Dynamic Regulation of Hebb Learning
by Artificial Neuromodulators
in Mobile Autonomous Robots

Helmut A. Mayer
Department of Computer Science
University of Salzburg
A-5020 Salzburg, Austria
helmut@cosy.sbg.ac.at

Abstract — We investigate key components of a dy-
namic neurocontroller changing its internal structure
enabling “lifetime” learning of a mobile autonomous
robot. The behavioral change of the robot is linked to
inputs from the environment that cause the emission of
artificial neuromodulators (ANMs) in the robot’s neuro-
controller. In its simplest form an outside teacher (hu-
man or machine) constantly evaluates the robot’s ac-
tions by transmitting positive or negative feedback sig-
nals to the robot initiating the internal changes. The
focus of investigations is put on the mechanisms of the
interaction of teaching input and structural changes.
A well-known concept for this interaction is Hebbian
learning, which is requlated by ANMs in the presented
approach. In extension to related work in evolutionary
robotics (ER), we analyze important details of robotic
(ontogenetic) learning by experiments measuring the
ability of robots to learn simple tasks in a simulated en-
vironment without employing evolution. Specifically, we
are interested in the comparison of Hebb learning vari-
ants, and the crucial question of the correct interpreta-
tion of reward or punishment signals by the robot.
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1 Introduction

Today, a variety of control techniques are imple-
mented for mobile autonomous robots, e.g., fuzzy con-
trol, machine learning systems, or artificial neural net-
works. Some of these systems have reached an impres-
sive level of performance, however, most of these sys-
tems are not adaptive in the sense that they cannot
change their behavior by feedback from the environ-
ment. Although, a human observer of these systems
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might get the impression that the robots can adapt to
different situations, they can only adapt to situations
the control program is aware of in advance.

State of the art is that control programs for the robots
are no longer constructed by humans but by comput-
ers employing evolutionary methods [1]. Still, in order
to evolve working “robot brains” all possible scenarios
have to be presented to the system in advance. Hence,
the control system will deal sufficiently with most sit-
uations it has been trained with, but it is mostly not
able to deal with new, unknown situations, and it also
cannot adapt itself to these during the “lifetime” of the
robot. When evolving robotic neurocontrollers, learn-
ing is taking place in a generational time frame (phylo-
genetic learning).

Obviously, the main problem of (most) current con-
trol systems is that they cannot ”reprogram” themselves
during their exploration of the environment. This static
behavior of an artificial structure is the most fundamen-
tal difference to Biological Neural Networks (BNNs) ex-
hibiting highly dynamic properties not only throughout
their lifetime, but also within very short time spans of
activity [2].

Dynamic changes in a neurocontroller may be in-
duced employing Reinforcement Learning (RL) tech-
niques [3] enabling ontogenetic learning, i.e., the robot’s
brain (consequently, its behavior) is shaped during ex-
ploration of the environment. A popular RL method ap-
plicable to neurocontrollers is Temporal Difference (TD)
learning [4]. With this method the neurocontroller is not
generating motor signals driven by sensor input, but
evaluates potential (motor) actions. Actions are pre-
sented as an additional input, and a single output neu-
ron predicts the value of a potential action. Learning
is driven by the difference of predictions in consecutive
time steps (temporal difference) and scalar feedback sig-
nals (reward or punishment) from the environment or a
teacher.



Technically, learning in TD neurocontrollers is imple-
mented by the common Back—propagation method. TD
learning is purely ontogenetic and does not alter the
structure of the neurocontroller. A biologically more
plausible method to achieve a combination of phyloge-
netic and ontogenetic learning (as seen in nature) are
evolved network structures, whose parameters are al-
tered by Artificial Neuromodulators (ANMSs) [5, 6]. The
ANMs influence learning by defining the type of Hebb
learning based on the combination of modulators re-
ceived by each neuron [5], or by specifically changing
neurons’ activation functions [6].

As a consequence, very complex interactions can be
observed in ANM neurocontrollers that make interpre-
tations of the internal mechanisms nearly impossible.
Hence, in this work we are concerned with neurocon-
trollers with pre—defined, simple modulator diffusion
models and single learning rules for the whole network.
The biologically plausible learning mechanism is based
on the Hebbian learn rule promoting self-organization
of the neurocontroller.

Especially, in feed—forward networks Hebb learning
has the properties of implicit calculation of the Principal
Components of the input data [7]. The Principal Com-
ponent Analysis (PCA) is a statistical method linearly
transforming a sample of points in an n—dimensional
space such that the variance of the components in the
new coordinate system are extremal. Components (or
features) with low variance contribute little to the in-
formation content of the sample, hence they may be
neglected in order to compress the input data. PCA
networks can be used in signal classification, feature ex-
traction, and data compression [7]. In the context of
this work the feature extraction property could be use-
ful in order to detect structures in the sensor signals of
the robot, which might convey relevant information at
the current time.

As pointed out above this work is concerned with a
deeper analysis of the prerequisites of successful learn-
ing in mobile autonomous robot based on the ANM
paradigm. A better understanding of the processes and
model parameters leading to a well-performing robot
could not only improve the speed and the quality of on-
togenetic learning, but could also be beneficial in evo-
lutionary robotics by reducing the search space of all
possible arrangements.

2 Ontogenetic Learning

In the works referred to above the parameters for
the dynamic changes in the robot’s neurocontroller have
been evolved. Hence, the final neurocontroller intrinsi-
cally deployed the correct types and doses of ANMs so
as to achieve the desired behavior of th robot. If we
want to teach the robot during its lifetime (on-line), we
have to know which ANMs cause the robot to change
or enforce its behavior. More specifically, the reaction

of a neuron receiving a modulator must be correctly im-
plemented. E.g., in BNNs Dopamine acts as a “reward”
hormone, which is emitted as a consequence to positive
feedback [2]. Though, we can easily define such a re-
ward ANM in the artificial brain, it is not clear which
reaction (in our system Hebb learning variants) has to
be chosen in order to link the rewarded behavior with
the future behavior of the robot.

We want to emphasize that the neurocontroller we
are going to present is enabling ontogenetic learning
by feedback signals from the environment (mediated by
ANMs). Though, being a classical reinforcement learn-
ing approach, the neurocontroller’s architecture is dif-
ferent from RL methods, as it does not evaluate policies
(potential actions), but represents the basic architecture
of neurocontrollers employed in ER approaches. The
robot’s sensor signals at the input layer of the network
generate motor signals at the output layer. In addition
to pure phylogenetic learning achieved by evolving the
structure of the robotic brain, ER researchers also sug-
gested evolution of learning rules enabling lifetime learn-
ing [8]. The latter system is learning constantly, while in
our approach learning is triggered by pre—defined events
or an outside teacher, i.e., there may be only short time
periods, where learning is activated or deactivated. Evi-
dently, this should assist the robot in finding interesting
subspaces of the input signal space, where it can extract
the most useful information to learn the given task. The
basic architecture of the neurocontroller employed in the
following experiments is shown in Figure 1.
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Figure 1: Basic architecture of a dynamic neurocon-
troller with artificial neuromodulators.

The plasticity of the robotic brain (induced by the
ANMs) also allows for adaptions even when the envi-
ronment or the physical appearance of the robot (e.g.,
sensor loss) changes after it has successfully learned a
task. In order to investigate the prerequisites for suc-
cessful ontogenetic learning employing a dynamic neu-
rocontroller, we set up two simple tasks: i) the robot
should learn to avoid the walls of a rectangular arena
(wall avoidance) ii) the robot is taught to move to a spot
in the arena that has a specific odor (spot finding).

In the wall avoidance task the environmental feedback
is given by a bumper sensor, which is activated, when



the robot touches the wall of the arena. The sensor sig-
nal is fed into an input neuron, which emits an ANM
signalling “pain” inside the robotic brain. With spot
searching the smell of the spot is proportional to the dis-
tance of the robot to the spot. The nose of the robot is
connected to an input neuron emitting a “joy” modula-
tor, which should enforce the robot to move towards the
spot. The presented experiments have two fundamental
differences: wall avoidance should be learned by giving
negative feedback for short periods of time (wall con-
tact), while spot finding should be achieved by positive
feedback given over long time periods (robot smelling
the spot).

Results of various experiments should assist to re-
solve a number of design questions, namely, the rates
of emitted modulators, and the reaction to reception of
a modulator (actually changing network parameters via
Hebbian learning).

3 Experimental Setup

All experiments are conducted in a Java simulator
designed and constructed by the authors allowing real
time and soft time simulation. The latter enables to
perform experiments, where many hours of robot action
have to be simulated, in a few seconds or minutes. The
cylindrical robot shown in Figure 2 is equipped with four
distance sensors (front, back, left, right), and a contact
sensor (wall avoidance), or a nose sensor (spot finding).
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Figure 2: The cylindrical robot.

The software sensor simulates a nonlinear, noise—free,
real device measuring the reflection of a physical signal
emitted exactly in direction of the line from robot center
to the sensor positioned at the perimeter of the robot.

The neurocontroller is a standard One—Hidden Layer
network (five hidden neurons) composed of neurons with
logistic activation function. Each sensor is associated
with an input neuron, whose activation determine the
signals at the two output neurons (left and right motor).
Each neuron is capable of receiving and reacting to the

emitted ANM. In case of the wall avoidance experiment,
a single type of ANM (pain) is diffused by the contact
sensor neuron, when the robot touches the wall. If the
ANM is emitted all neurons immediately are able to re-
ceive the modulator (in the next time step) by a given
reception rate. The reception of a modulator triggers
the unsupervised learning process. The dose (measured
in mole) of the receipted modulator is directly propor-
tional to the learning parameter 7 for basic Hebbian
learning:

Awj; = na;aj, (1)

where a;,a; are the pre-, and postsynaptic activa-
tions, respectively, of the neurons connected by the
weighted link. Note that the weight change Aw;; only
takes place, when an ANM is received by a neuron. By
setting the emission rate larger than the (summed) re-
ception rate of all neurons, it is possible to easily intro-
duce a kind of short—term memory, as it takes a num-
ber of time steps (simulation cycles) to fully absorb the
modulator.

3.1 Hebbian Learn Rules

Table 1 gives the definition of the four Hebbian learn-
ing rules that are used in the experiments.

Hebb (H) A’u}j,i =na;aj

Anti-Hebb (AH) Awj; = —na;aj

Covariance Hebb (CH) Aw;; =n(a; —a;)(a; —ajz)
Covariance Anti-Hebb (CAH) | Aw;; = —n(a; —a3)(a; — ay)

Table 1: Variants of Hebbian learn rules.

The parameters @; and a; are the pre—, and postsy-
naptic mean activations, respectively, being defined as
the running mean of the neuron’s activation from ¢ = 0
(“birth”) to the current time .

3.2 The Wall Avoidance Experiment

In this experiment the robot is placed in a rectan-
gular arena (1.05 x 0.70 m) and should learn to avoid
wall contact. We performed experiments with 500 sim-
ulated robots initialized with different random weights
and biases from the interval [-1.0,1.0]. The learning
behavior is evaluated by a Learn Ability calculated in
the following way:

1. Every robot is placed into each of the four corners
(in a distance of ten cm to the walls) and then
moves freely (without learning) for ten minutes.
Throughout these 40 minutes we measure the time
tpre it is in contact with the wall.

2. The robot is placed in the upper left corner with
activated learning (modulators are diffused by the




contact sensor neuron). From now on the robot has
two hours to learn the task.

3. After the learning procedure the robot is tested in
the same way as described in 1 measuring the wall
contact time £5,44.

The learn ability Ly 4 is defined as
tpre - tpost
LWA tpre + tpost ' (2)

We study the impact of different learning rules on
the learning behavior of the robot using the mean learn
ability L of the robots. Note that a number of robots
avoid the wall without any learning, which we labelled
Genius, as they perfectly master the task right from the
time of “birth”. Genius robots are not considered for
calculation of the mean learn ability. The learn ability
L is 1.0, if the robot has learned the task perfectly, e.g.,
never touches the wall after training. An L > 0.0 indi-
cates an improvement after learning, while an L < 0.0
is the sign of a negative effect of training, i.e., the robot
exhibits a worse behavior.

The learn ability is influenced by the dose d of mod-
ulator, which is emitted by the contact sensor neuron
at wall contact. The emission rate is set to 12 mole
per second. Each neuron in the network is able to re-
ceipt this modulator. The reception rate is set such that
the complete amount of modulator diffused in one time
step is consumed by all neurons at equal parts in the
next time step. The consumed dose is directly mapped
to the learn rate 5 of the neurons’ pre—synaptic links,
e.g., if a neuron consumes 1.0 mole of the modulator
n = 1.0. Note that in this setting the ANM concept
only mediates start and stop of Hebbian learning with a
specific learn rate. While this procedure has appealing
biological analogies, it could be equally implemented in
a simple algorithmic way. However, changes in the emis-
sion and/or reception rate would immediately introduce
complex temporal interactions of feedback signals and
weight changes.

3.3 The Spot Finding Experiment

Again, the robot is placed into the rectangular arena,
but this time it should learn to move towards a circular
spot in the arena, which can be smelled by the robot.
The contact sensor is replaced by a nose sensor detecting
odors in an angular range of 90 degrees around the front
distance sensor. The (virtual) odorous spot is a circle
with a diameter of twelve cm. The nose sensor delivers a
signal proportional to the distance, and the associated
neuron emits the Joy modulator in a binary manner
(odor yes/no). The emission rate of the nose neuron is
set to 0.6 mole per second.

The evaluation of the robots is performed as follows:

1. Each robot is placed in the upper left corner (ten
cm to the walls), while the spot is placed in the

upper right corner. During the next 30 minutes we
measure the time t,,, the robot is inside the spot.

2. The robot is placed in the left upper corner, now
with learning activated for two hours.

3. Finally, the robot is tested in the same way as de-
scribed in 1 measuring the time inside the spot

tpost -

As the measured times are now indicating wanted be-
havior, the learn ability Lsr = —Lwa (Equation 2).

We also measure the mean distance to the spot be-
fore (3pr¢) and after (Sp0s¢) training. Only robots having
ever been inside the spot are taken into account for the
calculation of the mean values. A specific problem with
the mean distance is a robot positioning itself near the
spot right at the wall with a tendency to “run away”
from the spot. Though, the robot actually is not learn-
ing the intended behavior, in this case the mean distance
would indicate a robot attracted by the spot.

4 Results

Employing negative Hebb learning as the reaction to
the received modulator in the wall avoidance experi-
ments a number of robots is able to avoid the wall af-
ter a few collisions. Other robots (each “born” with a
different random brain) take some minutes (real-time
simulation) to learn the task, while a few never learn it,
and sometimes always remain in contact with the wall.
All robots learning the task develop an intuitively ex-
pected behavior of slowing down, when approaching a
wall, and starting to turn away from the wall, then ac-
celerating into “open terrain”. A typical motion trail of
a robot having quickly learned the task can be seen in
Figure 3.

Figure 3: A typical motion trail of a wall avoiding robot
after ontogenetic learning.

In a number of experiments (Table 2) we expectedly
saw that the type of learning reaction has a dramatic
influence on the robot’s learning ability. We also no-
ticed that successful learning is greatly influenced by a



detail neglected in most previous work on Hebb learn-
ing. Usually, the learn ability of the robot is consider-
ably improved, when the bias values of a neuron are not
subjected to Hebb learning, i.e., they remain constant.
Consequently, we also present results comparing fixed
with learned bias values in Table 2.

AH, yes | AH,no | H,no | CAH,no | CH, no
L=1 40 52 61 52 73
L>0 27 161 55 180 138
L=0 0 0 0 8 4
L<O 235 83 205 62 97
Genius 198 204 179 198 188
L -0.222 0.417 0.028 0.457 0.451
d 64880 12177 | 54260 15984 23219

Table 2: Learn abilities L of 500 wall avoiding robots
using different learn rules with (yes) or without (no)
bias learning. The contact sensor neuron is synaptically
connected to the hidden layer.

Interestingly, there is a clear difference between
changing the bias values according to Hebb’s rule, or
keeping them fixed. Training the initially random bias
values results in a much worse learning ability L (aver-
aged on all trained robots) than excluding the bias from
training (genius robots never touch a wall, hence, they
are never trained, and do note contribute to L).

When employing AH learning, the weights are de-
creased in each learn step being triggered by wall con-
tact. As a consequence, a trained robot has mostly
(large) negative weights. If it approaches the wall of
the arena, a strong signal is generated by one of the
distance sensors, which leads to low activation (close to
zero) of the hidden neurons. Then, the activity of the
motor neurons is only determined by its bias values. If
the bias values are fixed and different for the two motor
neurons, the robot will turn, which is what it should
learn to do near the wall. However, if the bias values
are subjected to AH learning as well, they will mostly
become negative resulting in zero activation of the mo-
tor neurons, actually moving the robot straight with full
reverse speed.

The essence of these considerations is that in this case
the learn ability of the robot is only dependent on its
fixed bias values given at “birth”. AH learning more and
more reveals the basic “character” of the robot, but it
does not change this character. Thus, learn ability is
only determined by traits already existing at the time
of the robot’s “birth”. The results in Table 3 confirm
this observation, but they also show that CAH Learning
does not depend on the initial bias values.

With bias values fixed to 0.0 AH learning achieves
a much smaller learn ability than with fixed random
values, as the key to successful learning in this setting
is a difference in the bias values of the output neurons

AH CAH
L=1 48 72
L>0 7 176

L<O 184 67
genius 191 184
L 0.022 | 0.485
47554 | 15784

al

Table 3: Learn abilities L of 500 wall avoiding robots
with bias values fixed to 0.0.

(enabling turning behavior).

CH learning does not only not exhibit this depen-
dency, but also is successful regardless of the positive
or negative variety. There are a number of possible ex-
planations to this behavior. This Hebb variant allows
weight changes in both directions even in the same learn
step (simulation cycle). The mean activations represent
a very basic form of memory, which makes learning de-
pendent on time, or in other words on the robot’s age.
Learning is also dependent on the mobility of the robot.
A robot mostly staying in a certain area of the arena,
will process similar input signals most of the time lead-
ing to a convergence of the mean activations. If the same
robot moves to another area, the difference of input sig-
nals to the mean activations commanding the actual
weight change will be larger (stronger learning) than
for a more mobile robot. Putting all together and con-
sidering that learning only takes place at certain points
in time (wall contact) the complexity of this still simple
Hebb variant becomes obvious.

Naturally, the dose of the emitted modulator con-
tributes to the learning process of the robot. Thus,
we measured how the learn ability of the robots is in-
fluenced by the modulator dose. Comparing AH and
CAH learning (fixed random bias) in Figure 4 reveals
interesting properties.

The increase of the rate of modulator emission is bal-
anced with a proportional increase of the reception rate.
Hence, the complete dose of modulator emitted in a time
step is consumed in the next triggering the given type
of learning. In case of the CH rule the weight changes
are in both directions. Increasingly strong learn signals
lead to a complete perturbation of the network weights,
i.e., a new random network. With the simple wall avoid-
ance task it might only take a few wall contacts until a
genius contributing to improved learn ability is found.
High modulator doses in combination with AH learn-
ing make the robots more and more insensitive to the
input signals, as even weak sensor signals lead to deac-
tivation of the hidden layer. Hence, the robot no longer
switches between a behavior close to the wall and a dif-
ferent one in ”open terrain”. If the robot moves in a
rather straight manner, wall contacts are inevitable, and
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Figure 4: The dependence of the learn ability on the
modulator rate for wall avoidance.

the strong learning signals further enforce the singular
behavior.

The results of the spot finding experiment are sum-
marized in Table 4 showing that no learn rule is able to
enforce the wanted behavior. Still the best is AH learn-
ing, but on average it also makes the robots to avoid
the spot instead of approaching the target, which can
also be seen with the mean distances s. If a robot suc-
cessfully finds the spot, it has a rotating behavior, when
it does not smell the spot, and a more straight motion
towards the spot, if the nose detects the odor. In case of
AH learning similar arguments as for the wall avoiding
experiments apply. In case of an activated nose neuron,
the hidden layer is shut down, which makes the mo-
tor action dependent on the bias values. Only, if these
are approximately equal and cause a motion towards
the spot, a robot is able to potentially learn the spot
finding behavior. Again, AH learning only reveals the
innate character of a robot.

AH, Yes | AH, No | H, Yes | H, No | CH, No
L=1 47 95 4 6 5
L>0 1 3 1 0 1
L=0 0 1 0 1 0
L<o0 224 187 194 218 166
L -0.639 -0.310 | -0.951 | -0.942 | -0.929
Spre 0.203 0.283 0.109 0.109 0.122
Spost 0.484 0.363 0.472 0.249 0.539
Inside 272 286 199 225 172

Table 4: Learn abilities L and mean distances 5 of 500
spot finding robots using different learn rules with (yes)
or without (no) bias learning. “Inside” indicates the
number of robots ever within the odorous spot.

5 Summary

The results show that ontogenetic learning of mo-
bile autonomous robots with neurocontrollers regulated
by external feedback mediated by ANMs is sufficient
to teach robots simple tasks. However, we have found
that the learning ability of the robots is dependent on
parameters that are randomly assigned at the “birth”
of the robot. The crucial question to be addressed in
future research is, if there exists an unsupervised learn-
ing method allowing the robot to correctly interpret the
feedback signals so as to learn the appropriate behavior.
In conventional reinforcement learning the problem of
interpretation is solved by assigning values to actions,
while in this work we investigate the classical neural
mapping of sensor to motor (action) signals. Assuming
that Hebbian learning plays an important role in BNNs,
the finding that a sensor—-motor neurocontroller cannot
be generally trained by unsupervised learning, would
possibly imply that biological systems rely on action—
value networks as suggested by various researchers.
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