
Evolution of a Digital Organism Playing Go

Christian Alt and Helmut A. Mayer
Department of Computer Sciences

University of Salzburg
Salzburg, Austria

christian.alt@stud.sbg.ac.at, helmut@cosy.sbg.ac.at

Abstract—Digital organisms (DOs) model the basic structure
and development of natural organisms to create robust, scalable,
and adaptive solutions to problems from different fields. The
applicability of DOs has been investigated mainly on a few
synthetic problems like pattern creation, but on a very limited
number of real world problems, e.g., the creation of architectural
structures. In this paper the potential of DOs for learning to
play the game of Go is demonstrated. Go has been chosen for its
high complexity, its simple set of rules, and its pattern–oriented
structure. A DO is designed, which is able to learn to play the
game of Go by means of artificial evolution. The DO is evolved
against three computer opponents of different strength on a 5×5
board. Specifically, we are interested in the DO’s scalability, when
evolved to play on the small board and transferred to a larger
board without any external adaptations.

I. INTRODUCTION

The game of Go has gained increasing attention by com-
putational intelligence research since Deep Blue has beaten
the reigning world champion in chess, Garry Kasparov, in
1997, which marked the beginning of the dominance of chess
computers over human players. Though, the rule set of Go is
very simple, the game’s complexity is far beyond that of chess.
It, therefore, offers a (new) challenge for various computational
intelligence approaches.
Because of the pattern based nature of Go, its inherent sym-
metries, and its scalability (Go is played on boards of various
sizes), we considered DOs to be a good choice, as they might
be able to exploit the symmetric and scalable structure of the
game. Of course, details of the DO have to be designed such
that it captures essential properties of the game. The basic
ideas can be summarized in a few sentences.
The DO’s environment is the Go board and its intersections.
An intersection may be “inhabited“ by a single cell indicating
the state of the intersection (empty or black/white stone).
All the cells on the board communicate by diffusing and
absorbing mediators, which in turn may change the cell state.
The activities of a cell are governed by the cell program, which
is evolved and controls the cell state mainly based on mediator
concentration. E.g., a cell may replicate and/or change its state.
The latter may lead to a stone placed on that intersection (cell).
It is important to note that in this work we are only concerned
with DOs having identical cell programs, i.e., each single cell
is controlled by the exact same set of instructions.
When a DO is employed to play the game of Go its intelligence
is distributed across the board in the cells of the artificial
organism. There is no central entity coordinating the cells.
This decentralized organization leads to a decoupling of search
space and solution space, which might enhance the emergence
of more general playing abilities, e.g., the symmetric trans-
formations of sequences played in different corners of the

board. The latter is quite simple for humans, but poses great
difficulties for a number of computational approaches.
A strong motivation for the application of DOs in this context
was the assumption that a DO may scale well, when transferred
to a board of different size, which, again, is a substantial
problem for other approaches (e.g., artificial neural networks).
As the computational cost for evolving a DO decreases with
board size, the projected scalability could result in a decent
player on larger boards, which has been evolved on smaller
boards in a moderate time span.

II. THE GAME OF GO

Go is a two–player board game that is played on a board
with a grid of horizontal and vertical lines. Usually, the board
size is 19 × 19, but there are smaller sizes often used for
educational purposes (9×9, 5×5). The two players take turns
in placing black or white stones on the intersections (of the
lines) on the board. The black player (usually) starts the game
with the first stone put on the board. Once a stone is placed it
stays at its position for the whole game, unless it is captured
by the opponent.
Two or more stones of the same color that are placed on
intersections adjacent to each other form a group. Empty
intersections next to a group are called liberties. If a group’s
number of liberties is reduced to zero it is captured and
removed from the board. Players are allowed to pass, if they
do not deem a next move to be beneficial. The game ends
when both players pass in consecutive moves.
The goal of the game is to secure territory (empty space
surrounded by stones of the same color). Captured stones also
improve the final score of a player, which basically is the
sum of territory points and the number of stones captured by
a player. In order to compensate the advantage of the black
player making the first move, the white player receives bonus
points called Komi (usually 4.5–6.5) added to his score.
For calculating the players’ final scores two widely used
methods, namely, Chinese and Japanese scoring, are used.
With Japanese scoring the number of empty intersections in
a player’s territory are added to the number of stones captured
by the player. When employing Chinese scoring a player’s
territory points and the number of stones on the board are
added. The prisoners are not taken into account because they
are implicitly given by the number of (live) stones on the
board. With a few exceptions the outcome of a game is not
dependent on the scoring method.
Go has a sophisticated ranking system rating the players’
strength. The amateur ranks are called kyu starting from about
35 kyu going up to 1 kyu. The higher ranks for expert
(amateur) players are called dan ranging from 1 dan to 7 dan.



Even above are the professional ranks from 1 dan to 9 dan. A
detailed introduction to Go can be found in [1].

III. RELATED WORK

A number of different approaches to design computer pro-
grams that are able to play the game of Go at a reasonable level
have been investigated. Todays, most competitive Go programs
are modeling human expert knowledge or use Monte Carlo
methods, which are simple, but require ample computational
power.
GNU Go 1 and The Many Faces of Go 2 are two of the best
known handcrafted computer Go programs. Because of the
huge success of Monte Carlo methods, both programs also
incorporate these techniques. Lee et al. (2009) developed a
very successful Go program called MoGo combining Monte
Carlo tree search evaluation, moves extracted from databases,
and an expert rule system [2].
There have also been several approaches using Artificial Neural
Networks (ANNs) to either assess the current board situation
or to choose the next move directly. Schraudolph et al. (2000)
presented an approach using Temporal Difference Learning to
evaluate board situations [3]. Dahl (1999) presented an ap-
proach using artificial neural networks combined with Alpha–
Beta Search (for connectivity and life–and–death problems)
and a Joseki (corner openings) database [4]. A similar approach
integrating a priori expert knowledge into an ANN playing Go
was published in [5].
Mayer (2007) presented a comparison of different board rep-
resentations in the input layer of ANNs learning by temporal
difference [6]. Because neighborhood is a very important
concept in Go, the author investigated three different board
representations, each with a different level of neighborhood
information for the neural network.
Richards et al. (1997) presented an approach to evolve Go–
playing neural networks using Symbiotic Adaptive Neuro Evo-
lution (SANE) [7]. A coevolutionary approach to generate
neural Go players was published in [8]. The authors pointed
out potential advantages of coevolution, as there is no need for
a pre–defined opponent, and the level of play reached may not
be limited by the quality of a specific opponent. Mayer and
Maier (2005) presented a cultural approach of coevolution of
ANNs playing Go [9], where the “knowledge” of good players
of previous generations is (implicitly) stored.

IV. DIGITAL ORGANISMS

In nature very complex organisms consisting of millions
of cells are grown from a considerably smaller, less complex
genotype. These organisms exhibit certain desirable character-
istics like scalability, adaptability, robustness, and the ability
of self-repair and recovery. Digital organisms (DOs) model the
basic concepts of natural organisms with the goal to generate
problem solutions exhibiting above properties, as these are also
desirable in a non–biological context.
A DO is composed of cells in an environment, which commu-
nicate by the emission and absorption of mediators controlled
by the cell program. The cell state represents the “decision”
of a cell, which has to be defined in the context of a specific
problem. The cell program also controls various actions of

1http://www.gnu.org/software/gnugo/
2http://www.smart-games.com/manyfaces.html
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Figure 1. An exemplary digital organism with hexagonal cell structure.

the cell, e.g., replication, growth, differentiation, movement, or
performing programmed cell death (more profanely, dying).
In contrast to Cellular Automata (CA), the number of cells in
DOs is dynamic, whereas it is static in CAs. They also differ
in the cells’ connectivity patterns. In CAs cells usually have
fixed connections to other cells, while DOs have no explicit
connections, but are influenced by mediators, which may be
diffused from any other cell. Hence, all cells of a DO are
implicitly connected to various degrees.
The cell program is subjected to evolution and its fitness
is determined by the problem solving capacity of the DO
constructed and controlled by the cell program. This is an
indirect form of artificial evolution, as the structure of the DO
and its cell states are the result of the (same) cell program
acting in each cell.
The environment and the possible shapes and neighborhood
structure of the cells have to be designed according to the
problem to be solved. The neighborhood structure is important
for the diffusion of mediators in the environment. In figure 1 a
two–dimensional environment with hexagonally shaped cells is
depicted as an example. Each hexagonal cell has six neighbors,
which defines the diffusion pattern of mediators released by
single cells.

The development of a DO starts with the placement of an
initial cell (zygote) into the environment. Then, the control
program of the cell is executed, which usually leads to cell
replication. During evolution a control program, which does
not enhance replication, will most likely be deselected (de-
pending on the problem to be solved). A cycle is defined by the
complete execution of the cell program of each cell of the DO.
In one cell the cell program may cause the movement of a cell,
while in another cell the identical cell program may lead to a
release of mediators, and in yet another cell the cell program
may change the cell state. It is this complex interaction of cells,
cell positions, mediators, cell states, and the cell program,
which is responsible for the potentially “intelligent” behavior
of a DO.
Again, it should be stressed that the final DO behavior is the
result of an evolutionary process, in which the control program
is constantly reshaped and evaluated by observing the behavior
of the DO it is controlling. For the evolution of the control
program we employ Genetic Programming (GP), which will
be briefly reviewed in the following section.



A. Genetic Programming

GP is an evolutionary technique adapted to generate com-
puter programs (or algorithms), which loosely spoken leads to
a computer programming itself. John Koza (1994), the founder
of GP, stated that ”in genetic programming, populations of
computer programs are genetically bred using the Darwinian
principle of survival of the fittest and using a genetic crossover
(sexual recombination) operator appropriate for genetically
mating computer programs” [10].
GP starts with an initial population of randomly generated
computer programs, over many generations selects the better
programs based on their performance on a set of training
examples, and applies genetic operators in order to modify the
programs. Various genetic operators categorized into primary
and secondary operators have been proposed [11]. Primary op-
erators are reproduction and crossover. Secondary operators are
mutation, permutation, editing, encapsulation, and decimation.
The computer programs evolved using GP can be simple
mathematical functions, rule bases, fuzzy systems, different
assembly language programs, or even high level language
programs (e.g., LISP programs). Programs are encoded as a
syntax tree similar to a parse tree generated by most compilers.
The syntax tree is a rooted, node–labeled tree. The root node
and the internal nodes are populated by components from a
function set, while the leafs of the tree contain components
from a terminal set. This representation of a computer program
is of variable size and shape.
A specific GP variant is strongly typed GP [12]. It employs
a type system, where each terminal has a given type (e.g., an
integer number) and each function has a return type (whose
value is propagated to the parent node) and parameter types
(whose values are received from child nodes). The types of
the different nodes have to be taken into account during the
initial generation of syntax trees as well as during crossover
and mutation. Hence, it can be guaranteed that every resulting
tree represents a syntactically correct program.
In our work strongly typed GP is used to evolve a rule base
representing the cell program. Figure 2 shows the syntax tree
of a single rule.

Rule

ChemicalCondition

Chemical 1 0.3

Divide

Figure 2. An exemplary cell program rule in syntax tree representation.

With this particular rule a cell is replicated, hereby creating
a new cell, if the concentration of Chemical 1 is larger than
0.3. A variable number of rules of this structure makes up the
rule base, i.e., the complete cell program.

B. Applications of Digital Organisms

A few researchers have employed DOs for mostly synthetic
problems. Miller [13] presented an approach using square
cells in a two–dimensional grid environment and feed–forward
boolean switch circuits that were evolved using cartesian

genetic programming. In his work the evolution of a self-
repairing organism representing form and colors of the French
flag was investigated.
Roggen and Federici (2004) evolved patterns of different size
ranging from 8×8 to 128×128 cells [14]. A variety of similar
experiments was presented in [15] and [16].
A real–world application of DOs is the creation of stable ar-
chitectural structures. Kowaliw et al. (2007) used an approach
similar to cellular automata to evolve a DO solving that task
[17]. The DOs were grown in two-dimensional environments
with different sizes and shapes.

C. A Digital Organism playing Go

Until now, DOs have not been used in the domain of
board games. However, they might be very proficient in
this domain, specifically, with pattern–based games like Go.
Certain specifications and restrictions have to be made to adapt
the DO mechanics to the game of Go, which are described in
the following.
When using a DO for playing Go, naturally, the Go board
and its intersections are the DO environment, where at each
intersection a cell may live. This basic setup introduces a
property not found in most other computational intelligence
approaches, as game playing is not controlled by a central
entity, but intelligence is distributed all over the board in cells
with identical cell programs.
Each Go cell is defined to have one of four cell states. The
state Empty indicates that this intersection is not considered
for a move, while state Move makes the intersection a can-
didate for a move. The latter two states can be changed by
the cell program, but the other two states OwnStone and
OpponentStone are forced by the rules of the game, i.e.,
stones having been placed already cannot be moved (they are
removed, if captured). Hence, when the DO is playing a game
against an opponent, a move from either player results in
the change of the corresponding cell state. E.g., a cell may
have had the state Empty, but when a stone is placed on its
intersection, the state is forced to represent this stone. If there
is no cell on the intersection, a cell representing the stone is
created.
Note that with this scheme there is no need to convey the
current board situation to the system, as the DO is essentially
the current board situation. When the DO player is asked to
generate a move, it considers all cells with state Move, deter-
mines the cell with largest size, i.e., move quality, and places
a stone at the corresponding intersection, hereby, changing the
cell state to OwnStone. The cell size is regulated by the cell
program. Again, there may be some benefit with this move
generation scheme, as there might be only a few Move cells
representing a small set of potentially good moves. If there are
no Move cells on the board, the DO issues a pass move.
An example of the states of Go cells during a game is depicted
in figure 3, where each intersection is covered by a cell.

Three own stones marked with B and three opponent stones
marked with W are on the board. Four cells are in state Move
indicating suggestions for the next move. The cell size given
with the move cells correspond to the (assumed) move quality.
Here, the intersection of the move cell with largest size (62.4)
would be selected for the next stone to be played (a nice
double–atari move in this case).
The definition of neighborhood in the environment naturally
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Figure 3. Cell states of Go cells in an exemplary board situation.

resembles the Go neighborhood concept. Only cells that are on
horizontally or vertically adjacent intersections are considered
to be neighbors, as stones build a group in Go, if they are
neighbors in the above sense. Hence, any cell has a maximum
of four neighbors, which absorb the mediators potentially
released by the cell.
The various steps of a complete game are depicted in figure 4
and described in the following.

Initialization Phase

External Update

Internal Update

Generate Move

Initial Cell

Terminate Game

Figure 4. Flow of digital organism procedures for a complete game.

• Initial Cell – The initial cell (zygote) is placed in
the environment, either at random, or at a specific
position.

• Initialization Phase – The initialization phase is
carried out before the game is actually started. A
number of (initial) cycles is executed so as to grow
the DO, which could be utilized to explore the board
size and/or to locate the center of the board.

• External Update – The current move is “injected“
to the DO. The corresponding cell (state) is set and
(potentially) captured stones (cells) are set to Empty.
In this step the cell states are externally updated, but
not by the cell program, in order to reflect the move
made by the DO or the opponent.

• Internal Update – Here a number of (regular) cycles
is executed to compute the reactions of the DO to the

last move. Now the cell program is controlling the DO
in the usual manner.

• Generate Move – The DO is selecting the next move
out of all cells in state Move. These move cells are
ranked according to their cell size (move quality).
If different move cells share the highest value, one
of these moves is selected randomly. This implicit
randomness is beneficial during DO evolution, as
game variation is increased.

• Terminate Game – As given by the rules, the game
ends on consecutive pass moves of each player. The
DO generates a pass move, if no cells in state Move
are present.

In order to evolve the rule base for the cell program using
strongly typed GP an appropriate function and terminal set
have to be defined. Every rule has a condition and a cell
function that is executed if the condition is true, i.e., rules are
of the form if condition then cell function. The function
set contains conditions and cell functions, and the terminal
set consists of parameters and (some other) cell functions.
A variable number of rules is encoded in the program tree.
The rules are constructed using only elements of the following
function and terminal set.

The function set contains

a boolean CellStateCondition(CellState) returning,
if the cell is in the given cell state.
A boolean CellSizeCondition(real) returning, if the cell
size is above the given parameter.
A boolean MediatorCondition(MediatorType, real)
returning, if the concentration of the given mediator type is
greater than the given threshold.
A ChangeCellState(CellState) changing a cell’s state to
the given cell state.
A ChangeCellSize(real) changing the size of a cell to the
given size. When a cell is in state Move, the cell size is
interpreted as move quality.
A ReleaseMediator(MediatorType, real) generating
the given amount of the given mediator in a cell. In each cycle
the mediators are diffused to the cell’s neighbors according to
a pre-defined diffusion rate.
A Move(Direction, integer) moves the cell in the
given direction for the given distance. E.g., a distance of 1
moves the cell to the an (empty) neighbor position.
A ReplicateTo(Direction, integer) is similar to
Move(), however, the moving cell is a cell clone, i.e., the
cell stays at its position and the clone is moved to a different
position.

The terminal set contains

a Replicate() creating a cell clone and moving it to an
empty position closest to the cell.
A Die() removing the cell from the DO leaving an empty
position.
A CellState representing one of the pre–defined cell states.
A MediatorType representing one of the pre–defined me-
diator types. These types are only defined to have different
names. The ”meaning“ of these mediators is defined by evo-
lution, which is free to use only a subset of mediators.
A Direction representing one of North, East, South, and



West.
Types boolean, integer, and real are the known prim-
itive types.

V. EXPERIMENTAL SETUP

The experimental setup evolving a DO against a number
of computer players on a 5 × 5 board is described in this
section. In the following we will call a (fully) evolved DO
diGO player or shortly diGO.
The DO is evolved using a multi–population approach (e.g.,
[18]) with a total population size of 3,000 individuals, which
are split into 30 sub–populations with 100 individuals each.
The sub–populations are arranged in a ring topology where
the best five percent of each population migrate to the
neighboring sub–population in every fifth generation. The
migrating individuals replace the worst individuals of the
target population. Elite tournament selection is used with a
tournament size of two. The number of generations is set to
400, and each evolutionary run is repeated 20 times.
The GP population is initialized with program trees with a
maximal depth of four. The crossover probability is set to
0.95 and mutation (random subtree insertion) occurs at a rate
of 0.01. The initial real type values are drawn randomly out
of [−1.0, 1.0], and are mutated with random values from the
normal distribution N(0.0, 0.0075). This additional (node)
mutation with a rate of 1.0 affects only the real terminal.
The DO can use five different mediators for cell
communication. The mediator diffusion rate is set to
0.5, i.e., 50% of the mediator amount is diffused to the
neighbors. The mediator reduction rate is set to 0.3. The
reduction rate models the cell’s internal consumption of a
mediator.

A. Computer Players

Three computer players with different playing abilities,
which are described in the following, are used as opponents
in evolutionary experiments. Additionally, the well–known and
strong GNU Go is used to assess the playing abilities of diGO.

• Random – This player chooses a move randomly from
the set of possible moves (including the pass move).

• Naixt – This (naive) player has very basic playing
abilities and employs elementary concepts of Go, i.e.,
it tries to save own stones, capture opponent stones,
and gives up on stones it considers to be dead.

• GOjen – GOjen is based on Fuming Wang’s JaGo
program and employs some standard Go playing tech-
niques, e.g., it searches the board for 32 well–known
patterns and their symmetrical transformations. If a
pattern is detected, it responds with a move stored
with this pattern.

• GNU Go – This open–source project player mainly
employs a variety of strategic and tactical analyses
based on human knowledge to improve the quality of
play. Its latest official version 3.8 is ranked between
5 kyu and 3 dan on the KGS Go Server 3. Though, it

3http://www.gokgs.com/graphPage.jsp?user=GNU

would be a very interesting opponent during evolution,
in this work it is only used in test games against diGO,
as GNU Go’s computational cost is quite large (even
on small boards).

B. Experiment Configurations

In experiments three different configurations (Table I) are
investigated differing in number and type of opponents and
number of games played for fitness evaluation.

Table I. EXPERIMENT CONFIGURATIONS.

Configuration Opponents Games
1N Naixt 32

2RG Random, GOjen 16
3RNG Random, Naixt, GOjen 12

The DO to be evaluated plays half of the games against
each opponent with the black (white) stones. The white player
always receives a komi of 4.5. For determining the outcome
of games Japanese scoring (Section II) is used. The fitness is
the win percentage of the DO against the opponent(s).
With configuration 1N the only opponent is the Naixt player
playing 32 games against each DO so as to assess the fitness.
With configuration 2RG both, GOjen and Random, are used
as opponents. The Random player enhances a discrimination
of the DO’s playing abilities in early generations and helps
to maintain game diversity. The latter makes evolution less
prone to convergence to a diGO player winning many games
with identical move sequences, which is more likely to happen
against “strategic” computer players like GOjen. For fitness
evaluation a DO plays 16 games against each opponent result-
ing in a total of 32 games.
With configuration 3RNG all three computer players are
challenging the DOs during evolution. This should create a
large variety of different games potentially resulting in the
most versatile players. Twelve games are played against each
opponent to evaluate the fitness.
In order to assess the quality of a diGO player a strength
(value) is defined by the win percentage against the computer
players, when an equal number of games is played against each
of the three opponents. The games played to assign strength
values are called Test Games, as they are not part of the
evolutionary process. As each experiment is run 20 times, the
minimal, maximal, and average strength of 20 diGO players
(the best from each run) is given in the next section. Also, the
scalability of the diGO players is assessed by letting the exact
same diGO evolved on the 5×5 board play on 7×7 and 9×9
boards.

VI. EXPERIMENTAL RESULTS

In this section the results of the experiments are presented,
and a few selected games of diGO players are analyzed in
detail. A single evolutionary run took 104 hours on average
on an Intel Xeon 2.27 GHz processor.

A. Evolution against Naixt

The results of the experiments evolving diGO players
against the Naixt player (Configuration 1N) are shown in table
II.



Table II. TEST GAME RESULTS (WIN PERCENTAGES) OF THE BEST
DIGO PLAYERS EVOLVED AGAINST NAIXT.

Random Naixt GOJen Strength
5 × 5 5 × 5 7 × 7 9 × 9 5 × 5 5 × 5

Min 0.748 0.359 0.03 0.00 0.000 0.410
Avg 0.909 0.471 0.17 0.08 0.130 0.504
Max 0.991 0.691 0.44 0.37 0.271 0.601

The evolved players exhibit a maximum strength of 0.601
and an average strength of 0.504. When increasing the board
size, the average win percentage against Naixt drops sharply
from about 47 percent to 17 percent. However, specific diGOs
do scale better, as can be seen by the maximum win percentage
against Naixt. A specific diGO kept its playing level starting
at 0.512 on 5× 5 and winning 44.1 percent of all test games
on 7×7 and 37.2 percent on 9×9. Considering that the Naixt
player gets stronger on these medium sized boards, it seems
that most playing abilities acquired by diGO in evolution on
the 5× 5 board are still present on the larger boards.
The win percentages against GOJen in this configuration are
reasonable, as the latter computer player is ranked above Naixt.
The average win percentages against Random (0.909) and
GOJen (0.130) show that the diGO players are not overly
specialized to the opponent presented in evolution.

B. Evolution against Random and GOJen

In figure 5 the average and maximum fitness during evo-
lution is depicted over the number of generations.
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Figure 5. Best and average fitness in evolution against Random and GOJen
(averaged on 20 Runs).

Both fitness measures are increasing continuously still
having an upward trend in the final generations. The small
spikes in the average fitness graph mark the generations in
which migration occurred, where a portion of individuals in the
sub–populations is replaced by fitter ones. The fitness progress
for other configurations is very similar to the one in figure 5.

Table III presents the results of evolution when DOs are
evolved against Random and GOJen (Configuration 2RG).

Table III. TEST GAME RESULTS (WIN PERCENTAGES) OF THE BEST
DIGO PLAYERS EVOLVED AGAINST RANDOM AND GOJEN.

Random Naixt GOJen Strength
5 × 5 5 × 5 5 × 5 7 × 7 9 × 9 5 × 5

Min 0.858 0.062 0.063 0.001 0.000 0.327
Avg 0.968 0.234 0.510 0.018 0.006 0.571
Max 0.997 0.428 0.823 0.103 0.104 0.705

Against GOJen, the maximum win percentage (0.823) and
the maximum strength (0.705) out of the 20 diGOs are rather
high, and the average win percentage of 51 percent seems
to indicate that diGO has learned to play at the level of the
best computer player used in evolution. However, looking
at the Naixt column it becomes apparent that the success
against GOJen is at least partly based on specialization to this
opponent, even though, the win rates against Random are as
high as should be expected.
A single diGO plays at a reasonable win rate of 0.103 against
GOJen on the 7 × 7 board, which may partly be due to the
increasing quality of GOJen on larger boards. However, when
the board size is further increased to 9× 9 the win rate of the
best diGO remains at exactly the same level (0.104), which
again, demonstrates the DO potential of board scalability.

C. Evolution against Random, Naixt, and GOJen

With configuration 3RNG all three computer opponents
are used for fitness evaluation. The goal is to evolve players
with general Go playing abilities that are not over–adapted to
winning against a specific opponent.
The results of the 20 evolutionary runs can be seen in table
IV.

Table IV. TEST GAME RESULTS (WIN PERCENTAGES) OF THE BEST
DIGO PLAYERS EVOLVED AGAINST RANDOM, NAIXT, AND GOJEN.

Random Naixt GOJen Strength
5 × 5 5 × 5 7 × 7 9 × 9 5 × 5 5 × 5

Min 0.899 0.267 0.117 0.011 0.098 0.451
Avg 0.966 0.393 0.208 0.085 0.330 0.563
Max 0.994 0.531 0.422 0.249 0.822 0.689

The strength values of the best diGOs are comparable to
those with configuration 2RG (Table III), but the minimum
strength is higher (0.451 over 0.327). The maximum win
percentage against GOJen is very close to the one in the
previous experiment (82.2%), although, the number of fitness
games against GOJen has been reduced from 16 to 12 (Table
I).
Looking at the performance of diGOs against the Naixt
player, an improved scaling behavior can be observed, when
compared to configuration 1N (Table II), where Naixt was the
only opponent during evolution.
Specifically, the minimum win rate on 7× 7 (0.117) indicates
that in this configuration all diGOs are able to develop at
least some general Go playing abilities on the 5 × 5 board,
which are also applicable on the 7× 7 board.

D. Game Analysis

In this section some selected games are discussed in order
to closer investigate the capabilities of diGO players. It should
be stressed that games have been chosen, where diGO wins
against its computer opponent, which does not imply that
it wins all or most games against this opponent, which is
evident from the experimental results in this section. However,
it should demonstrate that diGO is able to make meaningful
moves, eventually, leading to a win.



1) Games against GOJen: The game shown in figure 6
shows a typical game of the diGO with strength 0.705 having
emerged in run 19 of the experiment in configuration 2RG. It
plays with the black stones against GOJen.

Figure 6. diGO (black) wins against GOJen (white) by 19.5 points.

diGO opens with the (known) optimal move on 5 × 5 in
the center of the board. It then pushes the opponent into the
top right corner and secures the territory in the bottom left
corner. Though, some black moves are of low quality (e.g., 9,
13, 15), they do not reduce the overall positional advantage of
black. In other words, after gaining a very good position in the
first moves, black secures its advantage, and does not make a
“silly” move, which is often a problem with evolved players.
In the final board position the white group is dead and black
wins by 19.5 points (komi 4.5).
A game of the strongest diGO player on the 7× 7 board with
a strength of 0.448 evolved in configuration 2RG is shown in
figure 7. diGO plays the white stones versus GOJen on 7× 7.

(a) Moves 1 to 21 (b) Moves 22 to 35. Move 33: pass.

Figure 7. diGO (white) wins against GOJen (black) by 9.5 points.

While GOJen is (too much) concerned capturing white
stones (e.g., 2, 6, and 18), diGO plays some nice strategic
moves (e.g., 4 and 10) marking territory at the sides and
corners. Actually, this diGO has developed a very interesting
(simple) strategy, which can also be observed on larger boards.
It predominantly places stones on intersections, which are next
to an intersection at the border (e.g., 10, 20, and 30). It even
sacrifices stones in order to do so, which in the long run
yields more territory, as can be seen nicely with the final board
position in figure 7(b), when diGO wins the game by 9.5 points
(komi 4.5).

2) Game against GNU Go: The best diGO player having
emerged from configuration 2RG was able to win 34 percent
of the games against GNU Go (level 6 out of 10) on 5 × 5.
A selected game of this diGO against GNU Go is shown in
figure 8 with GNU Go playing white.

(a) Moves 1 to 10. (b) Moves 11 and 13.

(c) Moves 15 to 23.

Figure 8. diGO (black) wins against GNU Go (white) by 13.5 points.

diGO opens at an intersection next to the center, which
is known to lead to a sure win, if both sides play optimally
[19]. GNU Go answers with the center move. Though, white
captures 7, the black attack 11 on the white center stones 2
and 4 leads GNU Go to pass immediately, as it cannot save
its stones.
The following black moves secure diGOs win by a margin of
13.5 (komi 4.5). Note that GNU Go is certainly not optimized
for play on the 5 × 5 board, but this game shows that diGO,
again, is able to play good moves against a tough computer
opponent.

VII. SUMMARY AND OUTLOOK

We have presented experiments evolving a digital organism
(DO) to play the game of Go. More precisely, based on genetic
programming we evolved a single cell program controlling
each cell of the artificial organism, which “lives” on the
intersections of the Go board. The cells communicate by the
emission and absorption of mediators also regulated by the cell
program. A cell’s state indicates if a move should be made
at the cell’s intersection, or if the intersection should remain
empty. Among other activities cells may replicate, grow, or
die. These actions are, again, controlled by the cell program.
We consider the main advantages of this approach to be the
distribution of game intelligence among the cells and the
natural representation of the game by the cells, which leads
to the potential for scalability, i.e., a DO having been evolved
on a smaller board could be transferred to a larger board
without any modifications. With Go this is very attractive as
computational cost is often prohibitive for evolution of players
on large boards. A scalable DO is comparable to the way
humans learn the game, when they start to play on small boards
and generalize essential game concepts to larger boards.
The results of the presented experiments demonstrate that DO
evolution generates artificial players having the potential to win
against a set of computer opponents on small boards (5×5 and



7 × 7). It could also be shown that the evolved DOs exhibit
the assumed scalability in some cases, however, on average
the win rates decreased on larger boards. This may partly be
attributed to the fact that we evolved DOs on the 5× 5 board,
where essential concepts like corner play cannot be learned (as
a corner on 5× 5 is more or less the whole board).
There are many possible directions for future research. In
order to improve the scalability DOs could be evolved on
7 × 7 or 9 × 9 boards, where game play closer resembles
large board situations. In a further step board size may vary
during evolution starting with small boards and increasing the
board size in later stages. While these extensions are “only“
a matter of computational power, the addition of game tree
search to a DO player poses some problems, as all potential
board situations have to be played out to assess the move
quality. Hereby, the DO changes and is influenced by previous
(bad) situations. It remains to be investigated how this affects
the DO’s quality of play.
Another idea is inspired by different embryonic stages pre-
sented in [20]. Here, different cell programs are evolved
for different stages of DO development. E.g., for different
game stages like opening, midgame, and endgame, specific
cell programs may control the DO player. Similarly, the cell
programs could differ in regions of the board, e.g., a corner, a
side, and a center cell program.
Finally, the application of DOs to other (board) games leaves
a broad spectrum of interesting research activities.
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