
Computational Intelligence, Simulation, and Mathematical Models Group

CISMM-21-2002 May 19, 2015

JEvolution: Evolutionary Algorithms in Java

Technical Report
JEvolution V0.98

Helmut A. Mayer

helmut@cosy.sbg.ac.at

Department of Computer Sciences

University of Salzburg

Correspondence to:
Helmut Mayer

Universität Salzburg
Fachbereich Computerwissenschaften

Jakob–Haringer–Straße 2
A–5020 Salzburg

AUSTRIA
Telephone: +43-662-8044-6315
FAX: +43-662-8044-611



JEvolution: Evolutionary Algorithms in Java

Helmut A. Mayer

Department of Computer Sciences

University of Salzburg

A–5020 Salzburg, Austria

Abstract

We present the basic ideas and structure of JEvolution, a compact Java package for appli-
cations using Evolutionary Algorithms (EAs) as an optimization tool. JEvolution has been
written with the intent to suit the needs of both, the experienced Evolutionary Computation
(EC) expert, and the novice to this exciting field of computer science. Hence, JEvolution can
be parametrized in many ways, but it can also be used by only writing a few lines of code. In-
evitably, there are two main tasks an evolutionary engineer has to work on, when constructing
an EA: problem encoding and fitness function. While the encoding of the problem is supported
by JEvolution native, ready–to–use Chromosomes, the fitness function has to be provided by
the applicationist, as JEvolution is (not yet) capable of knowing details about the problem
it is working on. The usage of JEvolution is described by means of a simple test program
searching for the minimum of a paraboloide function.

1 Introduction

JEvolution is a Java package for EAs (Goldberg, 1989; Koza, 1992; Michalewicz, 1991; Schwefel,
1995; Mitchell, 1996) which has been implemented with a focus on (presumably) correct object–
oriented design. In less technical words that means that execution speed has been of minor
importance during development. However, it is well known that an EA spends most of the time
evaluating the fitness of individuals which is not an intrinsic part of JEvolution (the user has to
implement the Phenotype Interface in order to provide problem–specific code).

The current version of JEvolution V0.981 is of β–quality having been reliably used in a
system for Evolutionary Feature Selection (Mayer et al., 2000; Mayer and Somol, 2000). It also
serves as the evolutionary engine in the following frameworks: netJEN and netEVO (evolution of
Artificial Neural Networks), fuzJEN (evolution of Fuzzy Controllers), evAlloc (generic solver for
allocation and scheduling problems), GOjen (evolution of artificial Go players), and DIGO (digital
organisms).

The current features of JEvolution are:

• Lean and compact Java package

• Supports bitstring, integer, permutation, real encoding (native chromosomes)

• Supports tree chromosomes (native) for Genetic Programming including a basic set of func-
tion and terminal nodes

1Please, do not be bothered by our restrictive approach to version numbering.

1



• Supports evolution of chromosome length (bitstring encoding) by means of non–homologous
crossover (experimental)

• User may provide custom chromosomes

• Genotype may comprise an arbitrary number of different chromosomes

• Chromosome shuffling

• Records a “Star Pool” (containing all intermediate best individuals)

• Individuals may be stored to and loaded from an XML file

• Flexible termination criteria (number of generations, fitness threshold, evolution time)

• Supports splitting of a population into sub-populations

• Handles maximization and minimization problems without fitness scaling

• Supports tournament selection with arbitrary tournament size (native selection method)

• User may provide custom selection method (extending the abstract class Selection)

• Simple Java Interface for problem–specific code

• Direct access to genotype for Lamarckian evolution or repair methods

• Set up for distributed computation of fitness

• Set up for thread interrupt

• Default reporter for simple statistics on evolutionary progress

• User may provide costum reporter (implementing the Reporter interface)

2 Using JEvolution in an Application

The basic steps to make JEvolution work are illustrated by some lines of code from the test
program GATest.java coming with your JEvolution distribution.

Get the JEvolution singleton

JEvolution GA = JEvolution.getInstance();

Sets up an EA with default parameters for population size, number of generations, number of runs
(evolutionary cycles).

Get the associated reporter

JEvolutionReporter GAStats = (JEvolutionReporter)GA.getJEvolutionReporter();

Sets up the object reporting on EA progress. If you do not want to change default settings, you
do not even have to know about the reporter, i.e., you do not need that line at all.

Create the chromosome(s) needed

2



BitChromosome chromX = new BitChromosome();

Sets up a JEvolution native chromosome (bitstring encoding). All attributes and methods asso-
ciated with mutation and crossover are part of a chromosome object. With the above line, the
chromosome is ready to use, but of course, you may want to change parameters. If you want
to change the basic operation of mutation and crossover, you must extend JEvolution native
chromosomes or the abstract class Chromosome with your own code.

Pass the chromsome(s) to JEvolution

GA.addChromosome(chromX);

Hands your parametrized chromosome to JEvolution for future evolution. You can add as much
chromosomes (even of different type) to the genotype as you want. The only thing you have to
keep in mind is the order of addition, as this knowledge is necessary when decoding the genotype
in your implementation of the Phenotype interface.

The JEvolution default native selection method is Binary Tournament Selection (without
replacement). The only other selection method NoSelection has only been implemented for ex-
perimental comparisons. However, you may provide custom selection methods by extending the
abstract class Selection. The selection method is set by JEvolution’s setSelection() method.

Register Phenotype class with JEvolution

GA.setPhenotype(new ParaboloidPhenotype());

Notifies JEvolution of the problem–specific code. When having a closer look at the Phenotype

Interface, you will find three methods associated with fitness evaluation. Note that JEvolution
creates a separate Phenotype object for every individual in the population (just like in real life).
This is especially useful for distributed computation of fitness (see below).

First, doOntogeny() is called which maps the genotype to the specific phenotype (so here you
will have to know about the chromosome order). Second, JEvolution calls calcFitness() of each
individual to be evaluated. If you run your application on a single computer, you do not have to
worry about anything, but just provide the fitness function. If you want to distribute computation
of fitness functions, you may want to just pass the request for fitness computation to a dispatcher
and return from calcFitness() without actually having calculated the fitness. Third, after all
calcFitness() calls have been made by JEvolution, fitness values are collected by getFitness().
Again, just return the fitness value here for single–computer applications. For distributed systems
it is important that getFitness() blocks in case of ongoing fitness computation and only returns,
when fitness is available. Yes, it is a simple strategy and gives full responsibility to the user
coordinating distributed computation which is intended..;-)

Start JEvolution

GA.doEvolve();

After having set up the genotype and provided the phenotype class, we simply start evolution and
wait for the result. . . Thus, for our simple test problem, we would only need five lines of code to
implement an EA. However, this is not the whole truth as we also have to provide the problem–
specific code. Please, see ParaboloidPhenotype.java and a straight–forward implementation of
searching the minimum of the function f(x, y) = x2 + y2. The use of two chromosomes encoding
x and y, respectively, is simply for illustrative purposes.

3



Note that JEvolution can be configured to natively handle minimization problems via
setMaximization(false). In this case a solution A having a higher fitness value than a different
solution B is considered to be inferior to B.

2.1 Support for Genetic Programming

In directory Samples/GP there are two test programs illustrating the implementation of a Genetic
Programming application. It centers on the use of JEvolution’s TreeChromosome, which is built
by ProgramNodes. A small set of basic function and terminal nodes can be found in the package
evSOLve.JEvolution.gp.nodes. The programmer has to provide the function and terminal set
using TreeChromosome.addNode(). The only difference between a function and a terminal node
is that the children array of the latter is null (see the ProgramNode API for details). Of course,
you may provide custom nodes by simply extending ProgramNode.

If you wish to supply your (tree) program with variable values, you have to use
ProgramNode.addValue(), which puts the variable values in a static array, which can be accessed
by terminal nodes representing a variable value, e.g., VarDouble. If you want to supply new values,
you have to remove the old values first using ProgramNode.clearValues().

There are two types of mutation implemented in the TreeChromosome. The mutation process
iterates over all tree nodes and performs either tree mutation or node mutation using the mutation
rate given. If tree mutation is activated a subtree at a mutation position is substituted with a
random subtree generated using the generation method set with the TreeChromosome (and depth
/ 2). With node mutation a random node is mutated calling its mutate() method. Note that not
all nodes may support mutation (in this case mutation does not change anything).

3 Caveats

JEvolution may be interrupted by issuing an interrupt() to the thread, where JEvolution

is running in. Upon receiving an interrupt JEvolution finishes computations of the current
generation and returns normally (with a smaller number of evaluated generations than originally
set by the user).

If evolution is (re)started with a population from a previous run saved to an XML file, the
user has to make sure that JEvolution is set up in a way it can deal with the restored population.
Specifically, the phenotype model, of course, has to fit the individuals in the population.

4 Final Remarks

Though, JEvolution is intended to be a lean package, some additions surely will be made. Here
is an (incomplete) list of possible extensions:

• More selection methods

• Dynamic population sizes and chromosome lengths

The JEvolution distribution JEvolution.tar.gz comes with the following parts:

README – Basic technical information

JEvolution.jar – The Java Archive

4



Doc/ – Directory containing the API documentation created by javadoc and this document
(jevolution.pdf)

Samples/ – Directory containing three test programs using JEvolution to implement an EA,
a GA, and a GP application

If you have any comments, suggestions, or more likely bug reports, feel free to contact us at
helmut@cosy.sbg.ac.at.

5 Acknowledgments

This work has partially been supported by AKTION Österreich – Tschechische Republik under
grant AKTION 29p7: “Conventional and Evolutionary Construction of Finite Mixture Models for
Classification Problems in Remote Sensing”.

A Glossary

Application – Java Program using JEvolution
Applicationist – Synonym for User
Base – Atomic information unit of a Chromosome
Chromosome – Part of a Genotype
Custom – Java code extending JEvolution provided by User
EA – Evolutionary Algorithm
GA – Genetic Algorithm
Genotype – Encoded problem solution on one or more Chromosomes
GP – Genetic Programming
Individual – A Phenotype described by its Genotype
JEvolution – Java package for EAs
Mutation – Random alteration of a Base value
Native – Part of JEvolution package
Phenotype – A solution decoded from the Genotype
Population – A number of Individuals
Selection – Implementation of survival of the fittest
User – Programmer using JEvolution for her application

References

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by means of Natural
Selection. Complex Adaptive Systems. The MIT Press, Cambridge, MA.

Mayer, H. A. and Somol, P. (2000). Conventional and Evolutionary Feature Selection of SAR
Data Using a Filter Approach. In Electronic Proceedings of the 4th World Multiconference on
Systemics, Cybernetics, and Informatics (SCI 2000).

5



Mayer, H. A., Somol, P., Huber, R., and Pudil, P. (2000). Improving Statistical Measures of
Feature Subsets by Conventional and Evolutionary Approaches. In Proceedings of the Joint
IAPR International Workshops SSPR 2000 and SPR 2000, pages 77–86. Springer.

Michalewicz, Z. (1991). Genetic Algorithms + Data Structures = Evolution Programs. Artificial
Intelligence. Springer, Berlin.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Complex Adaptive Systems. MIT
Press, Cambridge, MA.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth–Generation Computer Technology
Series. Wiley, New York.

6


