
netEvo

A Java package for the Evolution of Artificial Neural Networks

August Mayer, January 2010
Helmut A. Mayer, February 2014

Table of Contents
1. Overview..3
2. A short introduction..4
3. A netEvo application in detail...6

1. Overview

The netEvo package is a meta-package for the evolution (JEvolution package) of Artificial Neural
Networks (Boone package) assisting specifically in ANN encoding and fitness evaluation. For
proper usage of netEvo you should have a basic understanding of the underlying packages. The
main functions of netEvo are:

• Evolution of ANN structure and parameters (e.g., weights)

• Evolution of training data sets

• Additional ANN training during evolution

• Various fitness functions with network regularization

• Modular encoding of features to be evolved

• Bit, integer, or real value encoding of features

• Grouping of features onto different chromosomes

• Evolution of activation functions

• Evolution of input/output neurons

• Evolution of Spiking Neural Network (SNN) parameters (e.g., thresholds)

2. A short introduction
The base classes of netEvo are situated in the netevo.* package:

• Evolver
• NetEvolver
• TrainEvolver
• NetPhenotype

The Evolver is the “main” class of netEvo, where the ANN template has to be defined. For ANN
evolution the template network is the base network representing the “maximal” network, i.e.,
evolution will always prune neurons and links from the template structure (if the corresponding
evolution features are set by the user). Hence, an evolved network will never have a richer structure
(more neurons and/or links) than the template network. There are two main methods you will have
to use, namely addFeature() (for features see below) and prepare(). The latter method must be
called after addition of all features to be evolved, as it then determines the precise chromosome
structure for network evolution. Please, be aware that netEvo handles all genotype and phenotype
settings of JEvolution, so you should not interfere with these settings, i.e., do nothing at all.

The netEvolver handles the construction of an evolved network, and most of its methods should not
be accessed by the user. The same holds for the trainEvolver handling the construction of evolved
training parameters and data sets. Hence, the user must only be concerned what he wants to evolve,
but not how it is evolved.

The NetPhenotype class is the Phenotype implementation of an ANN for JEvolution. Basically, it
delegates all the work of decoding the chromosomes to NetEvolver and TrainEvolver, which are
sub-classes of Evolver. The only user-relevant method is getNet() returning the network
representing the phenotype.

The specific aspects of a neural network system, which should be evolved are called Features in
netEvo and can be found in the netevo.features.* package. Only a few examples are listed in the
following:

• Neurons is the feature for the evolution of neurons, i.e., neurons may be pruned from the
template network. Separate switches can be set here for the evolution of input/output
neurons.

• Links is the feature for the evolution of network connections, i.e., connections may be
pruned from the network. Implicitly, this feature may also cause the pruning of neurons, if
the pruning of connections lead to a “dangling” neuron being non-functional.

• Weights is the feature responsible for the evolution of weights, i.e., the link weights are
determined by evolution.

• Patterns is a feature supporting the evolution of training data. Evidently, this is only
meaningful, if network training is used during evolution. By means of this feature a subset
of the given training data set is used for training potentially leading to a more efficient ANN
training.

• Functions is a feature responsible for the evolution of activation functions. The user has to
determine the set of functions to be used, and then evolution assigns specific functions to
specific neurons. You may also add a (Boone) spline function, whose parameters are
evolved, too, leading to an arbitrary shape of the activation function.

• Thresholds is a specific feature for the evolution of Spiking Neural Networks (SNNs). For
all the hidden and output neurons the threshold potential, which must be exceeded to cause
the firing of a spike, is evolved. In a sense this changes the “sensibility” of a neuron.

The minimal and maximal values of feature parameters are set to default values, but may be
changed by the user. Note that in some cases values different from the default values may not be
meaningful.

The specific encoding of a feature is handled by a Decoder found in the package
netevo.decoders.*. The decoder has to be supplied already for the construction of a feature, e.g.,

Feature feature = new Weights(new BitDecoder());

In the latter case a weight evolution feature is constructed using a bit string encoding. Each decoder
has a single chromosome associated with it. Thus, using the same decoder for a number of features
results in the grouping of features on this single chromosome. If you are using different decoders
(objects) for different features, the features will be encoded on different chromosomes. Hence, the
user has (nearly) full control over the grouping of features onto chromosomes. Note that the order
of features on a specific chromosome is determined by netEvo.

The length of a single parameter on the chromosome is called geneLength, which is an attribute of
the decoder. Again, this parameter has always a default setting, but the user may change it. E.g., for
real-valued parameters encoded with a bit string, the length (number of bits) of the parameter
determines the numerical resolution of the parameter.

A FitnessFunction computes the fitness of an evolved network, which is usually a number in the
unit interval. Larger fitness values indicate better networks. The following fitness functions are
available:

• Classification – returns the classification accuracy on a pattern set. The returned value is 1 -
(errorCount / patternCount), where errorCount is the number of misclassified patterns. The
class label of a pattern is determined by winner-takes-all, i.e., the output neuron with the
largest activation represents the class label assigned to the pattern at the input.

• NetError – returns 1 / (1 + SSE) on a pattern set, where SSE is the sum square error over all
output neurons and patterns.

A RegularizationFactor may be included into the fitness function in order to not only assess the
performance of the network but also its complexity. The regularization factor utilizes a
regularization weight to modify the fitness as:

regFitness = fitness * (1 – regWeight) + regFactor * regWeight

The regularization weight must be chosen carefully (if in doubt use the default value), as a too large
weight may drive evolution towards very small networks with low performance.

The following regularization factors are available:

• REG_NEURON – number of hidden neurons, 1 / (1 + hiddenNeuronCount)

• REG_LINK – number of links, 1 / (1 + linkCount)

• REG_HINTON – Hinton regularization factor taking into account all the weight values in
the network, 1 / (1 + sum(weight^2)

• REG_RUMELHART – Rumelhart regularization factor, also taking into account all the
weight values in the network using a slightly different formula, 1 / (1+ sum(weight^2 / (1 +
weight^2)))

3. A netEvo application in detail
Below is the source code of an application using the netEvo package. Summarizing the sample
program, these are the main steps to be done to evolve a network with netEvo:

1. Construct the Evolver with the template network.

2. Add Features and Decoders telling netEvo what and how to evolve.

3. Call the Evolver's prepare() method to set up the JEvolution genotype and phenotype.

4. Set JEvolution parameters and call doEvolve().

The application is a single class named TestEvolve. As usual, it starts with the main() method:

/*
 * Copyright (c) 2014.
 * August Mayer & Helmut A. Mayer
 * All rights reserved.
 */

// imports deleted here

/**
 * A sample netEvo application evolving a network for the letters problem, where 26 different
 * letters are to be classified.
 *
 * @author August Mayer
 * @author Helmut A. Mayer
 */
public class TestEvolve {

/** The starting point.
 *
 * @param args arguments (unused)
 * @throws Exception just pass through potential exceptions
 *
 */
public static void main(String[] args) throws Exception {

new TestEvolve().testLetters();
}

The testLetters() method contains the actual code. It constructs a template network, reads the pattern
file 'letters.pat', and evolves a network for classification. The Boone class SNNSPatternFile is used
to convert the patterns from the SNNS format.

public void testLetters() throws IOException, JEvolutionException {

/* Create network and load patterns. */
System.out.println("Creating test network.");
NeuralNet net = NetFactory.createFeedForward(new int[]{35, 30, 26},

true, // fully connected
null, // Sigmoid activation function
null, // Rprop trainer
null, // Standard neuron
null); // Standard link

System.out.println("Loading test patterns.");
SNNSPatternFile patternFile = new SNNSPatternFile();
FileInputStream fin = new FileInputStream("test/letters.pat");
PatternSet pat = patternFile.read(fin);
fin.close();

Next, the Evolver is set up for evolution without learning, a BitDecoder is constructed (i.e., bit
string encoding), and evolution of links, neurons, and weights is set up by the corresponding
features. In this case all features are encoded on a single chromosome. If all three features should be
on different chromosomes, you simply have to construct a specific decoder (object) for each feature.
Some more options are under comments (also in the following).

/* Set up evolver and add features. */
System.out.println("Setting up features to be evolved.");

FitnessFunction ff = new Classification(pat);
Evolver evolver = new Evolver(net, ff); // net evolution, no learning

// Evolver evolver = new Evolver(net, pat, ff); // net evolution with learning

Decoder decoder = new BitDecoder(); // one decoder for all features =
// single chromosome

evolver.addFeature(new Links(decoder));
Neurons neurons = new Neurons(decoder);

// neurons.doInputs(true); // also evolve input neurons
evolver.addFeature(neurons);
evolver.addFeature(new Weights(decoder));

Here is just an example, how to change the number of bits used for a parameter, e.g., the number of
training epochs.. In this case it is a bit complicated, as the different back-propagation training
parameters are encoded in seperate features (internally), so you have to first extract the epochs
feature using getField(), and then, set the feature's decoder to the desired gene length. Note that this
feature is only meaningful, if the Evolver is set up for additional training.

After all features have been added, you must call the prepare() method so as to tell netEvo to set up
the genotype and phenotype for JEvolution. You should not interfere with these settings. E.g., by
calling this method the exact position of a feature on a specific chromosome is computed.

// BPTraining bp = new BPTraining(decoder);
// bp.getField(BPTraining.EPOCHS).getDecoder().setGeneLength(10); // 10 bits for epochs
// evolver.addFeature(bp);

/* Sets up genotype and phenotype for evolution. */
evolver.prepare();

Next, general JEvolution parameters should be set. Note that the settings below are certainly not
the best choices, as they are governed by run time considerations, i.e., the user should not wait
minutes and hours for the result of this sample application.

/* Set up JEvolution. */
System.out.println("Setting up evolution.");
JEvolution evo = JEvolution.getInstance();
evo.setPopulationSize(200);
evo.setMaximalGenerations(100);

/* Set the mutation rate. This has to be done after prepare(), as the latter
 * determines the length of the chromosome(s). */
Chromosome c = decoder.getChromosome();
c.setMutationRate(3.0 / c.getLength()); // 3 is an educated guess
c.setSoupType(Chromosome.BIASED); // may improve start generation

Now, the set-up is complete, and we may print out all the details, and then, start evolution. Note that
all features have the toString() method implemented giving some information on the feature and its
decoder.

System.out.println(evolver); // prints the evolution setup

/* Run JEvolution. */
evo.doEvolve();

During evolution the JEvolutionReporter gives some information on the evolution progress. The
amount of information may be set using the JEvolution method setReportLevel(). After evolution
the best evolved network may be saved to a file using the Boone method save(). Note that only here
you have to be concerned with the NetPhenotype, which otherwise is only internally used by
netEvo.

/* Save the best network to a file. */
NetPhenotype phenotype = (NetPhenotype)

evo.getJEvolutionReporter().getBestIndividual().getPhenotype();
NeuralNet bestNet = phenotype.getNet();
System.out.println("Save best net.");
bestNet.save(new File("best.xnet"));

}
}

The test application SpikeApp focuses on the evolution of SNNs. In addition to all standard ANN
features, specific SNN features may be evolved, namely Thresholds, Delays, AbsRefPeriod, and
RelRefPeriod. Changes of the default minimal and maximal values should be pondered with great
care, as inappropriate settings may cause the SNN to not generate any spikes, or even worse, lead to
unepredictable behavior of the SNN. The simple task for the SNN in the test application is to
(roughly) generate a number of output spikes being equal to the number of input spikes. The input
spikes for each evolutionary run are generated randomly with fring times in the interval from 0 to 1
second. The input spke set does not change during a run, so an SNN is adapted to the specific
random input set.

	1. Overview
	2. A short introduction
	3. A netEvo application in detail

