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Abstract

The goal of the Boone project (“Basic Object-Oriented Neural Environment”)
is the creation of a general, basic framework for neural network mod-
elling using object-oriented technologies. It should be well-structured,
flexible, manageable and reusable, have a clean external interface, and it should
provide the means for evaluating new biologically motivated concepts in
the computing world. To cooperate well with the existing NetJEN framework,
Java is used as the programming language.

Currently, means for modeling, generation and training of feed-forward net-
works using error back-propagation and Hopfield recurrent networks are im-
plemented. Some test programs demonstrate principles of the general usage of
the framework; additionally, an emulation layer enables NetJEN XS to use this
new package instead of the native one.

This document contains a description of the project and of the architecture, as
well as guidelines for using and extending the framework.

Please report errors and omissions to August Mayer <amayer@cosy.sbg.ac.at>.
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Part I

Overview and Analysis

1 Motivation
The Boone project (whose working title was OONET: “Object-oriented Neural Network frame-
work”) was started because of a need for a flexible, object-oriented neural network pack-
age for use in various in-house projects. It should replace the NetJENXS network frame-
work in the long term, which is relatively close to the code produced by SNNS (Stuttgart
Neural Network Simulator, a free and very powerful simulator and environment for neural
networks, which also offers a facility to automatically generate C code from a neural network
model); the latter is in C and doesn’t use object-oriented paradigms. Modular extensibility
is another goal of the new package, which is necessary to evaluate new, biologically-motivated
network types and topologies.

The Java language was selected for compatibility with the existing projects, and because
of its general advantages such as portability (enabling the user to simply switch to a faster
machine if the need arises) and nice language facilities for object oriented software. It
is generally slow on numeric computations and certain other low-level operations such as list
handling, compared to e.g. C or C++, but newer just-in-time compilers, such as Sun’s Hotspot
JIT, reduce this advantage to a minimum. Java also seems to favor a style of breaking down
complex problems into code that results in better manageability and reusability than
other environments.

2 Requirements
There are the following requirements to this neural network framework:

• Compatible with NetJEN XS.
The framework should be able to replace the native one of NetJEN XS; if the archi-
tecture is too different, an emulation layer must be provided temporarily until NetJEN
XS moves to this new framework permanently. NetJEN XS is a complex software tool
for creation, training and evolution of neural networks in Java.

• Object oriented.
The framework should structure the task into meaningful functional units which is
sensible and extensible, while maintaining a manageable level of complexity.

• Local processing.
The functionality should be located in those program parts (i.e. classes) which are
logically responsible. There shouldn’t be an omniscient super-class which trains the
entire network externally; instead, neurons should be able to train themselves, and a
mixture of different training algorithms for the neurons should be possible. This is
interesting especially for introducing more biological concepts, because it enables the
concurrent usage of several different network and neuron types in one model, which is
closer to the original nerve system structure in animals and humans.

• Extended and new network types.
The nerve system and the brain should be the guides for the neural network models
that are simulated with the framework. Thus, it should enable the users to experiment
with various algorithms, network / neuron types and ways of combination.

• Standard network types.
Even if the possibility to create advanced models should exist, it should also easily be
possible to create and use standard types of neural networks such as feed-forward nets
with error back-propagation, Kohonen and Hopfield networks.

• Speed isn’t king.
The framework should be as fast as possible, but flexibility and reusability have higher
priority.

• Analysable, Introspection.
It should be possible to analyse the network and, and to trace how and why the results
occur.
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3 Method, Timeline
Spring/Summer 2002 Planning, Search for material.

September 2002 Project start; Analysis of the preceding frameworks efforts:
NetJENXS Neural Network Framework [NetJENXS 02],
OO-ANN framework project;
Creation of the layout.

November 2002 Basic framework, i.e. neurons, links etc.

December 2002 Registry, training classes; extension of the basic framework.

January 2003 I/O system.

February 2003 Emulation layer for NetJEN XS.

March 2003 Back-propagation, Hopfield networks.

April, May 2003 Interface clean-up, testing and finishing the project (Release 0.1.1)

June 2003 Some more documentation, Release 0.1.2.

August 2003 Extensions and corrections, Release 0.1.3.

Part II

Framework Overview and Design

1 The Basic Framework
The basic framework consists of classes for neurons, links, neural networks, activation
functions, network factories, and some helper classes. It is located in the boone package
of the source tree.

A goal in designing the basic architecture was to create a good object-oriented structure, and
specifically to localize network operation. There isn’t a super-object that performs all the
calculations, perhaps using the other classes just as data holders; instead, every part performs
its calculations mostly by itself.

Another aspect is that Boone consists of basic classes on the one hand, such as neurons,
links etc., that are like the building blocks of the architecture. On the other hand, there are
also some basic tools and applications in the package, such as the feed forward network
factory, the backpropagation trainers and other things. It is possible, though probably not
very useful except for cases where complete control is needed, to just use the building blocks to
construct and evaluate neural networks. Moreover, if Boone doesn’t provide a specific ability,
such as Kohonen networks, it is possible to implement it outside of the Boone package, but
using the framework and its various provisions. This flexibility is needed when experimenting
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with unconventional or novel network types, and the feasibility of this is one of the design
goals of the project.

This chapter presents an overview and some general directions; for detailed object and method
descriptions please see the generated Javadoc API documentation.

1.1 Neurons and Links, and the NeuralNet

Neurons (class Neuron) and links (class Link) share a common base class called BrainPart,
which contains common elements such as ID, name and part trainer, which are described
below. There are two flags in the standard Neuron class signaling whether it is an input or an
output neuron, so neurons can be either, both, or just plain intemediate neurons.

The links between the neurons are represented by full-grown Link objects. This incurs a
certain overhead in handling and management compared to approaches using a connection
matrix or the like, but it provides for more flexibility to replace those classes when modeling
more complex network types, such as when using links that connect more than two neurons.

Moreover, training is separated from the network evaluation by using extra trainer ob-
jects. Thus, the same neuron and link classes can be used in both feed-forward and Hopfield
networks, by using an approach that works for both network types. It should only be nec-
essary for more special networks to override those classes, though it is certainly possible and
provided for. Furthermore, the trainer classes are divided into network Trainers and so-
called PartTrainers, whereby the Trainer controls the overall method of training, and the
PartTrainers train the specific neurons and links. Thus, there is one Trainer instance per
network, and one PartTrainer for each BrainPart (Neurons and Links).

There is a container class called NeuralNet which contains a list of all neurons and links,
references to the network trainer and tick list, and methods for setting up and evaluating the
network. This class has only minimal functionality beside maintaining the lists, and delegates
to the neurons, links and trainers themselves instead. In other words, neurons and links are
added to and removed from this container class. The NeuralNet also keeps track of the input
and output neurons, and provides easy methods to set the network input for the network
evaluation, and extract the output after it is done.
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1.2 Helper classes

The neuron and link classes use some helper classes. The Position class contains a 3D posi-
tion for the neurons. The TickList class contains a list of objects implementing the Tickable
interface (which currently only Neurons do), and beside standard list methods, TickLists
provide mainly for a postpone() method that removes the current element from the list and
appends it at the tail, which is used when sorting the neurons into calculation order (i.e.
creating the topology cache, in NetJEN diction). The goal of this is that all of the neuron’s
input values are calculated when a neuron is evaluated.

Function is an abstraction of a mathematical function and maps an input value to an
output value, and it also calculates first- and second-degree derivative function values. There
are a number of predefined functions, defined as static inner classes of the Function class, which
are Identity, Sigmoid, TanHyp, Exponential, Sinus, Signum (returning 0 if the input is 0),
SignumWithoutZero (returning -1 in this case), AtLeast, AtMost, GreaterThan, LessThan, Clip
and AboutEqual. The Composite function encapsulates another function, and multiplies and
adds factors to the input value before calling this enclosed function. Not all of these functions
have continuous derivatives, and thus, not all of the classes implement the respective derivative
functions.

1.3 Network Generation
To generate new neural networks, the hard but flexible way is to create a NeuralNet ob-
ject and add neurons and links one by one. The easy way is by using the NetFactory classes.
Those take some properties, such as the number of neurons in the various layers, and produce
a ready-made neural network.

For example, the NetFactory.FeedForward class produces feed-forward networks consisting of
layers with given numbers of neurons, and the NetFactory.Hopfield class produces a fully-
connected Hopfield network. The NetFactory class itself is abstract.

The SimpleNetFactory class is even easier to use; it provides just two create methods for
feed forward and for recurrent networks. The price is some inflexibility; it is however possible
to customize the generated network afterwards.

The names for the trainer and the activation function are the internal Java class names (inner
classes are separated with “$” instead of “.”). For a listing of those names, please see Appendix
1.
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2 Introspection – The Registry System

The registry system provides meta-information like name, class and parameter descriptions
about the classes in the framework, so that objects can be dynamically created, parameters
values queried and set, and methods be called. This is especially needed during serialization
(loading and saving) and for GUIs that need to enumerate and describe the available elements.

The rationale behind the design is that there is a central Registry instance contained in the
boone.Boone class, where descriptors for all the different classes that need to provide dy-
namic information are stored. Thus, a program can evaluate at runtime which classes
of a given base type or a given kind are available. It is even possible to add new classes
at runtime, creating a plugin infrastructure. Also, new kinds of classes can be added later
without a need to alter the registry framework itself; this was a weak point in the design of
the NetJEN XS framework.

The registry framework is also used extensively in the I/O system and provides special fea-
tures for (de-)serialization, such as load() and store() methods in Param, and overridden
setField() and getField() methods in Param.Int, Param.Double and Param.Boolean. For a
more in-depth description of I/O, please see below in chapter 2.4, “I/O – Loading and Saving
Networks and Patterns.“.

2.1 The Registry Class, and the Registrable Interface
The classes for the registry system are located in the package boone.registry. The Registry

class basically holds a list of objects implementing the Registrable interface, which usually
are objects of class Desc, in several Hashtables for speed. New items can be registered and
deregistered, and items can be designed as default items for their kind, which can be retrieved
later. A Registrable can be retrieved using either a name or a Class object as a key; this is
useful for getting the description for an arbitrary object.

A Registrable only needs to implement two methods, getName() and getObjClass(). Usually,
objects of the Desc class are used, which implements Registrable and already has some
predefined functionality and attributes that are sufficient for ordinary use.

2.2 The Desc and Param Classes
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The Desc class implements the Registrable interface, as explained above; thus it can be
stored in Registry objects. Moreover, it contains fields for name, description and the
Class object for the class to register, and a list of Param objects containing descriptions of
the parameters (i.e. fields) of the described class. It also contains a newInstance() method
to create new object instances dynamically.

A flag denotes whether the class should be a singleton class, i.e. whether it only should
be created once. This is used when the class is wholly stateless, creates no side effects,
and it doesn’t matter which instance is returned. The flag is especially respected by the
newInstance() method.

The Param class contains fields for the properties name and description, and methods for
modifying the field in an object instance, called getField() and setField(). The implemen-
tation tries to use getter and setter methods via reflection, and falls back to modifying public
instance variables if necessary.

There are five derived classes called Param.Double, Param.Int, Param.Boolean, Param.Obj and
Param.Ref, which store additional things for some field types, such as upper and lower bounds
of valid content or a default value, and which handle objects and references (see below).
Thus, for example, GUIs can find out at runtime which values are valid in a given object
field. Generally, string parameters will be described with basic Param objects, and double,
int, boolean and object values using one of those derived classes.

2.3 The Param.Obj and Param.Ref Classes
There are two Param subclasses that deal with objects that are contained in other objects. The
Param.Obj class describes sub-objects, which in turn need to have meta-information available
again to be correctly serialized. The Param.Ref class defines a reference to an object that is
primarily contained elsewhere, and where only a reference should be stored.

Note that there is no Param class that describes a list of objects. This is intentional, because
those lists often need to be initialized in a specific order. For example, for Neural networks,
all the neurons need to be initialized before the links can be created correctly.

2.4 Registering new Classes
The programmer using the framework can store descriptions for new classes in the central
Boone repository (class boone.Boone) too, just as it is done for the standard classes. For this,
he basically needs to create an instance of the Desc class, describing the new class.
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If the class is a new kind of class (i.e. isn’t derived of an existing kind such as functions,
trainers etc.), we should define a String constant describing the kind of the class; this can be
used to e.g. get a default class for the kind of classes.

For example, to register a new class called OutIdentity (as used in the NetJENXS compati-
bility class WrapFunction), one could use the following code:

/**

* special identity function for Output Functions.

* This is necessary because we need to be able to distinguish between the

* function types when converting back.....

*/

public static class OutIdentity extends Function.Identity {}

/** Desc object for the {@link OutIdentity} class. */

public static Desc outIdentityDesc = new Desc(

"Identity Output function",

"Identity function for output / compatibility function",

OutIdentity.class,

Standard.FUNCTION_KIND,

true); // singleton

// static initializer: register our special classes

static

{

Boone.instance(); // initialize the Boone class, if necessary

Boone.getRegistry().register(outIdentityDesc);

}

Please note that, when using this kind of static initializers, the class has to have been used
somewhen before the I/O framework is used. Otherwise, the new descriptors aren’t registered
because the static initializer hasn’t been called.

3 Training and Evaluating the Net
The base classes for training are located in the central boone package; specific training classes,
such as error back-propagation, are assembled in the boone.training sub-package.

3.1 Base Classes for Training
There are two base classes: the Trainer class is an overall trainer class for the whole
neural network, and implements the general scheme of training. The PartTrainer class
contains per-element training data and methods, and the network Trainer class calls the
PartTrainer’s method for element-specific operations.
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The Trainer class provides schemes for supervised as well as unsupervised training, and also
for testing and evaluating the network. The inner interfaces EpochBased and TurnBased pro-
vide means to have methods called at each training epoch (i.e. after presenting all training
patterns once) or turn (this is after each pattern presentation), and such methods can be
called for both external listeners, and internally for derived training classes.

There are usually separate PartTrainer classes for Neurons and Links. Now, it would be
possible to write one big train() method in the Trainer class, and to use the PartTrainer

classes to just store extra values (such as errors, momentum etc.) for training the respective
element. However, a basic concept of the framework is to localize training as much as possi-
ble; potentially, it should be possible to attach PartTrainers of different types to each Neuron

and Link, and then train the neural network with different algorithms at the element level.
This is also useful with advanced Neuron or Link classes, e.g. links connecting more than two
neurons, or when other factors such as neuro-modulators influence the result.

Trainers, network as well as part trainers, have meta-descriptions (Desc objects) associated
with them as described above, so that they can be loaded and stored. Network trainers
also implement the Referentiable interface, so they can be referenced by other classes dur-
ing persistence. The createPartTrainer()-function creates default part trainers for given
BrainParts, mainly for use during the construction of new networks.

3.2 Specific Trainer Implementations
Two network topologies are implemented: feed-forward networks and Hopfield recur-
rent networks. For feed-forward networks, the BackpropTrainer class in the boone.training
package provides a standard error-backpropagation implementation, while the BackpropMomentumTrainer
and the RpropTrainer classes provide back-propagation with momentum and resilient back-
propagation algorithms. The HebbTrainer class is a simple hebbian learning trainer. PartTrainers
for each of those algorithms are defined as inner classes; for example, the RpropTrainer.LinkTrainer
defines a PartTrainer for Links for use with the resilient back-propagation algorithm.

For Hopfield networks, the HopfieldDeltaTrainer class implements the training of Hopfield
networks using the delta (perceptron) learning rule. There only is a PartTrainer class for
neurons here; none is needed for the links here.

3.3 The Feed-Forward Trainers
As described above, there are four predefined trainers for feed-forward networks, three using
flavors of the backpropagation algorithm, and one with a simple Hebbian weight modification
rule.

The simple back-propagation trainer class, BackpropTrainer, performs learning using a stan-
dard back-propagation algorithm, with an optional momentum term (turned off by default).
Each training turn, it first evaluates the network, then calculates the network error using the
error function (initialized with a default TrainingSignalGenerator.SquareSumError object).
Then, the neuron’s part trainers are called, in the inverse order of the tick list. The error
that is returned is the one calculated by the error function. The neuron PartTrainers first
calculates and adds the bias change, then calls the train() method of the preceding links’ part
trainers. This method first propagates the link’s error to the source neuron, and then modifies
the weight accordingly. The learning factor that is used for both link and bias modification
is stored by the overall BackpropTrainer object, as well as the momentum rate.

Another modification of the backpropagation algorithm called Resilient Backpropagation is
implemented by the RpropTrainer class (see e.g. [Riedmiller 94]), which is a more sophisti-
cated algorithm that usually learns quite fast. Here, only a sum of the back-propagated error
gradients is accumulated every training turn and for each neuron bias and link weight. At the
end of the epoch (i.e. after training all the patterns in the training set), this error gradient
sum is used to decide whether to add or to subtract a weight update value (delta). Also, this
delta is modified for the next epoch; if the error gradient has kept the same sign as during
the previous epoch, the delta is increased using a fixed factor (the rateIncFactor property in
the trainer class), because we then assume that we are going in the correct direction of the
minimum; if the error gradient changes the sign, the delta is decreased by multiplying with
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the rateDecFactor value, because we have overstepped the minimum.

Finally, the HebbTrainer is a trainer implementation that is simple and probably not very
useful. Each turn, it modifies the link weights by adding the product of the output values of
the sink and source neuron and a learn rate (by default 0.3).

3.4 The Hopfield Trainer
The HopfieldDeltaTrainer class implements a trainer for Hopfield network, using an iterative
approach. This trainer first evaluates the network, and then calls the neuron trainers’ train()
method, which modifies the active links (i.e. the links that did contribute to the neuron value,
that is, which had a non-zero weight) with a delta value calculated from the learning factor
and the neuron’s error divided equally among those active links. Please also note that this is
a recurrent network; thus, for network evaluation, it usually needs multiple evaluation cycles
per pattern. By default, the network factories set this maximum cycle number to 100.

4 I/O - Loading and Saving Networks and Pat-
terns

The I/O framework provides for the infrastructure to load and save networks and pattern
data. Its classes are in the boone.io package, but provisions for loading and saving are dis-
tributed throughout the framework.

The basic idea behind the architecture is a two-step procedure: first, the network is serial-
ized to a tree of IOElement objects, and then this tree is stored to a stream, either in “raw”
format as a custom XML file, or converted to some other format (this isn’t implemented yet;
interesting targets are the SNNS or the Joone file format). Conversely, when loading from a
stream, a tree of IOElements is created from the input first, which is then examined by the
framework to construct the network.

Note that there also file handlers for training and test pattern data; those generally don’t use
the IOElement approach. For concrete examples of how to use the I/O classes, please see part
3 below.

4.1 The IOElement Class, and the Framework-internal Pro-
visions

The IOElement class is comparable to the org.w3c.dom.Element (i.e. a DOM Element); it can
store a key, a value, some attributes defined by a name and a value, and some sub-elements.
Thus, a rich tree of IOElements can be created.

For saving, this is done in the Boone.storeObject method by first examining the meta-
information for the fields, storing the parameters of the class, and then by calling the store
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method of the class, if such a method exists. First the NeuralNet object is saved, and the
algorithm recurses down to storing the Neurons, Links, PartTrainers, Functions and every-
thing else.

Conversely, the Boone.loadObject method first creates the respective object, then initializes
the parameters from the IOElement tree and finally calls the load method, if there is one. In
order for this to work, it is necessary that all objects that are saved and loaded have their
meta-description available in the Boone registry, so that the objects can be constructed cor-
rectly.

Note that, in the IOElements, not the real Java class name is used to identify the objects, but
the name given in the Desc object for the class. This name is shorter, systematic and better
to use; for a listing of the existing names, please see Appendix 1.

4.2 FileHandler, XNetPatternFile and XNetworkFile

All file handlers of the framework are derived from the FileHandler class, which defines basic
methods for reading, writing and finding out whether reading and writing is possible for a
given File. FileHandlers are also registered in the Boone registry. FileHandlers don’t directly
operate on files, but write to and read from streams. The idea is that usually, it is very specific
to the application what should happen if the file can’t be opened or used.

XNetPatternFile can load and store PatternSet objects, which hold multiple double arrays
with input and output values, to a GZip-compressed XML stream. This is for loading and
storing test and learning patterns.

The class boone.io.snns.SNNSPatternFile is a file handler for SNNS pattern files. They
operate on SNNSPatternSet objects that also store the extended attributes of this file format
(more concretely, the dimension information for the patterns).

XNetworkFile stores a network by converting it to an IOElement tree as described above, and
then translating it to an XML DOM tree and writing it to a GZip-compressed XML stream,
or reads such a stream and creates first an IOElement tree and then a NeuralNet object out
of it.

5 The NetJEN Compatibility Framework
The classes of the NetJEN compatibility framework replace some of the respective classes of the
former framework in edu.cosy.netJEN.framework and edu.cosy.netJEN.framework.net.There
are several other, small changes throughout the whole package, because the network classes
weren’t properly isolated and internals were used in some places. Specifically, the EvoNet class
is now the only interface to the network, and access to the NeuralNet class is now forbidden.

5.1 Changes in edu.cosy.netJEN.framework and other Sub-
packages

The main changes occurred in the EvoNet class which mostly encapsulates network operation,
training and evolution; large parts of it were redone for the Boone framework. Some changes
were also done in the Function class to delegate to the Boone function types where necessary,
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and in the other classes of the original framework.

There are also some smaller changes in the subpackages io and evolution, necessary because of
the switch from the NeuralNet to the EvoNet wrapper class. The evolution.Individual class,
for example, was a bit critical, because it uses a template NeuralNet and evolves clone()’d
copies of it, storing the evolution result in the original EvoNet object. It also adds its own
Delegates (= Listeners) to both the EvoNet and NeuralNet objects.

5.2 Emulation Classes in edu.cosy.netJEN.framework.net

All the original classes in edu.cosy.netJEN.framework.net were thrown away, because the
Boone framework fully replaces them. To provide for compatibility for classes that use char-
acteristics of the old package, some emulation classes were created. For example, the EvoNet

object returns classes of type Unit (equivalent to the boone.Neuron class, and encapsulating
an instance of that class) to its clients. Also, a number of numerical constants are defined here
(e.g. in Unit for selecting input/output/hidden neurons). There is also some functionality that
is realized in some other way; Results and ResultSets as well as Patterns and PatternSets
are replaced by double arrays in the Boone framework, which has less functionality, but is
sufficient for most uses.

The classes that ’encapsulate’ the functionality of the Boone framework are Unit, Link,
ActFunction, OutFunction and TrainingFunction. Functionality that is replaced by using
double arrays in the Boone framework is emulated by Pattern, PatternSet, Result and
ResultSet.

There aren’t InitFunctions like RandomizeWeights or SetWeightsToValue anymore in the
Boone framework, those were removed without replacement. To reset the network to a fresh
state, this must be done by hand, but it’s as simple as enumerating the links and neurons
and setting the weights and biases to some random or constant value. This is done by the
emulation classes for NetJEN.

The WrapFunctions class contains wrappers to convert between the new function types and
the NetJEN activation, output and training functions. For each NetJEN function, a wrapper
class is defined as an inner class of WrapFunctions, and a registerFunctions() method is
provided to register those wrappers. A wrap() method takes a Boone function or trainer and
wraps it for use in the compatibility framework. The framework takes care that the result
of this wrapping is always of the same class, i.e. that the Identity function, for example, is
correctly mapped to OFIdentity or AFLinear (in this case by actually using derivative classes
called OutIdentity and ActIdentity).

Part III

Using the Boone Framework
This chapter provides some examples for using the Boone framework, and (hopefully) some
more insight into the general usage. Three examples are discussed, first a network to solve
the XOR problem, then examples of how to save and load patterns and networks, and finally
an example of using Hopfield networks for pattern recognition.

1 Solving the XOR Problem
The XOR problem is quite famous, because it can’t be solved using only a single perceptron.
Furthermore, the example nicely shows the capabilities of the framework model (please see
e.g. [Rojas 96], p. 62f., or [Bishop 02], p. 86ff.). There are two binary inputs and one output,
and the network in between needs to have more than one neuron. The network should learn
that the input (1, 0) and (0, 1) both produce 1 as output, and (1, 1) and (0, 0) both 0. The
demo program is fully available under the class name test.XOrTest.

To create a suitable feed forward network, we use the following call:
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NeuralNet net = SimpleNetFactory.createFeedForward(

new int[] {2, 2, 1}, // 2 input, 2 hidden and 1 output neuron

false, // not fully connected

null, // no special activation function

"Trainer.Rprop"); // Rprop trainer

Then, we need to train the network, which can be achieved as follows:

double[][] inPatterns = new double[][] {

{ 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } };

double[][] outPatterns = new double[][] {

{ 0 }, { 1 }, { 1 }, { 0 } };

System.out.println("*** Training...");

Trainer trainer = net.getTrainer();

for(int i=0; i<100; i++)

trainer.train(inPatterns, outPatterns, 10, null);

This first defines the input and output pattern arrays (i.e. inPatterns[i] should produce
outPatterns[i]). Then the train() method is called 100 times; it presents each pattern to
the network and performs training based on the results. The 10 is the number of times
each pattern should be presented to the network (this is a completely arbitrary number
here), and in place of the null parameter, an object implementing Trainer.TurnBased or
Trainer.EpochBased (or both) could be specified whose methods would be called before and
after training turns or epochs.

Finally, the following code performs a test on the trained network:

System.out.println("\n*** Testing the network...");

double[] errs = net.getTrainer().test(inPatterns, outPatterns);

System.out.println();

for(int i=0; i<errs.length; i++)

System.out.println("Error " + i + " = " + errs[i]);

This calls the test() method of the trainer, which returns a double array containing the
error values for all the given patterns, i.e. the difference between the network results from the
inPatterns and the given outPatterns, as a sum of squares. Those error values are printed
out.

2 Saving and Loading
Saving and loading patterns and networks is quite straightfoward. There are two example
programs to demonstrate how this works; they are called test.NetIOTest for networks and
test.PatternIOTest for patterns.

A network can be stored as follows (not showing exception handling):

XNetworkFile netFile = new XNetworkFile();

OutputStream fOut = new FileOutputStream("test/test.xnet");

netFile.write(fOut, net);

fOut.close();

This simply creates a XNetworkFile instance, opens an output stream, writes the network to
the stream using the XNetworkFile instance, and closes the stream. Loading a network works
mostly the same, as demonstrated here (also without exception handling).

XNetworkFile netFile = new XNetworkFile();

InputStream ins = new FileInputStream("test/test.xnet");

NeuralNet net = (NeuralNet) netFile.read(ins);

ins.close();
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Moreover, the canRead() and canWrite() functions of the XNetworkFile class can be used in
Swing file selectors to choose valid files for loading and saving.

Loading and saving patterns can be done exactly the same way, but using XNetPatternFile.PatternSets
with the double arrays to store instead, and using the class XNetPatternFile to store to the
stream.

3 Hopfield Networks
Hopfield networks are used the same way as other networks; a complete example is supplied
with the class test.HopfieldTest. To create a complete network, the line

NeuralNet net = SimpleNetFactory.createRecurrent(9, null, null);

is sufficient. The 9 is the number of neurons that the network should contain. By default, the
HopfieldDeltaTrainer is used, and a step function (AtLeast(0)) as the activation function.

Hopfield networks are by standard fully connected, and all neurons are input and output
neurons as well. Neurons can only be either active or inactive, i.e. the output value of each
neuron can only be 1 or -1.

To train the network, this can be used:

println("Training.");

int i;

int maxCycles = 100;

double err = -1;

for(i=0; i<maxCycles && err != 0; i++)

err = net.getTrainer().train(

trainingPatterns, trainingPatterns, 1, null);

System.out.println("Used " + i + " training cycles (of "

+ maxCycles + " max)");

It is sufficient to train until the error is 0, because then, no more weight changes will occur
internally.

Finally, to send a pattern through the network, this code can be used:

println("Testing " + name + ".");

net.setInput(pattern);

net.innervate();

double[] result = net.getOutput(null);

If learning terminated successfully, the result patterns for the training patterns stay exactly
the same after running the net; for patterns that are similar to training patterns, the closest
one should be selected if the training went well.

Part IV

Spiking Neural Networks
Version 0.9.5 extends the Boone framework to include support for the simulation of spiking
neural networks (SNN). The algorithm for the simulation is event-driven, i.e. the neurons are
updated only when they receive or emit a spike.

The Spike Response Model (SRM) (Gerstner and Kistler, 2002) is used as SNN model. This
general model gives a simple description of spike generation in neurons. The potential of a
neuron is determined by the timing of the received and emitted spikes. The SRM incorporates
the Integrate-and-Fire Model. The potential of a neuron u, at time t, is given by
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u(t) = η(t− t̂) +

n−1∑
i=0

wi

li∑
k=0

ϵi(t− tki )

where t̂ is the firing time of the most recent spike of neuron u, n is the number of input links
of u, wi the weights of the input links, and tki the firing times of the received spikes from
neuron i, i.e. the postsynaptic potentials generated by input link i. A postsynaptic potential
is a spike that is emitted by the connecting link whenever the source neuron emits a spike.
The number of received spikes that are used for the calculation, the value of li, is defined by
the horizon of the SpikeEventQueue in neuron u. This queue holds the most recent received
spikes. Function η describes the form of the spike, and function ϵi describes the form of the
postsynaptic potential.

A neuron emits a new spike when its potential passes a predefined threshold from below.
However, it is also possible for the user to explicitly tell a neuron to fire. The second method
is intended to enable the user to define when a specific input neuron should emit a new spike,
since in the context of spiking neural networks, the network input corresponds to the timing
of the emited spikes of the input neurons.

Since the form of the spikes is known, it is sufficient to calculate the firing times of the neuron.
There is no need to calculate the entire course of the potential. This significantly simplifies the
simulation of spiking neural networks, reduces the computational cost, and as a consequence,
allows the simulation of networks with a large number of neurons.

The implementation introduces main classes SpikingNeuralNet, SpikingNeuron and SpikingLink,
and functions Spike and PostsynapticPotential, implementing functions η and ϵ respectively.
In the context of the event-driven simulation process, classes SpikeEvent, SpikeEventQueue
and SpikeEventBuffer, and a container class SpikeSet, for network input and output, are
introduced.

1 Basic SNN Classes

Spiking neurons (class SpikingNeuron) and spiking links (class SpikingLink) extend the
base classes Neuron and Link, respectively, and are responsible for generating all events during
a simulation run. Since spiking neural networks are simulated, an event represents a spike.
Both, spiking neurons and spiking links, add the generated events (spikes) to a referenced
event buffer that is contained in the SpikingNeuralNet they belong to. The added events are
dispatched, from the lowest to the largest timestamp, by the spiking neural network (class
SpikingNeualNet), to the network components that are responsible to handle the events.

To describe the form of the spikes and postsynaptic potentials that are emitted by the spiking
neurons and spiking links, respectively, we used their activation function. This means, the
activation function of the spiking neuron is equivalent to the function η in the SRM, and the
activation function of the spiking link is equivalent to the function ϵ in the SRM.

Since the neurons are only updated when they receive or emit a spike, it is not sufficient to
only check if the potential of the neuron reached the threshold at the point in time the event
was raised. Therefore, every time the neuron is updated, we have to predict if and when a
new spike will be generated in the future. This means that it is determined how the potential
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of the updated neuron is altered by the new spike and if, based on the current spike history of
this neuron, the potential will reach the threshold of this neuron. If the prediction algorithm,
a root finding algorithm, finds an intersection, a new spike, this means a new event, with a
timestamp equal to the intersection is emitted. The root finding algorithm is implemented in
the class RootSolver.

The spiking neural network offers two simulation modes. In default mode, every event is dis-
patched and handled as soon as it is added to the event buffer. Therefore, the simulation time
- the timestamp, with unit milliseconds, of the currently handled spike event - is independent
of the real time. In real-time mode, the simulation time equals the real time. This means
that an event with timestamp t is handled (approximately) t milliseconds after the simulation
started. In both modes a new thread, executing the entire simulation run, is created and the
execution of the programm that initiated the simulation run continues.

There is a new class SpikingNetFactory, extending NetFactory, that offers methods to con-
veniently construct feed-forward, as well as recurrent spiking neural networks.

2 Root Finding Algorithm
The currently implemented root finding algorithm has two stages. First the algorithm
samples the potential of the neuron at discrete points. The step size is adapted, based on
the current derivative and distance to the threshold value. As soon as a point above the
threshold is found, a bisection search with the last two samples as the left and right bracket,
respectively, one above and one below the threshold, is performed.

This algorithm will never return incorrect, non-existing roots. However, due to the discrete
sample points, the algorithm cannot guarentee to find every root. This will only occur in
extrem cases, where the potential crosses the threshold for an extrem short time period with
a very flat angle. Still, changes to the algorithm for the adaption of the step sizes in the
sampling stage, may further minimize the probability that intersections are missed.

3 Spike Forms
The class Spike provides the default function that describes the form of the spikes. This
means, it provides the function η in the SRM. The defaults for the parameters are set to values
that ensure that the function describes the form of spikes, generated by biological neurons.

η(t) = abs ·H(δabs − t)− rel · e−
(t−δabs)

δrel
) ·H(t− δabs)

where H is the heaviside function, δabs the duration of the absolute refractoriness phase in
milliseconds, δrel a factor that defines the duration of the relative refractoriness phase, abs
the maximum value in millivolt that the neuron potential is above its resting potential during
the absolute refractoriness phase, and rel the maximum value in millivolt that the neuron
potential is below its resting potential during the relative refractoriness phase. The resting
potential of a neuron is its potential in the absence of emitted and received spikes. The terms
absolute and relative refractoriness are borrowed from descriptions of spikes of biological neu-
rons. During the absolute refractoriness phase, the neuron cannot fire a new spike, during the
relative refractoriness phase, the neuron is less likely to fire a new spike.

The following table shows all parameters of the class Spike that can be set by the user.

Parameter Spike Feature Default Value
abs Absolute Refractoriness Maximum [mV] 110
rel Relative Refractoriness Minimum [mV] 55
δabs Absolute Refractoriness Duration [ms] 2
δrel Relative Refractoriness Duration [ms] 0.5

The class PostsynapticPotential provides the default function that describes the form of
the postsynaptic potentials. This means, it provides the function ϵ in the SRM. The defaults
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for the parameters are set to values that ensure that the function describes the form of
postsynaptic potentials, generated by biological synapses.

ϵ(t) = α · (e−(λ·t) − e−(µ·t))

where α scales the minimum, in case of inhibitory postsynaptic potentials, or maximum, in
case of excitatory postsynaptic potentials, as well as the ascending and descending slope of
the postsynaptic potential. The effect of the factors λ and µ depends on their values relativ
to each other. If λ is smaller than µ, we get an excitatory postsynaptic potential. If λ is
larger than µ, we get an inhibitory postsynaptic potential. The factors λ and µ also define
the ascending and descending slope of the postsynaptic potential.

The following table shows all parameters of the class PostsynapticPotential that can be set
by the user.

Parameter Postsynaptic Potential Feature Default Value
α Scales the Maximum/Minimum [mV] 1.5

Scales the ascending and descending slope
λ Defines, with µ, if excitatory or inhibitory [mV] 0.7

Defines, with µ, the ascending and descending slope
µ Defines, with λ, if excitatory or inhibitory [mV] 0.8

Defines, with λ, the ascending and descending slope

Both classes offer parameterized constructors to allow the user to set these parameters.

4 Events and Event Management
An event (class SpikeEvent) in the simulation represents either an emitted spike, or a received
spike (postsynaptic potential). The type of the event, i.e. the type of the spike, is identified
by static constants. An event object has two references of type BrainPart, identifying which
network component generated the event and which network component will handle the event,
respectively. Also, it has a timestamp, a double value representing the time in milliseconds,
and a reference to a Function.

If the event represents an emitted spike, the function describes the form of the spike. If the
event represents a received spike, i.e. a postsynaptic potential, the function describes the form
of the postsynaptic potential.

The global event buffer (class SpikeEventBuffer) extends the SpikeEventQueue class and
is the heart of the simulation. Every event that is generated by the spiking neurons and
spiking links is added to the buffer. The events in the buffer are queued and dispatched in
chronological order, the oldest event is the head of the queue and dispatched first.

Every spiking neuron has two local spike queues (class SpikeEventQueue) to store already
emitted and received spikes. The queue extends the standard queue interface to include
methods for spike management. Most important, the queue has a property horizon, which
defines the time span a spike remains in the queue. Every time a spiking neuron handles an
event, the current simulation time is compared to the timestamps of the queued spikes. Every
spike, with a distance larger than the horizon of its queue, is removed. This is reasonable,
since the effect of spikes on the neuron potential diminishes over time.
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5 Network Input and Output
A spike set (class SpikeSet) holds the network input, the recorded network output, as well as
target outputs for potential training purposes. The input of a spiking neural network consists
of lists that contain timestamps (double values), one list for each input neuron. The spike
set offers methods to link a given input neuron to a given list of timestamps. This means
each list defines the points in the simulation time, at which the linked input neuron will emit
a spike. The actual form of the emited spikes is described by the activation function of the
input neuron.

Like the network input, the network output also consists of lists of timestamps, one for each
output neuron. A specific list contains the timestamps of the emitted spikes of the output
neuron that is linked to this list. Recording of spike timestamps is turned on/off separately
for each output neuron.

6 Using Spiking Neural Networks
The complete source code for the following examples can be found in the test programm
test.SpikingNetTest.

Use the static methods of the class SpikingNetFactory to conveniently create spiking neural
networks. You can either provide your own templates for the neurons, links and activation
functions, or just set the corresponding argument to null, to use the defaults.

To create a standard feed forward spiking neural network with random delays for the links,
we use the following call:

SpikingNeuralNet net =

SpikingNetFactory.createFeedForward(

new int[] {3,3,3},// 3 input , 3 hidden and 3 output neurons

true , // fully connected

null , // neuron template

null , // link template

null , // spike form template

null , // postsynaptic potential form template

new double []{0 ,5}); // random delays in the interval [0,5] ms

Next, we create a spike set and create some random network input. This tells the input
neurons when to emit a spike. This can be achieved as follows:

SpikeSet spikeSet = new SpikeSet ();

// iterate over all input neurons and create for each input neuron

a list of random timestamps (unit milliseconds) that tells the

input neuron when to emit a new spike

for (int i=0; i < net.getInputNeuronCount (); i++) {

SpikingNeuron inputNeuron =

(SpikingNeuron)spikeNet.getInputNeuron(i);

// the list telling the input neuron , handled in the current

iteration , the times at which it should emit a spike

List <Double > input = new ArrayList <Double >();

for (int j=0; j < 10; j++) {

input.add(Math.random () * 200);

}

// link the created list of timestamps to the input neuron

handled in the current iteration

spikeSet.setInputSpikes(inputNeuron , input);

}

Now that we linked each input neuron to a list of timestamps, that tell the input neuron when
to emit a new spike, we can set the network input with the following single line:

net.setInput(spikeSet);

To record the output of a specific neuron, we have to tell the neuron to start recording to our
spike set:
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// iterate over all output neurons and turn for each output neuron

the recording of spike timestamps on

for (int i=0; i < net.getOutputNeuronCount (); i++) {

SpikingNeuron outputNeuron =

(SpikingNeuron)net.getOutputNeuron(i);

outputNeuron.recordStart(spikeSet);

}

Next, we start the simulation and wait until the state of the network is stable. This means
we wait until the event buffer is empty, because if there are no more events to handle, no new
events can be generated.

net.innervate ();

while (net.isActive ()) {

try { Thread.sleep (1000); }

catch (InterruptedException e) { e.printStackTrace (); }

}

To get the recorded output of a specific neuron, use following code:

// get the recorded output of all output neurons

for (int i=0; i < net.getOutputNeuronCount (); i++) {

SpikingNeuron outputNeuron =

(SpikingNeuron)net.getOutputNeuron(i);

List <Double > output = spikeSet.getOutputSpikes(outputNeuron);

}

The current simulation run can be stopped in two ways. The preferred method is to stop the
current simulation run explicitly. Also, this way the simulation run can be continued later:

// stop current simulation run explicitly

net.stop();

// this way it is possible to resume the current simulation run

net.resume ();

The second method is to stop the current simulation run by starting a new simulation run:

// stop current simulation run implicitly by starting a new one

net.innervate ();

Saving and loading a spike set can be achieved as follows:

spikeSet.save(new File("data"));

SpikeSet myData = new SpikeSet ();

myData.load(new File("data"));

6.1 Real-time mode
A spiking neural network is switched to real-time mode with following call:

net.setRealTimeMode(true);

Make sure to stop the current simulation run before switching simulation modes.

In the following short example, random input neurons emit random spikes for 5 seconds. Since
we are in real-time mode, the network will be active for at least 5 seconds. We can set the
network input in the same way we did in standard mode. However, in cases like this, where
new input is given repeatedly and often, and is also very small, it is more convenient and
effective to use the following method:

net.innervate ();

long start = System.currentTimeMillis ();

// Run for 5 seconds

while (System.currentTimeMillis () - start < 5000) {

// wait for some random time period

try { Thread.sleep((long)(Math.random () * 25)); }

catch (InterruptedException e) { e.printStackTrace (); }
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// select random input neuron

randomNeuron =

(SpikingNeuron)net.getInputNeuron ((int)(Math.random () * 3));

// explicitly tell the picked input neuron to fire

// the timestamp is equal to the time elapsed since this

simulation run was started

randomNeuron.fire(( System.currentTimeMillis () - start));

}

Part V

Future Work
The framework is currently quite stable in the implemented form, and no major bugs should
surface during use. However, there are a number of features and other things that are desir-
able, yet couldn’t be realized in the project timeframe.

One point of future work is that the framework hasn’t been extensively tested. To do that
properly, a suite of test classes that automate future checking should be created. Also,
the performance of the framework should be evaluated, optimized as far as possible and
desirable in relation to maintainability, and compared to other frameworks. It was never the
intent of the project to create something for mainly modeling standard networks, but it was a
goal to provide for easy evolving and trying out new kinds of networks, because for standard
types, there are already many excellent simulators available. It should be evaluated under
which circumstances the Boone framework would be of good use.

Also, we initially intended to implement a greater range of neural network types, such as El-
man and Kohonen network types. These fell away due to time constraints, but nonetheless
they would come in handy. Also it would be interesting to implement the use of “layer”
objects with groups of neurons instead of single connected neurons, which should improve
speed greatly for simple network types. The operations, such as evaluation and training, could
then be realized as matrix functions on arrays of input values.

Currently, the algorithm of network operation is fixed inside of the neuron and link objects,
although it is still quite flexible; if this operation should work in a non-standard way, neuron,
link and/or neural network classes have to be overridden. An idea to be more flexible is to
use a “net function”, which would encapsulate the concrete algorithm of updating the net-
work. Another possible goal is to implement time-coded operation instead of the current
rate-coded operation mode.

The I/O framework can currently only load and save files in the Boone native XML format;
it should be able to load and maybe save files in the SNNS and Joone format for interfacing
with other simulation environments.

Finally, the emulation layer for NetJEN XS to use the Boone framework is currently real-
ized with minimum effort, and only with a local development version; those changes should be
committed to the main version of NetJEN XS. When doing this, the network framework that
is actually used should be better encapsulated using e.g. the EvoNet class as an intermediary.

Class Identifying Names
The following class names are registered by default for serialization and the NetFactories:

• Basic:

– boone.NeuralNet

– boone.Neuron

– boone.Link

– boone.map.Position
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• Net factories:

– boone.NetFactory$FeedForward (default)

– boone.NetFactory$Recurrent

• Trainers:

– boone.training.HebbTrainer

– boone.training.BackpropTrainer (default)

– boone.training.RpropTrainer

– boone.training.HopfieldDeltaTrainer

• PartTrainers:

– boone.training.Hebb$NeuronTrainer

– boone.training.Hebb$LinkTrainer

– boone.training.Backprop$NeuronTrainer

– boone.training.Backprop$LinkTrainer

– boone.training.Rprop$NeuronTrainer

– boone.training.Rprop$LinkTrainer

– boone.training.HopfieldDelta$NeuronTrainer

• Functions:

– boone.map.Function$Composite

– boone.map.Function$Identity

– boone.map.Function$AtLeast

– boone.map.Function$AtMost

– boone.map.Function$LessThan

– boone.map.Function$GreaterThan

– boone.map.Function$AboutEqual

– boone.map.Function$Exponential

– boone.map.Function$Sigmoid (default)

– boone.map.Function$Signum

– boone.map.Function$SignumWithoutZero

– boone.map.Function$Sinus

– boone.map.Function$TanHyp

– boone.map.Function$Clip

• Error Functions:

– boone.TrainingSignalGenerator$SquareSumError (default)

• File handlers:

– boone.io.XNetworkFile

– boone.io.XnetPatternFile

– boone.io.snns.SNNSPatternFile
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Glossary (Selected)
Cycle

A cycle is presenting a pattern to the network exactly once, during network evaluation. For
recurrent networks, uch as Hopfield networks, it is often necessary to evaluate the network
repeatedly for a given input pattern, until the output pattern is stable, or a maximum number
of evaluations has been reached. In other words, a cycle is exactly one such evaluation step.

For feed-forward networks, this usually isn’t necessary, because the algorithm just needs a
single cycle to calculate the network output for the given pattern.

Epoch

A training epoch is the duration of training a complete set of training patterns. For example,
the methods of epoch listeners are called before or after training a complete set of training pat-
terns, as opposed to turn listeners, the methods of which are called after every single pattern.

Net factory

A net factory can assemble a finished neural network, according to some parameters that
are specified by the user. It is possible to do this construction in the application using the
framework, but most of the time, this factory provides enough functionality to be a shortcut.

Turn

We call one pattern presentation a training turn. For example, the methods of turn listeners
are called before or after training every single pattern, as opposed to the epoch listeners, which
are called before or after training a complete set of training patterns.
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