionary
Approaches. In Proceedings of the Joint IAPR International Workshops
SSPR 2000 and SPR 2000, pages 77-86. Springer.

Mayer, H. A., Strapetz, M., and Fuchs, R. (2001b). Simultaneous Evolution
of Structure and Activation Function Types in Generalized Multi-Layer

221

Perceptrons. In Proceedings of the 2001 WSES International Conference
on Neural Networks and Applications, pages 349-354. WSES Press.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas imma-
nent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133.

Mehlhorn, K. and Naher, S. (2000). Leda: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press.

Menczer, F. and Parisi, D. (1992). Recombination and Unsupervised Learn-
ing: Effects of Crossover in the Genetic Optimization of Neural Net-
works. Network: Computation in Neural Systems, 3(4):423-442.

Mendes, R., Cortez, P., Rocha, M., and Neves, J. (2002). Particle Swarms for
Feedforward Neural Network Training. In Proceedings of the 2002 World
Congress on Computational Intelligence, International Joint Conference
on Neural Networks, pages 1895-1899. IEEE.

Michalewicz, Z. (1991). Genetic Algorithms + Data Structures = Evolution
Programs. Artificial Intelligence. Springer, Berlin.

Michalewicz, Z., Dasgupta, D., Riche, R. G. L., and Schoenauer, M. (1996).
Evolutionary Algorithms for Constrained Engineering Problems. Com-
puters & Industrial Engineering Journal, 30(2):851-870.

Miller, G. F., Todd, P. M., and Hegde, S. U. (1989). Designing neural net-
works using genetic algorithms. In Schaffer, J. D., editor, Proceedings of
the Third International Conference on Genetic Algorithms, pages 379—
384, San Mateo, California. Philips Laboratories, Morgan Kaufman Pub-
lishers, Inc.

Minsky, M. L. and Papert, S. A. (1988). Perceptrons: Introduction to Com-
putational Geometry. MIT Press, Expanded edition.

Moriarty, D. and Miikkulainen, R. (1993). Evolving Complex Othello Strate-
gies Using Marker-Based Genetic Encoding of Neural Networks. Tech-
nical Report AI93-206, The University of Texas at Austin, Department
of Computer Sciences, Austin, TX 78712-1188.

Moriarty, D. and Miikkulainen, R. (1995). Discovering Complex Othello
Strategies Through Evolutionary Neural Networks. Connection Science,
7(3-4):195-2009.

222

Moriarty, D. E. and Miikkulainen, R. (1998). Hierarchical Evolution of Neu-
ral Networks. In Proceedings of the 1998 IEEE Conference on Evolu-
tionary Computation, pages 428-433, Piscataway, NJ. IEEE.

Nolfi, S. (1997). Using emergent modularity to develop control system for
mobile robots. Adaptive Behavior, 5(3-4):343-364.

Nolfi, S. and Floreano, D. (2000). Ewolutionary Robotics — The Biology,
Intelligence, and Technology of Self-Organizing Machines. MIT Press.

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic Plasticity in Evolving
Neural Networks. In Proceedings of the First Conference From Percep-
tion to Action. IEEE Computer Society Press.

Paredis, J. (1994). Steps towards Co—evolutionary Classification Neural Net-
works. In Brooks, R. and Maes, P., editors, Proceedings Artifical Life
IV, pages 545-552. MIT Press / Bradford Books.

Patterson, D. W. (1996). Artificial Neural Networks — Theory and Applica-
tions. Prentice-Hall, Singapore.

Plutowski, M. (1994). Selecting Training Ezamplars for Neural Network
Learning. PhD thesis, University of California, San Diego.

Potter, M. A. and De Jong, K. A. (2000). Cooperative Coevolution: An Ar-
chitecture for Evolving Coadapted Subcomponents. Evolutionary Com-
putation, 8(1):1-29.

Prechelt, L. (1994). PROBENI1 - A Set of Neural Network Benchmark Prob-
lems and Benchmarking Rules. Technical Report TR 21/94, Universitét
Karlsruhe, Fakultat fiir Informatik, 76128 Karlsruhe, Germany.

Radi, A. and Poli, R. (1999). Evolutionary Discovery of Learning Rules
for Feedforward Neural Networks with Step Activation Function. In
Proceedings of the GECCO’99 Genetic and Evolutionary Computation
Conference, pages 1178-1183, San Francisco, CA. Morgan Kaufmann.

Reed, R. (1993). Pruning Algorithms - A Survey. IEEE Transactions on
Neural Networks, 4(5):740-747.

Reeves, C. R. and Taylor, S. J. (1998). Selection of Training Data for a Neural
Network by a Genetic Algorithm. In Eiben, A. E., Back, T., Schoenauer,
M., and Schwefel, H.-P., editors, 5th International Conference Parallel
Problem Solving from Nature, pages 633-642, Berlin. Springer.

223

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In Proceedings of

the IEEE International Conference on Neural Networks, San Francisco,
CA.

Robel, A. (1994). Dynamic Pattern Selection: Effectively training Backprop-
agation Neural Networks. In Proceedings of the International Conference
on Artificial Neural Networks, ICANN’9/.

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65:386-408.

Rosin, C. D. and Belew, R. K. (2000). New Methods for Competitive Co-
evolution. FEvolutionary Computation, 5(1):1-29.

Rosin, P. L. and Fierens, F. (1995). Improving Neural Network Generalisa-
tion. In Proceedings of IGARSS’95, Firenze, Italy.

Rueda, L. and Oommen, B. J. (2000). The Foundational Theory of Optimal
Bayesian Pairwise Linear Classifiers. In Proceedings of Joint IAPR In-
ternational Workshops SSPR 2000 and SPR 2000 (LNCS 1876), pages
581-590. Springer.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
internal representations by error propagation. In Rumelhart, D. E. and
McClelland, J. L., editors, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, volume 1, pages 318-362. MIT Press.

Rumelhart, D. E., Widrow, B., and Lehr, M. A. (1994). The Basic Ideas in
Neural Networks. Communications of the ACM, 37(3):87-92.

Sastry, K. and Goldberg, D. E. (2001). Modeling Tournament Selection
With Replacement Using Apparent Added Noise. In Proceedings of the
Genetic and Evolutionary Computation Conference, page 781, San Fran-
cisco, CA. Morgan Kaufmann.

Schaffer, J. D. and Morishima, A. (1987). An Adaptive Crossover Distribu-
tion Mechanism for Genetic Algorithms. In Grefenstette, J. J., editor,
Genetic Algorithms and their Applications: Proceedings of the Second
International Conference on Genetic Algorithms, pages 36-40. Naval Re-
search Laboratory, Lawrence Erlbaum Associates.

224

Schwaiger, R. and Mayer, H. A. (1997). Genetic Algorithms to Create Train-
ing Data Sets for Artificial Neural Networks. In Alander, J. T., edi-
tor, 8rd Nordic Workshop on Genetic Algorithms and their Applications,
pages 153-161. Finnish Artificial Intelligence Society.

Schwefel, H.-P. (1995). Ewolution and Optimum Seeking. Sixth—Generation
Computer Technology Series. Wiley, New York.

Seung, H. S., Opper, M., and Sompolinsky, H. (1992). Query by Commit-
tee. In Proceedings of the Fifth Workshop on Computational Learning
Theory, pages 287-294, San Mateo, CA. Morgan Kaufmann.

Shepherd, G. M. (1994). Neurobiology. Oxford University Press, 3rd edition.
Sherrington, C. (1940). Man on his Nature. Oxford University Press, Oxford.

Siddiqi, A. A. and Lucas, S. M. (1998). A comparison of matrix rewriting
versus direct encoding for evolving neural networks. In Proceedings of
the 1998 IEEFE International Conference on FEvolutionary Computation,
pages 392-397, Piscataway, NJ. IEEE Press.

Smith, J. M. (1989). Ewolutionary Genetics. Oxford University Press, New
York. ISBN 0-19-854215-1.

Smith, R. E., Goldberg, D. E., and Earickson, J. A. (1991). SGA-C: A
C-Language Implementation of a Simple Genetic Algorithm. TCGA
Report 91002, The Clearinghouse for Genetic Algorithms, The Univer-
sity of Alabama, Department of Engineering Mechanics, Tuscaloosa, AL
35487.

Smith, T. M. C. and Philippides, A. (2000). Nitric Oxide Signalling in Real
and Artificial Neural Networks. British Telecom Technology Journal,
18(4):140-149.

Sopena, J. M., Romero, E., and Alquézar, R. (1999). Neural networks with
periodic and monotonic activation functions: a comparative study in
classification problems. In Proceedings of the 9th International Confer-
ence on Artificial Neural Networks, pages 323—-328.

Spears, W. M. and Anand, V. (1991). A Study of Crossover Operators
in Genetic Programming. In Ras, Z. W. and Zemankova, M., editors,
Proceedings of the Sixth International Symposium on Methodologies for
Intelligent Systems, pages 409-418, Berlin. Springer.

225

Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. In Schaf-
fer, J. D., editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 2-9, San Mateo, California. Philips Labora-
tories, Morgan Kaufman Publishers, Inc.

Thierens, D. (1996). Non-Redundant Genetic Coding of Neural Networks.
In Whitley, D., editor, International Conference on Evolutionary Com-
putation, pages b71-575.

Tononi, G. and Edelman, G. M. (1998). Consciousness and Complexity.
Science, 282(5395):1846-1851.

Torn, A. and Zilinskas, A. (1990). Global Optimization. Lecture Notes in
Computer Science, 350.

van Laarhoven, P. J. M. and Aarts, E. H. L. (1989). Simulated Annealing:
Theory and Applications. Kluwer Academic Publishers Group, Dor-
drecht.

Vecci, L., Piazza, F., and Uncini, A. (1998). Learning and approximation ca-
pabilities of adaptive spline activation function neural networks. Neural
Networks, 11(2):259-270.

Weingaertner, D., Tatai, V. K., Gudwin, R. R., and Zuben, F. J. V. (2002).
Hierarchical Evolution of Heterogeneous Neural Networks. In Pro-
ceedings of the 2002 World Congress on Computational Intelligence,
Congress on FEvolutionary Computation, pages 1775-1780. IEEE.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis
in the behavioral sciences. PhD thesis, Harvard University, Cambridge,
MA.

Widrow, B. and Hoff, M. E. (1960). Adaptive Switching Circuits. In In-
stitute of Radio Engineers, Western FElectronic Show and Convention,
Convention Record, pages (4):96-104.

Willshaw, D. J. and von der Malsburg, C. (1976). How patterned neural
connections can be set up by self-organization. Proceedings of the Royal
Society London, B194:431-445.

Wolpert, D. H. and Macready, W. G. (1996). No Free Lunch Theorems for
Search. Technical Report SFI-TR-95-02-010, The Santa Fe Institute,
1399 Hyde Park Road, Santa Fe, NM, 87501.

226

Yao, X. (1993). Evolutionary Artificial Neural Networks. International Jour-
nal of Neural Systems, 4(3):203-222.

Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the
[EEE, 87(9):1423-1447.

Yao, X. and Liu, Y. (1997). A New Evolutionary System for Evolving Artifi-
cial Neural Networks. IEEE Transactions on Neural Networks, 8(3):694—
713.

Yu, T. and Bentley, P. (1998). Methods to Evolve Legal Phenotypes. In
Eiben, A. E., Back, T., Schoenauer, M., and Schwefel, H.-P., editors,
Fifth International Conference on Parallel Problem Solving from Nature,
pages 280-291, Berlin, Germany. Springer.

Zell, A., Mamier, G., Vogt, M., Mach, N., Huebner, R., Herrmann, K.-
U., Soyez, T., Schmalzl, M., Sommer, T., Hatzigeogiou, A., Doering, S.,
and Posselt, D. (1994). SNNS Stuttgart Neural Network Simulator, User
Manual. University of Stuttgart.

Zhang, B.-T. (1993). Self-development learning: Constructing optimal size
neural networks via incremental data selection. Tech. Rep. No. 768, Ger-
man National Research Center for Computer Science, Sankt Augustin.

Zhang, B.-T. (1994). Accelerated Learning by Active Example Selection.
International Journal of Neural Systems, 5(1):67-75.

Zhang, B.-T. and Veenker, G. (1991). Neural Networks that Teach Them-
selves through Genetic Discovery of Novel Examples. In Proceedings
International Joint Conference on Neural Networks (IJCNN °91), pages
690-695. IEEE Press.

Ziemke, T., Carlsson, J., and Bodén, M. (1999). An Experimental Compari-
son of Weight Evolution in Neural Control Architectures for a ’Garbage-
Collecting’ Khepera Robot. In Proceedings of the 1st International Khep-
era Workshop. HNI-Verlagsschriftenreihe.

227

